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A B S T R A C T   

Eye tracking and head pose estimation (HPE) have previously lacked reliability, interpretability, and compre
hensibility. For instance, many works rely on traditional computer vision methods, which may not perform well 
in dynamic and realistic environments. Recently, a widespread trend has emerged, leveraging deep learning for 
HPE specifically framed as a regression task; however, considering the real-time applications, the problem could 
be better formulated as classification (e.g., left, centre, right head pose and gaze) using a hybrid approach. For 
the first time, we present a complete facial profiling approach to extract micro and macro facial movement, gaze, 
and eye state features, which can be used for various applications related to comprehension analysis. The multi- 
model approach provides discrete human-understandable head pose estimations utilising deep transfer learning, 
a newly introduced method of head roll calculation, gaze estimation via iris detection, and eye state estimation (i. 
e., open or closed). Unlike existing works, this approach can automatically analyse the input image or video 
frame to produce human-understandable binary codes (e.g., eye open or close, looking left or right, etc.) for each 
facial component (aka face channels). The proposed approach is validated on multiple standard datasets, indi
cating outperformance compared to existing methods in several aspects, including reliability, generalisation, 
completeness, and interpretability. This work will significantly impact several diverse domains, including psy
chological and cognitive tasks with a broad scope of applications, such as in police interrogations and in
vestigations, animal behaviour, and smart applications, including driver behaviour analysis, student attention 
measurement, and automated camera flashes.   

1. Introduction 

FACIAL profiling tools have increased in popularity in recent years due 
to their broader applications, including human–computer interaction 
(HCI) (Mukherjee and Robertson, 2015), psychological profiling such as 
deceptive behaviour (Khan et al., 2021), keepsakes (Yang et al., 2019), 
education profiling (Holmes et al., 2018), driver behaviour analysis 
(Venturelli et al., 2016; Mittal et al., 2016, 2016), nodding and shaking 
behaviour (Kong and Mbouna, 2015), multi-task learning (Huang et al., 
2023), surveillance of crowd behaviour (Baxter et al., 2015), and many 
more (Murphy-Chutorian and Trivedi, 2009; Kumar et al., 2019). 
Generally, facial profiling tools (FPT) are based on eye gaze, head 
movements or poses, and other facial features (e.g., colour variation, 
blood flow etc.). Furthermore, gaze and head pose estimation (HPE) are 
interrelated topics and have been the main research focus of face 

profiling in various application domains (Liu et al., 2022; Liu et al., 
2021). For example, (Liu et al., 2022) presents a three-branch HPE 
model using a matrix rotation to overcome estimation uncertainty. 
Similarly, (Liu et al., 2021) proposes Anisotropic Angle Distribution 
Learning (AADL) for HPE. The results demonstrated that AADL may 
overcome common issues such as motion blurring and incomplete data 
(Liu et al., 2021). 

Growing interest in data-driven technologies, big data applications, 
autonomous systems, and smart applications needs more reliable and 
autonomous facial profiling. Furthermore, advancements in robotics, 
augmented reality, and smart city applications, such as driverless ve
hicles, increased the demand for comprehensive facial profiling tools in 
real-world scenarios. For example, robot-based assistance in various 
realistic scenarios has gradually emerged where head pose and eye gaze 
play vital roles in effective human-robot interaction and building trust 
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with users during joint-attention tasks (Patacchiola and Cangelosi, 
2017). Likewise, self-driving vehicles require reliable HPE and eye gaze 
estimation as fundamental components of driving assistance systems or 
driver’s attention monitoring (Baxter et al., 2015). 

HPE mainly comprises three-dimensional (3D) estimations (yaw, 
roll, pitch) and has been performed either by conventional computer 
vision (CV) algorithms or, recently, landmark estimation (Liu et al., 
2022) and deep learning models (DL) (Liu et al., 2023). The traditional 
CV methods are based on composite geometric methods, appearance- 
based template matching, and features extracted from the face rect
angle to categorise the head pose as one to three-dimensional problems 
(i.e., yaw, roll, pitch). Examples of such methods include geometric 
features-based key points detection (Diaz-Chito et al., 2016), morphable 
face model registration and optimisation algorithms (Meyer et al., 
2015), 3D projection over 2D images (Kong and Mbouna, 2015), de
tector array using conventional machine learning (ML) (Moon and 
Miller, 2009; Rothwell et al., 2006), and feature descriptor (Ma et al., 
2013). Alternatively, landmark estimation, such as DLib (King, 2009), 
OpenCV (Bradski, 2000), and recently (Liu et al., 2017), has been useful 
for conventional HPE and face detection methods. More specifically, 
these methods provide comprehensive information about micro-facial 
movements for close interactive applications such as psychological 
profiling. These methods utilise feature extraction, feature reduction, 
and ML methods to estimate the head pose in still images or video 
streams, which are affected mainly in outdoor environments. Further
more, HPE from a single image frame is challenging and usually per
formed by mapping 2D images to 3D space, reducing the reliability as 
mapping the camera device properties is inconsistent for different 
videos. 

Deep learning (DL) algorithms have recently outperformed the 
conventional ML approaches for facial analysis (Khan et al., 2021), facial 
recognition (Nanduri and Park, 2024; Himmi et al., 2024; Yin and Yu, 
2024), face mask detection (Zeebaree and Kareem, 2023), and particu
larly HPE in real time for 2D and 3D images (depth as 3rd dimension). 
Various models have deployed DL for HPE for RGB images (2D), and 
RGB-D images (3D images) have been introduced. HPE has been 
modelled as a classification or regression problem for 3D HPE (rotation 
and movements) using convolutional neural network (CNN) and other 
variants of DL methods such as CNN trained over 3D images (Venturelli 
et al., 2016), multi-loss CNN using 3D image intensities (Ruiz et al., 
2018), adaptive gradient CNN trained over detected faces (Patacchiola 
and Cangelosi, 2017; Yang et al., 2019) CNN trained over depth images 
(Mukherjee and Robertson, 2015), CNN based multi-model HPE (Hong 
et al., 2019; Ranjan et al., 2019) and adaptive gradient over LeNet-5 DL 
model (Patacchiola and Cangelosi, 2017). These methods indicate 
relatively higher accuracy, specifically when using depth images and 
ensemble models; however, utilising the depth images is not always 
feasible in real-world applications. A systematic review of existing HPE 
using conventional CV, landmarks, and DL methods can be found in 
(Kumar et al., 2019). 

Similar to HPE, eye gaze estimation (EGE) and eye state estimation 
(ESE), such as blink, open close, etc., have been performed with a variety 
of domains such as security applications (Khan et al., 2021; Khan et al., 
2021) healthcare technologies (Jyotsna et al., 2022), driver attention 
(Clark et al., 2019), and many more (Khan and Lee, 2019). Head and 
face detection is usually considered a pre-requisite to EGE and ESE, 
where iris location, pupil locations, and eye centre are estimated once 
the face is localised within the image frame. The eye gaze is then 
measured using pupil estimations and geometric calculations such as 
Euler angles. Similar to HPE, EGE and ESE have been performed mainly 
using conventional image processing (CIP) methods (Zeebaree and 
Kareem, 2023) and, recently, DL approaches (Murthy and Biswas, 
2022). The literature shows the reliability of DL and landmark-based 
EGE (Amer et al., 2021) compared to conventional approaches. 

Given the excessive research on HPE, EGE, and ESE methods with 
demanding applications scope, the existing methods lack in various 

aspects. Firstly, no reliable approach produces explicit facial profiling (e. 
g., all-in-one rotations, movements, and state for eyes and head) for 
offline or online video streams or image data. Secondly, the existing 
methods utilise either CIP, landmarks, or DL methods individually to 
perform HPE, eye tracking, EGE, and ESE, which could perform better 
using hybrid approaches. Specifically, the DL models mainly use depth 
information requiring special cameras, which are not always feasible 
specifically for outdoor dynamics and the mass of existing visual data (e. 
g., street surveillance cameras, YouTube videos, public visual data, etc.) 
in 2D form. Thirdly, most of the existing EGE and HPE methods work as 
regression models; however, considering the real-time applications, the 
problem could be formulated as classification (e.g., left, centre, right 
head pose) using a hybrid approach where data (video, images) needs 
annotations for varying head poses and eye gaze (e.g., up, down, centre, 
left, right etc.). The annotated data will then be used to train the com
posite model with the ability to extract the facial profile in both offline 
and online video streams and isolated images. Furthermore, the anno
tated dataset comprising class-level categorisation of eye gaze is publicly 
unavailable, requiring manual image annotations to train the hybrid 
models. 

Considering the limitations of existing works specifically in relation 
to close-range HCI, such as psychological profiling and comprehension, 
we propose an explicit approach (DeFaP: Deep Face Profiler) for detailed 
facial profiling using a composite of the most recent techniques adopted 
from the DL methods, CIP, and facial landmarks for better accuracy, and 
newly introduced algorithms. The proposed DeFap can address the 
aforementioned limitations with the ability to extract comprehensive 
facial movements with potential uses for applications requiring precise 
analysis of psychological and interactive behaviour. Our major contri
butions in this work include:  

a. DeFaP method with the ability to process 2D RGB images and videos 
(offline and online) to generate comprehensive face profiles (in the form 
of binary codes) for facial movements precisely and reliably.  

b. A hybrid model for HPE using transfer DL, landmark identifications, and 
newly labelled multi-class dataset.  

c. A newly introduced algorithm for head roll estimation using geometric 
transformation. 

d. A new dataset comprising 30,000 annotated iris instances covering di
versity in terms of subjectivity, poses, gaze direction, and environmental 
dynamics (annotations will be provided upon request).  

e. Eye gaze measurement using DL-based iris tracking model from 2D images 
and video stream.  

f. An ESE using transfer learning utilising diversity in training and 
evaluation. 

Our work uses RGB images taken from monocular cameras, which 
permits the greatest portability in real-world applications, given the 
proliferation of such cameras in mobile phones and laptops. We use DL 
over annotated Iris images, labelled eye states (i.e., open or closed), and 
categorical head poses. Furthermore, we implement unconstrained gaze 
estimation, i.e., gaze estimation from a monocular RGB camera without 
assumptions regarding the user, environment, or camera. 

The remainder of the manuscript is organised as follows: Section II 
presents the related works, followed by the proposed material, methods, 
and experimental design in Section III. Section IV presents the results of 
eye-tracking, ESE, and HPE, along with validation over multiple data
sets. Section V discusses the outcomes and benchmarking of our results; 
Section VI concludes the proposed study and presents future research 
directives. 

2. Related works 

Psychological profiling through non-verbal behaviours has been 
investigated for many years and has various applications. Several ter
minologies have been used, including micro-movements, micro- 
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expressions, gestures, facial movements, etc., that are mainly extracted 
through HPE, EGE, and ESE, which are the focus of the proposed study. 

2.1. Head pose estimation 

The multi-dimensional HPE (i.e., rotation, movement) has been 
performed using various approaches with different applications. For 
instance, for comprehension analysis, (Holmes et al., 2018) modelled 
HPE as a discrete classification problem for different categories (e.g., 
left, right, centre). A similar approach is used in (Khan et al., 2021) with 
enhanced face detection followed by the array of binary classifiers for 
head rotations and facial movements (e.g., face up, face left, etc.). A 
study in (Diaz-Chito et al., 2016) presented HPE as a discrete classifi
cation problem for driver attention analysis. The head poses are cat
egorised into the left, centre, and right, where geometric features are 
measured from the facial key points and forwarded to a conventional ML 
classifier. This classifier only works for the yaw rotations. Likewise, an 
unsupervised regression model is presented in (Drouard et al., 2017), 
indicating reliable outcomes for 3D estimations; however, it requires 
cropped face rectangles. Work in (Meyer et al., 2015) presented HPE by 
registering morphable face models to depth information while utilising 
an optimisation algorithm for efficient 3D registration. However, face 
detection is required prior to HPE. Likewise, an assumption about the 
camera focus point being known is made, which limits it further. (Kong 
and Mbouna, 2015) A 3D face morphing is proposed in (Kong and 
Mbouna, 2015) with depth parameters to estimate the head pose in 2D 
images. The disparity between 2D space and the projected 3D feature 
vector is reduced by rotating the reference 3D face model by pose angles 
of the query image. However, this method requires the query subject’s 
3D reference model (3D face) for the optimal HPE. Study (Yang et al., 
2019) used 2D facial landmarks for HPE within original and deep-fake 
images. The estimated head poses from both groups’ whole faces or 
central face regions are used to measure the alignment error (original vs. 
deep fake), representing the difference between head pose projections 
on an image plane. The calculated error is then fed to an ML algorithm to 
classify the original and deep fake instances. Furthermore, a detailed 
survey on conventional HPE methods can be found in (Murphy-Chu
torian and Trivedi, 2009). 

Recently, several studies have addressed the reliability of HPE uti
lising the DL models. (Venturelli et al., 2016)A DL-based HPE is used in 
(Venturelli et al., 2016) for in-car automotive driver attention and fa
tigue analysis, presenting a real-time HPE (10 frames/sec). The author 
used CNN trained over cropped face images to predict head pose as 3D 
motion. A study (Ruiz et al., 2018) proposed a multi-loss CNN regression 
model for HPE as 3D motion without utilising landmarks. Likewise, 
(Patacchiola and Cangelosi, 2017) used adaptive gradient methods with 
CNN to estimate the head pose (rotation and movement), where OpenCV 
is used for facial detection. (Yang et al., 2019) Spatial grouping of pixel- 
level features (FSA_Net) is proposed in (Yang et al., 2019) to form the 
region-level features used by multiple DL models (SSRNet ensemble with 
feature aggregation model) for HPE from a single frame. (Mukherjee and 
Robertson, 2015)A multi-modal HPE using regression over the multi- 
class outcomes from CNN is proposed in (Mukherjee and Robertson, 
2015), which are trained over RGB-D images comprising pre-processed 
head regions of images. The outcomes indicate the usefulness of the 
multi-modal approach for both close-up faces and outdoor surveillance 
and environment interaction applications. 

Deepgaze is an open-source library presented by (Patacchiola and 
Cangelosi, 2017) which uses multiple CNNs with adaptive gradient 
models for HPE (pitch and yaw) from RGB images. OpenCV is utilised to 
pre-process the face detector. Due to fast face detection, the system can 
process 15fps without GPU. However, the system indicates unreliability 
in real-time scenarios, specifically when the face detector mismeasures 
the face centre. (Hong et al., 2019) introduced a multi-task manifold DL 
face pose estimation (M2DL) using CNN regression over 2D images. The 
face areas are extracted manually from the images to be used for the 

model training. Their approach indicated comparatively better perfor
mance in terms of multi-tasking, where HPE outcomes are primarily 
based on yaw. A survey on DL-based HPE is presented in (Kumar et al., 
2019), while its applications in driver interaction and drowsiness 
detection are addressed in (Mittal et al., 2016, 2016). 

While the existing works indicate the usefulness of the proposed HPE 
methods within the corresponding applications, the reliability and 
preciseness of conventional CV and ML methods in real-time dynamics 
need significant improvements (Mukherjee and Robertson, 2015). On 
the other hand, DL methods overcome these limitations; however, 3D 
movements as regression could be better modelled using a hybrid 
approach as in the proposed work. Furthermore, the depth information 
is not always feasible, which is considered in most of the existing DL- 
based HPE. Likewise, several DL-based HPE models do not consider 
HPE as 3D predictions. Likewise, they are more generic and do not only 
focus on the close-up HCI utilising RGB images. Sometimes, reliability is 
an issue when using RGB images such as (Patacchiola and Cangelosi, 
2017). Furthermore, hybrid methods can better modulate comprehen
sive profiling for close group HCI. Detector-based head pose classifica
tion may be non-trivial due to low-quality images or misclassification of 
different poses from the same subject compared to the same head pose of 
different subjects (Mukherjee and Robertson, 2015). In other words, 
subjectivity must be considered in detector-based HPE such as (Rothwell 
et al., 2006). 

2.2. Eye gaze and eye state estimation 

Similar to HPE, EGE and ESE are vital for facial profiling and have 
been used in a variety of applications, including healthcare (Khosravan 
et al., 2019; Yiu, 2019; Medeiros, 2022), biometrics (Zemblys et al., 
2018), behaviour analysis (Khan et al., 2021; Hickson et al., 2019); 
attention monitoring (Jiang et al., 2018; Kellnhofer et al., 2019; Jordan 
et al., 2020), and many more. The EGE can be performed generally using 
model-based (i.e., utilising the geometric model of the eye) or 
appearance-based methods (i.e., direct use of eyes as input). For 
instance, (Yu and Odobez, 2020) CIP-based 3D gaze estimation using 
gaze direction and warping field regularisation. However, it requires an 
eye image as a pair from the same subject, which is a limitation of this 
approach. The authors in (Holmes et al., 2018) presented a compre
hension tool to extract facial micro-features comprising head and eye 
movements. They used detectors (array of ANNs) to classify the head 
and eye gaze. However, the approach has several limitations. For 
example, conventional ML and hand-crafted features might not gener
alise well. Likewise, CIP methods suffer from speculations, lighting 
conditions, and other real-time dynamics (Santini et al., 2018). 
Furthermore, tuning a more significant number of detectors is a chal
lenge, specifically in generalisation. Recently, (Khan et al., 2021) used 
the Haar cascade to localise the face and eye region, followed by the 
detectors. However, it works only for the well-lit frontal faces with a 
clear background. Recently, (Khan et al., 2020) introduced a hybrid 
approach with facial landmark detectors and template matching for 
pupil localisation. The algorithm utilises a 2D convolutional cascade 
within the detected eye regions to identify the segment with the best 
matching score to a static kernel. The identified segment represents the 
pupil location within the detected eye region. This method indicated 
comparatively better performance for close group HCI expressly; how
ever, this approach might suffer from light reflections easily and is 
limited to frontal pose only. While the model-based methods utilising 
CIP-based EGE and pupil localisation produced satisfactory performance 
in several applications, reliability (e.g., low image quality, varying 
lightening conditions), dependency on external sources (e.g., corneal 
reflection relying on the external light source), and generalisation (e.g., 
data diversity aspect) are the major challenges that are needed to be 
addressed with better methodologies. 

In comparison, DL-based eye tracking and EGE (Khosravan et al., 
2019; Yiu, 2019; Jiang et al., 2018; Kellnhofer et al., 2019; Choi et al., 
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2019; Rakhmatulin and Duchowski, 2020; Krafka, et al., 2016; Park 
et al., 2018; Liu et al., 2021; Zhang et al., 2019; Fischer et al., 2018), 
more recently, indicated reliability and generalisation. An uncon
strained gaze estimation approach (Gazenet) is presented in (Zhang 
et al., 2019), utilising facial landmarks and CNN for eye tracking. The 
face detection and facial landmarks are used to locate the landmarks 
within the input image. A generic 3D face model estimates the poses 
within the detected faces. The space normalisation method is used for 
segmentation and warping head poses and eye images to normalise 
training space. The outcomes indicate that head pose is vital for un
constrained gaze estimation. Similarly, (Kellnhofer et al., 2019) pre
sented unconstrained gaze estimation (Gaze360). The LSTM models are 
used for the time progression learning to estimate the gaze uncertainty 
directly. The model indicated promising gaze estimation and its appli
cability for customer attention estimation in a supermarket setting. 
However, these methods are generally useful for broader perspectives, 
compensating for a higher degree of freedom, especially for eye gaze 
estimation. 

Alternatively, constrained gaze EGE are especially useful for close-up 
faces with varying applications. For instance, DeepVog (Yiu, 2019) 
proposed gaze estimation for video-oculography in clinical neurology 
and neuroscience using CNN. However, the assumption of a spherical 
eyeball may be invalid in illuminations and other cases. Likewise, 
training and validation over diverse data (in terms of gaze and other 
data properties) would be useful for generalisation. The research 
(Rakhmatulin and Duchowski, 2020) proposed eye tracking with DL 
(YOLOv3) to classify the images into left, right, and centre gaze. In 
comparison, the study considered varying lighting conditions and 
standard validation datasets that could be used to validate. Likewise, 
training images comprise limited diversity. (Krafka, et al., 2016) A CNN- 
based eye tracking is proposed in (Krafka, et al., 2016) with a substantial 
image dataset (2.5 M images from 1450 subjects). Faces and eyes are 
cropped manually to train the model, whereas fixed locations are used to 
train the model. Likewise, (Park et al., 2018) proposed an intermediate 
pictorial representation of the input eye image to simplify the 3D EGE. 
However, this method has several assumptions about the average human 
eyeball iris geometry (e.g., size, diameter, shape), which are not always 
true in actual cases. 

While most gaze detection uses pupil localisation, iris segmentation 
and localisation have also been used. For instance, (Jayanthi et al., 
2021) presented iris segmentation using CIP and DL. However, they 
relied on CIP to annotate the iris, which might be unreliable in real-time 
dynamics and misidentification of the iris segment. The dataset is not 
annotated and, therefore, might produce an unreliable evaluation of the 
model performance. Recently, (Severo, et al., 2018) presented iris 
detection using DL over multiple datasets. The study concludes that DL- 
based iris detection is superior to CIP when validated over numerous 
datasets. The authors further presented annotations for the iris that are 
further extended within the proposed work to enrich the diversity, 
specifically regarding gaze direction, head pose, varying backgrounds, 
and subjectivity. Furthermore, YOLO infers the iris detection in real- 
time compared to CIP methods (Redmon and Farhadi, 2018). While 
state-of-the-art methods mainly use pupil localisation for gaze estima
tion, it has several associated challenges such as a) small size intolerant 
to dynamic situations (e.g., occlusions, light reflections, background 
noise); b) pupil dilation that occurs due to several factors including light 
illumination, age, emotion perception, recognition memory (Siegle 
et al., 2003) etc., which might cause imprecise pupil localisation that is 
vital specifically, for application requiring precise measurements such as 
security domain (Khan et al., 2021), healthcare (Yiu, 2019) etc., with 
close-up faces. The custom-trained YOLO iris detector would enable 
reliable localisation while resolving the challenges of natural dynamics 
such as noise, eyelids, eyelashes, background diversity and reflections. 

Similar to iris detection, ESE has been performed using CIP ap
proaches (Park et al., 2018) and, recently, DL methods (Medeiros, 2022; 
Jordan et al., 2020; Hu, 2020; Sanyal and Chakrabarty, 2019; Fogelton 

and Benesova, 2018; Ryan, 2021). For instance, (Ibrahim, et al., 2021) 
used the Haar cascade to detect the face from the input image, followed 
by facial landmark detection to crop the eye region. The eye state is then 
estimated using the eye-aspect ratio. However, such an approach might 
suffer from dynamics and diverse conditions such as varying poses, gaze, 
occlusions, light reflection, and, specifically, varying thresholds for 
variable conditions, which is impractical in most applications. In 
contrast, DL-based ESE indicated better accuracy and reliability in 
handling such conditions. For instance, (Hu, 2020) used LSTM for the 
eyeblink in the wild, and (Jordan et al., 2020) used CNN to detect 
eyeblink for driver drowsiness. Moreover, (Sanyal and Chakrabarty, 
2019) used CNN-based ESE utilising diverse datasets to train and vali
date their approach, (Medeiros, 2022) presented eye blink dataset and 
ML-based ESE for Amyotrophic Lateral Sclerosis patients where they 
used moving average for the blink detection, (Fogelton and Benesova, 
2018) used RNN-based ESE and evaluated on diverse datasets, and 
(Ryan, 2021) proposed driver monitoring tool using ESE using YOLO 
regression model. 

We present a complete comprehension method enabling both head 
and eye movements with 20 movements (facial codes) while considering 
the reliability and validation in real-time data extraction. We utilise 
hybrid methods comprising DL, automated landmarks extraction, and 
CIP to extract and validate the outcomes during the data generation. We 
further make the annotations available for the research community to be 
used for other related applications. 

The remaining manuscript is organised as follows: Section III pre
sents the proposed methods and material, and Section IV presents the 
results of both Eye-tracking and HPE. Section V discusses the outcomes, 
and Section VI concludes the proposed study. 

3. Material and methods 

The proposed DeFaP approach comprises three main components, 
including A) HPE model, B) iris detector, and C) ESE, which are then 
further embedded within the facial landmark extractor to encode a fully 
autonomous profile of facial movements from a real-time video stream 
or input image frame. Next, D) provides an overview of the proposed 
DeFaP method, which combines the components described in A), B), and 
C). This section describes the datasets and methods used in these com
ponents and the detailed implementation for each task. 

3.1. Head Pose Detector (HPE) 

HPE is performed using a detector approach while exploiting deep 
transfer learning (DTL) for the custom training of multiple DL models. 
Generally, DTL involves reusing a previously trained model applied to a 
new problem. There are a variety of possible methods, mainly including 
multi-class models and multiple binary models. We used the former for 
the sake of simplicity. This section will first introduce the constructed 
dataset used to train the models used in this work. Secondly, a 
description of a bi-model classification approach to discrete HPE using 
DTL. Thirdly, a simple mathematical approach to estimating head roll is 
introduced.  

1) Dataset Preparation for HPE 

The dataset used for HPE is constructed using three existing datasets: 
BIWI (Fanelli et al., 2013), UPNA (Ariz et al., 2016), and UPNA Syn
thetic (Larumbe et al., 2017). Each dataset provides images of a single 
face with the associated rotation angles. The combination of these 
datasets provides 35 participants, of which ten are synthetic, and 
approximately 42,000 images. Considering the data diversity and model 
generalisation, we use the first dataset (i.e., BIWI dataset) for training 
purposes while preserving 20 % of the BIWI participants for evaluation/ 
validation purposes (i.e., the participants in this set are not present in the 
training set). We further evaluate the trained model over two additional 
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purely unseen datasets (i.e., UPNA and UPNA Synthetic) to validate the 
generalisation of the trained model. 

To label the aforementioned datasets, each head pose instance is 
categorised into one of nine head pose categories (as shown in Fig. 1-a): 
Up-Left, Up-Centre, Up-Right, Centre-Left, Centre-Centre, Centre-Right, 
Down-Left, Down-Centre, and Down-Right. Each head pose instance is 
placed in the relevant category based on the rotation angles provided by 
the dataset, as per the boundaries provided in Table 1. 

Next, the constructed dataset required pre-processing to ensure 
consistency. Due to the necessary combination of multiple datasets, in
stances were recorded at different distances from the camera. Therefore, 
extracting the faces from the background images was necessary. The 
faces were extracted from the categorised images using the face detec
tion component of MediaPipe Face Mesh (Google, “MediaPipe Face 
Mesh,” GitHub, 2020). The extracted faces were stored as 128 × 128 × 3 
PNG image files. A pre-processed example from each category is dis
played in Fig. 1(a).  

2) Bi-model classification 

This subsection describes the implementation of a bi-model solution 
to HPE using DTL techniques. Training a DL model is expensive in terms 
of both time and computational resources, particularly in our case, 
which requires multiple models. Hence, there has been a rise in the 
popularity of DTL, a deep learning technique for transferring knowledge 
from one model to another to solve a related problem. It is an appro
priate foundation for the HPE solution, considering the benefits of DTL. 
Firstly, the nine-category HPE problem is broken into two halves: ver
tical estimation, up, centre, and down, and horizontal estimate, left, 
centre, and right. The combination of these two halves provides all nine 
of the desired categories. We utilise VGG19 (pre-trained model) for this 
purpose while fine-tuning over custom data to model HPE as a detector 
array. However, as the constructed dataset is annotated with nine cat
egories for the overall HPE problem, the dataset must first be modified 
before it can be used to train the two sub-problems. 

To provide training data in a format relevant to the two-model 
approach (from the BIWI dataset), they were duplicated to provide a 
vertical and a horizontal training set. In the vertical training set, the 
original categories are merged into three: up (up-left, up-centre, up- 
right), centre (centre-left, centre-centre, centre-right), and down (down- 
left, down-centre, down-right). Similarly, in the horizontal training set, 
the original categories are merged into three: left (up-left, centre-left, 
down-left), centre (up-centre, centre-centre, down-centre), and right 
(up-right, centre-right, down-right). Fig. 2 visualises this arrangement; 
the rows represent the vertical groups, and the columns represent the 

horizontal groups. Fig. 3 shows the implementation of the proposed bi- 
model HPE.  

3) Head roll estimation (HRE) 

The proposed method of discrete HPE does not consider the roll 
rotation angle. A simple mathematical method of calculating head roll is 
proposed to compensate for this. In this method, two key points are 
identified in the image; the simplest key points are the tip of the nose and 
the centre of the forehead, as shown in Fig. 1 (B). Other key points can be 
used in this calculation; however, the calculation is relatively simple as 
the nose tip is near the face’s centre, and the forehead’s centre is usually 
vertically aligned with the nose when the head roll is zero. Other key 
points may be used when the desired key points are occluded. The 
calculation aims to calculate the angle between the two lines: a, a ver
tical line drawn from the nose key point, and b, the line between the nose 
and forehead key points. For convenience, lines a and b are vectorised as 
u and v. Cosϴ can be calculated using the cosine formula from Eq. (1) 
(Neill, 2018). ϴ can then be extracted using the inverse cosine rule from 
eq (2) (Neill, 2018) to provide an estimate of the head roll rotation 
angle. The proposed HRE is evaluated using the BIWI dataset, which 
comprises the annotations for the current state of the head pose. 

cosθ =
u→⋅ v→

‖ u→‖⋅‖ v→‖
(1)  

θ = cos− 1
(a

b

)
(2)  

3.2. Iris detector  

1) Iris dataset preparation 

Fig. 1. An example pre-processed image from each head pose category: a) Up-Left, b) Up-Centre, c) Up-Right, d) Centre-Left, e) Centre-Centre, f) Centre-Right, g) 
Down-Left, h) Down-Centre, and i) Down-Right. B) Head roll angle ϴ calculated as the angle of the line segment ab where a is a vertical line originating at the tip of 
the nose and b is the line between the nose’s tip and the forehead’s centre. The head pose category images (left side) are edited from the public dataset (Fanelli et al., 
2013), and consent is provided by the head roll participant (right side). 

Table 1 
Boundaries for Head Pose Categories.  

Category Pitch Range (Deg) Yaw Range (Deg) 

Up-Left >15 <-15 
Up-Centre >15 <=15 & >=− 15 
Up-Right >15 >15 
Centre-Left <=15 & >=− 15 <-15 
Centre-Centre <=15 & >=− 15 <=15 & >=− 15 
Centre-Right <=15 & >=− 15 >15 
Down-Left <-15 <-15 
Down-Centre <-15 <=15 & >=− 15 
Down-Right <-15 >15  
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We collected the dataset comprising diverse head movements and 
eye information (e.g., pupil, iris) from various public sources, including 
the Columbia gaze dataset (Smith et al., 2013), GazeCapture (Krafka, 
et al., 2016), GI4E database (Villanueva et al., 2013), and head pose 
database UPNA (Ariz et al., 2016). As mentioned earlier, the eye- 
tracking dataset comprises pupil information; however, for the local
isation of DL-based eye-tracking, the available datasets are either not 
annotated or contain limited diversity. We prepared a combined dataset 
comprising iris annotations from the aforementioned datasets. 

As shown in Fig. 4, the input images (or video frames) are processed 
using DLib (King, 2009) (public library) for the facial landmark 
extraction (i.e., face and eye region). The raw dataset is fed into 

landmark extraction to locate facial and eye segments and remove 
invalid image frames. For instance, a frame is not further processed (i.e., 
invalid frame) unless an appropriate count of face and eye segments 
exists. This filters out a lot of unnecessary background that may cause 
false positives for iris detection. The extracted eye segments are then 
processed further to perform the manual annotations. 

In total, we annotated over 15,000 image frames (producing over 
30,000 individual iris annotations) from 145 individuals. Concerning 
iris location, the annotated data comprises 2492, 9081, and 2492 an
notated frames for right, centre and left iris positions (i.e., target clas
ses). The newly prepared dataset ends up with both images and videos 
collected from a combination of high-quality lab conditions and mixed- 

Fig. 2. Vertical and horizontal groups combined to produce their relevant sub-categories. For example, UP (from the vertical model) and LEFT (from the horizontal 
model) produce a combined UP-LEFT. 

Fig. 3. Bi-model implementation of a VGG-19-based deep learning model for discrete HPE. The vertical model identifies whether the subject’s face is pointing up, 
centre, or down, and the horizontal model identifies whether the subject’s face is pointing left, centre, or right. The outputs are combined to produce nine categories. 
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quality crowd-sauced conditions. The annotated data comprises varying 
image sizes, resolution, subjects, perspectives, eye colour, eye features, 
glass-wearers, iris locations, etc., to make the dataset more diverse and 
valuable for generalising the proposed system. A detailed description of 
each dataset, acquisition settings and other information can be found in 
Supplementary S1 (Table S1).  

2) Iris detection 

As mentioned earlier and discussed in (Khan et al., 2023), DTL le
verages pre-trained models to enhance processing efficiency and 
generalisation and eliminate traditional approaches’ need for the initial 
training time. Several pre-trained models are available for object 
detection, including YOLO (Redmon and Farhadi, 2018), Faster-RCNN 
(Ren et al., 2017), and Mask R-CNN (He et al., 2017), which is an 
instance segmentation DL model designed to identify multiple objects 
within an image frame. In addition to the bounding boxes and class 
names, Mask R-CNN provides masks for the resulting image. Mask R- 
CNN’s first component generates region proposals (RPN) for each object 
within the input image. In contrast, the second step generates class-level 
information, corresponding bounding boxes, and the pixel-level mask 

for identified objects based on RPN information. The Feature Pyramids 
Network (FPN) (Yang et al., 2017) forms the backbone of Mask R-CNN, 
used for object detection in images of varying scales. FPN’s variable 
scale maintains robust semantic features compared to a single CNN. The 
original work presents further details on Mask R-CNN implementation, 
and mathematical formulation (He et al., 2017). 

YOLO, which utilises a single CNN to detect object positions and 
corresponding classes, outperforms the R-CNN family with multi-stage 
processing (Plastiras et al., 2016), which means that YOLO performs 
object detection as a single regression task directly from the input image 
to the predicted objects’ locations with associated class probabilities. 
YOLO has been updated several times (Redmon and Farhadi, 2018) with 
the latest version, YOLOv5, which was trained over the COCO dataset. It 
has three variants: small, medium, and large networks. Despite its fast 
performance, YOLO has some limitations. For example, its performance 
deteriorates when detecting small-sized objects or objects too close to 
each other in an image (Cao et al., 2021). 

Considering the problem in hand (i.e., iris detection) and the afore
mentioned pre-trained deep models, we utilised mask R-CNN and 
YOLOv5s for the hyper-tuning over our custom dataset comprising iris 
annotations (Section III-B-1). As shown in Fig. 4, we used the pre-trained 

Fig. 4. Building blocks of the proposed iris detection approach. The top layer uses facial landmarks to extract the eye region and annotate the iris. At the same time, 
the second block performs the iris detection within the extracted eye segments using transfer learning. 
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weights for both models while training the fully connected layer over the 
custom dataset to utilise the prior knowledge of the existing model 
trained over larger datasets. The custom-trained iris detection models 
are available online and can be accessed upon request. 

3.3. Eye state detector  

1) Eye state dataset 

The data set used to train the models in the first instance was the MRL 
dataset (Fusek, 2018) containing 4,545 images, 2355 closed-eye images, 
and 2190 open-eye images. The MRL image size was 24 x 24, pre- 
cropped around the eye, so the eye was centred within the image. The 
dataset was divided into two subsets: the training and the test datasets. 
The training dataset represents 80 % of the entire dataset and 20 % of 
the test dataset for the validation of the networks. We use the mEBAL 
dataset (Daza et al., 2020) comprising 4,252 images for further valida
tion over a purely unseen dataset captured in different settings and using 
other protocols. This dataset contains 3256 open-eye images and 996 
close-eye images. The format of the mEBAL images is 24 × 24 pixels, 
which were pre-cropped around the eye so that the eye is centred in the 
middle. 

As the datasets are captured in realistic environments, they must 
filter out the noisy instances. However, both datasets contain diversity in 
various aspects. For example, variations in lighting conditions where 
darker images will prove more difficult for the models to identify. 
Likewise, there are various eye types (e.g., people with an epicanthic 
fold), glasses wearers (that may reflect light differently, which is more 
challenging) and background variations.  

2) Eye state estimation 

Similar to HPE, as described in Section III-A, we utilised DTL using 
VGG19 pre-trained weights to extract features from input eye images. 
The extracted features are fed into a fully connected layer to classify the 
input image frame into ‘open-eye’ and ‘closed-eye’ states. Detailed 
configuration of the custom-trained ESE, along with the trained ESE 
model, is available online and can be accessed upon request. 

3.4. Proposed DeFaP method 

Algorithm 1 describes the end-to-end procedure of extracting facial 
and gaze codes from the video frames using HPE, HRE, Iris detection, 
and ESE, which are the components of the proposed DeFaP method. The 
outcomes from DeFaP will be stored in a vector form comprising binary 
codes, representing the corresponding state (e.g., eye is open or closed; 
head pose is left, right, top-left, etc.) for each channel (i.e. head, eyes, 
face). In the first step, a pretrained library DLib (Meyer et al., 2015) is 
used to extract the facial landmarks from the input image frame, which 
are used to localise facial channels, including full face, eyes, nose etc. An 
input frame is considered valid if it contains a face. Otherwise, the next 
frame is processed. For each valid input frame, the head roll is estimated 
from the cropped head segment. Then, the custom-trained HPE model is 
utilised to identify the head state (e.g., left, right, down, etc.) within the 
current frame. We then automatically crop the eye regions using facial 
landmarks (from DLib) to confirm the presence of exact two eyes within 
each identified face segment. In the positive case (i.e., exactly two eyes 
are identified), the custom-trained ESE model is used to classify the 
current states of both eyes (as open or closed). If an eye state is found to 
be ‘open’, the custom-trained iris detection model is then utilised to 
estimate the iris centre, which is then used for the eye gaze estimation (e. 
g., looking left, up, right, etc.). This procedure recursively continues to 
process each frame of the input video, and the outcomes are stored in a 
linear vector representing the binary state (i.e., binary code) for each 

channel of information.  
Algorithm 1. Face and gaze comprehension data generation from video and 
image input using the proposed DeFaP 

Input: V = {v | v is a video} or an image frame f to be processed by DeFap 
Output: DeFaP vector ⇒ dP ∈ {HP, EG,ES}where :

- HP = {Left,Right,Center,Top,Bottom, topLeft, topRight, bottomLeft,
bottomRight}istheheadpositionset;

- HRistheheadrollangle in a specific f  
- EG = {Left,Right,Center,Top,Bottom, topLeft, topRight, bottomLeft,

bottomRight}istheeyegazesetforspecificf;
- ES = {open, close}istheeyestatesetforspecificf 
Process: 
Step 1 (head roll estimation) 
For each f of input video v:  
i. Extract facial landmarks from the input frame f using pre-trained methods such as 

DLib (Meyer et al., 2015) or OpenCV (Moon and Miller, 2009)  
ii. Set a = forehead marker from f  
iii. Set b = nosetip marker from f  

iv. Measure the HR = cos− 1
(a

b

)
for current frame f 

Step 2 (head pose detection): 
IF the current frame f contains a face (i.e., if there exists a face in step i):  

v. Set validFace (a Boolean variable) as true  
vi. Segment the face rectangle (FR) using the face coordinates from step i  
vii. Segment the head region Hr using FR  
viii. Extract the head pose using the proposed HPD (Section III-A) and store the 

outcomes in output vector dP 
Step 3 (eye segmentation): 
IF FR contains two eyes  

ix. Set validEyes as true  
x. Segment the eye frames (EL, ER) for the left and right eye from the current f(using 

facial landmarks in Step 1-i) 
Step 4 (eye state estimation): 
For each eye segment EL, ER:  

xi. Detect the eye state using the proposed ESE model (Section III-C) and custom gaze 
threshold and store the outcomes in dP 

Step 5 (iris detection): 
IF eye state is Open:  
xii. Estimate the iris location using the proposed Iris detection model (Section III-B)  
xiii. Measure the iris centre (Ic) using localised iris  
xiv. Transform the Ic into eye gaze and store the outcomes in output vector dP 

ELSE  
xv. Transform the Ic into eye gaze and store the outcomes in outcome vector dP 

End loop 
ELSE  

xvi. Set validEyes as false 
ELSE  

xvii. Set validFace as false 
END loop  

3.5. Experimental setup 

Multiple experiments (Exp) are conducted considering the three 
major components of the proposed DeFaP and are detailed as follows.  

- Exp 1_a. HPE. The model is trained over 80 % of the BIWI dataset while 
testing over 20 % of the dataset while considering the subjectivity (Leave- 
K-Out strategy).  

- Exp 1_b. HPE. The model is trained over the BIWI dataset and cross- 
validated over the UPNA and UPNA-Synth datasets.  

- Exp 1_c. HPE. The proposed head roll is evaluated using the BIWI dataset.  
- Exp 2_a. Iris Detection. Mask RCNN and YOLOv5 models are trained over 

80 % of the annotated dataset and validated over the rest of 20 %.  
- Exp 2_b. Iris detection. Mask RCNN and YOLOv5 models are trained over 

annotated datasets and tested over cross-datasets.  
- Exp 3. ESE: The model is trained over 80 % of the combined training 

dataset (Section III) and evaluated over 20 % of the unseen instances, as 
well as additional dataset (Jung et al., 2017). 

Performance for the above experiments is evaluated using various 
gold standard metrics as appropriate in each case. For classification (e. 
g., HPE. ESE), we utilise standard metrics, including accuracy, sensi
tivity, and specificity, whereas we use MAE for the regression task (i.e., 
HRE). Likewise, we employ mean average precision (mAP), recall, and 
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precision for iris detection, which are the standard metrics for object 
detection. Within the context of this study (and corresponding task), 
these metrics are defined as follows: 

TP: Correctly classified images that belong to that class; TN: Correct 
rejection of images that do not belong to that class; FP: Incorrect clas
sification of images to a class they do not belong to; FN: Incorrect 
rejection of images from a class they belong to. 

Recall or Sensitivity (c): TPC
TPC+FNC

, percentage of images that were 
classified to class C, compared to all images that should have been 
classified into C. 

Specificity(c): TNC
TNC+FPC

, percentage of negative instances or true neg
atives (TN) out of all actual negative instances. 

Accuracy: TP+TN
TP+TN+FP+FN, overall accuracy of the model for all classes. 

Precision(c): TPC
TPC+FPC

, percentage of images correctly classified for 
class C. 

Macro Average (F1 Score): 
∑n

c=1
F1 Score(C)

n , average of each class’s F1 
score independent to sample size per class where, F1 score is Harmonic- 
mean of precision and recall indicating success rate of the model for 
class C. 

mAP (mean average precision): 1
N
∑N

i=1APi, average Precision (AP) 
for each class (i.e., 1 to N) and then average over the number of classes 
(N). 

MAE (Mean Absolute Error): 1
n
∑n

i=1
⃒
⃒yi − ŷi

⃒
⃒, average difference be

tween the actual values (yi..n) and the predicted values (ŷi..n) in a 
regression task. 

Further details and mathematical formulations of these metrics are 
presented in (Ren et al., 2017). For the experiment (data preparation, DL 
models’ training and validation), we use a GPU machine comprising 4×
AMD Ryzen Threadripper 2990WX, 2 TB hard drive, 128 GB RAM, and 
32-core 3.00 GHz Intel CPU. 

4. Results 

This section describes the HPE, HRE, EGE and ESE results using the 
datasets and experimental setup detailed in Section III. We obtained 
statistical results for custom-trained DTL-based classification and 
detection models. To ensure standard performance metrics were 
measured, we followed the optimal configurations recommended by the 
original sources (Redmon and Farhadi, 2018; He et al., 2017). 

4.1. Discrete head pose estimation (Exp 1_a, Exp 1_b) 

As mentioned previously, 20 % of the BIWI dataset (Fanelli et al., 
2013) participants were withheld from the training dataset to evaluate 
the HPE method. As shown in Table 2, the accuracy when estimating all 
nine categories using the BIWI evaluation set is 86.79 %. This is lower 
than the 99.21 % accuracy reported in (Elharrouss et al., 2020); how
ever, this solution estimates only three categories (left, centre, and right) 
compared to nine in the proposed HPE approach. Also shown in Table 2 
are the accuracies of the individual models; the horizontal model ach
ieved 92.75 %. At the same time, the vertical model achieved 89.04 % 
accuracy. As a correct estimation requires both models to provide ac
curate overall estimates, the maximum accuracy is limited to that of the 
lowest-performing model. 

The same VGG-19 approach was adapted to estimate all nine cate
gories using a single model to compare the two-model approach. When 

evaluated using the same BIWI evaluation set, the single-model system 
achieved just 70.1 % accuracy, significantly lower than the 86.79 % 
achieved when combining two models, suggesting that the two-model 
approach provides considerably higher accuracy. 

Furthermore, Table 3 presents the results of the two-model approach 
evaluated using previously unseen datasets UPNA (Ariz et al., 2016) and 
UPNA-Synth (Larumbe et al., 2017), containing 8,000 and 9,000 images, 
respectively. Both datasets have been pre-processed and categorised as 
described in section III A. Table 3 shows that a similar level of accuracy 
was achieved on the UPNA and UPNA-Synth datasets (90.73 % and 
87.01 %, respectively) as compared to the 89.79 % achieved on the 
reserved evaluation set of the BIWI dataset as provided in Table 2. 

In addition to accuracy, Tables 2 and Table 3 also report the sensi
tivity and specificity evaluation metrics. Sensitivity evaluates the 
models’ ability to predict true positives for each category, while speci
ficity evaluates the models’ ability to predict true negatives for each 
category. As shown in Tables 2 and 3, sensitivity is above 98 % when the 
models are evaluated on datasets containing all nine categories, sug
gesting that the models can accurately predict true positives for all 
categories. Similarly, over 80 % specificity is achieved on all three 
datasets, suggesting that the models can correctly predict false negatives 
for all categories. 

Fig. 5 shows the specificity, sensitivity, and accuracy of the vertical, 
horizontal, and combined models. The performance of the models is 
consistent mainly, with some minor differences. Firstly, the horizontal 
model slightly outperforms the vertical model, likely due to the more 
significant differentiation in pose appearance. For example, as a person 
turns their head to one side, only one eye and ear may be visible, 
whereas both are visible when facing the centre. This differentiation is 
not available for the vertical classes as a person looking centre will show 
all facial features regardless of whether they look up or down. Secondly, 
the combined model has decreased accuracy and specificity due to the 
nature of the approach. For the combined model to correctly classify, 
both the horizontal and vertical models must give correct classifications. 
Therefore, the combined models’ performance is limited to the weakest 
performance of horizontal or vertical models. 

4.2. Head roll estimation (Exp 1_c) 

The aforementioned HRE solution was evaluated using the entire 
BIWI dataset (Fanelli et al., 2013), comprising approximately 15,678 
images. Overall, the method achieved an MAE of 9.91◦. Table 4 displays 
the MAE of this approach when different maximum yaw values are 
applied to filter the images used for evaluation; the yaw range stops at 
85◦, as this includes all instances in the BIWI dataset. The results suggest 
that the accuracy of this method is affected by varying the yaw of the 
head; the higher the yaw, the less accurate the roll estimation. 

Table 5 compares a range of HRE methods which provide Euler an
gles. Each method, including ours, is evaluated on the BIWI dataset 
(Fanelli et al., 2013) limited to ± 99◦ as evaluated in (Asperti and Fili
ppini, 2023). Other than our proposed method, the remaining methods 
in Table 5 use deep learning for HRE. Despite not producing state-of-the- 
art performance, Table 5 suggests that the performance of our proposed 
HRE methods is comparable to the deep learning methods. However, 
unlike the works presented in Table 5, our approach does not use deep 
learning to calculate head roll. Therefore, it is likely that our method 
may be computationally less expensive. However, this assumes that the 
required key points for our head roll calculation may be performed 
without deep learning. 

Table 2 
Results of the discrete hpe on the reserved biwi evaluation set (20%).  

Category Accuracy Sensitivity Specificity 

Vertical (3 Categories) 89 %  93.4 %  90.3 % 
Horizontal (3 Categories) 92.8 %  94.5 %  89.9 % 
Combined (9 Categories) 86.8 %  98.1 %  80.6 %  

Table 3 
Cross-dataset validation for the proposed discrete hpe.  

Category Accuracy Sensitivity Specificity 

UPNA 90.7 %  98.6 %  82.9 % 
UPNA-Synth 87 %  98.1 %  75.9 %  

W. Khan et al.                                                                                                                                                                                                                                   



Expert Systems With Applications 254 (2024) 124425

10

4.3. Iris detector (Exp 2_a, Exp 2_b) 

The iris detector model achieved an mAP of 99.5 % when evaluated 
using the proposed iris detection dataset described in Section III-B-1. As 
described in Section III-B-2, experiments included using a YOLO v5 

model and a Mask R-CNN. Table 6 suggests that the performance of both 
models is similar. However, the YOLO v5 model indicates slightly 
improved performance. Further training and validation performances of 
proposed iris detection are shown in Figs. S2 and S3 in Supplementary 
material. 

Furthermore, Mask R-CNN averaged a mAP score of 78 % across 
ranges of 0.5 to 0.9 IoU. On a similar scale of 0.5 to 0.95 IoU, the Yolo v5 
model achieved an average mAP of 77 %. Note that the Yolo v5 model’s 
average is inclusive of up to 0.95 IoU, which should go against the Yolo 
v5 model’s score, yet it performs similar to the Mask RCNN model (with 
78 % mAP). Fig. 6 shows a sample of iris detections from a custom- 
trained Yolov5 model for unseen samples from the test set. It can be 
noticed that the proposed iris detection can perform in challenging cases 
with varying illuminations, orientations, sizes, and other diversities. 
This demonstrates the generalisation of the proposed iris detector, 
which would be useful for EGE, particularly in realistic environments. 

4.4. Eye state estimator (Exp 3) 

The ESE model achieved 98 % validation accuracy when evaluated 
over the reserved 20 % of the MRL dataset (with the remaining 80 % 
used for training). Table 7 presents additional statistics for both the open 
and closed categories, in addition to the macro average (i.e., computed 
without considering the class proportions) and weighted average (i.e., 
computed assuming the class proportions) of the categories. These re
sults further show that each category’s precision, recall, and F1-Score 
are high, between 98 % and 99 %. Further training and validation 
performance for the ESE is shown in Fig. S1 of Supplementary material. 

Overall, the ESE model achieved 92 % accuracy on the unseen 
mEBAL dataset. This is lower than that of the validation subset of the 
MRL dataset. However, some difference is expected between a valida
tion subset and a completely unseen dataset. Table 8 presents additional 
statistics for each of the eye states. As shown in Table 8, the precision for 
the open state is higher than that of the closed state, 99 % and 90 %, 
respectively. Similar patterns can be seen in the recall and F1-Score 
results. This suggests that the model is more likely to misidentify a 
closed eye as an open eye. However, the results remain relatively high, 
with an average accuracy of 92 %, as reported previously. 

5. Discussions 

The results described in section IV suggest that the two-model 
approach to categorical HPE provides significantly higher accuracy 
than the single-model approach. However, one limitation of the two- 
model system is that the combined model (for nine categories of head 
pose) cannot produce an accuracy higher than that of the lowest per
forming individual model (i.e., horizontal and vertical models), in this 
case, the vertical model. However, this can be resolved by training more 
accurate models, beginning by collecting further data instances for all 
categories. 

Accuracies of 86.79 %, 90.73 %, and 87.01 % are reported for the 9- 
category HPE task when evaluating the models using the BIWI, UPNA 
and UPNA-Synth datasets, respectively. To the best of the authors’ 
knowledge, this is the first attempt at predicting nine head pose cate
gories; other works, such as (Elharrouss et al., 2020), predict only three 
categories (left, centre, and right). Furthermore, the categorisation (i.e., 
classification) of HPE would enable the extraction of discrete-level facial 
movements (in the form of facial encoding), which would be useful for 
comprehensive psychological profiling tasks along with other applica
tions. To achieve this, two models have been combined, the first for 
predicting horizontal classes (left, centre, and right) and the second for 
predicting vertical classes (up, centre, and down), to provide the nine 
categories. Section IV-A suggests that the two-model approach produced 
significantly higher than the single-model, which achieved only 70.1 % 
on the BIWI dataset compared to the 89.04 % achieved using the two- 
model system on the same dataset. 

Fig. 5. Performance comparison of the proposed HPE including accuracy, 
sensitivity, and accuracy for the three HPE experiments: horizontal, vertical, 
and combined. 

Table 4 
Head Roll estimation results with a varying 
range of maximum yaw limits.  

Maximum Yaw◦ Total Images MAE◦

5 415  2.1 
10 1396  2.4 
15 2891  2.9 
20 4451  3.5 
25 6022  4.2 
30 7455  5.2 
35 8916  6.1 
40 10,289  6.9 
45 11,471  7.5 
50 12,649  8.1 
55 13,764  8.7 
60 14,510  9.2 
65 15,077  9.5 
70 15,463  9.7 
75 15,613  9.9 
80 15,665  9.9 
85 15,678  9.9  

Table 5 
A Comparison of head roll estimation methods 
evaluated using the BIWI dataset with the associated 
MAE.  

Paper MAE◦

Ours  9.9 
(Kumar et al., 2017)  16.2 
(Zhu et al., 2016)  8.8 
(Bulat and Tzimiropoulos, 2017)  7.6 
(Fanelli et al., 2011)  8.9 
(Kazemi and Sullivan, 2014)  23.1 
(Basak et al., 2021)  9.8  

Table 6 
Performance of the proposed iris Detection method validated over unseen in
stances (IoU:0.5) (Lin, et al., 2014).  

Model mAP (0.5) Recall Precision 

YOLO v5  99.5 %  99.6 %  99.6 % 
Mask R-CNN  99.0 %  99.5 %  98.9 %  
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The proposed HRE method performs a single calculation based on 
two key points. It is possible to perform the same calculation using a 
variety of other key points that can be identified in the face, as provided 
by the facial landmark identification methods (e.g., DLib); this provides 
two opportunities for future work. Firstly, alternative key points may be 
used when the desired key points cannot be located. Secondly, it may be 
beneficial to the accuracy of the estimation to perform several calcula
tions and then take the average of all measurements. Further work will 
aim to implement and evaluate this proposal. 

The eye tracking experiments reported slightly improved (+0.5 
mAP) performance when using a YOLO v5 model. However, a similar 
performance was achieved using Mask R-CNN. However, it is important 
to note that the YOLOv5 has advantages in terms of processing speeds; it 
is approximately 2.5x faster than Mask R-CNN at object detection tasks 
such as iris detection (Fang et al., 2021). This enables the use of the 
proposed method in realistic situations (e.g., interrogations, cognitive 
tasks requiring real-time analysis) with the ability to perform the facial 
analysis in real time. 

The outcomes from HPE detectors, ESE, and EGE are integrated into 
the proposed method in composition with the Dlib landmarks identifi
cation to encode the real-time video stream and image/s to produce a 
comprehensive profile comprising head pose, eye movements, and eye 
state information. The complete cycle of the proposed DeFaP is 
described in Algorithm 1. The outcomes have been generated for the 
given datasets using proposed HPE and eye-tracking DL models. 
Regarding HPE, the categorical HPE performance results achieved are 
provided in Tables 2 and 3, and the head roll performance is described in 
Table 4. Moreover, regarding eye tracking, the iris tracking performance 
is described in Table 6, and the ESE performance is described in Tables 6 
and 7. 

Furthermore, the outcomes suggest that the proposed system im
proves in several ways compared to the existing literature. For example, 

the data extractor in Fathom (Buckingham et al., 2015) is unreliable. 
Potentially, this could cause significant issues regarding generalisation 
when using these extracted features. Moreover, varying lighting condi
tions would highly affect eye estimation. Specifically, it is unclear how 
an eye state is classified, labelled, and annotated and how difficult the 
classification of an eye microstate would be with conventional machine 
learning models without using DL, landmarks, etc. Additionally, the 
literature on the error of individual classifiers is unclear, for example, 
regarding the features used (i.e., accuracy and reliability) or the vali
dation method. Likewise, the Silent Talker system (Rothwell et al., 
2006) is affected by similar limitations. Additionally, some limitations 
surround noisy outputs generated from the system, which may result in 
inappropriate analytical outcomes. 

Moreover, many works, such as (Fuhl et al., 2016; Santini et al., 
2018), rely on pupil estimation for EGE. However, the literature suggests 
that iris detection may be more reliable than pupil detection due to the 
increased colour contrast and larger size (compared to pupil) (Sigut and 
Sidha, 2011). Therefore, the proposed DeFaP method may provide more 
reliable EGE due to its use of iris detection, particularly under varying 
brightness levels. Furthermore, each aspect of DeFaP is validated over 
multiple standard datasets, unlike works such as (Rothwell et al., 2006; 
Buckingham et al., 2015; Fuhl et al., 2016; Santini et al., 2018; Liu et al., 
2021), which either do not cross-validate (on different datasets) or have 
not reported the results of this. 

Table 9 compares the related head and eye pose and state estimation 
methods. It suggests that only our proposed DeFaP method provides 
HPE, EGE, ESE, classification (in the form of detector array), and 
regression (for HRE) and is evaluated using cross-dataset validation (i.e., 
using multiple unseen datasets to validate the performance). Further
more, unlike the proposed DeFaP, several works such as (Patacchiola 
and Cangelosi, 2017; Santini et al., 2018; Ruiz et al., 2018; Santini et al., 
2018; Liu et al., 2021) are not evaluated using cross-dataset validation. 
Therefore, it is difficult to assess their generalisation. Many solutions, 
such as (Elharrouss et al., 2020; Sreekanth et al., 2018), provide only 
HPE and do not provide EGE or ESE. Conversely, some EGE estimation 
methods, such as (Yiu, 2019; Santini et al., 2018; Sanyal and Chakra
barty, 2019; Fuhl et al., 2016; Santini et al., 2018; Liu et al., 2021), 
provide only EGE or ESE and do not provide HPE. Moreover, many HPE 
works, such as (Patacchiola and Cangelosi, 2017; Ruiz et al., 2018) 
provide only continuous data, which is not easily human- 
understandable, unlike discrete labelled classes in the proposed 
DeFaP. In (Elharrouss et al., 2020) and (Sreekanth et al., 2018), a similar 
approach to DeFaP’s discrete HPE classification is described; however, 
only horizontal categories are classified, producing three classes 
compared to the 9 in DeFaP. Moreover, as mentioned previously, neither 
EGE nor ESE is provided, unlike the proposed DeFaP method. In addi
tion, we propose eye-tracking based on iris detection, which is a larger 
eyeball segment with no dilation and might be able to tolerate slight 
noise in the background. More importantly, the varying dilations within 
the pupil will not affect the iris localisation and, therefore, eye tracking 
performance. 

Finally, we report some limitations of the proposed DeFaP approach, 

Fig. 6. Yolo prediction sample from unseen test set. To the left, we can see the box predictions of the highest confidence matching the final predictions on the right 
(for the purely unseen samples). 

Table 7 
Results of the eye state estimation on the unseen 20% reserved subset of the mrl 
dataset (Fusek, 2018)test set.  

State Precision Recall F1-Score 

Open  98.3 % 98.2 %  98.2 % 
Closed  98.1 % 99.5 %  98.3 % 
Macro Average  98.3 % 98 %  98.1 % 
Weighted Average  98.4 % 98.1 %  98.2 %  

Table 8 
Results of the validation of the eye state estimation on the additional unseen 
mebal dataset (Daza et al., 2020).  

State Precision Recall F1-Score 

Open 99 %  98.5 %  94.1 % 
Closed 90.3 %  90.1 %  88.2 % 
Macro Average 90.2 %  98.5 %  91.5 % 
Weighted Average 93.5 %  92.3 %  91.7 %  
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which can be addressed in future works. Firstly, the proposed custom- 
trained models could be encoded as a complete application with pub
lic access. This would help a wide range of research and development 
communities with diverse applications. Secondly, similar to HPE, an 
alternative approach for the proposed iris detection model could be 
implemented to automatically categorise the eye gaze into nine states (e. 
g., looking left, right, top-left, etc.). This could then be compared with 
the proposed iris-detection-based eye gaze estimation. 

6. Conclusion and future work 

Inspired by our previous research (Khan et al., 2021), this study 
presented an explicit, non-restrained, non-invasive facial and gaze 
comprehension approach, including categorical HPE (9 categories), a 
simple head roll calculation method, EGE, and ESE. As reported in 
Section V, the methods have been evaluated using several standard head 
and eye pose estimation datasets, indicating state-of-the-art perfor
mance. Moreover, using a categorical classification approach to HPE 
produces a more human-understandable output than a geometric 
output. The approach could be extended to the animal world to evaluate 
animal psychological and cognitive behaviours further. 

Furthermore, the precision and reliability of head pose and gaze 
estimation are vital to comprehending various situations, activities, and 
psychological or cognitive tasks, for example, driver behaviour analysis, 
student attention analysis, investigation-based tasks, and other highly 
impactful applications in healthcare (e.g., autism, animal welfare etc.). 
The proposed DeFaP approach is likely more reliable than previous 
works due to its core architecture (utilising DTL) and cross-dataset 
validation, as reported in Section IV. Moreover, the increased human 
understandability provided by DeFaP (i.e., discrete head pose cate
gories) will broaden the range of domains and applications the tech
nology can impact, as an understanding of 3D geometry is not required 
of the user. For instance, using the example of driver analysis, DeFaP 
would provide human-understandable head positions, which may be 
used to identify if the driver is regularly checking the mirrors; EGE will 
allow users to determine if the driver is looking ahead at the road or 
elsewhere, and ESE will allow the evaluation of the drivers level of 
alertness (i.e., awake, drowsy, or asleep). 

Multiple aspects of future work are planned for this project. For 
example, the proposed DeFaP algorithm (Algorithm 1) can be imple
mented to provide a comprehensive head pose and eye-tracking appli
cation. Currently, all trained models are available, so implementation is 
relatively trivial. Furthermore, future work will demonstrate the 
implementation of the DeFaP tool in several domains and applications, 
such as driver attention analysis, deception detection system, and other 
high-impact healthcare applications (such as in autism). 
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