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Abstract
Disturbance observer‐based control method has achieved good results in the car‐
following scenario of intelligent and connected vehicle (ICV). However, the gain of
conventional extended disturbance observer (EDO)‐based control method is usually set
manually rather than adjusted adaptively according to real time traffic conditions, thus
declining the car‐following performance. To solve this problem, a car‐following strategy
of ICV using EDO adjusted by reinforcement learning is proposed. Different from the
conventional method, the gain of proposed strategy can be adjusted by reinforcement
learning to improve its estimation accuracy. Since the “equivalent disturbance” can be
compensated by EDO to a great extent, the disturbance rejection ability of the car‐
following method will be improved significantly. Both Lyapunov approach and numeri-
cal simulations are carried out to verify the effectiveness of the proposed method.
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1 | INTRODUCTION

Intelligent and connected vehicle (ICV) is expected to revo-
lutionise road transportation and is an inevitable trend in future
[1, 2]. Car‐following is one of the basic traffic scenarios. Up to
now, various control methods have been applied to car‐
following scenario [3–5], but the car‐following performance
is limited by control theory itself in complex traffic environ-
ments. Different from the conventional control theory based
methods, the disturbance observer‐based control (DOBC) has
achieved good results in the car‐following scenario of ICV.

Because the external disturbance and parameter uncer-
tainty. Widely exist in car‐following system, it will decrease the
control performance. If we know the accurate value of

disturbance, the influence of the disturbance can be compen-
sated. However, the accurate value of disturbance is usually
difficult to measure directly. In order to achieve this goal, re-
searchers have independently developed different types of anti‐
disturbance methods [6]. For convenience, these methods are
named as DOBC. The basic idea of DOBC is to use the
disturbance estimation value to compensate the effects of
disturbance, and use the conventional controller to ensure the
stability of the closed‐loop system, so as to achieve the desired
goal [7].

Disturbance observer is the key of DOBC. The conven-
tional non‐linear disturbance observer is introduced firstly. A
type of non‐linear disturbance observer was proposed to es-
timate the disturbance [8, 9], where the estimated value of the
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disturbance asymptotically approaches the value of real
disturbance. Then, the non‐linear gain is applied to non‐linear
disturbance observer, and the analysis shows that the non‐
linear gain can improve the performance significantly. Next,
it is pointed out that when the first derivative of the distur-
bance is not zero [10], there is a bounded estimation error in
non‐linear disturbance observer, and an appropriate gain can
be selected to make the error sufficiently small.

Besides the conventional non‐linear disturbance observer,
the high‐order disturbance observer is also concerned. The
integral term was introduced to construct a higher‐order
disturbance observer, where the higher‐order derivative of
the disturbance is assumed to be zero [11]. For systems
considering both measurement noise and inner disturbance,
the integral observer and proportional integral observer were
designed by using multiple integrals [12]. Then, the non‐linear
equation was introduced into the higher‐order linear extended
state observer [13]. Subsequently, the first‐order non‐linear
disturbance observer was extended to the high‐order one
[14–16], further improving the accuracy of disturbance esti-
mation. In addition, some sliding mode disturbance observers
also improve the estimation accuracy by introducing higher‐
order item [17, 18].

However, the coefficients of the disturbance observer are
usually set manually based on experience. The coefficients
cannot be adaptively adjusted with the real‐time traffic situa-
tion. This conventional observer based method will reduce the
following performance in the complex traffic environment. At
the same time, more and more artificial intelligence methods,
represented by neural network [19] and reinforcement learning
[20–22], have been introduced into the research of car‐
following scenario. This is because in the training process,
the reinforcement learning algorithm can maximise the cu-
mulative reward by interacting with the environment, so as to
obtain the optimal strategy according to the changes of the
environment [23].

To solve the above problem, reinforcement learning is
applied to the car‐following scenario under the framework of
DOBC. In this paper, a car‐following strategy is proposed for
ICV. The main contribution of this paper is as follows:

(a) A type of car‐following strategy is proposed theoretically
by Lyapunov approach under the framework of DOBC,
where EDO is introduced into car‐following scenario to
improve the car‐following performance.

(b) Different from the conventional method, EDO gain of the
proposed strategy is adaptively adjusted by reinforcement
learning rather than set manually based on experience.

(c) Simulation results in terms of two scenarios show that the
car‐following performance of both first and second
following vehicles are improved significantly.

The rest of this study is organised as follows. Section 2 is the
vehicle model and problem formulation. The extended
distributed observer design for ICV is presented in Section 3.
Car‐following control scheme is proposed in Section 4. Nu-
merical simulations and conclusion are given in Sections 5 and 6.

2 | VEHICLE MODEL AND PROBLEM
FORMULATION

In this section, the ICV model is given and then problem
formulation is presented.

2.1 | Vehicle model

This study considers ICV using V2V communication tech-
nology without considering pedestrians. The leading vehicle
will drive along a single lane and not affected by following
vehicles, the leading vehicle is described as x0 = v0t + x0(0),
where x0(0), x0, v0 represent the initial position, position, and
velocity respectively. According to ref. [24], the model of
autonomous driving vehicle is given as follows:

_xi ¼ yi
_vi ¼ ai
_ai ¼ −ai=kþ ui þ ωi

8
<

:
ð1Þ

where xi, vi, ai, ui, and ωi denote the position, velocity, ac-
celeration, control torque, and external disturbance of the i th
following vehicle at time t respectively. k is the dynamics
parameter of autonomous driving vehicle.

2.2 | Problem formulation

Considering system model in terms of Equation (1), the
objective of this study is to design a car‐following scheme ui of
the ith following ICV to improve the car‐following performance
only using V2V communication among adjacent vehicles.

3 | EXTENDED DISTURBANCE
OBSERVER DESIGN FOR INTELLIGENT
CONNECTED VEHICLE

In this section, the extended disturbance observer is intro-
duced into the design of car‐following control scheme. It is
designed to estimate the effects of the “equivalent disturbance”
on the car‐following system of ICV. Then observer gains are
tuning by reinforcement learning.

3.1 | Extended disturbance observer design

Let yi = xi+1 ‒ xi ‒ xveh ‒ xsafe denote the deviation between
safe space xsafe and actual space of two adjacent vehicles. Let
yv = vd ‒ vi denote the deviation between the velocity of ego‐
vehicle and leading vehicle. Here, we chose a sliding surface as
follows:

si ¼ yi þ c1yv
¼ yi þ c1 vd − við Þ

ð2Þ

366 - YAN ET AL.

 24682322, 2024, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12252 by L

IV
E

R
PO

O
L

 JO
H

N
 M

O
O

R
E

S U
N

IV
, W

iley O
nline L

ibrary on [30/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



where c1 is a positive controller gain.
The derivative of si can be derived as follows:

_si ¼ _yi þ c1 _yv ð3Þ

Substituting Equation (1) and yi into Equation (3) yields

_si ¼ viþ1 − vi þ c1 a0 − aið Þ

¼ viþ1 − vi þ c1a0 þ c1k _ai − c1kui − c1kwi
ð4Þ

Define di ¼ c1a0 þ c1k _ai − c1kwi as an “equivalent distur-
bance” and Equation (5) will be expressed as follows:

_si ¼ viþ1 − vi − c1kui þ di ð5Þ

Then Equation (5) can be rewritten as follows:

di ¼ _si − viþ1 þ vi þ c1kui ð6Þ

According to Equation (6), the structure of di can be
derived indirectly via the measurement of the previous frame
of ui, vi+1, vi, ai and the calculation of _si. By defining z1 = di,
z2 ¼ _di, the “equivalent disturbance” can be rewritten as
follows:

_z1 ¼ z2
_z2 ¼ €di

�

ð7Þ

Furthermore, Equation (7) can be rewritten as follows by
defining A = [0,1; 0,0], B = [0,1]T, z = [z1,z2]T.

€z¼ Azþ B €di ð8Þ

Therefore, Equation (6) an be taken as the output of sys-
tem Equation (8). By defining C = [1,0], the output equation
can be written as follows:

di ¼ Cz ð9Þ

Since the pair (A, C) is observable, the extended distur-
bance observer for autonomous driving vehicle can be
designed according to ref. [16] as follows by defining d̂i ¼ Cẑ.

Theorem 1. For system Equations (8) and (9), given an
assumption that the second derivative of equivalent distur-
bance di is bounded and satisfies €di ≤ δ1, EDO can be designed
as follows:

ẑ¼ pþ Lsi
_p¼ ðA − LCÞpþ ALsi − L CLsi þ viþ1 − vi − c1kui½ �

�

ð10Þ

Hence, the disturbance estimate error ~z¼ z − ẑ can converge
into a neighbourhood of the origin by choosing appropriate
gains L = [l1, l2]T and auxiliary variable p.

Proof. Substituting the second line of Equation (10) into the
derivate of first line of Equation (10) we obtain

_̂z¼ ðA − LCÞẑþ AL _si − viþ1 þ vi þ c1kui½ � ð11Þ

Substituting Equations (6), (9) and d̂i ¼ Cẑ into Equa-
tion (11) yields

_̂z¼ Aẑþ LC z − ẑð Þ ð12Þ

By defining, Equation (8) minus Equation (12) yields

_~z¼ ðA − LCÞ~zþ B€di ð13Þ

By choosing appropriate gains, A¼ A − LC will be Hur-
witz since the pair of (A, C) is observable. Hence, given any
matrix Q > 0, there exists a unique matrix p > 0 such that

PAþ A
T
P ¼ −Q ð14Þ

Choose Lyapunov function as

V1 ¼ ~zTP~z ð15Þ

Taking the time derivative of Equation (15) along Equa-
tions (13) and (14) yields

V1 ¼ ~zTP _~z þ _~z
T
P~z¼ ~zT PAþ A

T
P

� �
~zþ 2~zTPB€di

¼ −~zTQ~zþ 2~zTPB€di ð16Þ

Let λp and λq be maximum eigenvalue of P and minimum
eigenvalue of Q respectively and yields

_V 1 ≤ −λq
�
�
�
�~z
�
�
�
�2
2 þ 2

�
�
�
�~z
�
�
�
�
2

�
�
�
�P
�
�
�
�
F

�
�
�
�B
�
�
�
�
2

�
�€di
�
�

≤ −λq
�
�
�
�~z
�
�
�
�2
2 þ 2λq

�
�
�
�~z
�
�
�
�
2δ1

ð17Þ

where |.|, ||.||2, ||.||F denote the absolute value of a variable, 2‐
norm of a vector and Frobenius norm of a matrix respectively.It
can be derived that _V 1 < 0 if

�
�
�
�~z
�
�
�
�
2 > 2λpδ1=λq. Then, the

decrease of V1 drives the system trajectory into
�
�
�
�~z
�
�
�
�
2 ≤

2λpδ1=λq. Thus, the system trajectory will converge into a
bounded origin by choosing appropriate gains L = [l1, l2]T.

Remark 1. The gain of traditional EDO is set manually based
on experience. However, the disturbance is always changing in
traffic environments so that the fixed gain of EDO can not
meet the requirements of the complex traffic scenarios, thus
reducing the accuracy of disturbance estimation.

3.2 | Observer gain adjusted by
reinforcement learning

For the proposed car‐following scheme, EDO gain is adjusted
by reinforcement learning. Reinforcement learning can
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maximise the return through trial and error, so as to obtain an
optimal strategy. Deep deterministic policy gradient (DDPG)
is a typical reinforcement learning algorithm and suitable for
continuous action space. Hence, DDPG algorithm in ref. [20]
is used in this study to adjust EDO gains. For the convenience
of using reinforcement learning, two car‐following scenarios
are chosen as shown in Figure 1.

Scenario 1: There are only one front vehicle and one
following vehicle. Vehicle speed, position and other informa-
tion are exchange between two vehicles through V2V
communication. As shown in Figure 1, the car‐following
scheme proposed in this paper is adopted by the vehicle in
the blue box, where EDO gain is updated in real time through
reinforcement learning.

Markov decision process is modelled firstly. The action of
DDPG is chosen as the gain of EDO of following vehicle. The
state space is chosen as

yi;∆vi; yi;∆vi; vi; aif g ð18Þ

where yi = xi ‒ x0 ‒ xveh ‒ xsafe is the space headway between
following vehicle and front vehicle. xsafe and xveh are safe space
and vehicle length. Δvi = vi ‒ v0 is the velocity error between
following vehicle and front vehicle. vi and ai are velocity and
acceleration of following vehicle.

The reward function is chosen as follows:

r ¼ r∆vi þ rjerki ð19Þ

r∆vi ¼ −ω1

�
�∆vi

�
�

vmax
ð20Þ

rjerk ¼ −ω2

�
�ai k − ai k−1

�
�

2amax ∆T
ð21Þ

where ai_k is the acceleration of ith following vehicle at kth
frame. vmax, amax, ΔT are maximum velocity, maximum ac-
celeration, time step respectively. |.| represents the abstract
value of a variable. ω1 and ω2 are positive coefficients.

Scenario 2: There are one front vehicle and two following
vehicles. As shown in Figure 1, the car‐following strategy
proposed in this paper is adopted by following vehicles 1 and 2
in the red box, where EDO gain is updated in real time
through reinforcement learning.

We construct Markov decision process for scenario 2. The
action of DDPG is chosen as EDO gain for both two
following vehicles at the same time. The state space is given as
follows:

yi;∆vi; yiþ1;∆viþ1; vi; viþ1f g ð22Þ

where yi = xi ‒ x0 ‒ xveh ‒ xsafe is the space headway between
following vehicle 1 and front vehicle. Δvi = vi ‒ v0 is the velocity
error between following vehicle 1 and front vehicle yi+1 = xi+1 ‒
x0 ‒ 2(xveh ‒ xsafe) is the space headway between following
vehicle 2 and front vehicle. Δvi+1 = vi+1 ‒ v0 is the velocity
error between following vehicle2 and front vehicle. vi and vi+1

a are velocity of following vehicles 1 and 2.
The reward function under scenario 2 is the sum of

Equation (19) for following vehicles 1 and 2 as follows.

r ¼
X2

i¼1

r∆vi þ rjerki ð23Þ

Remark 2. Different from the traditional EDO that adjusts
gains through experience, the gains of EDO in this study are
adjusted through reinforcement learning. The essence of
reinforcement learning is to constantly try and error in the
training process and obtain the strategy of maximum cumu-
lative reward, so as to meet the requirements of disturbance
adaptive estimation in complex traffic scenarios. Therefore,
EDO gains that best fit the environment can be obtained in
terms of different state spaces through reinforcement learning,
so as to improve the accuracy of disturbance estimation.

Remark 3. When there are more than three vehicles, EDO
gain will be adjusted by combining scenarios 1 and 2. For
example, when there are four ICVs, we apply scenario 1 to
vehicles 1 and 2, where vehicle 2 is manipulated by the pro-
posed method. Meanwhile, we apply scenario 2 to vehicles 2, 3
and 4, where vehicles 3 and 4 are manipulated by the proposed
method. Considering the risk of communication delay, the
proposed car‐following scheme only considers V2V commu-
nication among adjacent vehicles, so that it is only suitable for
small‐scale platoon.

4 | CAR‐FOLLOWING STRATEGY
USING EXTENDED DISTURBANCE
OBSERVER

In this section, a car‐following strategy using extended
disturbance observer is proposed by combining extended
disturbance observer and conventional sliding model control
method as follows.

Theorem 2. For system (1), the trajectory of system error will
be guaranteed to converge into a neighbourhood of the origin
by designing the following distributed controller with appro-
priate parameters.

F I GURE 1 Two scenarios of CF scheme with EDO adjusted by
reinforcement learning.
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ui ¼
1
c1k

��

viþ1 − vi
�

þ c2si þ c3sign sið Þ þ d̂i

�

ð24Þ

where ui, vi, k denote control torque, velocity, vehicle dy-
namics parameter; d̂ is disturbance estimation in the form of
Equation (10); si is in the form of Equation (4); c1, c2, c3 are
controller gains.

Proof. Substituting Equation (24) into Equation (5) we obtain

_si ¼ −c2si − c3sign sið Þ þ d̂i ð25Þ

Choose Lyapunov equation V2 as

V2 ¼
1
2
s2i þ V1 ð26Þ

Taking the derivative of V2 along Theorem 1 and Equa-
tion (24) gives

_V 2 ¼ si _si þ _V 1

≤ si _si − λq
�
�
�
�~z
�
�
�
�
2

2 þ 2λq
�
�
�
�~z
�
�
�
�
2δ1

ð27Þ

Substituting Equation (25) into Equation (27) yields

_V 2 ≤ −c2
�
�si
�
�2 − c3

�
�si
�
�þ si~di − λq

�
�
�
�~z
�
�
�
�
2

2 þ 2λq
�
�
�
�~z
�
�
�
�
2δ1

≤ −c2
�
�si
�
�2 − c3

�
�si
�
�þ
�
�
�
�~z
�
�
�
�
2

�
�si
�
� − λq

�
�
�
�~z
�
�
�
�
2

2 þ 2λq
�
�
�
�~z
�
�
�
�
2δ1
ð28Þ

Given δ2 > 0,
�
�
�
�~z
�
�
�
�
2≤δ2 can be obtained according to

Theorem 1. Then Equation (28) can be rewritten as

_V 2 ≤ − ffiffiffiffi
c2
p �

�si
�
� − 1

2
ffiffiffi
c2
p

�
�
�
�~z
�
�
�
�
2

� �
2

− c3
�
�si
�
�þ

1
4c2

�
�
�
�~z
�
�
�
�
2

2

−λq
�
�
�
�~z
�
�
�
�
2

2 þ 2λp
�
�
�
�~z
�
�
�
�
2δ1

≤ −c3
�
�si
�
� − λq −

1
4c2

� �
�
�
�
�~z
�
�
�
�
2

2 þ 2λp
�
�
�
�~z
�
�
�
�
2δ1

≤ −c3
�
�si
�
� − λq −

1
4c2

� �
�
�
�
�~z
�
�
�
�
2

2 þ 2λpδ1δ2

ð29Þ

Let α = min{c3,(4c2λq − 1)/4c2}, β = 2λpδ1δ2. Equa-
tion (29) can be rewritten as follows:

_V 2 ≤ −c3
1
2
s2i −

4c2λq − 1
4c2

�
�
�
�~z
�
�
�
�
2

2 þ 2λpδ1δ2

≤ − c3V2 þ β
ð30Þ

Multiply both sides of Equation (30) by e−εt and we obtain

e−εt _V 2 þ αV2
� �

≤ e−εtβ ð31Þ

By integrating Equation (31) with the initial value V2(0) of
V2(t) yields

V2ðtÞ ≤ V2ð0Þ − β=α½ �e−εt þ β=α ð32Þ

From Equation (32), it is known that V2(t) is bounded due
to α, β, V2(0) are bounded. Hence, the trajectory of the closed‐
loop system will converge into a bounded region.

Remark 4 The bound of the region depends on the ratio
β/α. Meanwhile, β and α are determined by parameters c2, c3,
λp, λq, δ1, δ2. Due to €di ≤ δ1 and

�
�
�
�~z
�
�
�
�
2 ≤ δ2, both the

disturbance characteristics and estimation error of EDO will
effect the accuracy of the proposed distributed controller.
According to Theorem 1 and Remark 2, EDO gains L = [l1,
l2]T are adjusted by reinforcement learning in this study can
improve the accuracy of disturbance estimation, so that it also
improve the accuracy of the proposed distributed controller.
This is because that “equivalent disturbance” can be
compensated by EDO to a great extent, so that the disturbance
rejection ability of the composite controller is improved
significantly in the presence of complex traffic scenarios.

Remark 5 To avoid chattering problem, sign(x) is replaced
with saturation function sat(x) = sign(x) � min{j x j/ς1, 1},
0 < ς1 < 1. Hence, the proposed car‐following controller in the
form of Equation (24) can be rewritten as follows:

ui ¼
1
c1k

��

viþ1 − vi
�

þ c2si þ c3sat sið Þ
�

þ d̂i ð33Þ

For Equation (33), d̂i in the form of Equation (10) can be
rewritten as follows:

d̂i ¼ l1si þ p1
_p1 ¼ −l1d̂i − l1 viþ1 − vi − c1kuið Þ þ ẑ2

(

ð34Þ

ẑ2 ¼ l2siþ p2
_p2 ¼ −l2d̂i − l2 viþ1 − vi − c1kuið Þ

�

ð35Þ

Furthermore, Equation (33) will decade into the conven-
tional car‐following controller without considering disturbance
compensation as follows:

ui ¼
1
c1k

��

viþ1 − vi
�

þ c2si þ c3sat sið Þ
�

ð36Þ

5 | NUMERICAL SIMULATIONS

In order to verify the effectiveness of the proposed scheme,
the simulations are carried out on the single lane without
considering lane changing. Two scenarios proposed in the
paper are considered. Each scenario selects three different time
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intervals, and compares reward value, speed difference and
acceleration in terms of statistics. For comparison, simulations
are carried out through the conventional car following (CF)
scheme and the proposed CF scheme under the same
conditions.

We combine Python and Simulink for simulation. For the
reinforcement learning training, the velocity of front vehicle is
chosen from real vehicle experiment [25]. For the reinforce-
ment learning testing, two scenarios in terms of six velocity
segments of front vehicle were used.

The safe space and vehicle length are chosen as xsafe = 6m
and xveh = 4m. The initial conditions of the following vehicles
are set as yi = xsafe + xveh and vi(0) = v0(0). Gaussian
distributed noise is chosen as measurement noise. Time
simulation step is chosen as 0.2s l1 is adjusted by reinforcement
learning and l2 is 0.01. Parameters o DDPG are listed in Ta-
ble 1 and change of them are often small. Controller param-
eters are listed in Table 2.

5.1 | Two vehicles under scenario 1

Figure 2 shows the velocity of front vehicle and following
vehicle using two methods between 0 and 40s. The yellow solid
line is the velocity of front vehicle. The velocity of following
vehicle using conventional CF is the blue dotted line. The
velocity of following vehicle using the proposed CF is the red
dotted line. The front vehicle velocity fluctuates greatly during
5–30s. There is an overshoot by using the conventional CF. On
the contrary, the overshoot is smaller by using the proposed
CF. When the velocity of front vehicle fluctuates small, two
methods have similar results.

P

k
rkðtÞ is the reward of following

vehicle.
P

k

�
�Δvi k

�
� is velocity error between front vehicle and

following vehicle.
P

k

�
�akðtÞ

�
� is the acceleration of following

vehicle. As shown in Table 3, the car‐following performance of
the proposed CF is better than that of the conventional CF
during 0–40s.

As shown in Figure 3, the car‐following performance of
the proposed CF is much better than that of the conventional
CF. When the velocity of front vehicle has a relatively large
variation, the velocity of following vehicle via conventional CF
has a large overshot while overshot via the proposed CF is

TABLE 1 Parameters of DDPG.

Parameter Value

Actor learning rate 0.0001

Critic learning rate 0.001

Experience replay buffer size 500000

Batch size 32

τ 0.001

γ 0.99

TABLE 2 Parameters of CF.

Parameter Value

c1 2

c2 0.8

c3 0.1

ς1 0.01

k 0.8

amax 2

F I GURE 2 Velocity comparison during 0–40s under scenario 1.

TABLE 3 Comparison during 0–40s under scenario 1.

Item Conventional CF The proposed CF
P

k
ri kðtÞ −3.8570 −3.4927

P

k

�
�Δvi k

�
� ðm=sÞ 3.8261 2.8099

P

k

�
�ai kðtÞjðm=s2Þ 8.7825 8.3434

F I GURE 3 Velocity comparison during 140–180s under scenario 1.

TABLE 4 Comparison during 140–180s under scenario 1.

Item Conventional CF The proposed CF
P

k
ri kðtÞ −14.9999 −6.5214

P

k

�
�Δvi k

�
� ðm=sÞ 33.9340 10.3677

P

k

�
�ai kðtÞjðm=s2

�
43.0888 37.5942
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small. When there is almost no change in velocity of front
vehicle during 140–145s, the conventional CF and proposed
CF are similar. Table 4 shows that the performance of the
proposed CF better than that of traditional CF during 140–
180s.

As shown in Figure 4, the performance of the conventional
CF and the proposed CF is similar during 340–355s. The

maximum velocity of front vehicle is 10 m/s and minimum
one is 3 m/s during 340–380s. Since the influence of velocity
variation can be compensated by EDO, the proposed CF
shows good car‐following performance. Table 5 shows that the
proposed CF offers better car‐following performance than that
of the conventional one during 340–380s.

5.2 | Three vehicles under scenario 2

Figure 5 shows the velocity of one front vehicle and two
following vehicles. Curves shown in Figure 5a are velocities of
the first following vehicle using the conventional CF (blue
doted line) and the proposed CF (red doted line). Figure 5b
shows the comparison results of the second following vehicle.
Similar to scenario 1, the conventional CF shows large over-
shot but the performance of the proposed CF is much better.
P

k
ri kðtÞ is the reward of two following vehicles.

P

i

P

k

�
�Δvi k

�
�

F I GURE 4 Velocity comparison during 340–380s under scenario 1.

TABLE 5 Comparison during 340–380s under scenario 1.

Item Conventional CF The proposed CF
P

k
ri kðtÞ −25.9836 −13.2925

P

k

�
�Δvi k

�
� ðm=sÞ 65.1875 29.5822

P

k

�
�ai kðtÞjðm=s2Þ 82.6754 79.9208

F I GURE 5 Velocity comparison during 0–40s under scenario 2.
(a) First following vehicle. (b) Second following vehicle.

TABLE 6 Comparison during 0–40s under scenario 2.

Item Conventional CF The proposed CF
P

k
ri kðtÞ −8.1135 −7086

P

i

P

k

�
�Δvi k

�
� ðm=sÞ 8.7647 5.9180

P

i

P

k

�
�ai kðtÞjðm=s2Þ 17.7031 16.5863

F I GURE 6 Velocity comparison during 140–180s under scenario 2.
(a) First following vehicle. (b) Second following vehicle.
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is the velocity error of two following vehicles.
P

i

P

k

�
�ai kðtÞ

�
� is

the acceleration of two following vehicles. Table 6 shows that
the proposed CF offers better car‐following performance than
that of the conventional one during 0–40s.

As shown in Figure 6a and Figure 6b, compared with the
conventional CF, the performance of the first and second
following vehicles using the proposed CF are is better than that
of the conventional method. When there is a large velocity
vibration of front vehicle, there is an overshot for the velocity
of both first and second following vehicles using the conven-
tional CF as compared with that of the proposed CF. Table 7
shows that the proposed CF offers better car‐following per-
formance than that of the conventional one during 140–180s.

As shown in Figure 7, when the velocity of the front
vehicle fluctuates greatly during 355–375s, the conventional CF
shows a large overshoot. However, the overshoot is reduced by
using the proposed CF because EDO can effectively
compensate for the influence of equivalent disturbance. When
the velocity of the front vehicle fluctuates small, the car‐
following performance between the conventional CF and the

proposed CF is not great. As can be seen from Table 8, the car‐
following performance of the proposed CF is better than that
of the conventional CF during 340–380s.

6 | CONCLUSION

This paper proposes a type of car‐following strategy of ICV
using EDO, where the gain of EDO is adjusted by rein-
forcement learning to adapt to real time traffic environments.
Stability of the proposed car‐following method has been
proven by Lyapunov approach. Meanwhile, numerical simula-
tions in terms of two scenarios are carried out to verify the
effectiveness of the proposed method. As compared with the
conventional car‐following method, it shows that the perfor-
mance of both first and second following vehicles are
improved significantly by using the proposed car‐following
method under same conditions if reinforcement learning is
well trained.
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