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A B S T R A C T   

In maritime transport, fatigue conditions can impair seafarer performance, pose a high risk of maritime incidents, 
and affect safety at sea. However, investigating human fatigue and its impact on maritime safety is challenging 
due to limited objective measures and little interaction with other risk influential factors (RIFs). This study aims 
to develop a novel model enabling accident data-driven fatigue investigation and RIF analysis using machine 
learning. It makes new methodological contributions, such as 1) the development of a human fatigue investi
gation model to identify significant RIFs leading to human fatigue based on historical accident and incident data; 
2) the combination of least absolute shrinkage and selection operator (LASSO) and bayesian network (BN) to 
formulate a new machine learning model to rationalise the investigation of human fatigue in maritime accidents 
and incidents; 3) provision of insightful implications to guide the survey of fatigue’s contribution to maritime 
accidents and incidents without the support of psychological data. The results show the importance of RIFs and 
their interdependencies for human fatigue in maritime accidents. It takes advantage of available knowledge and 
machine learning to open a new direction for fatigue management, which will benefit the maritime fatigue 
investigation and provide insights into other high-risk sectors suffering from human fatigue (e.g. nuclear and 
offshore).   

1. Introduction 

With increasing automation of ships, human elements arguably play 
an increasingly crucial role in human-machine systems for maritime 
safety when the operators are moving from ships to shore control cen
tres. 60.6 % of marine casualties and incidents were attributed to a 
human actions category; amongst accident event types for 2014–2020, 
67.1 % of contributing factors are related to human action accident 
events [1]. For daily missions onboard, there is an increasing concern 
about psychological issues. For instance, more than half of pilots reveal 
the primary stressor is rough working time, and 79.8 % of them face high 
psychological demands in the workplace [2]. Due to high cognitive loads 
in the work environment for maritime operations, short-term and 
long-term psychological issues impact human perception and 
decision-making. Human fatigue is an issue for around-the-clock oper
ations across various transportation modes and industries, particularly 
for the maritime sector [3]. In maritime transport, fatigue and burnout 
conditions can impair job performance, pose a high risk of maritime 
incidents, and affect safety performance [4,5]. Statistical analysis shows 

that 13.46 % of maritime accidents involving human errors are related 
to fatigue, which is associated with asleep and tiredness during navi
gation [6,7]. Owing to rough working time, sleep issues, shift length, 
and stress, fatigue assumes a greater significance in the near sea [8,9]. 

Fatigue is widely recognised as a significant factor in maritime ac
cidents and plays a vital role in accident prevention. Specifically, fatigue 
means tiredness and physical discomfort due to prolonged activity [10, 
11]. The most common elements contributing to fatigue in maritime 
transport are lack of sleep, inadequate rest, circadian rhythm (work/
sleep at irregular times of the body clock), and pressure [3]. In addition, 
it comes up with jet lag, psychological and emotional factors, shift work, 
and workload [3]. Therefore, human fatigue has been a critical part of 
maritime transport and is closely connected with maritime operations 
and accidents. It has been considered in the International Maritime 
Organization (IMO) and the International Labour Organization (ILO) 
Conventions, which propose prescriptive working and rest hours as fa
tigue risk management requirements [12]. As compliance in interna
tional shipping, IMO regulations establish prescriptive rest intervals, 
requiring a minimum of 10 h of rest within a 24-h timeframe and 77 h 
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over a 7-day span; the rest period can be split into a maximum of two 
segments with each lasting at least 6 h [13]. Addressing fatigue risk 
management through onboard technologies and resting period re
quirements is a significant part of safeguarding maritime safety [14]. 

Ship automation and job automation have grown significantly, 
especially for officers on board. However, job autonomy negatively 
impacts chronic fatigue [15,16]. To obtain maximum economic effi
ciency, shipping companies have increased automation to reduce the 
manning levels. However, some fatigue-related problems do not relieve 
but raise new risks in reduced manning levels that adversely affect crews 
in certain situations. For example, multiple tasks, such as cargo opera
tions, accompanying surveyors and port state control (PSC) inspectors, 
should be conducted collectively when short turnarounds in ports. To 
complete such tasks, reduced manning power due to increased job au
tonomy leads to increased workload and inadequate teamwork support 
for individuals. In addition, it has addressed risks for them, such as a lack 
of sleep, fatigue, impaired performance, and diminished alertness. From 
this perspective, investigations on whether human fatigue exists in 
maritime accidents and incidents become crucial in ensuring safety at 
sea, particularly in the era of shipping autonomy. However, the relevant 
seafarer fatigue studies are still lacking and underdeveloped compared 
to other safety studies, because of their inherent technical difficulty in 
detecting real-time physiological response and quantified fatigue evi
dence. Therefore, any study on how objective factors such as visibility 
and accident type influence fatigue in maritime accidents could be 
ground-breaking and bring a paradigm shift in fatigue investigation and 
management. 

Current fatigue investigation reveals a significant challenge: sub
jective measures are used to quantify human fatigue but expose inevi
table bias without sufficient evidence; objective measures indicate the 
capacity to detect maritime operators’ fatigue levels but show little 
connection with external related risk influential factors (RIFs). To 
compensate for the deficiency in subjective measures, this study initiates 
a new methodology by taking advantage of accident data and machine 
learning methods to open a new direction in human fatigue investigation 
from accidents. Meanwhile, interrelationships between critical fatigue- 
related RIFs are analysed using combined machine learning methods. 

Specifically, this study aims to develop a novel model enabling ac
cident data-driven fatigue investigation and RIF analysis using machine 
learning of historical accident records. The findings can guide fatigue 
management and accident prevention. In terms of its theoretical con
tributions, this study pioneers the combination of machine learning 
methods to optimise the BN-based accident analysis model with satisfied 
accuracy and improved robustness, which benefits data-driven risk 
assessment and complex network optimisation research. From an 
applied research perspective, this study takes advantage of accident data 
and machine learning approaches to open a new direction for fatigue 
management in the maritime industry first and the other risk-sensitive 
industries such as aviation later. It helps analyse how RIFs influence 
and predict the probability of human fatigue, contributing to fatigue 
investigation for accident prevention in practice. 

The study shows the significance of RIFs for fatigue and its in
terrelationships with maritime accidents and incidents. The proposed 
novel methodology that can take advantage of previous knowledge and 
machine learning methods to identify critical fatigue-related factors and 
predict fatigue will open a new direction for fatigue management. It can 
help accident investigation organisations to investigate human fatigue’s 
contribution to maritime accidents and incidents with minimum data 
and labour resources in maritime transport and other transport sectors, 
even providing insights into all accident prevention. 

The structure of this paper is organised: Section 2 provides the 
literature review, followed by the proposed methodology for fatigue 
prediction in Section 3. In Section 4, the outcomes using data-driven 
modelling are presented. Next, the model validation is carried out to 
show the robustness and reliability of the proposed method. At last, 
Section 5 concludes the paper. 

2. Literature review 

2.1. Human fatigue in the maritime industry 

In accordance with IMO’s guidelines, fatigue can be characterised 
[3]: 

“A state of physical and/or mental impairment resulting from factors 
such as inadequate sleep, extended wakefulness, work/rest requirements 
out of sync with circadian rhythms and physical, mental or emotional 
exertion that can impair alertness and the ability to safely operate a ship 
or perform safety-related duties.” 

Referring to literature from the Web of Science with keywords “fa
tigue” and “maritime”, there are 62 publications associated with human 
fatigue and relevant studies. Through a systematic review using Cite
Space software [17], human fatigue covers many topics and themes, 
such as “accident”, “human factor”, “human error”, and “performance”, 
as shown in Fig. 1. Its definitions and applications are closely connected 
with maritime operations [18]. Fatigue is classified into two main types: 
physical and mental fatigue. The former pertains to reduced perfor
mance in the muscular system, while mental fatigue is associated with 
reduced attention, diminished alertness, and a sense of weariness. The 
latter may be influenced by different work demands, which reveals 
chronic fatigue in seafarers. In addition, fatigue levels differ in various 
missions. Passenger and cargo ships’ seafarers show higher fatigue levels 
than offshore workers [19]. The link between work attributes and 
chronic fatigue is investigated through a fatigue-related process, 
including inter-shift recovery, acute fatigue and sleep-related issues 
[15]. Objective physiological measurements using an armband monitor 
show seafarers’ average sleep time is 5 h per day. Notably, nautical of
ficers exhibit shorter sleep durations in comparison [20]. Therefore, it 
reveals significant associations between fatigue and sleep quality. With 
the increasing technologies on vessels, nautical officers undertake hectic 
workflows and are often exposed to insufficient rest times with reduced 
staff and unstable employment [21,22]. Compared to engine officers, 
deck officers may suffer an increasing workload from the documentation 
that affects rest hours [23]. In addition, automation in the maritime 
industry contributes to the increased number of duties but the reduced 
number of crew, leading to physical fatigue, while automated tasks 
excluding humans from the loop introduce passive involvements, lead
ing to mental fatigue [21]. 

Fatigue shows less association with seafarers’ age but is related to 
sleep quality issues, onboard noise levels, and night shifts [24–26]. In 
maritime operations, both deck and engine officers suffer from shift 
work with irregular sleep and rest. Typically, there are 2-watch systems 
with two watchkeepers sharing one day period, and 3-watch systems 
with three watchkeepers sharing. Van Leeuwen et al. [27] predict the 
on-watch severe sleepiness and the off-watch sleep, revealing the 
highest level of severe sleepiness for working 0000–1200 within 2-watch 
systems; the lowest sleepiness and most increased off-watch sleep for 
changeover (02–07–12–17–22) system within 3-watch systems. 
amongst three main roster types (6 h on/6 h off, 8 h on/8 h off and 4 h 
on/8 h off), the 4 h on/8 h off is with better sleep and minimised 
sleepiness [11]. Compared to 4 h on/8 h off watch systems, there is 
severe sleepiness amongst evening types at 04:00–06:00 h in the 6 h 
on/6 h off watch system [28]. Also, some studies show that sleep on 
watch usually occurs in the team working 00–04, particularly with free 
watch disturbance [29]. It is evident that sleepiness peaks in the early 
morning and night, which coincides with the fact that many maritime 
accidents occur. Eriksen et al. [30] find that sleepiness significantly 
increases at the end of watches during the 00:00–06:00 due to routine 
activity and boredom. Regarding officers of the watch, the 
(00:00–04:00, 12:00–16:00) and (04:00–08:00, 16:00–20:00) shifts 
impair cognitive functioning with sleepiness and impaired sleep quality 
during cargo handling operations [31]. 

To quantify seafarer’s fatigue, subjective measurements have been 
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used to determine fatigue levels and mental symptoms onboard [8,32, 
33,31]. The cross-sectional survey is designed to investigate sleepiness 
on duty [33], fatigue in maritime operations [15,34,31], and 
fatigue-related accident investigations [35]. In addition, questionnaires, 
such as the Piper Fatigue Scale (PFS), Symptom Checklist 90- Revised 
(SCL-90-R), Pittsburgh Sleep Quality Index (PSQI), Karolinska Sleepi
ness Scale (KSS), Psychomotor Vigilance Task (PVT), Arrow Flanker task 
performance, Skogby Excessive Daytime Sleepiness index (SEDS), 
Epworth sleepiness scale (ESS) score, actigraphy, and the Fatigue 
Avoidance Scheduling Tool (FAST) are used to study fatigue issues [36, 
28,37,31]. 

In addition, objective measurements of human factors have been 
utilised in experimental studies [38–41] and real ships [24,42,26]. Some 
technologies have been utilised to investigate human fatigue. Specif
ically, the PsyCap as a psychological predictor is incorporated with the 
duration spent at sea to predict levels of fatigue and sleep quality 
amongst individuals onboard [19]. The non-invasive methods can be 
utilised to investigate cognitive tasks in many conditions with auto
mated systems, which find that prefrontal cortex cooling after fatigue 
reduction effectively improves cognitive skills [43]. The wireless elec
troencephalogram (EEG) is used to detect the increase in mental fatigue 
levels of maritime operators through fatigue assessment algorithms [44, 
41]. Moreover, the EEG is integrated with the electrocardiogram (ECG) 
for a simulated vessel piloting task to assess mental fatigue [45]. It 
shows the applicability of an algorithm with convolutional neural net
works incorporated with Bayesian optimization, reaching 97.6 % test 
accuracy. The critical flicker frequency (CFF), changes in heart rate, 
blood pressure and saturation of peripheral oxygen can be indicators of 
cognitive fatigue [43]. In addition, wrist actigraphy can determine 
seafarers’ sleep duration and wake time, which finds that fatigue levels 
are associated significantly with sleep quality rather than operation in
tensity [46]. 

The above studies prove the significance of human fatigue and its 
quantification in maritime operations. Subjective measurements of fa
tigue through surveys and questionnaires demonstrate a mature appli
cation, probably biased for evaluating fatigue levels. On the other hand, 
the objective measures using non-invasive technologies reveal a limited 
connection between fatigue and other related RIFs. Obviously, human 
fatigue studies from both subjective and objective perspectives are 
human-focused and fail to take into account the impact of other RIFs. It 

is evident that there is no study in the current literature to use accident 
data to quantify the relationships between human fatigue and related 
RIFs, so as to reveal the comprehension of fatigue contributing to acci
dents. One of the novelties of this study is the incorporation of objective 
RIFs into a fatigue-related data-driven model to reveal their contributors 
to maritime accidents and incidents. 

2.2. Risk factors for human fatigue investigation 

It is critical to conduct a risk analysis of human fatigue in accident 
investigations because it can adversely affect seafarers’ performance 
[47]. The risk of ship accidents increases when seafarers are fatigued, 
especially for collisions and groundings [35,48,49]. Collision accidents 
with fatigue issues are characterised by wrong-timed decisions, mis
takes, and poor communication; fatigue-related groundings are related 
to overlooking and asleep [50]. Fatigue also contributes to unsafe be
haviours, such as over-reliance on technology in navigation [51]. 
Therefore, it is significant to investigate human fatigue and related RIFs 
in the maritime sector. 

Human fatigue is mainly investigated through shift work and sleep. 
Crews who conduct shift work in such watch systems demonstrate a high 
level of fatigue [11,52]. Specifically, the feeling of fatigue can be 
explained by disruptions in sleep patterns and circadian rhythms [53]. 
amongst them, circadian rhythms pertain to changes in physiological or 
psychological functioning that occur based on the time of day [10]. It 
has been found that maritime pilotage involving on-call work styles may 
result in sleep shortage and circadian misalignment [54]. To investigate 
sleep quality, sleep-wake behaviours, such as time and length, and 
self-reported methods are utilised to study fatigue’s impacts on roster 
status and “on-call” status [55]. It reveals that long and irregular 
working hours compromise human performance and safety in maritime 
pilotage [29]. Besides, alcohol intake and consumption of caffeinated 
drinks are significant causes of human fatigue and sleep [56,57]. The 
managers’ interventions for safety compliance contribute to increased 
workloads, psychological pressure and fatigue [58]. 

The long working hours and related work situations introduce high 
risks of being in fatigue conditions. Regulations have addressed 
adequate hours of rest but have not addressed the challenges and 
practice of dynamic working schedules and human psychophysiology 
[16]. The impact of long-term and high cognitive loads on human 

Fig. 1. Keywords of fatigue in the maritime sector (software: CiteSpace).  
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fatigue is a psychological problem that impacts seafarers’ health [59]. 
Although advanced technologies and ship automation have reduced the 
number of crews, it has introduced increased workload for officers on
board [15,16]. Given multiple duties and responsibilities, especially for 
officers of the watch, reduced manning levels and increased workload do 
not guarantee adequate rest. The chief officers’ working hours are 
positively related to the number of ports of call, but negatively associ
ated with the transit distance at short sea shipping [60]. From a practical 
perspective, the ship type reveals different impacts on the work in
tensity. For instance, the work intensity of deck officers in tanker and 
container ships during short-sea navigation is higher than in other ship 
types [22]. Different cargo types require different procedures under 
rules for specific ship types (i.e., tankers), showing various work in
tensity levels. In addition, short-sea seafarers engaging in intricate tasks 
experience a higher level of work intensity compared to their interna
tional counterparts, where vessel docking and disembarking are more 
frequently and often navigating restricted channels. The former expe
riences prolonged working hours and interrupted rest time [23]. How
ever, fatigue does not show linear correlations with increased work 
intensity but reveals a significant association with sleep [35,46]. In 
addition, safety climate contributes to human fatigue [50] and can 
predict the following week’s sleep quality and fatigue amongst seafarers 
[35]. 

In addition, various methodologies have been utilised to analyse 
fatigue in maritime sector. Akhtar and Utne [50] study fatigue using the 
Cognitive Reliability and Error Analysis Method (CREAM) model. 
Common fatigue factors include “inattention”, “shift work”, “inadequate 
procedures”, “irregular working hours”, “observation missed”, “inade
quate task allocation”, “excessive demands”, and “communication fail
ure” [50]. However, it can not reflect the relationship between these 
RIFs. Gander et al. [42] develop fatigue management strategies by 
comparing sleep and sleepiness of deckhands at home and at sea using 
the Karolinska Sleepiness Scale (KSS). The Bayesian network (BN) has 
been incorporated with a modified Human Factor Analysis and Classi
fication System (HFACS) to analyse the effect of fatigue on groundings, 
showing that a fatigued operator contributes to 23 % higher grounding 
probability in long transit [61]. The BN is also applied to predict human 
errors and shows a high level of fatigue and stress in the engine and 
nautical officers [62]. Although some RIFs contributing to fatigue are 
identified through accident reports, scarce studies focus on how human 
fatigue associated with RIFs results in maritime accidents and incidents. 

Currently, the studies on human fatigue-related RIFs are at large 
presented in a piecemeal form, hence lacking a systematic methodology 
for a complex model with a great number of variables. In addition, 
classical models for fatigue investigation have such limitations as factor 
selection and data requirements. For instance, psychophysiological data 
for seafarers’ sleep patterns are often not accessible during fatigue 
investigation. To fulfil this gap, this study incorporates the Least Abso
lute Shrinkage and Selection Operator (LASSO) and BN to shrink critical 
RIFs and predict human fatigue in maritime transport using accident 
data. Consequently, it provides new insights into fatigue investigation 
with limited psychophysiological data and benefit fatigue management 
for maritime authorities. 

2.3. New contributions 

This study incorporates LASSO and BN to analyse fatigue and the 
associated RIFs through accident data-driven investigation. Specifically, 
its novelties and contributions include:  

• Utilisation of historical records to generate a human fatigue model to 
identify significant factors from an objective accident/incident 
occurrence perspective.  

• Combination of LASSO and BN to propose a data-driven model to 
investigate human fatigue. 

• Providing a guideline to research fatigue’s contribution to a mari
time accident or incident without sufficient psychological data. 

The study shows the significance of RIFs for fatigue and its in
terrelationships with maritime accidents and incidents. The proposed 
novel methodology that can take advantage of previous knowledge and 
machine learning methods to identify critical fatigue-related factors and 
predict fatigue will open a new direction for fatigue management. It can 
help investigation organisations to investigate human fatigue’s contri
bution to maritime accidents and incidents with minimum data and 
labour resources in maritime transport and other transport sectors, even 
providing insights into all accident prevention. 

3. Methodology 

3.1. Data collection 

Raw historical data is collected from the transportation safety board 
of Canada (TSB) from 1995 to 2022 (March) to identify fatigue-related 
RIFs. Out of 82,909 records, there are 310 pieces of accident/incident 
data with fatigue investigation by the TSB. After removing duplicated 
records and deleting the data without fatigue investigation results, 104 
maritime accidents and incidents with fatigue investigation remain. To 
investigate human fatigue in maritime accidents/incidents, details of 
each RIF defined by the TSB and used in each investigation report are 
presented in Table 1. The investigated variable is “FatigueContFactor
Enum” which means whether fatigue was a contributing factor (“Yes”), 
or not (“No”) in the occurrence. 

3.2. A new human fatigue analysis model by combined least absolute 
shrinkage and selection operator (LASSO) and bayesian network (BN) 

Currently, numerical analysis and modelling of fatigue-related risk 
analysis are rare due to historical accident/incident data constraints. 
Few studies utilise machine learning methods to facilitate data analysis 
and risk prediction of human fatigue. A BN is a probabilistic graphical 
model to investigate causal relationships between different nodes and 
explore the probability for the target node given specific findings, which 
has been utilised in maritime safety and security [63,64]. This method 
takes advantage of the fusion of multiple data sources, such as empirical 

Table 1 
Risk factors and their descriptions (Source: the TSB).  

Factor Description 

OccClassID Classification of the occurrence by the TSB 
TimeZoneID The time zone of the occurrence time 
ProvinceID The province of the occurrence location 
OccurrenceTypeID Whether the occurrence was an accident or 

reportable incident 
AccIncTypeID Accident/incident type 
IMOClassLevelID International Maritime Organization class level 
InjuriesIND Injuries 
SearchAndRescueIND Search and rescue 
DamageIND Damage 
PollutionIND Pollution 
AreaTypeID Area type 
RoutingID Routing 
WithInPilotBoardingAreaEnum Within pilot boarding area 
WeatherFactorEnum Weather factor (yes or no) 
RegionOfOccurrenceID Region of occurrence 
RegionResponsibilityID Region of responsibility 
VisibilityDistance_Nm Visibility distance (nautical miles) 
LightConditionID Light condition 
WeatherConditionID Weather condition (e.g. clear, fog, overcast, rain) 
WindSpeedTypeID Wind speed type 
WindSpeed_Knots Wind speed (knots) 
SeaStateID Sea state (e.g. calm, smooth, slight, moderate, 

rough) 
ReportedByID Reported by whom  
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data and expert judgments, to tackle the analysis of safety-critical sys
tems under high uncertainty due to limited historical records. For 
instance, it is incorporated with HFACS to investigate human fatigue 
factors, showing 23 % higher probability of grounding [61]. Asadayoobi 
et al. [65] modify a BN with a new dimension to update performance 
leading factors and predict human reliability. In addition, BN can 
demonstrate the dependencies amongst variables, revealing a wide 
range of applications in data-driven models [66,67]. It can be utilised in 
three types of human reliability analysis methods (rule-based, 
data-based, and semi-rule-based methods) to calculate human error 
probabilities [68]. Quantitative causation analysis in Arctic waters 
shows critical factors in grounding accidents are poor traffic conditions, 
poor situational awareness, and inefficient use of navigation equipment 
[69]. However, its limitation on calculating conditional probability ta
bles (CPT) affects BN’s accuracy in a complex network with enormous 
nodes. In addition, a large number of nodes with moderate or small data 
deteriorate the performance of sensitivity analysis and model validation 
[6,70]. Due to the large number of nodes and moderate size of data for 
the fatigue-related study, it is not appropriate to generate a data-driven 
BN model with all nodes directly due to the well-recognised challenge in 
the configuration of CPTs. Therefore, it is of huge methodological value 
to develop a new method to shape and optimise the BN structure with 
reduced nodes. 

To compensate for this deficiency in the BN, a novel methodology for 
fatigue risk analysis combing machine learning methods is proposed. 
The LASSO, as a machine learning approach, is a regression analysis 
method that selects variables and performs regularisation by minimizing 
the residual error subject to the constraint [71]. This algorithm for 
shrinking unnecessary variables has been used to calculate fuel con
sumption of a container ship [72,73] and monitor ship operational 
performance [74]. It takes advantage of the way of penalty using an 
absolute value as regularisation parameter, resulting in smaller models 
with fewer predictors. In this way, fatigue-related RIFs in the BN model 
can be reduced using the LASSO method. 

This study incorporates the LASSO into BN modelling to optimise the 
BN structure by striking a good balance between the reduced RIFs and 
satisfactory accuracy of results. Firstly, it conducts the cross-validation 
error using LASSO for each parameter value and then selects the one 
for which the error is minimised. Specifically, LASSO solves the optimal 
problem by 

min
β0 ,β

(
1

2S
∑S

i=1

(
yi − β0 − xT

i β
)2

+ λ
∑p

j=0

⃒
⃒βj

⃒
⃒

)

(1)  

Where S is the number of accident/incident records, p is the number of 
RIFs, yi is the response variable at record i, xi represents the vector of p 
values at record i, λ is a positive tuning parameter, the parameters β0 and 
β are scalar and p-vector. The λ controls the strength of the L1 penalty. 
When λ = 0, no RIFs are eliminated. As λ increases, the model bias in
creases with more RIFs being removed. 

To select an appropriate λ to remove irrelevant RIFs, this study 
conducts cross-validated fits. The remaining RIFs serve as the input of 
BN model in the next step. Such selection of factors will help reduce the 
number of nodes in a data-driven BN model, simplifying the CPT 
calculation and data requirements for the BN model without compro
mising the prediction accuracy too much. 

Then, this study utilises the BN method for human fatigue modelling, 
which defines a joint probability distribution encompassing random 
variables U = {A1,…An,C}, where n is the count of identified RIFs, and 
A1,…An denote RIFs, while C stands for “FatigueContFactorEnum”. The 
formulation of the joint probability distribution is as follows: 

P(A1,…An,C) = P(C)⋅
∏n

i=1
P(Ai|C) (2) 

A data-driven approach is utilised for BN modelling without expert 

knowledge to predict the likelihood of fatigue in maritime accidents and 
incidents. To unveil the interdependencies amongst objective RIFs for 
“FatigueContFactorEnum”, a BN model is generated using accident data, 
as well as the calculated CPTs in the BN. Such a data-driven risk 
assessment model is built in two steps: 1) generate the BN structure 
between various nodes by using a tree-augmented naive Bayes (TAN) 
learning algorithm [6,70,75]; 2) calculate the CPTs based on the his
torical data. TAN learning finds an optimised tree structure defining the 
function over risk factors using conditional mutual information [76,6]. 
The maximised conditional mutual information can be calculated as 

IP
(
Ai,Aj

⃒
⃒C
)
=
∑

aii ,aji ,ci

P
(
aii, aji, ci

)
log

P
(
aii, aji

⃒
⃒ci
)

P(aii|ci)P
(
aji
⃒
⃒ci
) (3)  

where aii is the ith state of risk factor Ai, aji is the ith state of risk factor Aj, 
ci is the ith state of “FatigueContFactorEnum”, IP represents the condi
tional mutual information. The detailed steps for configuring a tree 
structure using TAN are found in Appendix A (e.g. Yang et al. [77] and 
Fan et al. [6]). 

3.3. Fatigue analysis model validation 

The mutual information, as a standard sensitivity analysis method, 
represents dependencies between two nodes in the probabilistic theory 
and can give the information shared with “FatigueContFactorEnum” 
[77]. This study uses mutual information to investigate the connections 
amongst selected RIFs and the fatigue investigation result. 

Subsequently, scenario simulation is used to explore the conse
quences of various RIFs. This study calculates the impact of the multi- 
state variables against fatigue results (i.e. Yes or No) [78]. Particu
larly, it determines the High-Risk Influence (HRI) of a risk factor to the 
“Yes” state of “FatigueContFactorEnum” by elevating the probability of 
the state with the greatest impact on the “Yes” outcome to 100 %. 
Following this, the Low-Risk Inference (LRI) is calculated by raising the 
probability of the state with the least impact on the “Yes” outcome to 
100 %. This sequence is then replicated for the “No” outcome. Therefore, 
the HRI and LRI values of all RIFs are obtained. 

Moreover, minor variable changes are conducted through scenario 
simulation to satisfy the axiom for sensitivity analysis, proposed by Yang 
et al. [79]. Specifically, the state with HRI (first factor) to the state “Yes” 
of “FatigueContFactorEnum” increases by 10 %, while the state with LRI 
to “Yes” decreases by 10 % [6]. Then, the same procedure is applied to 
another risk factor until all updated values are obtained. The values on 
the state “Yes” of “FatigueContFactorEnum” should gradually increase 
to satisfy the mentioned axiom. Subsequently, the same procedures are 
applied to the state “No” of “FatigueContFactorEnum”. Similarly, the 
updated values should gradually increase along with involving more 
RIFs to meet the axiom. 

The BN model can also be validated by simulating previous maritime 
accident/incident cases [70,77]. Given the observed states of several 
RIFs, how “FatigueContFactorEnum” is revealed implies whether there 
is consistency between the model and reality. 

4. Results and discussions 

4.1. Risk factor selection 

The study constructs the lasso fit employing a 6-fold cross-validation 
approach, which finds the highest Lambda value when the mean squared 
error (MSE) falls within the standard error range of the minimum cross- 
validated MSE. As shown in Fig. 2, the green circle represents an index of 
94, where the Lambda is with minimum cross-validation error. There
fore, it removes unnecessary RIFs and remains critical RIFs as predictor 
variables in the model, i.e. “LightConditionID”, “AccIncTypeID”, 
“AreaTypeID”, “VisibilityDistance_Nm”, “DamageIND”. The description 
of each factor is listed in Table 2 regarding the TSB accident/incident 
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reports. amongst them, the visibility distance represents the distance 
visible to eyes with the possible help of onboard equipment such as 
binoculars. 

4.2. Data-driven modelling 

To predict fatigue investigation (whether human fatigue contributes 
to an accident or incident), this study generates a new model integrating 
LASSO and BN approaches. After selecting the critical RIFs using LASSO, 
the BN model is built through a data-driven methodology. The variable 
“FatigueContFactorEnum” has “Yes” and “No” states as the target node. 

To generate the BN structure in the first step, a TAN learning algo
rithm is utilised to find the optimised structure of BN with maximum 
conditional mutual information. In the second step, the CPTs are 
calculated based on historical data. Following such steps, the BN model 
is illustrated in Fig. 3. 

In the above BN model, the fatigue investigation result (“Fatigue
ContFactorEnum”) is considered as the parent node. At the same time, 
critical RIFs (“LightConditionID”, “AccIncTypeID”, “AreaTypeID”, 
“VisibilityDistance_Nm”, “DamageIND”) are child nodes. The proposed 
model reflects the relationships between critical RIFs and human fa
tigue, as well as the interdependencies amongst different nodes. Given 
the moderate size of the data, the BN model with a large number of 
nodes makes fatigue prediction insensitive. Therefore, the proposed 
model with fatigue-related RIFs will improve the performance of the BN 
given such a situation. It can help analyse RIFs’ influence and predict the 
probability of human fatigue (whether human fatigue is a contributing 
factor to accidents or incidents), which provides a rational answer to 
fatigue’s contributory before any fatigue investigation (e.g., sleep or rest 
schedule) conducted [80]. 

4.3. Model validation 

To reflect interdependencies amongst RIFs, the mutual information is 
calculated to investigate the sensitivity of the node “Fatigue
ContFactorEnum” in the BN, as shown in Table 3. Regarding the mutual 
information between each risk factor and fatigue, the above table shows 
that the rank of influence of RIFs on fatigue is: Region of occurrence >

Fig. 2. LASSO fit model.  

Table 2 
States for the selected RIFs.  

Factor States 

LightConditionID 1 (day), 2 (night), 3 (twilight), 4 (unknown) 
AccIncTypeID 1 (grounding), 2 (collision), 3 (total failure of machinery or 

technical system), 4 (person seriously injured or killed - 
boarding, being on board, falling overboard from the ship), 
5 (sank), 6 (others) 

AreaTypeID 1 (at sea), 2 (channel/strait/sound), 3 (harbour area), 4 
(river), 5(others) 

VisibilityDistance_Nm 1 [0–10) nm, 2 [10–20] nm, 3 >20 nm, 4 (unknown) 
DamageIND 61 (yes), 62 (no), 63 (unknown), 64 (none apparent)  

Fig. 3. Human fatigue model using the TAN approach.  
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Reported by whom > Pollution > Accident/incident type > Within pilot 
boarding area > Light condition. 

Regarding the scenario simulation in Section 3.3, another sensitivity 
analysis is conducted to investigate the influential level of different 
states of different nodes on fatigue, as shown in Table 4. In addition, 
HRIs and LRIs values are obtained through this procedure. 

From Table 4, each critical risk factor’s effect on human fatigue is 
given individually. Specifically, the “3” state of “LightConditionID” node 
shows the highest probability of the “Yes” state of fatigue, which means 
that there is the highest likelihood of fatigue contributing to maritime 
accidents and incidents in twilight conditions. On the contrary, the “1” 
state of “LightConditionID” node reveals the lowest probability of the 
“Yes” state of fatigue, which means that there is the lowest probability of 
fatigue contributing to maritime accidents and incidents in the day. In 
addition, the “1” state of “AccIncTypeID” node shows the highest 
probability of the “Yes” state of fatigue, which means that grounding has 
the highest likelihood of being involved in accidents/incidents with 
fatigue as a contributing factor. On the contrary, the “4” state of 
“AccIncTypeID” node reveals the lowest probability of the “Yes” state of 
fatigue, which means that person seriously injured or killed has the 
lowest probability of fatigue in maritime accidents/incidents. A similar 
analysis can be explained in other nodes. Because the state of investi
gated node “FatigueContFactorEnum” only has two states, indicating 
“Yes” and “No”, node states of HRI and LRI in the “31” column are 
consistent with those in the “32” column. 

In addition, minor changes in variables are incorporated within the 
scenario simulation, as shown in Table 5. The updated value on the state 
“Yes” of “FatigueContFactorEnum” is gradually increasing along with 
the subsequent increase of each node. Also, the same increasing trend 
can be found in the updated values of state “No”. The results show 

multiple factors influence the states of the investigated node “Fatigue
ContFactorEnum”. Therefore, it satisfies the assumed axiom and proves 
the robustness and reliability of the proposed BN model. 

In theory, multiple test case datasets reveal more evidence to support 
the model validation. However, in reality, when the overall datasets are 
small, the use of a few selected real cases to test the model’s reliability 
and robustness is widely accepted in the literature [6,70,77]. At last, 
case study validation is conducted with a real incident case which was 
not included in the database and happened more recently. Specifically, it 
was a passenger vessel, “KAWARTHA SPIRIT”, running aground in 
Purcells Cove and then returned under its own power in October 2022. 
The details of the historical data are given in Fig. 4: accident type was 
bottom contact (AccIncTypeID state “6”); had vessel damage (Dam
ageIND state “61”); took place in the area of bay (AreaTypeID state “5”); 
visibility distance was 0.4 nm (VisibilityDistance_Nm state “1”); light 
condition was in day (LightConditionID state “1”). After assigning each 
state of the node, it can be seen from the BN network that the parent 
node FatigueContFactorEnum presents its updating state: the probabil
ity of fatigue as a contributing factor is around 0 (state “31”), which is 
consistent with the actual fatigue investigation result given by the 
investigation organisation: fatigue, was not a contributing factor, 
involved in this bottom contact incident. 

5. Implications and discussions 

The proposed machine learning methodology has made two 
insightful contributions: an enabler of accident data-driven fatigue 
investigation and the associated risk factor analysis in practice and a 
solution for data-driven BN training with a small number of data using 
LASSO in theory. Firstly, the LASSO removed irrelevant RIFs associated 
with fatigue in maritime accidents and incidents. Then, the LASSO 
outputs the critical related factors, i.e. light condition, accident or 
incident type, area type, visibility distance, and vessel damage. More
over, the BN is constructed to show the importance of different risk 
influential factors for fatigue and its interdependencies in maritime ac
cidents and incidents. It will no doubt significantly benefit the stake
holders, including shipping companies, maritime administration/ 
authorities and researchers in both maritime safety and human reli
ability areas for better safety at sea and even beyond across other sectors 
involving high-level human fatigue effect on operation safety (e.g. nu
clear and air transportation). 

With regard to theoretical implications, this study proposes a novel 
methodology combining LASSO and BN, reducing nodes and simplifying 
network complexity. Specifically, the LASSO is utilised to select critical 
RIFs as nodes, which appropriately shapes the BN structure with reduced 
nodes. Furthermore, it incorporates machine learning methods, i.e., the 
LASSO and the BN, to optimise the model with satisfied accuracy and 
improve the robustness of the probability model. Therefore, it can be of 
high generality and benefit data-driven risk assessment methodology 
and complex network optimisation. This success could significantly 
stimulate the BN’s applications in safety science in general and maritime 
risk analysis in specific. 

Regarding practical implications, this study takes advantage of ac
cident data and machine learning approaches to open a new direction 

Table 3 
Sensitivity of “FatigueContfactorEnum” in response to a finding at a 
different node.  

Node Mutual information 

LightConditionID 0.16689 
AccIncTypeID 0.11825 
AreaTypeID 0.07262 
VisibilityDistance_Nm 0.05581 
DamageIND 0.03646  

Table 4 
Scenario simulation to calculate HRIs and LRIs.  

Risk factor fatiguecontfactorenum 

Node State Yes No 

lightconditionid 1 9.3(LRI) 90.7(HRI) 
2 38.9 61.1 
3 66.7(HRI) 33.3(LRI) 
4 63.6 36.4 

Accinc typeid 1 54.3(HRI) 45.7(LRI) 
2 45.5 54.5 
3 25.0 75.0 
4 6.25(LRI) 93.75(HRI) 
5 16.7 83.3 
6 21.4 78.6 

Area typeid 1 30.0 70.0 
2 52.9(HRI) 47.1(LRI) 
3 24.0 76.0 
4 15.4(LRI) 84.6(HRI) 
5 16.7 83.3 

Visibility distance_Nm 1 29.2 70.8 
2 20.0 80.0 
3 <0.1(LRI) >99.9(HRI) 
4 46.5(HRI) 53.5(LRI) 

Light conditionID 61 38.7(HRI) 61.3(LRI) 
62 15.8 84.2 
63 22.2 77.8 
64 <0.1(LRI) >99.9(HRI)  

Table 5 
Minor changes of nodes within scenario simulation.  

Light conditionID / 10 % 10 % 10 % 10 % 10 % 
AccInctypeID / / 10 % 10 % 10 % 10 % 
AreatypeID / / / 10 % 10 % 10 % 
Visibilitydistance_Nm / / / / 10 % 10 % 
DamageIND / / / / / 10 % 
FatiguecontFactorEnum 

Yes (31) 
32.7 35.0 36.4 37.9 38.4 38.9 

Fatigue contFactorEnum 
No (32) 

67.3 69.5 70.8 71.8 72.5 75.5  
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for fatigue management. Case study results in section 4.3 can help 
analyse how RIFs influence and predict the probability of human fatigue 
(whether human fatigue contributes to accidents or incidents). 
Compared to the literature utilising physiological signals to investigate 
mental workload and fatigue [81], this work reveals a connection be
tween fatigue and other related RIFs, overcoming the drawbacks of 
artefact vulnerability and prolonged device wearing time for physio
logical measurements. The results evidently complement the objective 
evaluation of mental fatigue in terms of accident data-driven analysis. 
Typically, fatigue investigation needs to find fatigue existence by 
checking factors such as acute sleep disruption, chronic sleep disruption, 
prolonged wakefulness, the impact of circadian rhythms, sleep disor
ders, and relevant medical and psychological conditions [80]. Then, an 
investigation of fatigue’s impact is conducted by observing performance 
impairment associated with decision-making, information processing, 
attention, reaction time, and mood. This model can recommend mari
time authorities perform a detailed fatigue investigation on the accident 
with a high probability of fatigue contribution. Regarding the accident 
with a low likelihood of fatigue, it may refer to a third agency or other 
resources to decide whether to take subsequent measures on fatigue 
investigation. Moreover, the updated probability of the investigated 
fatigue node can be tested by adjusting different nodes. The adjustments 
that reduce the likelihood of fatigue can be used to manage and prevent 
fatigue in maritime transport. This study provides maritime authorities 
and organisations with a rational cue on fatigue contributions before 
fatigue investigation, which will benefit fatigue investigation in mari
time transport and other transport sectors and even offer insights into all 
accident prevention. 

6. Conclusions 

This study aims to develop a novel method integrating machine 
learning methods enabling accident data-driven fatigue investigation 
and the associated risk factor analysis. It utilises historical data to 
investigate how fatigue-related RIFs interact and influence maritime 
accidents and incidents. It incorporates the LASSO and the BN to select 

critical RIFs and optimise a quantitative model. The results show sig
nificant RIFs in fatigue investigation and its interrelationships in mari
time accidents, i.e. light condition, accident type, area type, visibility 
distance, and vessel damage. Its contributions include: 1) generating a 
human fatigue model to identify significant factors for human fatigue- 
contributing accidents; 2) incorporating LASSO and BN methods to 
propose a novel data-driven methodology to investigate relationships 
between RIFs and human fatigue; 3) prediction of human fatigue 
through a rational selection of RIFs, providing a supportive tool for fa
tigue investigation with insufficient data. 

The proposed methodology of fatigue investigation provides new 
insights for maritime accident investigation. Even referring to the data 
reported by various sectors, it is hard to generate a fatigue prediction 
model when too many factors are involved. Data with a small sample 
size (maritime accidents and incidents with fatigue issues) but enormous 
nodes (RIFs) complicate the BN model with large CPTs that cannot be 
appropriately calculated. Therefore, the developed methodology re
duces the number of nodes in the BN by conducting the LASSO model, 
which benefits a rational selection of critical RIFs of fatigue. On the 
other hand, before fatigue investigation, there is usually limited fatigue- 
related data obtained from public resources. Without sufficient fatigue- 
related information, such as sleep time, sleep quality, and rest schedules, 
it is difficult to judge whether fatigue contributes to maritime accidents 
and incidents [80]. However, by utilising the modified BN model, 
maritime authorities and investigation organisations can observe 
whether fatigue contributes to accidents and incidents with objective 
occurrence findings in the case study of this work. The proposed model 
can be used as a universal one applicable to any established maritime 
accident database. The philosophy lies in modifying the original BN 
model to enable complex network analysis with moderate data size. The 
TSB data is chosen as it is representative and has been widely used in 
maritime accident analysis [82,83]. When and if the new methodology is 
applied to other databases or even those from other sectors (e.g. nuclear 
and aviation), the parameters and model structure representing the 
numerical connections of data will change. Therefore, it can serve as a 
tool to take advantage of available knowledge and machine learning for 

Fig. 4. Case study of a passenger vessel incident.  
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fatigue management at sea and even beyond across other sectors 
involving high-level human fatigue effects on operation safety. How
ever, this work has a limitation in terms of not fully accommodating 
vessel factors in fatigue-related accidents and incidents. In future work, 
the proposed data-driven network will complement more RIFs including 
vessel and voyage features, when and if the relevant data becomes 
available. 
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Appendix A. Construction of a TAN trained BN model in the context of human fatigue analysis 

Let A1, …, An denote the fatigue-related RIFs and C represent the fatigue investigation result “FatigueContFactorEnum”. ΠC is the parent variables 
of C. B denotes a TAN model if ΠC = Ø, and there is a function π that defines a tree over fatigue-related RIFs such that ΠAi = {C, Aπ(i)} if π(i) > 0, and 
ΠAi = {C} if π(i) = 0. The purpose is to identify a tree-defining function π over fatigue-related RIFs such that the log likelihood is maximised. The 
result is adopted as the structure for the BN model. However, due to the Bayesian inference applied to the outcomes, it is permissible for links to flow in 
either direction in order to better align with real-world observations. Stated differently, the orientations of connections within the TAN model can be 
suitably modified to align with specific requirements, which is widely accepted in BN modelling and reasoning. 

The procedure of constructing TAN offers a solution to the optimisation problem. This method uses conditional mutual information between 
fatigue-related RIFs given the “FatigueContFactorEnum”. This function is defined as 

IP
(
Ai;Aj

⃒
⃒C
)
=

∑

aii ,aji ,ci

P
(
aii, aji, ci

)
log

P
(
aii, aji

⃒
⃒ci
)

P(aii|ci)P
(
aji
⃒
⃒ci
)

where IP represents the conditional mutual information, aii is the ith state of the RIFs Ai, aji is the ith state of the RIFs Aj, ci is the ith state of the class 
variable Ci. This function measures the information both RIFs provide when the value of C is known. 

The procedure of constructing TAN for this study involves six main steps:  

a) Compute IP(Ai, Aj| C) for each pair of RIFs, i ∕= j.  
b) Establish a complete undirected graph in which the nodes represent RIFs A1, …, An. The weight of an edge connecting Ai to Aj is IP(Ai, Aj| C).  
c) Construct a maximum weighted spanning tree. The maximum weighted spanning tree is the tree that possesses a maximum sum of IP(Ai, Aj| C).  
d) Convert the undirected tree into a directed one by choosing a root variable and orienting all edges outward from it.  
e) Formulate a TAN model by introducing a vertex labelled by the “FatigueContFactorEnum” and adding an arc from the vertex to each RIF Ai.  
f) Calculate the conditional probability of each fatigue-related RIFs. 
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