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A B S T R A C T   

It is critical to have accurate ship trajectory prediction for collision avoidance and intelligent 
traffic management of manned ships and emerging Maritime Autonomous Surface Ships (MASS). 
Deep learning methods for accurate prediction based on AIS data have emerged as a contem
porary maritime transportation research focus. However, concerns about its accuracy and 
computational efficiency widely exist across both academic and industrial sectors, necessitating 
the discovery of new solutions. This paper aims to develop a new prediction approach called Deep 
Bi-Directional Information-Empowered (DBDIE) by utilising integrated multiple networks and an 
attention mechanism to address the above issues. The new DBDIE model extracts valuable fea
tures by fusing the Bi-directional Long Short-Term Memory (Bi-LSTM) and the Bi-directional 
Gated Recurrent Unit (Bi-GRU) neural networks. Additionally, the weights of the two bi- 
directional units are optimised using an attention mechanism, and the final prediction results 
are obtained through a weight self-adjustment mechanism. The effectiveness of the proposed 
model is verified through comprehensive comparisons with state-of-the-art deep learning 
methods, including Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated 
Recurrent Unit (GRU), Bi-LSTM, Bi-GRU, Sequence to Sequence (Seq2Seq), and Transformer 
neural networks. The experimental results demonstrate that the new DBDIE model achieves the 
most satisfactory prediction outcomes than all other classical methods, providing a new solution 
to improving the accuracy and effectiveness of predicting ship trajectories, which becomes 
increasingly important in the era of the safe navigation of mixed manned ships and MASS. As a 
result, the findings can aid the development and implementation of proactive preventive mea
sures to avoid collisions, enhance maritime traffic management efficiency, and ensure maritime 
safety.   

1. Introduction 

As economic globalisation accelerates, shipping has emerged as a critical mode of transport for facilitating economic exchanges 
between countries and across regions (Fratila et al., 2021; Li and Yang, 2023; Yang et al., 2021). It benefits from extensive coverage, 
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high transport capacity, and low channel investment. However, complex sea traffic also increases the load on the waterways and port 
waters, leading to congested traffic flow, heavy management burden, and even collision accidents (Coraddu et al., 2020; Filom et al., 
2022; Li et al., 2023b; Luo and Shin, 2019; Ramos et al., 2019; Xin et al., 2023b). The mentioned issues can endanger lives and severely 
harm the economy. Consequently, it is crucial to accurately perceive and predict ship navigation dynamics, especially regarding ship 
trajectories. 

Maritime Autonomous Surface Ships (MASS), defined by the International Maritime Organization (IMO) as “ships which, to a 
varying degree, can operate independently of human interaction”, are attracting increasing attention in the maritime industry (Chang 
et al., 2021; Wang et al., 2019). As an emerging area in the current shipping digitalisation, it has bright and broad prospects from all 
walks of life and will be an important mode of future maritime transportation (Bai et al., 2021; Liu et al., 2022; Veitch and Alsos, 2022). 
Meantime, extensive exploration and research on the technological development of MASS and its impact on safety and economic areas 
have been conducted by many scholars (e.g. Chen et al., 2018; Goerlandt, 2020). Trajectory prediction can effectively assist ships in 
coordinating movements (Kisialiou et al., 2018; Volkova et al., 2021; Zhang et al., 2020), warning against risks (Park et al., 2021), 
preventing collisions (Alizadeh et al., 2021), and guaranteeing navigation safety (Alessandrini et al., 2019; Statheros et al., 2008). 

The Automatic Identification System (AIS) is a comprehensive digital navigation equipment, comprising shore-based (base station) 
facilities and shipboard equipment (Xin et al., 2023a; Xing et al., 2023; Yin et al., 2022; Zhang et al., 2020). It can combine the Global 
Positioning System (GPS) to broadcast static and dynamic ship data over Very High Frequency (VHF). This data encompasses Maritime 
Mobile Service Identity (MMSI), Speed Over Ground (SOG), Course Over Ground (COG), and real-time ship position (longitude and 
latitude) (Harati-Mokhtari et al., 2007; Li et al., 2017). In December 2000, the IMO officially issued a proposal for the mandatory 
installation of AIS equipment on ships built after 2002 and on ships operating from 2008 onwards (Yang et al., 2019). Following the 
explosive of AIS data, maritime and civilian shipping authorities and data centres have accumulated vast AIS history records (Li et al., 
2023a; Pallotta et al., 2013; Yan et al., 2022; Zhang et al., 2018). Therefore, the utilisation of AIS data to promote intelligent ship 
navigation has emerged as a crucial research area (Liang et al., 2022; Sanchez-Gonzalez et al., 2019; Xiao et al., 2022). 

Within the context of using AIS data to aid shipping, the methods based on physical or mathematical models require applying 
kinematic equations under ideal conditions (Sutulo et al., 2002; Tu et al., 2018) and the consideration of multiple influential factors (e. 
g. mass, yaw angle, and speed) (Liu et al., 2019). In this process, it is very complicated to accurately predict the natural environment. 
Data mining is a computational process designed to uncover valuable insights from vast AIS datasets, revealing various historical ship 
motion patterns, ranging from movement pattern extraction to trajectory prediction. As a result, it has become a powerful analysis 
technique in maritime transport (Lei, 2016; Xiao et al., 2020; Zhou et al., 2019). 

The related applications can be categorised into statistical, machine learning, and deep learning approaches. Statistical methods 
mainly have the Gaussian Process Regression (GPR) model, Markov Chains (MC) method, Kalman Filter (KF) method, Monte Carlo 
Method (MCM), similarity-based methods, etc (Li et al., 2023; Zhang et al., 2023). Specifically, the GPR model is a stochastic process 
with high practicability (Rong et al., 2022). On the other hand, the precision of the prediction results significantly decreases over time. 
The MC model is also a stochastic process model. The KF model enables short-term trajectory prediction, but its accuracy is affected by 
the initial conditions of the model and the ideal assumptions (Perera et al., 2012). The MCM is a probability-based statistical simulation 
method (Scheepens et al., 2014). There are two categories of similarity-based methods: point-level and trajectory-level (Alizadeh et al., 
2021). The trajectory-level similarity is primarily measured by Dynamic Time Warping (DTW), which has revealed the drawback of 
being computationally intensive. In general, it is challenging to employ the above methods to handle massive trajectory data. As the 
volume of trajectory data increases, traditional physical or mathematical models may struggle to capture the complexity and nuances 
present in the data. The simplicity of these models makes them less suitable for dealing with big data, thereby requiring more advanced 
solutions, such as machine learning, to enhance their prediction accuracy. 

The widely used machine learning approaches in the current literature include the K-Nearest Neighbors (KNN) algorithm, Support 
Vector Regression (SVR) method, Extreme Learning Machine (ELM) method, Random Forest (RF) method, and Bayesian Network (BN), 
etc (Li et al., 2023). The SVR method is a regression algorithm for predicting discrete values. It exhibits high accuracy, particularly 
when handling non-linearity and small sample sizes. However, it still requires attention to the parameter selection problem (Chen 
et al., 2021). The KNN method is a non-parametric model with inert learning, and its model structure depends on actual data 
(Maskooki et al., 2021). It can solve regression and classification problems by measuring the distances between different feature 
values. Despite its ability to effectively handle high-dimensional features, the (RF method is prone to overfitting, particularly when 
dealing with noisy training data (Zhang et al., 2020). The ELM, a feed-forward neural network, is frequently utilised in real-time 
computation. It has good generalisation and high-speed learning capabilities. As a probabilistic graphical model, BN can forecast 
the status of a trajectory by using the statistical properties of each ship node in a probabilistic-directed graph (Tang et al., 2020). In 
summary, machine learning algorithms generally suffer from achieving high-level accuracy in the presence of large amounts of data, 
making it challenging to solve prediction problems in complex situations. 

With the significant improvement in deep learning and computer computational storage capacity (LeCun et al., 2015; Schmid
huber, 2015), it is evident that neural networks can make accurate predictions by the learned rules based on massive AIS data. Deep 
learning-based methods have become widespread in maritime transport (Li et al., 2023a; Zhang et al., 2022). Among numerous 
networks, traditional Recurrent Neural Network (RNN) models have made vital breakthroughs in processing sequential data. They 
however still have revealed some drawbacks in their applications in the field, such as gradient explosion and gradient disappearance) 
(Gao et al., 2023a, 2023b). The Long Short-Term Memory network (LSTM) and Gated Recurrent Unit (GRU) networks have been 
designed to solve the problems by employing a ‘gated’ structure. As novel optimised networks, both the Bi-directional Long Short-Term 
Memory (Bi-LSTM) neural network and the Bi-directional Gated Recurrent Unit (Bi-GRU) neural network can combine historical and 
future states to receive higher prediction accuracy compared to LSTM and GRU, respectively (Park et al., 2021). Many scholars have 
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explored the innovations of these methods. A new approach based on Genetic Algorithm (GA) – optimised LSTM was developed to 
address the issue of critical hyperparameters (Qian et al., 2022). The prediction effect of LSTM and Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) was proven better than that of the traditional LSTM model in AIS data (Yang et al., 2022). Time 
series classification and clustering can assist in prediction, which can help identify movement patterns and find abnormal trajectories 
(Li et al., 2020, 2018). In the relevant literature (Suo et al., 2020), GRU significantly improved computational efficiency while 
maintaining the same accuracy as the LSTM. A layered Bi-GRU model was introduced, showcasing impressive prediction accuracy and 
rapid convergence rates (Xu et al., 2022). A Bi-GRU network, leveraging a multi-headed attention mechanism, was presented to utilise 
the rich information embedded in the vast AIS data (Bao et al., 2022). It could actively learn the relationship between AIS data features 
and enhance prediction accuracy. Although showing attractiveness, the question of whether their effectiveness and hence the pre
diction accuracy could be further improved by their combination and taking advantage of each of them being an individual stand-alone 
method is still raised, wanting new experiments and tests for a clear answer. This paper aims to develop a new method to improve ship 
trajectory prediction accuracy and realise the real-time trajectory prediction of manned ships and MASS. It consists of two key ele
ments: 1) a Deep Bi-Directional Information-Empowered (DBDIE) model by combining the feature information of the two bidirectional 
networks (i.e. Bi-LSTM and Bi-GRU) and 2) an attention mechanism for parameter optimisation. 

Owing to the unique attributes of the proposed DBDIE model, this paper provides the following novel contributions.  

(1) Generation of the current state of the art and research gaps in ship trajectory prediction by an in-depth literature review;  
(2) Incorporation of the advantages of the Bi-LSTM and Bi-GRU models to formulate a new ship trajectory prediction method, 

which shows superiority over all the existing ones;  
(3) Introduction of an attention machanism to determine the dynamic weights between the Bi-LSTM and Bi-GRU units to solve the 

optimal prediction result of the new DBDIE model;  
(4) Comprehensive experiments for comparative analysis between the newly proposed method and seven established deep learning 

methods by using real AIS datasets from two water areas of high-level representative maritime traffic systems. 

The remaining content is arranged as follows: Section 2 introduces a systematic research review of ship trajectory prediction. The 
preliminary and the network models are outlined in Section 3. The proposed new methodology is thoroughly presented in Section 4. 
Section 5 presents and analyses the experimental results, including the comparative analysis between the new model and the estab
lished ones and the discussion. Finally, the conclusion and future developments are presented in Section 6. 

Fig. 1. The clustering analysis of keywords in ship trajectory prediction.  
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2. Literature review 

2.1. A systematic review of ship trajectory prediction 

To clearly understand the relevant research in ship trajectory prediction, the Web of Science (WoS) Core Collection database is 
utilised to search the published academic literature (Martin-Martin et al., 2018), in which only journal papers are included. The 
specific retrieval strategy uses the “or” function to concatenate “ship trajectory prediction” and “vessel trajectory prediction” as search 
keywords to identify all topics (e.g. the search title, abstract, and indexing). The preliminary findings consist of 1034 papers. The titles, 
keywords and abstract sections of the retrieval results are further screened to ensure their high relevance to their research. As a result, 
103 published journal papers are selected, out of which 57 articles use deep learning methods. Each publication in the WoS database 
contains various information, including author, title, journal, keywords, abstract, references, etc. This information was exported to 
support the systematic review and comprehensive literature analysis. 

A keyword clustering method is employed to aggregate similar research topics within the ship trajectory prediction area, forming 
clusters of interconnected networks. This approach provides a more intuitive way to identify the leading techniques and research 
directions in the current field (Chen, 2006). The CiteSpace software (Synnestvedt et al., 2005) is applied to cluster closely related 
keywords algorithmically in the selected 103 papers. The results are displayed in Fig. 1, where eight categories with different titles and 
nodes are generated to visualise their similarities and differences. Each category includes various keywords with different frequencies 
of occurrence. It is noted that the most frequently occurring keyword within each category is highlighted in coloured font, serving as 
the title of that cluster. The nodes and corresponding labels in each category are identified using the black font in the upper corner. 

Researchers have focused on the applications (e.g. vessel behaviour prediction, vessel trajectory prediction, and path planning), 
AIS, and methods of trajectory prediction (e.g. data models, neural networks, and the attention mechanism) in Fig. 1. Among the 
primary techniques, the applications of deep learning models and an attention mechanism have attracted enormous attention. 
Although having its emphasis, each clustering result is not independent, having some similar keywords, including AIS data, unique 
algorithms or models, and the construction of a complete framework as the links. For instance, category #0 contains a large number of 
keywords about data models. The keywords in category #6 focus on applying the attention mechanism. 

Moreover, the timeline analysis of the closely related keywords in the 103 literature collection is conducted using the CiteSpace 
software. The clustered keywords are expanded in chronological order, and the trend of keywords under each category can be seen in 
Fig. 2. The timeline focuses more on the period and the process of change of a research topic under a cluster. 

Overall, deep learning, AIS data, and marine vehicles are among the top three categories with a relatively large number of topics to 
discuss. They have been in the mainstream of research for over 15 years, from 2007 to 2022. Categories #3–#7 mainly focus on the 

Fig. 2. The timeline analysis of keywords in ship trajectory prediction.  
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applications of trajectory prediction. The techniques have evolved significantly in their developments, ranging from machine learning 
strategies to deep learning methods. In all categories, time series analysis and the attention mechanism emerge as the most frequently 
used methods in deep learning. Following the architecture analysis in the field, the contextual insights on using machine learning 
methods in ship trajectory prediction are further investigated by summarising the in-depth methodological analysis of the machine 
learning-related papers. 

The statistically-based methods can obtain good prediction results and are computationally efficient for handling small datasets. 
The ship’s motion includes two directions: horizontal and vertical (Rong et al., 2019). The horizontal direction of the lateral motion is 
simulated by the Gaussian process, and the acceleration is used to determine the longitudinal direction. However, as time advances, the 
prediction accuracy of the outcomes diminishes considerably. A new algorithm was proposed based on a grid-level structure using 
multiple navigation-related parameters and K-order multivariate MC for long-term ship trajectory prediction (Liu et al., 2019). An 
Extended Kalman Filter (EKF) method was put forward to estimate a ship’s future navigational state (Perera et al., 2012). 

Among kinds of machine learning-based methods, an SVR-based trajectory prediction model was designed using ship speed, 
heading, time-stamp, latitude and longitude as sample features in AIS data (Liu et al., 2019). By optimising model parameters, the 
Adaptive Chaotic Differential Evolution (ACDE) algorithm was developed to accelerate convergence. KNN was introduced for esti
mating the ship’s future behaviour. Maskooki et al. (2021) conducted experiments based on AIS data from the Gulf of Finland, 
requiring several hours in advance with reasonable accuracy and verifying that the method could predict accurately within minutes. 
Wang et al. (2022) compared several widely used data-driven models and chose the random forests, with the innovation of introducing 
potential information about the engine state into the model learning. 

In conclusion, both statistical and machine learning methods can be somewhat effective in short-term forecasting and are 
computationally efficient. However, the models are typically constrained and susceptible to the initial state and ideal condition as
sumptions. As we approach a future marked by intricate interactions between manned ships, MASS and the associated vast traffic, 
there is an imperative need for advanced methods to improve trajectory prediction accuracy. 

2.2. Research progress of trajectory prediction based on deep learning 

Deep learning methods have powerful learning and analysis capabilities. Therefore, their applications to trajectory prediction tasks 
have become an important direction in maritime transport. A collection of 57 papers using deep learning methods is selected for the 
timeline analysis. The changing research focuses in the last four years (i.e. 2019–2022) are illustrated in Fig. 3. The node size cor
responds to the frequency of keywords over time, as depicted in the graph. Within category #1, the deep learning node is the most 
prominent, indicating that since 2020, trajectory prediction methods based on deep learning have gained considerable attention. 

Among six clustering labels, the keywords in category #0 (i.e. deep learning) change most frequently, which reflects the prioritised 
research activity in this field. Categories #2–#4 are specific strategies and methods of deep learning in trajectory prediction, which 
have received continuous attention and are analysed separately. Specifically, frequently used methods are various recurrent neural 
networks. Trajectory prediction also assists the development of automated technologies for unmanned ships. Meantime, the emphasis 

Fig. 3. The timeline analysis for keyword changes by deep learning methods.  
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of research in different years also varies. The research in 2019 is still relatively homogeneous. In contrast, the keywords are more 
prosperous, reflecting various applications and models for trajectory prediction after 2020. A detailed description of the deep learning 
methods involved in recent years is provided below. 

LSTM is one of the most common models used for ship trajectory prediction in deep learning methods. Yang et al. (2022) combined 
the DBSCAN with the LSTM model for ship prediction, which could provide better prediction performance than RNN. Through a 
recursive mechanism, it was demonstrated that a Context-aware Long Short-Term Memory (CLSTM) network might increase pre
diction accuracy while preserving logical coherence (Mehri et al., 2021). Some researchers also actively explored the application of the 
LSTM model in navigation prediction (Ma et al., 2022, 2021; Venskus et al., 2021). A novel framework was developed by combining a 
Bi-LSTM network and the attention mechanism (Ma et al., 2020). It outperformed the traditional LSTM in terms of stability and ac
curacy as key information relevant to the risk prediction task could be emphasised. A Bi-directional Long Short-Term Memory Mixture 
Density Network (BLSTM-MDN) model was introduced to analyse the potential distribution of ship trajectories and produce better 
results in complex scenarios (Sorensen et al., 2022). 

GRU also has excellent capability in handling time series data. A GRU model was introduced by Suo et al. (2020), and the 
experimental results showed that it could increase computational efficiency with similar prediction accuracy compared to LSTM. A 
GRU model with the attention mechanism and an AutoRegressive (AR) model were combined to predict the trajectories (Zhang et al., 
2021). The attention mechanism was designed to set different weights for features. The AR model and the output from the attention 
mechanism were combined to predict the information on latitude and longitude at the current timestep. A multi-headed attention 
mechanism and a bi-directional gated recurrent unit were combined to construct a highly accurate and reliable prediction model, 
which was easy to implement (Bao et al., 2022). 

Kim and Lee (2018) proposed a hybrid deep learning framework based on the Convolution Neural Network (CNN) and Fully 
Connected Neural Network (FCNN), which could learn the movement patterns of ships. FCNN was used to obtain more hidden features 
from other valuable information (e.g. Estimated Time of Arrival (ETA), length, destination, and ship types). CNN has also been used to 
extract multi-scale features (Zhang et al., 2021). Based on an adversarial system and training competitively, a Generative Adversarial 
Network (GAN) with Attention Module and Interaction Module (GAN-AI) could be better fused to predict the trajectory (Wang and He, 
2021). An extended Seq2Seq model was introduced to realise the short-time prediction (You et al., 2020). In addition to maintaining 
the sequential linkages between trajectory points, a GRU network that encoded spatiotemporal historical sequences as a context vector 
also addressed the gradient descent problem. As a decoder, a GRU network generated target trajectory location sequences. Murray and 
Perera (2020) applied a novel bilinear autoencoder method to forecast the future trajectories of selected ships and quantified the 
uncertainty of ship position. Huang et al. (2022) developed a model incorporating discrete meteorological data using TripleConv
Transformer to extract ocean-going ships’ motion information deeply. 

Deep learning-based methods, in general, have the ability to extract valuable information and exhibit strong learning capabilities, 
making them well-suited for handling massive AIS data. However, the question of whether the existing deep learning methods, either 
individually or in combination, can deliver the best performance in terms of reliability and accuracy for AIS data-driven trajectory 
prediction remains unanswered. 

2.3. Research gaps 

Although many deep learning approaches have been applied in ship trajectory prediction, previous studies have highlighted certain 
challenges encountered during their applications. 

Firstly, there is a need to improve the scalability of these models across different regions. Prediction performance tends to degrade 
when a deep learning-based prediction model is transferred to a different geographical area. Consequently, it remains a challenging 
task to design a more adaptive and general cross-regional model. 

Secondly, existing studies have predominantly focused on the individual use of these methods. The performance achieved by using 
them collectively has not been thoroughly benchmarked against their individual counterparts. The question as to how to effectively 
leverage two or more models to overcome their inherent limitations remains unanswered. It is possible to enhance prediction accuracy 
through the fusion of multiple methods. However, in this combination process, a new challenge arises regarding how to properly 
balance the contributions from each individual method to ensure the robustness of the combined approach. 

More specifically, the current theoretical state of the art for combined deep learning methods is more represented by the second-tier 
solutions in which the classical individual deep learning methods are combined and/or further developed. There are no studies upon 
the authors’ best knowledge, focusing on the new third-tier solutions in which two or more second-tier solutions are combined to 
optimise their individual strengths collectively. This study fulfils the gap and initiates the pioneering third-tier solutions, namely the 
combination of Bi-LSTM, Bi-GRU, and an attention machanism. This not only guides the evolution of deep learning methods in general 
steers their specific implementations in ship trajectory prediction. 

To address these issues, an integrated model and an attention mechanism have been identified as promising solutions. They have 
been incorporated to develop a novel DBDIE method, as elaborated in Sections 3 and 4. 

3. Preliminary 

This section delves into the theoretical frameworks and structures of seven state-of-the-art deep learning models: RNN, LSTM, GRU, 
Bi-LSTM, Bi-GRU, Seq2Seq, and Transformer. Concurrently, the design process of these algorithms using the Pytorch framework is 
presented through pseudocode. 

H. Li et al.                                                                                                                                                                                                               



Transportation Research Part E 181 (2024) 103367

7

3.1. State-of-the-art deep learning methods 

3.1.1. RNN 
RNN takes sequence data as input and output, comprising the input layer, the output layer, and the hidden layer. Meanwhile, the 

relationship between sequences can be well utilised by introducing state variables through the connected hidden layers to store history 
information. Fig. 4 illustrates the structural layout of RNN. 

At the moment t, st− 1 and xt are the input. ot can be calculated as the output. Meanwhile, st− 1 is passed to the next moment so that st 
can get the previous information. A linear layer is added after the basic RNN unit for the output. RNNs are effective in handling short- 
sequence tasks. However, when it comes to establishing associations between long sequences, issues like gradient disappearance or 
gradient explosion during backpropagation calculations can arise, ultimately resulting in the failure of network training. 

3.1.2. LSTM 
In contrast to RNN, LSTM is better at capturing the relationships between lengthy sequences, alleviating the gradient vanishing or 

explosion issue. There are three types of gates that control information flow: input gates, forgetting gates, and output gates. A memory 
unit is also added to the LSTM cell to preserve historical states. The architecture of the LSTM model is presented in Fig. 5. 

At the moment t, xt , ht , and ct are the input, output, and state vector of the LSTM unit, respectively. Similarly, ht− 1 and ct− 1 are the 
output and state vector at the moment t − 1, respectively. σ can convert a value to [0,1], while tanh() can compress real value to [-1,1]. 
The output gate Ot can be calculated by 

Ot = σ(Wo ⋅ [ht− 1, xt] + bo), (1)  

where Wo and bo are the weight matrix and bias vector of the output gate, respectively. 
Then the output of the LSTM cell can be modelled as 

ht = Ot × tanh(ct). (2) 

A linear layer is added after the basic LSTM unit for the output. 

3.1.3. Bi-LSTM 
LSTM can only make predictions on sequence information from previous moments. The output of the present moment, however, 

may occasionally be connected to the status of the future. Although the internal structure of Bi-LSTM is the same as that of LSTM, Bi- 
LSTM has a backward and forward layer to fully consider contextual information. The effectiveness of time series prediction is 
improved by concatenating the forward and backward output vectors. The schematic diagram of Bi-LSTM is presented in Fig. 6. 

h
→

t and h
←

t store the output of the LSTM cells at the moment t in the forward and backward layers, respectively. Ultimately, the 
outputs from the forward and backward layers are integrated and processed at each instance to produce the final result. The specific 
calculation models are listed in Eqs. (3)–(4). 

ht = h
→

t ⊕ h
←

t, (3)  

ot = Wt ⋅ ht + bt, (4)  

where ot represents the output at the moment t. Wt and bt indicate the weight and deviation vector of the network, respectively. A 
linear layer is added after the basic Bi-LSTM unit for the output. 

3.1.4. GRU 
GRU is more computationally efficient than LSTM by improving the unit’s structure. The update gate can change the state of the 

memory unit, which merges the forgetting and input gates of LSTM. A reset gate is designed to decide whether to ignore the previous 
state of the memory unit. Its schematic diagram is shown in Fig. 7. 

The state of the update gate Rt, the reset gate Zt , and the status of the current memory unit h̃t can be calculated by 

Fig. 4. The overview of the RNN structure.  
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Rt = σ(Wr ⋅ [ht− 1, xt]), (5)  

Zt = σ(Wr ⋅ [ht− 1, xt]), (6)  

h̃t = tanh(Wh̃t ⋅[Rt×ht− 1 ,xt ]),
(7)  

where Wr and Wh̃t 
are the weight matrix of the reset gate and the current memory unit, respectively. 

During the update phase, both ‘memory’ and ‘forgetting’ functions are executed concurrently. If Zt approaches 1, the output 
corresponds to the current memory unit’s candidate state ̃ht . Conversely, when Zt is nearing 0, the output aligns with ̃ht from the prior 
time step. The model is shown below. 

ht = (1 − Zt) × ht− 1+Zt × h̃t. (8) 

A linear layer is added after the basic GRU unit for the output. 

3.1.5. Bi-GRU 
Bi-GRU takes into account the continuity of sequential data at past and future moments. It does not change the basic structure of 

GRU but also applies the same calculation process twice in different directions. Then it splices and calculates the results obtained from 
two layers as the final output. The visualised framework is displayed in Fig. 8. 

Bi-GRU can facilitate feature extraction by combing results to get the final output ot. The final results can be formulated by 

Fig. 5. The overview of the LSTM structure.  

Fig. 6. The overview of the Bi-LSTM structure.  
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ht = h
→

t ⊕ h
←

t, (9)  

ot = Wt ⋅ ht + bt. (10) 

A linear layer is added after the basic Bi-GRU unit for the output. 

3.1.6. Seq2Seq 
The Seq2Seq model is structured around two primary elements: the encoder and the decoder. The encoder processes the input 

sequence into a uniform-length context vector, with its concluding hidden state serving as the context for the decoder. The decoder 
then takes this vector to produce the intended target sequence. Both components are built upon RNN frameworks. A visual repre
sentation of the Seq2Seq model can be found in Fig. 9. 

3.1.7. Transformer 
The primary innovations of the Transformer model include the self-attention mechanism and positional encoding. The self- 

attention mechanism allows the model to establish relationships between any two elements in the input sequence, enabling parallel 
computation and enhancing training efficiency. On the other hand, positional encoding assigns unique position information to each 
input element, enabling the model to handle the positional order of the sequence. The structure of the Transformer model is presented 
in Fig. 10. 

The Transformer model’s calculation process involves embedding the input sequence and adding positional encoding to introduce 
position information. The encoded sequence is then processed through self-attention and feed-forward neural network layers in the 
encoder, and similar operations are performed in the decoder, including self-attention and encoder-decoder attention. The decoder’s 
output is projected into a probability distribution over the vocabulary for generating the target sequence. The model is trained using 
backpropagation and optimisation to minimise errors between its prediction and the real value. During inference, the decoder 

Fig. 7. The framework of the GRU structure.  

Fig. 8. The visualised framework of the Bi-GRU method.  
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generates subsequent tokens in an autoregressive manner. 

3.2. Time complexity comparison of different methods 

Following the aforementioned theoretical analysis and algorithmic overview, Table 1 lists the time complexities of the seven 
different models, giving a comparative perspective. Within the table, T stands for the length of the sequence, d represents the 
dimension of the model’s hidden layer, and l indicates the number of layers in the Transformer model. Time complexity analysis offers 
insights into the computational demands and scalability of various models in relation to the size of the input. RNNs, having the least 
time complexity, are best suited for shorter sequences and less computationally intensive tasks. LSTMs and GRUs, while more 

Fig. 9. The schematic diagram of the Seq2Seq method.  

Fig. 10. The schematic diagram of the Transformer method.  
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computationally demanding due to their complex gating mechanisms, can handle longer sequences. Bi-directional models like Bi- 
LSTM and Bi-GRU provide more contextual information by processing sequences in both directions, but this comes at a higher 
computational cost. Seq2seq models, like Bi-LSTMs, require significant resources due to their dual LSTM/GRU structures, but they 
perform well in tasks needing comprehensive sequence understanding. Lastly, the Transformer model, while effective in managing 
long-range dependencies and offering better parallelization, can be computationally expensive for extended sequences. The optimal 
model choice depends on the specific task, available computational resources, and the nature of the input sequences. 

To summarise, both LSTM and GRU are effective solutions to address the issue of gradient disappearance or explosion in RNN. The 
structure of the LSTM is more complex and computationally slow. On the other hand, GRU is a modified version of LSTM with 
improved internal structure and computational efficiency. Two bidirectional networks (i.e. Bi-LSTM and Bi-GRU) are constructed 
based on LSTM and GRU to capture more valuable features from sequence data. Seq2Seq model consists of an encoder-decoder ar
chitecture, which is well-suited for handling sequential data with variable-length inputs and outputs. The transformer model relies on 
self-attention mechanisms to capture relationships between different words or elements in a sequence, which can model long-range 
dependencies. 

This paper’s primary objective is, for the first time, to integrate and enhance two bidirectional networks and subsequently 
determine the optimal weights using the attention mechanism, achieving improved prediction accuracy and yielding optimal 
performance. 

4. Methodology 

When solving the trajectory prediction task, a single model often suffers from the disadvantages of unstable prediction results and 
insufficient generalisation ability. The existing studies mainly focus on models, data, and optimisers. In this paper, an integrated model 
is developed from the perspective of enhanced networks and the optimisation of the attentional mechanism. It aids to address the 
limitations of individual models and enhance the overall ship trajectory prediction accuracy. 

To achieve this, the proposed integrated model combines the strengths of Bi-LSTM and Bi-GRU models and takes into account 
variations in integrated predictions. By strategically combining the results of each model, a fusion network is obtained. The integrated 
network incorporates both Bi-LSTM and Bi-GRU units to recognise their advantages in analysing sequence information. Additionally, 
an attention mechanism is introduced to automatically determine the optimal weights based on predicted results. The structure of the 
proposed DBDIE model is displayed in Fig. 11. DBDIE comprehensively incorporates several key technologies, including bidirectional 
networks, attention mechanisms, and feature fusion, seamlessly blending them within a unified framework to realise improved ship 
trajectory prediction accuracy. It hence makes significant methodological contributions to the field. This fusion empowers the model 
with advanced representation learning and generalisation capabilities, enabling it to effectively learn from historical data and predict 
ship trajectories accurately. 

h
⌢

t and h
⌢

t− 1 are the state vectors of the memory unit in the Bi-GRU cells at the moment t and t − 1, respectively. h
⌣

t and h
⌣

t− 1 indicate 
the state vectors of the memory unit in the Bi-LSTM cells at the moment t and t − 1, respectively. The computational procedure of the 
proposed DBDIE algorithm is shown in Eqs. (11)–(17).  

(1) At the moment t, the sequence information is calculated by the Bi-GRU unit and the Bi-LSTM unit to obtain h
⌢

t and h
⌣

t , 

respectively. Then h
⌢′

t and h
⌣′

t are obtained through a non-linear layer. The above two results are then directly concatenated 
together and used as input for the next moment (i.e. ht). 

h
⌢′

t = tanh(Wg ⋅ h
⌢

t + bg), (11)  

h
⌣′

t = tanh(Wl ⋅ h
⌣

t + bl), (12)  

ht = h
⌢′

t ⊕ h
⌣′

t, (13)  

where Wg and bg is the weight matrix and bias vector of the Bi-GRU unit, respectively. Meantime, Wl and bl is the weight matrix and 
bias vector of the Bi-LSTM unit, respectively.  

(2) Compute the weight parameters of the two networks using the attention mechanism (i.e. β). 

Table 1 
The overall comparison of seven models.  

Model Time complexity Model Time complexity 

RNN O(T ∗ d2) Bi-GRU O(T ∗ 6d2)

LSTM O(T ∗ 4d2) Seq2Seq O(T ∗ 8d2)

GRU O(T ∗ 3d2) Transformer O(l ∗ T ∗ d2)

Bi-LSTM O(T ∗ 8d2)
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w⌢
′
t = σ(tanh(Wt ⋅ h

⌢′
t + bt)), (14)  

w⌣
′
t = σ(tanh(Wt ⋅ h

⌣′
t + bt)), (15)  

β = w⌢
′
t ⊕ w⌣

′
t, (16)  

where Wt and bt is the weight matrix and bias vector using the attention mechanism, respectively.  

(3) Calculate the final fusion result (i.e. ot). 

ot = β ⋅ ht. (17) 

The algorithm is described in pseudocode below.  

(continued on next page) 

Fig. 11. The flowchart of the proposed DBDIE model structure.  
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(continued ) 

5. Experimental results and analysis 

The practicality and effectiveness of the DBDIE method are verified through comparative experiments in the real AIS datasets 
collected from two representative water areas. Firstly, eight models are trained using the processed AIS data with the same 

Fig. 12. The flowchart of the proposed ship trajectory prediction framework.  
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hyperparameters. The accuracy of the novel DBDIE method and the seven classical ones is then quantitatively evaluated by six indexes 
that are the most commonly used in different literature, including Mean Square Error (MSE), Mean Absolute Error (MAE), Mean 
Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage Error (SMAPE), Fréchet Distance (FD), and Average 
Euclidean Distance (AED). Moreover, the visualisation analysis of the predicted trajectories and the ground truth is analysed and 
compared to highlight the performance of the eight methods and demonstrate the effectiveness of the proposed DBDIE model. 
Furthermore, the quantitative evaluation of the six index values is used to compare their performance from the error rate and the 
increased accuracy. As a result, it reveals the essence of each model and verifies the effectiveness of the proposed DBDIE model. Finally, 
the valuable analysis of the proposed DBDIE model is received to guide future development. The flowchart of the proposed ship 
trajectory prediction framework is shown in Fig. 12. 

5.1. Experimental datasets 

Two typical ship trajectory datasets were collected from the Chengshan Jiao (CJ) water area in January 2018 and the Caofeidian 
Port (CP) water area in July 2017 for model training and testing. The experiments are conducted using 64-bit Windows 10 on a 3.10 
GHz Intel Core i5-11300H CPU, GPU, and 16 GB of RAM and are programmed using Python. 

The CJ water area is the essential route for ships entering and leaving the Bohai Sea and the ports in the northern Yellow Sea. As one 
of the main routes of maritime traffic in China, it is characterised by dense ship traffic and a complex climate and sea state. The total 
number of ships sailing and operating in this water area reaches more than 800,000 per year. Meantime, the high ship density and 
numerous crossings increase the risk of collisions and groundings. The experiments are conducted in the CJ water area with a study 
area of 122◦58′–123◦17′E and 37◦16′–37◦75′N. The dataset has 2000 trajectories with 1,492,889 time-stamped points after data 
cleaning, displayed in Fig. 13. 

The CP water area has the most intensive traffic flow in the western part of the Bohai Sea. Its layout is logical and possesses 
exceptional economic and geographical advantages for establishing a major deep-water port. The second experiment is conducted 
based on the AIS dataset from the CP water area, with the study area of 118◦25′–118◦92′E and 38◦71′–39◦11′N. The dataset contains 
1219 trajectories with 1,644,987 time-stamped points after data cleaning, shown in Fig. 14. 

5.2. Experimental setting 

5.2.1. Data normalisation 
Data normalisation ensures that there are no dimensional issues between the data. In this paper, the longitude and latitude data of 

the original trajectories are processed using the min–max normalisation method. The raw data is mapped to the interval [0, 1] and then 
served as input data. The neural network output processed in the interval from 0 to 1 is back-normalised and mapped to the original 
range level of the sample sequence data. The specific calculation process is presented in Eqs. (18)–(19). 

Fig. 13. Visualisation of the dataset in the CJ water area.  
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Xstd =
x − xmin

xmax − xmin
, (18)  

Xscaler = xstd(xmax − xmin)+ xmin, (19)  

where xmin and xmax are the smallest and largest values of the original trajectory data, respectively. Xstd indicates the normalised 
sequence data. Xscaler expresses the denormalised sequence data, and x represents the raw data. 

5.2.2. The training and testing dataset 
After the data has been processed, 80 % of the dataset is served as a training set for further identifying parameters, while the 

remaining 20 % is used as a testing set for verifying the accuracy. One trajectory is selected from each cluster obtained by the clustering 
analysis in the test dataset separately to generate the final test dataset (Li et al., 2022). 

The training and test datasets process the trajectory latitude and longitude information of four consecutive time points into a 
vector, and utilise the data of the following time point as the prediction label. The above process is described in Eq. (20). 

f [x5, y5] = f ([x1, y1], [x2, y2], [x3, y3], [x4, y4]), (20)  

where x and y represent the trajectory latitude and longitude value of one point, respectively. 

5.2.3. Model and hyperparameter settings 
Pytorch is used to help design the model for the experiments. The choice of hyperparameters is also crucial to train the neural 

network. The best combination of parameters in Table 2 is obtained through extensive experimental comparison and argumentation. 
Experiments 1 and 2 refer to the experiments conducted in the CJ and CP water areas, respectively. 

Regardless of the model used during the experiment, the consistency of the above hyperparameters is ensured to achieve 
comparative results. Thus, the performance of each model is finally compared through statistical error and improved accuracy. The 
convergence counts of different models during the two experiments are shown in Table 3. 

5.2.4. The adaptive weight calculation 
The optimal weights of the Bi-LSTM and Bi-GRU units in the proposed DBDIE model are adaptively calculated and obtained by an 

attention mechanism, as shown in Table 4. Given that the performance of Bi-GRU is better than that of Bi-LSTM during the 

Fig. 14. Visualisation of the dataset in the CP water area.  

Table 2 
The relevant hyperparameters combination.  

Experiment Learning Rate Training times Batch size Input dimensions Hidden layers Output dimensions Network layers 

1 and 2  0.0001 300 75 2 256 2 1  
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experiments, its weights are slightly larger than those of Bi-LSTM based on the results from the attention mechanism. The adaptive 
weight calculation can guarantee better prediction performance compared to the other four models. 

5.2.5. Comparison of training time across different methods 
According to the above theoretical analysis and algorithm comparison, the comparative differences in each iteration in the seven 

models are listed in Table 5. This table delivers a numerical overview of the computational expense associated with each of the seven 
models, thereby aiding in the selection of the most suitable model considering the available computational resources and task pre
requisites. These seven models act as benchmarks in this comparative experimental setup. 

5.2.6. Model performance validation 
The prediction performance evaluation of the proposed DBDIE model involves observing and analysing the loss function descent 

curves alongside those of the other seven models across two distinct water areas. It also includes a comparison of the training and 
validation loss function values. The graphs illustrating loss reduction, as depicted in Fig. 15, showcase a consistent downward trend in 
loss values for both water areas. On the horizontal axis, the number of training epochs is represented, while the vertical axis denotes 
the corresponding loss values. A comparison between Fig. 15 (a) and (b) clearly demonstrates that the proposed DBDIE model achieves 
rapid convergence. 

The advantages of rapid convergence encompass a multitude of factors in the proposed DBDIE model. Firstly, it optimises the 
utilisation of time and computational resources by achieving a stable performance level through fewer training iterations. This efficacy 
facilitates accelerated cycles of experimentation and iteration, permitting swift assessments of diverse model architectures, hyper
parameters, and data preprocessing techniques. Additionally, the diminished risk of overfitting, which accompanies fast convergence, 
bolsters the model’s adaptability to unfamiliar data instances, thereby fostering confidence in its generalisation capacities. This 
flexibility in responding to shifts in data distribution or task prerequisites is pivotal in sustaining the model’s predictive effectiveness in 
dynamic scenarios. In operational settings, the ability to rapidly converge equips the model to promptly assimilate new data, thus 
heightening the efficiency and reliability of real-time decision-making systems. However, it’s crucial to acknowledge that the pursuit 
of rapid convergence should be balanced with the model’s ability to capture essential data features, ensuring both optimal and stable 
generalisation performance. 

Therefore, the comparative outcomes of the training and validation loss curves, as produced by the DBDIE model, are portrayed in 
Fig. 15 (c) and (d), signifying the model’s effective assimilation of data features, thereby enabling preliminary predictions on both 
datasets. As the training process advances, the model’s loss values consistently decrease for both the training and validation sets, 
indicating its capacity to capture intricate data patterns and mitigate noise within the training set. Around the 250–300 epoch range in 
both water areas, the gap between the losses of the training and validation sets starts to diminish. This expresses the model’s transition 
towards a certain degree of generalisation, enabling it to adapt to novel, unseen samples to some extent. As the training nears 
completion, the divergence between the losses of the training and validation sets reaches its minimum, with slight fluctuations 
occurring thereafter. 

In conclusion, considering the analysis of the loss reduction graphs across various methods and the examination of training and 

Table 3 
Counts of convergence of the experiments.  

Experiment RNN LSTM GRU Bi-LSTM Bi-GRU Seq2Seq Transformer DBDIE 

1 130 150 130 250 210 190 230 200 
2 170 180 160 270 260 230 270 250  

Table 4 
The optimal weight of two network units.  

Average weights in different water areas Bi-LSTM unit Bi-GRU unit 

CJ water area  0.479  0.521 
CP water area  0.487  0.513  

Table 5 
Comparison of the training time of one iteration across the seven models.  

Models The training set iteration time in the CJ water area (unit: s) The training set iteration time in the CP water area (unit: s) 

RNN  44.62  46.72 
LSTM  52.49  54.69 
GRU  46.51  48.74 
Bi-LSTM  81.92  90.13 
Bi-GRU  69.21  73.31 
Seq2Seq  65.48  68.85 
Transformer  85.63  87.85  
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validation loss, it can be deduced that the proposed DBDIE model exhibits superior performance among the eight prediction methods. 
It is true for both the training and validation sets, with no substantial indications of overfitting. The trends in loss values consistently 
hold, and the disparity between the training and validation sets gradually diminishes. The findings suggest that the proposed DBDIE 
model possesses a reasonable degree of generalisation and is capable of making accurate predictions on previously unseen samples. 

5.3. Evaluation indexes 

Multiple evaluation indicators are introduced to investigate the prediction accuracy comprehensively from the error rate, simi
larity, and distance. They calculate the deviation between ground truth and predicted values following the models in Eqs. (21)–(26). 
More specifically, they are MSE, MAE, MAPE, SMAPE, FD, and AED. yi is the ith actual value of the ground truth, while ŷi is the ith 
predicted value. n indicates overall data points. 

MSE reflects the mean value for the square error between the estimated and the actual data, shown in Eq. (21). It can evaluate the 
degree of variability. It is a statistical measure and loss function commonly used in regression models. The lower its value, the more 
accurate the prediction model. 

MSE =
1
n
∑n

i=1
(ŷi − yi)

2
. (21) 

MAE measures the error between observed and actual values, the arithmetic mean of the absolute errors, listed in Eq. (22). Since it 
does not have the issue of errors cancelling each other, the magnitude of the prediction error can be correctly reflected. The prediction 
model performs better when its value is lower. 

Fig. 15. Visualisation results of loss function descent curve, (a) the result in the CJ water area, (b) the result in the CP water area, (c) train and 
validation loss in the CJ water area, and (d) train and validation loss in the CP water area. 
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Fig. 16. The comparison of predicted and actual trajectories in the CJ water area.  
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MAE =
1
n
∑n

i=1
|ŷi − yi|. (22) 

MAPE is the average of the absolute percentage error, shown in Eq. (23). It is commonly used as a statistical measure of prediction 
accuracy and can describe the accuracy of a series. 

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
ŷi − yi

yi

⃒
⃒
⃒
⃒× 100%. (23) 

SMAPE overcomes the asymmetry that occurs with MAPE above, which means the infinity of the prediction is higher than the 
actual situation listed in Eq. (24). 

Table 6 
The results for six indices of the tested trajectories in the CJ water area.   

Criteria RNN LSTM GRU Bi-LSTM Bi-GRU Seq2Seq Transformer DBDIE Model 

1 MSE 4.99E− 05 4.98E− 08 3.94E− 08 3.98E− 08 3.79E− 08 1.40E− 05 6.00E− 07 3.09E− 08 
MAE 4.25E− 03 1.54E− 04 1.32E− 04 1.25E− 04 1.22E− 04 2.87E− 03 5.93E− 04 1.16E− 04 
MAPE 6.02E− 03 1.94E− 04 1.96E− 04 1.66E− 04 1.54E− 04 4.06E− 03 8.54E− 04 1.45E− 04 
SMAPE 6.02E− 03 1.94E− 04 1.96E− 04 1.66E− 04 1.54E− 04 4.07E− 03 8.66E− 04 1.45E− 04 
FD 3.62E− 02 1.48E− 03 1.45E− 03 1.39E− 03 1.24E− 03 1.88E− 02 3.23E− 03 1.17E− 03 
AED 6.71E− 03 2.55E− 04 1.99E− 04 1.94E− 04 1.97E− 04 4.55E− 03 8.91E− 04 1.91E− 04 

2 MSE 6.80E− 06 3.88E− 08 2.85E− 08 3.00E− 08 2.93E− 08 5.00E− 06 2.00E− 07 2.75E− 08 
MAE 1.73E− 03 1.31E− 04 1.01E− 04 1.02E− 04 9.92E− 05 1.71E− 03 3.96E− 04 9.86E− 05 
MAPE 2.44E− 03 1.80E− 04 1.49E− 04 1.60E− 04 1.47E− 04 2.60E− 03 5.66E− 04 1.42E− 04 
SMAPE 2.43E− 03 1.80E− 04 1.49E− 04 1.60E− 04 1.47E− 04 2.61E− 03 5.79E− 04 1.42E− 04 
FD 1.26E− 02 1.31E− 03 1.27E− 03 1.21E− 03 1.28E− 03 8.90E− 03 2.12E− 03 1.16E− 03 
AED 2.66E− 03 2.01E− 04 1.48E− 04 1.49E− 04 1.50E− 04 2.60E− 03 5.91E− 04 1.47E− 04 

3 MSE 2.82E− 05 1.32E− 07 1.07E− 07 1.04E− 07 1.02E− 07 1.30E− 05 6.00E− 07 9.38E− 08 
MAE 3.38E− 03 2.13E− 04 1.55E− 04 1.61E− 04 1.51E− 04 2.62E− 03 5.97E− 04 1.49E− 04 
MAPE 4.52E− 03 2.81E− 04 2.24E− 04 2.47E− 04 2.23E− 04 3.82E− 03 8.06E− 04 2.17E− 04 
SMAPE 4.54E− 03 2.81E− 04 2.24E− 04 2.47E− 04 2.23E− 04 3.99E− 03 8.16E− 04 2.17E− 04 
FD 2.63E− 02 7.32E− 03 7.09E− 03 7.30E− 03 7.07E− 03 1.83E− 02 7.00E− 03 6.84E− 03 
AED 5.36E− 03 3.36E− 04 2.38E− 04 2.44E− 04 2.31E− 04 4.08E− 03 9.22E− 04 2.29E− 04 

4 MSE 3.78E− 05 4.98E− 08 4.13E− 08 3.71E− 08 3.55E− 08 1.00E− 05 5.00E− 07 3.24E− 08 
MAE 3.59E− 03 1.43E− 04 1.22E− 04 1.08E− 04 1.07E− 04 2.46E− 03 5.09E− 04 1.06E− 04 
MAPE 4.74E− 03 1.70E− 04 1.69E− 04 1.50E− 04 1.41E− 04 3.15E− 03 6.68E− 04 1.37E− 04 
SMAPE 4.75E− 03 1.70E− 04 1.69E− 04 1.50E− 04 1.41E− 04 3.17E− 03 6.78E− 04 1.37E− 04 
FD 3.05E− 02 2.23E− 03 2.23E− 03 2.03E− 03 2.00E− 03 1.55E− 02 3.84E− 03 1.97E− 03 
AED 5.77E− 03 2.40E− 04 1.86E− 04 1.72E− 04 1.69E− 04 4.04E− 03 7.96E− 04 1.56E− 04 

5 MSE 8.70E− 06 7.15E− 07 7.12E− 07 7.11E− 07 7.09E− 07 1.30E− 05 1.40E− 06 6.89E− 07 
MAE 1.95E− 03 5.00E− 04 4.97E− 04 5.22E− 04 4.95E− 04 3.34E− 03 8.82E− 04 4.98E− 04 
MAPE 3.03E− 03 7.91E− 04 7.87E− 04 7.90E− 04 7.90E− 04 5.51E− 03 1.41E− 03 7.24E− 04 
SMAPE 3.13E− 03 7.91E− 04 7.87E− 04 7.90E− 04 7.90E− 04 5.54E− 03 1.41E− 03 7.24E− 04 
FD 1.30E− 02 7.77E− 03 7.69E− 03 7.70E− 03 7.70E− 03 1.22E− 02 8.58E− 03 7.56E− 03 
AED 2.94E− 03 7.17E− 04 7.15E− 04 7.19E− 04 7.12E− 04 4.78E− 03 1.26E− 03 7.03E− 04 

6 MSE 8.11E− 05 1.26E− 07 1.11E− 07 8.83E− 08 8.37E− 08 7.20E− 05 1.00E− 06 7.79E− 08 
MAE 6.94E− 03 2.07E− 04 2.06E− 04 1.45E− 04 1.44E− 04 6.55E− 03 8.97E− 04 1.36E− 04 
MAPE 1.19E− 02 4.54E− 04 3.86E− 04 2.98E− 04 2.74E− 04 1.48E− 02 1.62E− 03 2.73E− 04 
SMAPE 1.16E− 02 4.54E− 04 3.86E− 04 2.98E− 04 2.74E− 04 1.42E− 02 1.62E− 03 2.73E− 04 
FD 3.69E− 02 6.10E− 03 6.16E− 03 6.06E− 03 5.97E− 03 2.50E− 02 7.38E− 03 5.96E− 03 
AED 1.04E− 02 3.44E− 04 3.22E− 04 2.37E− 04 2.34E− 04 1.09E− 02 1.38E− 03 2.20E− 04 

7 MSE 6.89E− 05 3.02E− 07 3.02E− 07 2.96E− 07 2.84E− 07 4.40E− 05 1.00E− 06 2.83E− 07 
MAE 6.42E− 03 2.90E− 04 2.87E− 04 2.79E− 04 2.73E− 04 5.17E− 03 6.80E− 04 2.61E− 04 
MAPE 1.36E− 02 5.98E− 04 5.87E− 04 5.55E− 04 5.41E− 04 1.15E− 02 1.30E− 03 5.33E− 04 
SMAPE 1.38E− 02 5.98E− 04 5.87E− 04 5.55E− 04 5.44E− 04 1.15E− 02 1.31E− 03 5.33E− 04 
FD 2.80E− 02 6.86E− 03 6.71E− 03 6.81E− 03 6.57E− 03 2.06E− 02 8.11E− 03 6.49E− 03 
AED 9.95E− 03 4.47E− 04 4.38E− 04 4.18E− 04 4.16E− 04 8.51E− 03 1.07E− 03 4.02E− 04 

8 MSE 6.44E− 05 1.44E− 07 1.41E− 07 1.16E− 07 1.09E− 07 7.60E− 05 9.00E− 07 1.02E− 07 
MAE 6.37E− 03 2.33E− 04 2.16E− 04 1.70E− 04 1.65E− 04 7.20E− 03 8.31E− 04 1.64E− 04 
MAPE 9.93E− 03 4.23E− 04 3.99E− 04 3.10E− 04 2.83E− 04 1.44E− 02 1.37E− 03 2.81E− 04 
SMAPE 9.98E− 03 4.23E− 04 3.99E− 04 3.10E− 04 2.83E− 04 1.45E− 02 1.38E− 03 2.81E− 04 
FD 2.74E− 02 3.22E− 03 3.15E− 03 3.26E− 03 3.13E− 03 2.07E− 02 4.11E− 03 2.95E− 03 
AED 9.80E− 03 3.66E− 04 3.52E− 04 2.76E− 04 2.68E− 04 1.10E− 02 1.28E− 03 2.63E− 04 

9 MSE 1.21E− 04 6.07E− 07 5.73E− 07 5.94E− 07 5.62E− 07 7.40E− 05 2.00E− 06 5.35E− 07 
MAE 9.05E− 03 4.40E− 04 4.58E− 04 4.37E− 04 4.35E− 04 7.34E− 03 1.14E− 03 4.10E− 04 
MAPE 1.59E− 02 8.66E− 04 8.58E− 04 8.59E− 04 8.54E− 04 1.31E− 02 2.13E− 03 8.54E− 04 
SMAPE 1.59E− 02 8.66E− 04 8.58E− 04 8.59E− 04 8.54E− 04 1.32E− 02 2.14E− 03 8.54E− 04 
FD 3.89E− 02 6.62E− 03 6.32E− 03 6.47E− 03 6.26E− 03 2.51E− 03 7.03E− 03 6.12E− 03 
AED 1.33E− 02 7.24E− 04 7.22E− 04 7.18E− 04 7.17E− 04 1.09E− 03 1.76E− 03 7.11E− 04  
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SMAPE =
1
n
∑n

i=1

|ŷi − yi|

(|ŷi| + |yi|)/2
× 100%. (24) 

FD is a curve similarity metric that considers both the position and arrangement of curve points, as shown in Eq. (25). 

FD = max(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ŷi − yi)

2

√

). (25) 

AED is a commonly adopted definition of distance and means the precise distance between two places in space, listed in Eq. (26). It 
is the average Euclidean distance. 

AED =
1
n

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ŷi − yi)

2

√

. (26) 

The six indices above provide a holistic view of prediction accuracy from various perspectives. MAE calculates the absolute errors 
between actual and predicted data, while the average squared errors between them can be represented using MSE. MAPE and SMAPE 
can quantify the accuracy in terms of percentage. FD describes the similarity of the path space. AED calculates the mean distance 
between two spatial trajectories. 

5.4. Comparative analysis in the CJ water area 

5.4.1. Visual analysis of prediction results 
For a detailed comparative analysis of the prediction performance among the eight models, nine representative trajectories from 

the CJ water area in the test set are chosen. Fig. 16 displays four representative trajectories, where the prediction results obtained from 
the eight models are highlighted using distinct colours. In Fig. 16 (a)–(d), the blue line indicates the actual trajectory (i.e. the ground 

Fig. 17. The experimental six-index error histogram and accuracy improvement line graphs in the CJ water area.  
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truth). The lines of other colours represent the predicted trajectories of the eight models. The dots denote specific latitude and 
longitude points. Fig. 16 (a)–(b) and Fig. 16 (c)–(d) compare trajectories in different directions, while Fig. 16 (e) and Fig. 16 (f) show 
the differences in trajectories from the global to local part. 

In summary, the trajectory predicted by the DBDIE model exhibits the closest resemblance to the actual trajectory, verifying the 
DBDIE model as the most accurate predictor among the eight tested models. The prediction accuracy of RNN and Seq2Seq is the lowest. 
There was little difference in accuracy between the bi-directional models. 

5.4.2. Quantitative evaluation of different methods 
Nine trajectories with different features in the test set are used for comparing the performance of prediction models. Their MMSIs 

are numbered 1–9, corresponding to 241407000, 241408000, 249020000, 353816000, 412362000, 412536000, 412550870, 
412551020, and 413115000, respectively. The nine selected trajectories are compared with the ground truth based on the eight 
prediction models. The evaluation results of eight models are listed in Table 6, and the minimum errors are highlighted in bold. The 
comprehensive comparison results prove that the performance of the new DBDIE model is the best among the eight models in six kinds 
of evaluation methods, providing effective evidence supporting the viability of the proposed DBDIE model. 

Furthermore, a more accurate comparison of the performance of the eight models is conducted from a data perspective. The newly 
introduced DBDIE model exhibits the least error across the six metrics for the tested trajectories, resulting in its delivery of more 
accurate prediction results. The performance of the bi-directional networks is also good but worse than the new DBDIE model. 

The error histograms for each model against the six indices in the CJ water area and the line graphs of accuracy improvement of the 
new model compared with the other seven models are shown in Fig. 17 (a)–(f). The histogram is a statistical representation of the data 
in Table 5. The improvement percentages in accuracy against six evaluation indexes can be calculated using the ratio of the error 
difference between the new DBDIE and the other models. 

It can be seen from Fig. 17 that the improvement range of the six indexes is stable between 0 and 100 %. The average improvement 
percentages of six evaluation indexes can be obtained by statistics on the data of four comparisons, shown in Table 7. 

According to the average improvement percentages of six evaluation indexes, the proposed DBDIE model has the top two largest 
improvements when compared with RNN and Seq2Seq, followed by Transformer, LSTM, GRU, Bi-LSTM, and Bi-GRU. 

For the MSE index, the comparison results of the DBDIE model and the other seven models following the order in Table 7 are 79.30 
%, 24.42 %, 14.82 %, 10.51 %, 7.03 %, 97.69 % and 49.14 %, respectively. For the MAE index, the accuracy of the new DBDIE model 
has the biggest improvement of 88.94 % and the lowest improvement of 2.56 % compared with other models. For the MAPE and 
SMAPE indexes, the average improvement percentages of the comparisons are very close, with the highest of about 93.24 % and the 
lowest of about 2.82 %. For the FD index, the values remain between 3.42 % and 80.46 %. For the AED index, the proposed DBDIE 
model improves by 85.22 % compared to Seq2Seq and 3.02 % compared to Bi-GRU. Therefore, the results of six evaluation indexes (i.e. 
the improved accuracy) verify that the newly proposed DBDIE model is superior to the other seven prediction models. 

5.5. Comparative analysis in the CP water area 

5.5.1. Visual analysis of prediction results 
The nine typical trajectories in the CP water area are selected for testing and visualisation. Similar to the experimental process in 

Section 5.4.1, the comparative results are obtained in the CP water area. The visualisation results of four representative trajectories are 
shown in Fig. 18 (a)–(f). The superiority of the proposed DBDIE model becomes evident as its predicted trajectory exhibits the closest 
match to the actual trajectory (ground truth) in comparison to the results obtained from the other seven models. 

5.5.2. Quantitative evaluation of different methods 
Nine trajectories with different features in the CP water area are selected to compare the performance of prediction models. Their 

MMSIs are numbered 1–9, corresponding to 209047000, 259739000, 355356000, 373498000, 518100230, 538006066, 566410000, 
636091132, and 636092704, respectively. Similar to the experimental process in Section 5.4.2, the evaluation results of eight models 
are listed in Table 7. The proposed DBDIE model has the smallest prediction error values for the nine tested trajectories among eight 
models, shown in bold in Table 8. 

In the CP water area, the proposed DBDIE model has the lowest prediction error, which indicates its prediction performance is the 
best of the eight models. From the comparison results in Tables 6 and 8, the magnitudes of error for the same index in these two water 
areas are basically similar to each other, demonstrating the applicability of the proposed model to deal with massive data in different 

Table 7 
The average improvement percentages of the six indices in the CJ water area.  

Index MSE MAE MAPE SMAPE FD AED 

DBDIE vs RNN  79.30 %  87.94 %  92.19 %  92.31 %  80.46 %  92.09 % 
DBDIE vs LSTM  24.42 %  20.74 %  20.27 %  20.27 %  8.53 %  21.83 % 
DBDIE vs GRU  14.82 %  12.13 %  14.36 %  14.35 %  6.70 %  10.25 % 
DBDIE vs Bi-LSTM  10.51 %  5.29 %  8.32 %  8.32 %  5.72 %  4.17 % 
DBDIE vs Bi-GRU  7.03 %  2.56 %  2.82 %  2.82 %  3.42 %  3.02 % 
DBDIE vs Seq2Seq  97.69 %  88.96 %  93.24 %  92.83 %  73.53 %  85.22 % 
DBDIE vs Transformer  49.12 %  43.12 %  64.33 %  64.67 %  24.79 %  62.45 %  

H. Li et al.                                                                                                                                                                                                               



Transportation Research Part E 181 (2024) 103367

22

water areas. The error histograms and the line graphs of accuracy improvement are also implemented in the CP water area, shown in 
Fig. 19. 

Similar to the analytical process in Section 5.4.2, the average improvement percentages of six indexes can be obtained by statistics 
on the data of seven comparisons, shown in Table 9. The improvement percentages of the six indexes are between 10 % and 60 %, with 

Fig. 18. The comparison of predicted and actual trajectories in the CP water area.  
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the highest of 52.195 % and the lowest of 11.345 %. Compared with the CJ water area, the improvement in the CP water area is more 
significant. Therefore, the results of six indices and the improved accuracy in the CP water area further verify that the new DBDIE 
model outperforms the other seven models. 

5.6. Ablation experiments 

This section primarily focuses on comparing the performance of different variants of the proposed DBDIE by ablation experiments. 
Various attention mechanism methods are employed while keeping the two bidirectional network units consistent to demonstrate the 
effectiveness of each method. The descriptions of different attention mechanism methods (i.e. A1–A4) are as follows:  

(1) A1: Linear projection-based attention mechanism method. 

Table 8 
The results for six indices of nine test trajectories in the CP water area.   

Criteria RNN LSTM GRU Bi-LSTM Bi-GRU Seq2Seq Transformer DBDIE Model 

1 MSE 2.11E− 04 4.48E− 07 4.48E− 07 6.76E− 07 3.35E− 07 6.32E− 04 8.00E− 07 1.47E− 07 
MAE 8.94E− 03 3.85E− 04 3.85E− 04 5.64E− 04 3.81E− 04 1.11E− 02 5.30E− 04 2.68E− 04 
MAPE 9.58E− 03 3.65E− 04 3.65E− 04 5.39E− 04 3.77E− 04 1.15E− 02 5.42E− 04 2.98E− 04 
SMAPE 9.59E− 03 3.65E− 04 3.65E− 04 5.39E− 04 3.77E− 04 1.16E− 02 5.55E− 04 2.98E− 04 
FD 5.09E− 02 2.47E− 03 2.47E− 03 2.36E− 03 1.86E− 03 1.09E− 01 6.66E− 03 1.59E− 03 
AED 1.57E− 02 7.33E− 04 7.33E− 04 1.06E− 03 7.06E− 04 1.98E− 02 9.59E− 04 4.73E− 04 

2 MSE 1.99E− 04 5.46E− 07 5.46E− 07 4.65E− 07 4.83E− 07 2.17E− 04 2.30E− 06 2.48E− 07 
MAE 9.35E− 03 4.39E− 04 4.39E− 04 4.16E− 04 4.36E− 04 5.95E− 03 9.16E− 04 2.91E− 04 
MAPE 9.38E− 03 4.24E− 04 4.24E− 04 4.07E− 04 4.55E− 04 6.55E− 03 9.27E− 04 3.32E− 04 
SMAPE 9.40E− 03 4.24E− 04 4.24E− 04 4.07E− 04 4.55E− 04 6.59E− 03 9.46E− 04 3.32E− 04 
FD 5.14E− 02 1.22E− 02 1.22E− 02 1.20E− 02 1.21E− 02 1.05E− 01 7.91E− 03 1.17E− 02 
AED 1.71E− 02 8.27E− 04 8.27E− 04 7.79E− 04 7.91E− 04 1.03E− 02 1.67E− 03 5.17E− 04 

3 MSE 6.09E− 05 7.05E− 07 7.05E− 07 5.35E− 07 3.36E− 07 8.40E− 05 1.10E− 06 2.69E− 07 
MAE 5.87E− 03 4.50E− 04 4.50E− 04 4.50E− 04 2.89E− 04 4.78E− 03 7.42E− 04 2.49E− 04 
MAPE 7.46E− 03 4.19E− 04 4.19E− 04 4.14E− 04 2.76E− 04 6.48E− 03 9.76E− 04 2.51E− 04 
SMAPE 7.49E− 03 4.19E− 04 4.19E− 04 4.14E− 04 2.76E− 04 6.50E− 03 9.99E− 04 2.51E− 04 
FD 2.67E− 02 1.35E− 02 1.35E− 02 1.30E− 02 1.28E− 02 5.74E− 02 5.13E− 03 1.17E− 02 
AED 9.43E− 03 8.60E− 04 8.60E− 04 8.63E− 04 5.45E− 04 7.36E− 03 1.16E− 03 4.61E− 04 

4 MSE 6.00E− 07 2.80E− 07 2.80E− 07 2.79E− 07 2.79E− 07 4.00E− 06 3.00E− 07 2.79E− 07 
MAE 2.80E− 04 4.70E− 04 4.70E− 04 4.92E− 04 6.74E− 04 1.33E− 03 1.30E− 04 4.06E− 04 
MAPE 4.00E− 04 5.81E− 04 5.81E− 04 7.22E− 04 8.10E− 04 1.26E− 03 2.45E− 04 5.38E− 04 
SMAPE 4.00E− 04 5.81E− 04 5.81E− 04 7.22E− 04 8.10E− 04 1.28E− 03 2.62E− 04 5.37E− 04 
FD 1.57E− 02 3.66E− 02 3.66E− 02 3.66E− 02 3.66E− 02 2.32E− 02 1.86E− 02 3.65E− 02 
AED 4.29E− 04 7.77E− 04 7.77E− 04 8.25E− 04 1.12E− 03 2.58E− 03 2.06E− 04 6.51E− 04 

5 MSE 4.11E− 05 6.31E− 07 6.31E− 07 2.86E− 07 3.16E− 07 1.60E− 05 3.00E− 07 2.53E− 07 
MAE 5.69E− 03 3.98E− 04 3.98E− 04 4.45E− 04 4.03E− 04 3.40E− 03 3.41E− 04 3.24E− 04 
MAPE 7.90E− 03 4.41E− 04 4.41E− 04 5.65E− 04 5.05E− 04 4.50E− 03 4.43E− 04 4.38E− 04 
SMAPE 7.90E− 03 4.41E− 04 4.41E− 04 5.65E− 04 5.05E− 04 4.53E− 03 4.45E− 04 4.38E− 04 
FD 1.06E− 02 5.39E− 03 5.39E− 03 3.15E− 03 3.21E− 03 1.79E− 02 5.99E− 03 2.154–03 
AED 8.72E− 03 7.08E− 04 7.08E− 04 7.27E− 04 6.66E− 04 5.41E− 03 5.79E− 04 5.53E− 04 

6 MSE 2.98E− 05 5.92E− 07 5.92E− 07 4.85E− 07 5.47E− 07 4.80E− 05 1.67E− 05 4.21E− 07 
MAE 4.24E− 03 4.26E− 04 4.26E− 04 3.92E− 04 3.96E− 04 4.33E− 03 1.81E− 03 3.25E− 04 
MAPE 5.63E− 03 4.25E− 04 4.25E− 04 3.91E− 04 4.17E− 04 5.57E− 03 2.30E− 03 3.60E− 04 
SMAPE 5.65E− 03 4.25E− 04 4.25E− 04 3.91E− 04 4.17E− 04 5.56E− 03 2.29E− 03 3.60E− 04 
FD 2.16E− 02 2.31E− 02 2.31E− 02 2.30E− 02 2.30E− 02 3.01E− 02 2.57E− 02 2.27E− 02 
AED 6.72E− 03 7.96E− 04 7.96E− 04 7.32E− 04 7.21E− 04 7.17E− 03 3.04E− 03 5.84E− 04 

7 MSE 9.53E− 05 5.62E− 07 5.62E− 07 4.69E− 07 5.32E− 07 3.38E− 04 1.60E− 06 2.34E− 07 
MAE 6.65E− 03 4.40E− 04 4.40E− 04 4.24E− 04 4.56E− 04 1.11E− 02 8.92E− 04 2.66E− 04 
MAPE 7.45E− 03 4.21E− 04 4.21E− 04 4.15E− 04 4.73E− 04 1.28E− 02 9.44E− 04 3.14E− 04 
SMAPE 7.46E− 03 4.21E− 04 4.21E− 04 4.15E− 04 4.73E− 04 1.28E− 02 9.85E− 04 3.14E− 04 
FD 2.36E− 02 1.51E− 02 1.51E− 02 1.50E− 02 1.50E− 02 4.99E− 02 7.29E− 03 1.47E− 02 
AED 1.14E− 02 8.34E− 04 8.34E− 04 7.93E− 04 8.35E− 04 1.86E− 02 1.58E− 03 4.71E− 04 

8 MSE 1.79E− 05 1.01E− 06 1.01E− 06 9.88E− 07 8.05E− 07 4.00E− 06 2.00E− 07 7.38E− 07 
MAE 3.58E− 03 4.52E− 04 4.52E− 04 4.39E− 04 2.67E− 04 1.71E− 03 3.34E− 04 2.53E− 04 
MAPE 4.76E− 03 4.84E− 04 4.82E− 04 4.58E− 04 3.13E− 04 2.80E− 03 4.65E− 04 2.79E− 04 
SMAPE 4.78E− 03 4.82E− 04 4.82E− 04 4.58E− 04 3.12E− 04 2.79E− 03 4.77E− 04 2.79E− 04 
FD 8.45E− 03 3.56E− 02 3.56E− 02 3.54E− 02 3.54E− 02 7.05E− 03 4.58E− 03 3.51E− 02 
AED 5.64E− 03 8.26E− 04 8.26E− 04 8.15E− 04 4.77E− 04 2.67E− 03 5.32E− 04 4.67E− 04 

9 MSE 9.33E− 05 5.39E− 07 5.39E− 07 8.82E− 07 3.15E− 07 1.98E− 05 4.00E− 07 1.23E− 07 
MAE 6.55E− 03 4.44E− 04 4.44E− 04 6.48E− 04 3.65E− 04 2.91E− 03 4.88E− 04 2.37E− 04 
MAPE 6.71E− 03 4.09E− 04 4.09E− 04 5.83E− 04 3.42E− 04 3.18E− 03 5.80E− 04 2.50E− 04 
SMAPE 6.73E− 03 4.09E− 04 4.09E− 04 5.83E− 04 3.42E− 04 3.19E− 03 5.50E− 04 2.50E− 04 
FD 3.81E− 02 2.74E− 03 2.74E− 03 3.24E− 03 3.08E− 03 1.98E− 02 2.85E− 03 1.88E− 03 
AED 1.18E− 02 8.55E− 04 8.55E− 04 1.25E− 03 6.92E− 04 5.08E− 03 8.28E− 04 4.27E− 04  
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Initially, the input undergoes encoding through Bi-GRU and Bi-LSTM to generate their respective outputs. Subsequently, a Multi- 
Layer Perceptron (MLP) is applied to each model’s output for dimensionality reduction and nonlinear transformation, resulting in two 
sub-feature vectors. These vectors are concatenated, and finally, attention weights are computed using two separate linear projection 
layers.  

(2) A2: Soft attention mechanism-based method. 

First, the input is encoded using Bi-GRU and Bi-LSTM, leading to corresponding outputs. Then, the outputs are subject to 
dimensionality reduction and non-linearly transformation using an MLP, yielding four sub-feature vectors. Each sub-feature vector is 
then processed by a projection layer composed of two linear layers with a nonlinear activation function to calculate attention weights. 
Finally, the attention weights are obtained by mapping the sub-feature vectors to a higher-dimensional space and applying a softmax 
function. 

Fig. 19. The experimental six-index error histogram and accuracy improvement line graphs in the CP water area.  

Table 9 
The average improvement percentages in the CP water area.  

Index MSE MAE MAPE SMAPE FD AED 

DBDIE vs RNN  60.47 %  89.08 %  86.05 %  88.55 %  52.68 %  84.97 % 
DBDIE vs LSTM  52.19 %  46.70 %  50.01 %  50.01 %  15.42 %  44.99 % 
DBDIE vs GRU  48.37 %  32.74 %  23.28 %  23.29 %  16.62 %  35.66 % 
DBDIE vs Bi-LSTM  40.08 %  36.85 %  30.97 %  30.97 %  13.74 %  38.87 % 
DBDIE vs Bi-GRU  32.54 %  26.14 %  20.96 %  20.96 %  11.34 %  27.20 % 
DBDIE vs Seq2Seq  47.72 %  90.47 %  89.88 %  89.98 %  62.31 %  90.46 % 
DBDIE vs Transformer  60.12 %  50.20 %  49.82 %  51.65 %  34.57 %  46.10 %  
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(3) A3: Using a method that combines multiple sub-attention mechanisms. 

The attention mechanisms mentioned above are individually applied to the outputs of both Bi-GRU and Bi-LSTM units, generating 
their respective outputs. Subsequently, an MLP is employed for each model’s output to perform dimensionality reduction and 
nonlinear transformation, producing two sub-feature vectors. These vectors are concatenated, and attention weights are calculated 
using two separate linear projection layers.  

(4) A4: Using the DBDIE model proposed in this article. 

The input is encoded using Bi-GRU and Bi-LSTM to obtain corresponding outputs. Subsequently, these outputs are subjected to 
dimensionality reduction and nonlinear transformation using an MLP, resulting in four sub-feature vectors. These vectors are stacked 
to form a new tensor. The features within this tensor are then processed through a projection layer consisting of two linear layers with a 
nonlinear activation function. Finally, the resulting tensor is normalized using a softmax function, yielding attention weights. 

Tables 10 and 11 represent the results of ablation experiments by employing four attention mechanism methods on fusing Bi-GRU 
and Bi-LSTM units, respectively. In these experiments, the nine selected test trajectories from the previously mentioned comparative 
experiments are individually utilised for two water areas. 

By comparing the detailed data provided above, the improvement percentage of the proposed DBDIE model for each attention 
mechanism method can be calculated, as presented in Tables 12 and 13. In both water areas, the attention mechanisms designed by the 
proposed DBDIE model achieved significantly better results than the other three cases (i.e. A1–A3). Specifically, in the CJ water region, 
the proposed DBDIE model shows an average enhancement of 47.33 %, and in the CP water region, an improvement of 72.93 %. 

Tables 12 and 13 demonstrate the average percentage improvement of the ablation experiments in the CJ and CP water areas, 
respectively. In both tables, it’s evident that the DBDIE model surpasses A1, A2, and A3 across various metrics, verifying varied degrees 
of improvement. Therefore, the effectiveness of the proposed DBDIE model has been further verified. 

5.7. Discussion 

The bar and line charts in Fig. 20 depict the average improvement percentages in prediction accuracy of the DBDIE method across 
six evaluation metrics when contrasted with the other seven models. It is apparent that the results of the proposed DBDIE model have 
been improved compared to the other seven models by the results from the two different water areas in Fig. 20. Meantime, the trends of 
the six indexes in the two water areas are consistent at large, which can, in turn, verify the effectiveness of the proposed DBDIE model. 
In two different test sets, the most significant improvement can be seen by the comparison with LSTM. The overall accuracy 
improvement is consistently centred between 2 % and 98 %. 

The average accuracy improvement percentages in terms of six indices in the two water areas are presented in Table 14. It is evident 
that the new DBDIE model has improved prediction accuracy. Specifically, the average improvement percentages can be as high as 
88.58 % and 78.47 % in the CJ and CP water areas, respectively. Compared with the other seven models, Bi-LSTM and Bi-GRU usually 
have better prediction results than LSTM and GRU. Therefore, their improvement percentages are relatively lower than those of LSTM 
and GRU. The average improvement percentages in terms of the six indicators in the two water areas further demonstrate the pre
diction effectiveness and high applicability of the proposed DBDIE model. 

5.8. Implications 

The findings of this research can provide value to various stakeholders in the shipping industry, including MASS manufacturers, 
operators, and authorities. How each of these groups might benefit is shown below.  

(1) Manufacturers of MASS could use the new ship trajectory prediction model to enhance the autonomy and safety of their vessels. 
By predicting the future trajectory of a ship, an autonomous vessel could adjust its course or speed to avoid collisions, optimise 
its route, or respond to changing environmental conditions. This could improve the efficiency and reliability of shipping op
erations, reduce the risk of accidents, and potentially lower the costs associated with operating MASS.  

(2) Shipping operators could benefit from ship trajectory prediction results by using them to optimise their fleet management, 
reduce costs, and enhance safety. By analysing the predicted trajectories of ships in their fleet, operators could identify potential 
congestion or collision risks and adjust their operations accordingly. They could also use trajectory prediction to optimise route 
planning, fuel consumption, and vessel speeds, resulting in cost savings and reduced emissions.  

(3) Maritime authorities, such as port operators or maritime traffic controllers, could use ship trajectory prediction results to 
enhance their situational awareness and improve the safety of shipping traffic. Authorities can better manage traffic flow, 
allocate resources more efficiently, and detect potential collision hazards by forecasting ships’ future trajectories within their 
territories. This could result in improved safety, reduced congestion, and more efficient use of port infrastructure. 

Overall, ship trajectory prediction possesses the potential to benefit extensive stakeholders in the shipping industry by improving 
safety, reducing costs, and enhancing efficiency. 
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6. Conclusion 

Ship trajectory prediction can provide important information to practitioners in various maritime activities. It plays a vital role in 
detecting abnormal ship behaviours and collision warnings. This paper introduces a novel DBDIE prediction model that integrates two 
bi-directional networks and optimises the weights of model units based on an attention mechanism. High-quality AIS data from two 
typical water areas are used for experimental tests to test and ensure the validity of the results. Furthermore, the paper conducts a 
comparative analysis with other prediction models, including RNN, LSTM, GRU, Bi-LSTM, Bi-GRU, Seq2Seq, and Transformer, both in 
theory and experiments. Six different indexes are employed to measure the outcomes of all models. Additionally, ablation experiments 
are performed to further verify the effectiveness of the proposed DBDIE model. The results demonstrate that the newly proposed DBDIE 
model outperforms the other models in ship trajectory prediction, solidifying its superior performance and potential practical 
applicability. This research helps manned ships to realise the prediction with high accuracy and MASS to make more reasonable 

Table 10 
The results of the ablation experiments in the CJ water area.   

Criteria A1 A2 A3 A4 (DBDIE) 

1 MSE 1.55E− 07 1.09E− 07 1.20E− 07 3.10E− 08 
MAE 2.35E− 04 1.85E− 04 2.05E− 04 1.17E− 04 
MAPE 3.04E− 04 2.56E− 04 2.86E− 04 1.45E− 04 
SMAPE 3.04E− 04 2.56E− 04 2.86E− 04 1.45E− 04 
FD 7.06E− 03 6.64E− 03 7.05E− 03 1.17E− 03 
AED 3.85E− 04 2.92E− 04 3.18E− 04 1.91E− 04 

2 MSE 6.23E− 07 5.28E− 07 5.89E− 07 2.76E− 08 
MAE 6.00E− 04 4.72E− 04 4.76E− 04 9.87E− 05 
MAPE 1.07E− 03 9.28E− 04 9.12E− 04 1.43E− 04 
SMAPE 1.07E− 03 9.28E− 04 9.12E− 04 1.43E− 04 
FD 5.68E− 03 6.00E− 03 6.32E− 03 1.17E− 03 
AED 9.22E− 04 7.61E− 04 7.61E− 04 1.48E− 04 

3 MSE 1.17E− 07 9.94E− 08 9.90E− 08 9.39E− 08 
MAE 2.59E− 04 1.56E− 04 1.50E− 04 1.49E− 04 
MAPE 2.87E− 04 2.60E− 04 2.70E− 04 2.17E− 04 
SMAPE 2.87E− 04 2.60E− 04 2.70E− 04 2.17E− 04 
FD 7.69E− 03 7.08E− 03 7.00E− 03 6.84E− 03 
AED 4.52E− 04 2.39E− 04 2.37E− 04 2.29E− 04 

4 MSE 6.83E− 07 6.89E− 07 6.77E− 07 3.24E− 08 
MAE 5.36E− 04 5.25E− 04 5.08E− 04 1.07E− 04 
MAPE 8.44E− 04 8.36E− 04 8.12E− 04 1.38E− 04 
SMAPE 8.44E− 04 8.36E− 04 8.12E− 04 1.38E− 04 
FD 7.42E− 03 7.47E− 03 7.60E− 03 1.97E− 03 
AED 7.80E− 04 7.59E− 04 7.29E− 04 1.57E− 04 

5 MSE 7.53E− 07 7.96E− 07 7.59E− 07 6.90E− 07 
MAE 5.02E− 04 5.53E− 04 5.50E− 04 4.98E− 04 
MAPE 8.34E− 04 8.46E− 04 8.04E− 04 7.25E− 04 
SMAPE 8.34E− 04 8.46E− 04 8.04E− 04 7.25E− 04 
FD 8.19E− 03 8.33E− 03 8.48E− 03 7.56E− 03 
AED 8.27E− 04 8.35E− 04 8.35E− 04 7.04E− 04 

6 MSE 8.80E− 08 8.08E− 08 8.85E− 08 7.80E− 08 
MAE 1.45E− 04 1.43E− 04 1.48E− 04 1.37E− 04 
MAPE 2.89E− 04 2.87E− 04 2.83E− 04 2.73E− 04 
SMAPE 2.89E− 04 2.87E− 04 2.83E− 04 2.73E− 04 
FD 6.36E− 03 6.13E− 03 6.06E− 03 5.97E− 03 
AED 2.97E− 04 2.77E− 04 2.76E− 04 2.21E− 04 

7 MSE 3.00E− 07 9.69E− 07 8.99E− 07 2.84E− 07 
MAE 3.59E− 04 3.85E− 04 3.91E− 04 2.61E− 04 
MAPE 6.26E− 04 6.69E− 04 6.46E− 04 5.33E− 04 
SMAPE 6.26E− 04 6.69E− 04 6.46E− 04 5.33E− 04 
FD 6.65E− 03 6.98E− 03 6.95E− 03 6.49E− 03 
AED 5.32E− 04 4.10E− 04 4.10E− 04 4.03E− 04 

8 MSE 3.33E− 07 2.73E− 07 2.98E− 07 1.03E− 07 
MAE 4.25E− 04 3.17E− 04 3.10E− 04 1.64E− 04 
MAPE 8.34E− 04 6.54E− 04 6.19E− 04 2.81E− 04 
SMAPE 8.34E− 04 6.54E− 04 6.19E− 04 2.81E− 04 
FD 6.51E− 03 6.38E− 03 6.64E− 03 2.96E− 03 
AED 6.31E− 04 4.92E− 04 4.67E− 04 2.64E− 04 

9 MSE 5.60E− 07 5.61E− 07 5.41E− 07 5.35E− 07 
MAE 4.39E− 04 4.31E− 04 4.39E− 04 4.11E− 04 
MAPE 8.77E− 04 8.62E− 04 8.63E− 04 8.54E− 04 
SMAPE 8.77E− 04 8.62E− 04 8.63E− 04 8.54E− 04 
FD 6.31E− 03 6.30E− 03 6.32E− 03 6.13E− 03 
AED 7.52E− 04 7.32E− 04 7.30E− 04 7.12E− 04  
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operation strategies and improve the efficiency and safety of marine traffic. 
Although some effective results have been achieved, the current model only examines the latitude and longitude information of the 

historical trajectories. Ship navigation is a complex and changing process. Therefore, it is still a challenge to make reliable analyses and 

Table 11 
The results of the ablation experiments in the CP water area.   

Criteria A1 A2 A3 A4 (DBDIE) 

1 MSE 2.85E− 07 1.89E− 07 2.58E− 07 1.48E− 07 
MAE 5.13E− 04 4.89E− 04 3.26E− 04 2.68E− 04 
MAPE 3.48E− 04 3.20E− 04 3.73E− 04 2.98E− 04 
SMAPE 3.48E− 04 3.20E− 04 3.73E− 04 2.98E− 04 
FD 1.96E− 03 1.79E− 03 1.79E− 03 1.60E− 03 
AED 6.85E− 04 6.43E− 04 6.92E− 04 4.73E− 04 

2 MSE 3.62E− 06 2.59E− 06 2.38E− 06 2.48E− 07 
MAE 4.24E− 04 3.93E− 04 3.90E− 04 2.92E− 04 
MAPE 7.40E− 04 5.53E− 04 5.30E− 04 3.33E− 04 
SMAPE 7.40E− 04 5.53E− 04 5.30E− 04 3.33E− 04 
FD 4.97E− 02 4.68E− 02 4.51E− 02 1.17E− 02 
AED 6.38E− 04 6.61E− 04 6.47E− 04 5.18E− 04 

3 MSE 8.98E− 07 5.82E− 07 3.58E− 07 2.69E− 07 
MAE 3.65E− 04 3.87E− 04 3.35E− 04 2.50E− 04 
MAPE 4.94E− 04 4.25E− 04 2.68E− 04 2.52E− 04 
SMAPE 4.94E− 04 4.25E− 04 2.68E− 04 2.52E− 04 
FD 1.85E− 02 1.79E− 02 1.92E− 02 1.18E− 02 
AED 5.96E− 04 5.15E− 04 5.12E− 04 4.61E− 04 

4 MSE 3.92E− 06 2.97E− 06 2.56E− 06 2.80E− 07 
MAE 5.94E− 04 4.15E− 04 4.78E− 04 4.07E− 04 
MAPE 7.20E− 04 6.15E− 04 5.48E− 04 5.38E− 04 
SMAPE 7.20E− 04 6.15E− 04 5.48E− 04 5.38E− 04 
FD 8.49E− 02 8.01E− 02 7.84E− 02 3.66E− 02 
AED 7.10E− 04 7.04E− 04 6.94E− 04 6.52E− 04 

5 MSE 5.76E− 07 2.59E− 07 3.96E− 07 2.53E− 07 
MAE 4.17E− 04 4.32E− 04 4.07E− 04 3.24E− 04 
MAPE 4.52E− 04 4.75E− 04 4.97E− 04 4.39E− 04 
SMAPE 4.52E− 04 4.75E− 04 4.97E− 04 4.39E− 04 
FD 7.37E− 03 6.27E− 03 7.89E− 03 2.15E− 03 
AED 5.55E− 04 5.99E− 04 6.64E− 04 5.53E− 04 

6 MSE 3.90E− 06 2.75E− 06 2.54E− 06 4.22E− 07 
MAE 4.29E− 04 3.87E− 04 3.82E− 04 3.25E− 04 
MAPE 7.44E− 04 5.17E− 04 5.09E− 04 3.61E− 04 
SMAPE 7.44E− 04 5.17E− 04 5.09E− 04 3.61E− 04 
FD 6.76E− 02 6.55E− 02 6.77E− 02 2.27E− 02 
AED 6.44E− 04 6.46E− 04 6.32E− 04 5.85E− 04 

7 MSE 4.84E− 06 3.68E− 06 3.40E− 06 2.34E− 07 
MAE 4.60E− 04 3.51E− 04 3.34E− 04 2.67E− 04 
MAPE 8.16E− 04 6.87E− 04 6.51E− 04 3.14E− 04 
SMAPE 8.16E− 04 6.87E− 04 6.51E− 04 3.14E− 04 
FD 5.19E− 02 4.92E− 02 4.62E− 02 1.47E− 02 
AED 7.08E− 04 5.68E− 04 5.39E− 04 4.71E− 04 

8 MSE 9.73E− 07 9.04E− 07 8.67E− 07 7.39E− 07 
MAE 2.78E− 04 3.44E− 04 3.03E− 04 2.53E− 04 
MAPE 4.48E− 04 3.51E− 04 2.95E− 04 2.79E− 04 
SMAPE 4.48E− 04 3.51E− 04 2.95E− 04 2.79E− 04 
FD 3.63E− 02 9.63E− 02 8.17E− 02 3.51E− 02 
AED 5.09E− 04 5.19E− 04 6.63E− 04 4.67E− 04 

9 MSE 1.00E− 06 3.40E− 07 2.05E− 07 1.23E− 07 
MAE 2.86E− 04 2.46E− 04 2.92E− 04 2.38E− 04 
MAPE 4.67E− 04 2.62E− 04 3.83E− 04 2.51E− 04 
SMAPE 4.67E− 04 2.62E− 04 3.83E− 04 2.51E− 04 
FD 2.56E− 03 3.26E− 03 2.36E− 03 1.89E− 03 
AED 5.17E− 04 6.24E− 04 5.78E− 04 4.28E− 04  

Table 12 
The average percentage increase of the ablation experiments in the CJ water area.   

MSE MAE MAPE SMAPE FD AED 

Compared with A1  43.26 %  39.75 %  38.80 %  38.80 %  35.65 %  43.58 % 
Compared with A2  46.88 %  33.30 %  36.12 %  36.12 %  35.01 %  31.75 % 
Compared with A3  47.33 %  33.99 %  35.81 %  35.81 %  35.41 %  31.76 %  
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predictions by considering multiple factors (e.g. COG and SOG) based on the available data. In the future, various ways of model fusion 
can be further explored to improve prediction accuracy. 
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Table 13 
The average percentage increase of the ablation experiments in the CP water area.   

MSE MAE MAPE SMAPE FD AED 

Compared with A1  72.93 %  28.50 %  38.17 %  38.17 %  47.33 %  16.54 % 
Compared with A2  57.69 %  22.58 %  24.06 %  24.06 %  53.38 %  15.74 % 
Compared with A3  57.07 %  19.27 %  21.97 %  21.97 %  51.16 %  17.76 %  

Fig. 20. The average improvement percentages of the proposed DBDIE model in two water areas.  

Table 14 
The average improvement percentages in the six indexes compared with the other seven models.  

Water areas RNN LSTM GRU Bi-LSTM Bi-GRU Seq2Seq Transformer 

CJ  87.37 %  19.34 %  12.10 %  7.05 %  3.61 %  88.58 %  51.41 % 
CP  76.97 %  43.22 %  29.99 %  31.91 %  23.19 %  78.47 %  48.75 %  
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