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Abstract. Physical Activity is important for maintaining healthy lifestyles. 

Recommendations for physical activity levels are issued by most governments 

as part of public health measures. As such, reliable measurement of physical 

activity for regulatory purposes is vital. This has lead research to explore 

standards for achieving this using wearable technology and artificial neural 

networks that produce classifications for specific physical activity events. 

Applied from a very early age, the ubiquitous capture of physical activity data 

using mobile and wearable technology may help us to understand how we can 

combat childhood obesity and the impact that this has in later life. A supervised 

machine learning approach is adopted in this paper that utilizes data obtained 

from accelerometer sensors worn by children in free-living environments. The 

paper presents a set of activities and features suitable for measuring physical 

activity and evaluates the use of a Multilayer Perceptron neural network to 

classify physical activities by activity type. A rigorous reproducible data 

science methodology is presented for subsequent use in physical activity 

research. Our results show that it was possible to obtain an overall accuracy of 

96% with 95% for sensitivity, 99% for specificity and a kappa value of 94% 

when three and four feature combinations were used.  

Keywords: Physical Activity, Overweight, Obesity, Machine Learning, Neural 

Networks, Sensors 
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1. Introduction 

According to the McKinsey Global Institute report
1
, the global cost of obesity is 

comparable with smoking and armed conflict and greater than both alcoholism and 

climate change. The report claims that it costs £1.3tn, or 2.8% of annual economic 

activity. In the UK, the cost is £47bn. The prevalence of overweight and obesity is 

alarming, with 2.1bn people (30% of the world’s population) being overweight or 

obese. According to the World Health Organization (WHO), at least 2.8 million 

people worldwide die from being overweight or obese, and are the cause of a further 

35.8 million of global Disability-Adjusted Life Years (DALY)
2
. In the UK, data 

extracted from the Health Survey for England (HSE) in 2012 (Ryley, 2013) shows 

that the percentage of obese children between the age of 2 and 15 has increased since 

1995. Fourteen percent of boys and girls were classified as obese and 28% as either 

overweight or obese. In addition, 19% of children aged between 11 and 15 were more 

likely to be obese than children between 2-10 years.  

The physical condition of adults is strongly influenced by the early stages of life. 

In this sense, the data provided by the HSE revealed that in 2012 almost a quarter of 

men (24%), and a quarter of women (25%) were obese, while 42% of men and 32% 

of women were overweight. Therefore, an increase in levels of obesity and 

overweight in the UK is evident, which depends, among other factors, on the lack of 

physical activity. This growing trend of obesity within the UK and other countries and 

its associated health risks are cause for national and international concern. 

Consequently, the accurate measurement of physical activity (PA) in children 

(particularly in free-living environments) is of great importance to health researchers 

and policy-makers (Oyebode & Mindell, 2013). One of the most reliable means of 

activity measurement in children is using accelerometers to measure movement 

intensity and frequency (Konstabel et al., 2014). This method offers the advantage of 

providing quantified values for activity intensity over time. However, methodological 

variations in data gathering and analysis methods used between studies have led to a 

growing saturation of conflicting cut-points (the quantitative boundaries between PA 

intensity classes) in the literature (S. G. Trost, Loprinzi, Moore, & Pfeiffer, 2010).  

Consequently, several new research directions have been proposed that try to 

address this challenge. One such approach is the use of machine learning techniques 

for the prediction or detection of activity types and their associated intensity (Barshan 

& Yuksek, 2014; Dalton & O’Laighin, 2013; Stewart G Trost, 2012). This paper 

builds on existing research and previous works and presents a methodology for 

predicting physical activity types and intensity using a dataset obtained via the field-

based protocol described in (Machkintosh, Fairclough, Stratton, & Ridgers, 2012). 

Exploratory data analysis is utilized to determine what activities and feature sets 

produce the best results when activity types are predicted using a Multilayer 

Perceptron (MLP). 

                                                           
1
 Source: McKinsey Global Institute (2014) 

2
 http://www.who.int/ 



 

 

2. Background 

Physical activity is defined as any bodily movement produced by skeletal muscles 

that results in energy expenditure (Caspersen, Powell, & Christenson, 1985) and is 

measured in Kilojoules (Kj). The measurement of physical activity has become a 

fundamental component in healthy lifestyle management. Recommendations for 

physical activity levels are issued by most governments as part of public health 

measures (Pate, Pratt, Blair, & Al., 1995). However, they tend to be updated 

frequently or adjusted due to external circumstances, such as changes in diet and food 

pricing (Duffey, Gordon-Larsen, Shikany, Guilkey, & Al., 2010), sedentary lifestyle 

(Martinez-Gonzalez, 1999), technology (Kautiainen, Koivusilta, Lintonen, Virtanen, 

& Rimpela, 2005), the built environment (Saelens, Sallis, Black, & Chen, 2003), 

family structure (Lissau & Sorensen, 1994) and social influences (Mcferran, Dahl, 

Fitzsimons, & Morales, 2010). Consequently, it has become increasingly important, 

from a public health policy-makers perspective, to develop reliably measuring 

physical activity intensity to ground public health guidelines.  

Artificial neural networks (ANN) have been used to classify physical activity (De 

Vries, Engels, & Garre, 2011). In one study, Staudenmayer et al. developed an ANN, 

to classify activity type in adults, using time windows, with 88% overall accuracy and 

a consistently low Root Mean Squared Error (rMSE) measure (Staudenmayer, Prober, 

Crouter, Bassett, & Freedson, 2009). In a study carried out by De Vries et al., a series 

of ANNs were developed to predict PA in children across a range of activity types. 

However, the results reported were significantly lower than those reported in  

(Staudenmayer et al., 2009) with classification accuracies between 57.2% and 76.8% 

(De Vries et al., 2011; De Vries, Garre, Engbers, H., & Van Buuren, 2001).  

While, Trost et al. conducted a rigorous study in which 90 ANN designs (different 

hidden layer and weight sizes) were developed and trained to predict PA type and 

intensity (Stewart G Trost, 2012). The best performing design was trained using 

features extracted from a range of time windows (10, 15, 20, 30 and 60 seconds), with 

the most successful network able to predict PA type with 88.4% accuracy over a 60-

second window, and PA intensity, with the network able to classify moderate to 

vigorous intensity activities 93% of the time.  

While Trost’s study is one of the forerunners for artificial neural network usage in 

the classification of physical activity types and intensity, Trost points out their ANNs 

produce high error margins (as high as 44.6% in the case of sedentary activity), and 

recommend that a combination of triaxial accelerometer use and different pattern 

recognition algorithms may help to generate more precise ANN outputs. 

3. Methodology 

The Mackintosh et al. dataset, used in this study, contains records for Twenty-eight 

children aged between 10 and 11 years of age from a North-West England primary 

school who participated in the study (Machkintosh et al., 2012). Children completed 

seven different physical activities performed in a randomized order, which took place 



 

 

in the school playground or classroom as appropriate with 5 minutes seated rest 

between each activity. To capture both the sporadic nature of children’s activity 

(Orme et al., 2014) and locomotive movement best suited to accelerometers (Welk, 

2005), the activities incorporated both intermittent and continuous (i.e., walking and 

jogging) movements representative of culturally-relevant-free-play situations. 

Children who were performing sedentary activities were watching a DVD and 

drawing, which were consistent with those used previously (Evenson, Cattellier, Gill, 

Ondrak, & McMurray, 2008). 

The dataset contains 28 records of children, age11.4±0.3 years, height 1.45±0.09 

meters, body mass 42.4±9.9 kg, and BMI 20.0 ±4.7, where 46% of the population was 

boys and the remainder girls. The dataset also contains physical activity codes from 

the System for Observing Fitness Instruction Time (SOFIT) (Mckenzie, Sallis, & 

Nader, 1992) to directly observe (DO) the children’s physical activity behaviors 

during the activities. The physical activity coding element of SOFIT uses momentary 

time sampling to quantify health-related physical activity where codes 1 to 3 represent 

participants’ body positions (lying down, sitting, standing), code 4 is walking, and 

code 5 (very active) is used for more intense activity than walking (Mckenzie et al., 

1992). These DO physical activity codes have been validated with heart rate 

monitoring (Rowe, P. van der Mars, Schuldheisz, & Fox, 2004), oxygen consumption 

(Rowe, P. van der Mars et al., 2004), (Honas et al., 2008), and accelerometry 

(Scruggs, Beveridge, & Clocksin, 2005), (Sharma, Chuang, & Skala, 2011) with 

preschool to year 12 children, including those with development delays (McKenzie, 

2010). Throughout the protocol each child’s activity was coded every 10-s by a 

trained observer. 

The accelerometer and DO values obtained during the recording and observation 

period were processed to generate mean values per epoch. Some values were 

subsequently used to approximate values for an additional set of features. This 

approximation was achieved via the use of established calculations for mean hand 

accelerometer count (HAC), mean waist accelerometer count (WAC), direct 

observation values (DO), body mass index, heart rate count (HR), moderate physical 

activity percentage (MPA%), vigorous physical activity percentage (VPA%), indirect 

calorimetry oxygen consumption (V02), and energy expenditure (EE). For a complete 

description of the dataset the reader is referred to (Machkintosh et al., 2012).  

3.1 Data Pre-Processing 

One notable concern with the dataset is that a significant number of values were 

missing. While the study involved 28 participants not all subjects performed every 

activity, and in some cases, values were missing for a number of features and/or 

activities. One subject performed no activities and two subjects performed only one 

activity and were consequently removed from the dataset. A further six subjects had a 

significant number of missing values for some or all of the features HR, MPA%, 

MPA time, VPA% and VPA time. Four of the six subjects had missing values for all 

activities and were therefore removed from the dataset. The remaining two subjects 

were missing values from three activities. Substitute values for these children were 



 

 

computed using cubic spline interpolation. For the features EE and V02, five subjects 

had missing values for some or all of the activities performed. As a result, these five 

records were removed, leaving a total dataset containing 16 cases per activity, with no 

missing or null values.     

3.2 MLP Classification Trial for Activity Selection 

MLP Classification Trial for Activity Selection: The classifier trial uses the mean 
hand and waist accelerometers, BMI and Direct Observation. A four-class 
classification problem was performed using combinations of four activities from the 
initial seven activities. Thirty iterations of 35 permutations of the 4-class 
classification problem were performed, and in each case, sensitivity and specificity 
data for each activity class was obtained.   

Figure 1 shows that the activities Free Play and Playground demonstrate a greater 

spread of both specificity and sensitivity values across a range of classification 

problems, as well as having lower mean sensitivity and specificity values, than almost 

all other activities.  

 

Figure 1: Mean Sensitivity and Specificity values for each activity across 30 MLP 

Classification Trials per 4-activity combination. 

Activity values surrounding Free Play and Playground (Jogging and Walking) 

show substantial variance in specificity, while, Jogging also shows variance in 

sensitivity. This is related to the significant overlap between feature values for the 

activities Free Play, Playground and other activities. Classification sensitivity (true 

positive rate) tends to be high for most activities, with mean values above 0.8 for all 

activities except Free Play and Playground. While mean classification specificity (false 

positive rate) is very high (>0.95) for all activities except Free Play, Playground and 

Walking, the variance in classification specificity values is significant for all activities 

except DVD watching. Observations for Drawing, Resting and DVD watching were 

confused for one another, which lowered the sensitivity of both features. DVD 

watching was often mistaken for Drawing or Resting and vice versa, which led to 

DVD watching having far higher specificities than either Drawing or Resting. 
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This analysis suggests that the activity set currently used is not appropriate for 
ANN classification analysis. This is due to the presence of multiple classes whose 
observation cases occupy the same region of values. For this reason, only one of the 
three sedentary activities (Drawing, DVD Watching and Resting) is used. Despite the 
excellent sensitivity values for the activity Resting showed, it was decided that the 
activity Drawing would be used. The Resting activity was initially intended for use in 
calibrating basal rates for various features, and was not intended for classification 
analysis. Furthermore, a significant number of features (MPA, MPA time, VPA and 
VPA time) are missing from the Resting data, which would significantly complicate 
MLP analyses using those features. Conversely, both Drawing and DVD watching 
possess a full complement of feature data and were intended for use in classification of 
sedentary activities. The final dataset following this analysis contains four activities, 
Drawing, Free Play, Jogging, and Walking. This set covers a good breadth of activity 
intensities, while minimizing the risk of value overlap or classification error. 

3.3 MLP Classification Trial for Activity Selection 

Statistical comparison of features is performed on a per-activity basis. Figure 2 
shows the plots for the statistical analysis of features. The feature BMI was retained for 
all four activities, although naturally the range and distribution of values is identical 
across all activities. This was done to establish a common scaling for all four plots. The 
stationary, sedentary nature of the Drawing activity was intended to provide a resting 
comparison to the more vigorous activities used. As such, all features have values at or 
around the minimum value of -1. For the most part, this suggests that Drawing may be 
easily distinguished from the other three activities. 

Feature values show a broader spread for Free Play than for any other activity. The 
features HR, MPA, VPA, V02 and EE show significant coincidence between Free Play 
and Jogging, while some degree of coincidence between values for Free Play and 
Walking is present for almost every feature; suggesting that misclassification may 
occur at those class boundaries. The features HAC, WAC, and DO possess a small 
interquartile range, entailing that the majority of the data falls within a limited space of 
values. This is a positive finding for classification purposes, but one, which requires 
validation through MLP analysis.  

Conversely, the interquartile range of the features MPA and VPA varies greatly. 
These features are measures of what proportion of the activity time was spent at 
vigorous or moderate levels of physical activity. In some activities this leads to an 
unusual distribution of values for both features; if an activity is vigorous, for instance, 
the VPA value may be at the maximum value for all subjects. If an activity is not 
vigorous, the values for all subjects performing the activity may be at the minimum of 
-1. However, activities which may or may not be vigorous, or which alternate between 
vigorous and non-vigorous activity states, tend to contain a range of MPA or VPA 
values. 

In the case of Free Play, the range of values stretches between (approx.) 0.9 and -1, 
which implies that the activity was classed as vigorous for some participants, and not 
vigorous for others. In the case of MPA, the spread of values is less pronounced; with a 
mean value of -0.5, participants performing Free Play were classified as non-MPA 
more often than as MPA.  



 

 

Nonetheless, the spread of values for both features is likely to cause significant 
classification problems when using VPA or MPA as features. This problem is 
particularly pronounced for VPA, where classification of Free Play using the feature is 
likely to be confused for any other feature with a similar, semi-vigorous profile.  

 

Figure 2: Boxplots per activity for feature statistical analysis 

From this analysis, the features HAC, WAC and DO are likely to yield the best 
results during classification. However, the following section will evaluate several 
feature combinations and provide empirically evident feature sets and associated 
classification accuracies to demonstrate their usefulness in classifying activity types. 

4. Results 

This section describes the classification of activity types using MLP analysis and 
different feature combinations. Input layer sizes between 1 and 4 features were 
considered.  

4.1 MLP Network Analysis Using 2-4-4 Architecture 

This evaluation uses feature pairs. The performance for the classifier is evaluated, 
using the mean accuracy of 30 simulations with each simulation comprising randomly 
selected training and test sets.  
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Classifier Performance: The first evaluation uses all the features in the data set to 
construct feature pairs. Table 2, shows the top 10 highest mean accuracies obtained 
over 30 simulations (the remainder were excluded because of their low accuracy 
values).  

 Feature One Feature Two Accuracy 

1 hr hac 74 

2 hac hr 74 

3 hr ee 67 

4 ee hr 67 

5 hac ee 61 

6 ee hac 61 

7 hr v02 60 

8 v02 hr 60 

9 hac do 59 

10 do hac 59 

Table 2: Mean Percentage Classification Correctness by Feature Pair 

Table 2 shows that the mean classification accuracy rarely exceeded 70% and in 
many cases was between 40% and 60%. Variance between classification accuracy 
during trials was also high, with some feature combinations. This combination of high 
variance and low classifier accuracy indicate that feature pairs are insufficiently 
consistent and insufficiently accurate for use in subsequent MLP analysis. 

4.2 MLP Network Analysis Using 3-4-4 Architecture 

The feature space was increased to triple feature combinations. The performance 
for the classifier is determined, using the mean accuracy obtained from 30 simulations. 
The metric includes Sensitivity, Specificity and Kappa estimates. Again, randomly 
selected training and test sets are used for each simulation.  

Classifier Performance: Using the triple feature combinations, Table 3, shows the 
top 10 highest mean accuracies, sensitivity, specificity and kappa values obtained from 
30 simulations. 

 Features Acc. Sens Spec Kappa 

1 Wac bmi do 96 0.95 0.99 0.94 

2 Wac ee do 96 0.95 0.99 0.94 

3 v02 ee do 96 0.95 0.99 0.94 

4 hreedo 94 0.93 0.97 0.92 

5 bmieedo 94 0.94 0.97 0.91 

6 wacv02do 93 0.93 0.97 0.89 

7 bmiv02do 93 0.93 0.97 0.89 

8 hacv02do 92 0.95 0.97 0.89 

9 hacv02ee 91 0.88 0.92 0.87 

10 haceedo 90 0.91 0.94 0.86 

Table 3: Mean Percentage Classification Correctness by Three Features 



 

 

Table 3 shows that the classification accuracy using triple feature combinations 
improves the results significantly. While mean classifier accuracies in the low 60th 
percentile were observed in a number of cases, several cases displayed mean 
classification accuracies >90%. These findings are highly positive, suggesting that 
modification or sophistication of the classification techniques used may further 
improve classification accuracy.   

4.3 MLP Network Analysis Using 4-4-4 Architecture 

This set of results extends the feature space to four to determine whether further 
improvements can be made. Table 4 presents the results.  

Classifier Performance: Using a combination of four features, Table 4 shows the 
top 10 highest mean accuracies, sensitivity, specificity and kappa values. 

 Features Acc Sens Spec Kappa 

1 bmiv02doee 96 0.95 0.99 0.94 

2 bmiv02wachac 96 0.95 0.99 0.94 

3 bmidoeewac 96 0.95 0.99 0.94 

4 v02doeewac 96 0.95 0.99 0.94 

5 v02doeehac 96 0.95 0.99 0.94 

6 doeewachac 96 0.95 0.99 0.94 

7 hrdoeewac 96 0.95 0.98 0.93 

8 bmiv02eehac 95 0.94 0.98 0.93 

9 bmieewachac 95 0.94 0.97 0.93 

10 v02dowachac 95 0.94 0.97 0.93 

Table 4: Mean Percentage Classification Correctness by Four Features 

The results show that 4-feature combinations improve the results further. Of all the 
combinations empirically tested no feature combination showed mean classification 
accuracies below 87%.  

5. Discussion 

The initial classifications on the dataset obtained a relatively low accuracy with HR 
and HAC providing the best pair of features. Heart rate displayed higher classification 
accuracy across a number of feature combinations. While MPA and VPA failed to 
perform sufficiently well to justify their inclusion in further trials. These features 
followed different trends to others. For example, MPA reached maximum values 
during the performance of activities such as walking and free play, where other 
features tended to show mid-range values. This is considered an advantage due to the 
potential additional information content of features with this pattern in conjunction 
with more normally distributed features. The preceding feature pair analysis 
demonstrates that neither MPA nor VPA provide useful classifications of activities by 
type and should thus be excluded from the feature set.  

Extending the feature space to three showed a marked improvement in classifier 
performance. In particular, it should be observed that classification accuracy peaked at 



 

 

96%, with a maximum kappa value of 0.94. This value was seen consistently across all 
trials of a small number of feature combinations. This ceiling was due to the consistent 
misclassification of a single value; each of the network designs in question 
successfully classified all other values correctly across trials, but misclassified this 
single record on every occasion. Specifically, one record captured from participants 
performing the activity Jogging was consistently misclassified by the MLP networks as 
an instance of the activity Free play.  

However, what these findings show is that larger input feature combinations 
produce higher classification accuracy and reduce variance between MLP trial 
iterations. A logical extension of the proceeding analysis, then, was to extend the input 
feature combination to a total of four features. The results showed that the top end 
classifiers as seen in Table 4 continue to fail to classify certain data values. Only one 
input feature combination (HR, DO, EE, V02) enabled perfect classification of the 
dataset, and perfect classification occurred in less than 7% of the cases (2/30). 
However, these instances of perfect classification do demonstrate that improved 
classification accuracy is attainable although it may not be achievable without the use 
of new techniques.  

6. Conclusions 

This study used an existing dataset from recent research into physical activity in 
youth to classify data by the type of activity engaged upon. The dataset was analyzed 
using rigorous data science techniques, which led to an improved understanding of 
activity types and features. Data items whose properties impeded classification were 
removed. This did affect the size of the dataset. A series of machine learning analyses 
were performed. A range of classifier types, input feature combinations and 
architectural parameters were employed and refined to develop improved classification 
accuracy. 

While the results show, specific activities and features tailored around a machine 
learning approach are promising, a great deal of research remains. Further development 
of Data Science techniques will help provide a varied and broad range of possibilities. 
The data exploration and analysis techniques used in this study produced results that 
suggest extensions and raise further questions. First, it would be useful to validate the 
preceding results using a substantial non-interpolated data set. Second, it would also be 
useful to explore other supervised machine learning methods, such as support vector 
machines and other advanced artificial neural network architectures. While this study 
focused on youth, it would be interesting to look at other population groups, such as 
adults and the elderly. Finally, one important point would be to standardize the use of 
activities and cut points in PA research that is underpinned with strong Data Science 
evidence and advanced machine learning techniques. 
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