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Abstract
Sharing personal data with service providers is a contentious issue that led to
the birth of data regulations such as the EU General Data Protection Regula-
tion (GDPR) and similar laws in the US. Complying with these regulations is a
must for service providers. For users, this compliance assures them that their
data is handled the way the service provider says it will be via their privacy
policy. Auditing service providers’ compliance is usually carried out by specific
authorities when there is a need to do so (e.g., data breach). Nonetheless, these
irregular compliance checks could lead to non-compliant actions being unde-
tected for long periods. Users need an improved way to make sure their data
is managed properly, giving them the ability to control and enforce detailed,
restricted access to their data, in line with the policies set by the service provider.
This work addresses these issues by providing a secure semi-automated GDPR
compliance service for both users and service providers using smart contracts
and attribute-based encryption with accountability. Privacy policies will be auto-
matically checked for compliance before a service commences. Users can then
upload their personal data with restrictive access controls extracted from the
approved privacy policy. Operations’ logs on the personal data during its full
lifecycle will be immutably recorded and regularly checked for compliance to
ensure the privacy policy is adhered to at all times. Evaluation results, using a
real-world organization policy and example logs, show that the proposed service
achieves these goals with low time overhead and high throughput.
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1 INTRODUCTION

In our fast-paced digital world, people share their personal data with service providers to access various services. How-
ever, many services involve a complex network of multiple providers, meaning that users’ data is often shared with third
parties TPs. The data access/sharing is governed under specific regulations such as the EU General Data Protection Reg-
ulation (GDPR) and similar regulations in the US (e.g., Health Insurance Portability and Accountability Act (HIPAA)).
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The focus of this work is the GDPR, which for service providers, compliance with it is not optional as any breach would
result in hefty fines.

Through its 99 articles, the GDPR sets out the rights of data subjects (DS) (i.e., data owner) and the responsibilities
of data controllers/processors who store, process or transfer personal data. It also ensures that data are collected legally
for legitimate purposes. Given its textual/abstract nature, the GDPR rules are open to interpretation in terms of how
organizations satisfy them and/or demonstrate compliance. Moreover, GDPR compliance checks are only carried out
when there is a legal request from the GDPR supervisory authority.

Service providers develop their privacy policies to adhere to GDPR while collecting/storing/processing personal data.
Under the accountability principle in Article (5)2 of the GDPR, they should also be able to withstand any auditing process
by demonstrating compliance with these regulations. Since these auditing processes are irregular, two main questions
arise here. First, how can a service provider (SP) be trusted to demonstrate compliance via a centralized architecture that
is controlled solely by the SP? Second, how can users verify that the SP is complying with the regulations by observing
their privacy policies before/after collecting the data? Moreover, the lack of transparency of SP′s operations on the data
adds more challenges to the mix.

Hence, there is a need for a solution that can achieve the following objectives: (1) ensure, and automatically verify,
conformance between a SP′s privacy policy and GDPR rules, (2) empower DSs to grant fine-grained access to their data
that can be time limited and restrictive to those who are identified by the SP′s privacy policy, (3) carry out regular compli-
ance checks on the actual actions carried out on the data during its full lifecycle, and (4) address the lack of trust among
auditors, SPs, TPs and DSs when carrying out an audit to provide irrefutable evidence to prove any violation.

This article presents the desired solution as a secure semi-automated compliance and auditing service to ensure GDPR
compliance during the data lifecycle using smart contracts SCs and ciphertext-policy attribute-based encryption (CP-ABE)
with accountability. To address the absence of trust among parties, a blockchain-based architecture is developed. The
proposed service semi-automatically ensures and enforces compliance against a set of GDPR rules before/after data col-
lection in two stages. The first stage happens before data collection commences when the SP′s privacy policy is checked
against GDPR rules automatically using a policy engine. If it is a pass, the data collection starts where DSs use CP-ABE
to embed fine-grained access to their data based on the verified privacy policy. Finally, regular compliance checks during
the data lifecycle, against the SP′s privacy policy, are carried using SCs functions based on the data operations’ logs, which
will be stored immutably on the chain. Furthermore, privacy policies are also stored on-chain. The proposed architecture
decouples data storage from the blockchain network (i.e., the data itself is stored off the chain) to reduce the storage and
computation overhead.

The main contribution of the article is as follows:

1. A novel consortium blockchain network (called CBN from now on) architecture for transparent and reliable auditing
compliance to address the lack of trust among auditors, SPs, TPs and DSs. Fine-grained access control policies are
enforced via implemented SC functions to control access to the data operations’ logs and carry out regular compliance
checks.

2. A bespoke on/off-chain communications protocol among DSs, SP, TP, and the off-chain data storage server DSt with
close observation of the GDPR Auditor GA. The protocol allows DSs to place restrictive fine-grained controls on any
data field before sharing thanks to ABE.

3. An industry standard CBN based on Hyperledger Fabric (HLF) platform that implements a real-world privacy policy
from the energy sector to show that our solution achieves a feasible implementation, practical efficiency, and auditing
accuracy.

The article is structured as follows: Section 2 discusses the related works in the literature. Section 3 presents the
preliminaries for this article. The system model and specifications of the auditing service is detailed in Section 4. Section 5
presents the semi-automated auditing service design and algorithms while the full system deployment and operations are
provided in Section 6. Section 7 evaluates the developed auditing service via a smart meter case study. Finally, Section 8
concludes the article and discusses future directions.

2 RELATED WORKS

In terms of personal data management, and sharing data on cloud storage servers, works such as References 1–5
focused on secure sharing and storage of electronic medical records (EMR) and personal data using techniques such as
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certificateless signature, key escrow-free attribute based encryption, and blockchain. These techniques were used to solve
the issues of untrusted cloud servers4 and collusion attacks between malicious users and revoked users.5 For instance,
Sun et al. proposed a blockchain-based framework for EMRs with fine-grained access control that combines a distributed
storage system Inter-Planetary File System (IPFS), Ethereum, and CP-ABE.1 On the other hand, Yan et al. proposed a
novel remote data possession checking (RDPC) protocol based on homomorphic hash function.3 The proposed protocol
aimed to give data owners dependable means to check the possession of their files, which are outsourced to remote cloud
servers. The authors also introduced an operation record table (ORT) to track operations on file blocks such as block mod-
ification, block insertion and block deletion. The scheme was proven secure against forgery attacks, replay attacks and
replace attacks based on a typical security model.

Guo et al. developed a revocable blockchain-aided attribute-based encryption with escrow-free (BC-ABE-EF) scheme.2
The scheme utilized a distributed consortium blockchain that contains consensus nodes to replace the key authority and
solve the key escrow problem. The distributed consortium blockchain is used to collaborate with users to implement
the key generation function via a secure two-party computation protocol. Moreover, to resist collusion attacks between
malicious users and revoked users, each user’s certificate is calculated by a group manager (GM) and embedded in the
user’s key. The GM is one of five participants in the proposed data management system in addition to data owner, data
user, blockchain, cloud server and decryption cloud server. The performance analysis showed promising results in terms
of storage overhead and calculation cost in comparison to other schemes. However, the scheme is not implemented on
an existing blockchain to examine how the throughput of the blockchain may affect the performance of the proposed
scheme.

The authors in Reference 6 proposed PrivySharing, a blockchain-based framework for privacy-preserving and secure
IoT data sharing. They adopted a permissioned blockchain to separate different users’ data into different channels. Users
can control who has access to their data using ACLs. The authors implemented the proposed framework with differ-
ent data types such as health and surveillance data. Compliance with some GDPR requirements is illustrated via ACLs.
Nonetheless, the data were stored on-chain where nodes have to maintain copies of multiple ledgers depending on how
many channels they are member of. With the large amount of data from IoT devices, this becomes infeasible. Moreover,
while compliance with some GDPR requirements is shown, it is not clear how these requirements are audited during the
data lifecycle.

Amato et al. focused on law compliance of SCs in IoT environments in Reference 7. They proposed a formal model
based on multiagent logic and ontological description of contracts for validating law compliance of SCs. They demon-
strated the benefits of their methodology using a case study where a SC is used by insurance companies to collect data
from drivers to adapt premium prices. The GDPR requirement, that biometric data must be stored encrypted, was used to
demonstrate whether the SCs comply or not. The authors did not provide an implementation for their solution to show
how efficient and practical it will be.

In Reference 8, Javed et al. presented PETchain, a blockchain-based privacy enhancing technology. PETchain leverages
IPFS where users encrypt their data and upload it to the IPFS network. The authors also introduced the trusted execution
environment (TEE) notion to allow SPs to process users’ encrypted data without accessing the raw data. Users own and
deploy PETchain SC, which contains the key to the stored data, the SP′s address, and the URL of the TEE executor. The
authors deployed the SC on Ethereum and showed that PETchain achieved high levels of Transactions Per Second (TPS)
by having low block time and a high gas limit. The evaluation focused on gas consumption and TPS rather than the system
compliance with GDPR.

Wang et al.9 proposed a secure and auditable private data sharing (SPDS) scheme for smart grid using blockchain for
trust-free private data computation and data usage tracking. They used TEE off-chain to process confidential users’ data.
Moreover, they developed contracts based on the contract theory to encourage users to participate. The data access policy
is based on ACLs while the limited memory capacity of the TEE executor causes a considerable performance degradation.
The evaluation focused on the benefits payoff between the SPDS and linear contract and fixed price schemes. Hence, the
performance of SPDS implementation is not investigated.

In terms of GDPR compliance using blockchain and SCs, Heiss et al.10 developed a blockchain-based approach to
detect violations of consent declarations in multi-service setups based on off-chain computed violation claims utilizing
non-interactive zero-knowledge (NIZK) proofs. Their approach focuses on supporting SPs to fulfil the GDPR requirement
of consent collection and management. It also helps to detect wrong access to personal data by TPs′ APIs. However, the
proposed approach needs further investigation in terms of its security and ability to detect GDPR violations.

In Reference 11, the authors proposed a lightweight blockchain-based GDPR-compliant personal data management
platform. The platform provides mechanisms for DSs to control and manage their personal data as well as publicly
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accessible and immutable evidences, which are useful for a SP to prove the agreements made with a DS. These pieces of
evidence can be used by a supervisory authority for auditing to ensure the SP is complying with their agreements. In addi-
tion to blockchain and SCs, the authors utilized eXtensible Access Control Markup Language (XACML) to express access
control on the DS′s data. The SCs were deployed on Ethereum to test their efficiency and cost to run (i.e., gas consump-
tion). The evaluation focused on the number of interactions required within the system to perform different operations
such as get processing consent and access data. However, samples of the tested policies, expressed in XACML, and the full
data lifecycle operation and logs were not included. Finally, the authors stated that deploying the proposed system on an
existing blockchain and studying all the incurred costs in a real setting were left for their future work.

Truong et al. proposed a GDPR-compliant personal data management platform that leverages blockchain and SCs.12

The platform allows DSs to ensure that only designated parties can access and process their personal data via ACLs.
All activities related to data access are logged into the blockchain to verify any violation of GDPR rules. The platform is
developed using HLF where the data decoupling concept is followed. If access is granted, the platform issues a token to
the SP that is validated by the resource server before returning the requested data. The data access policy is checked when
consent is given for data access to the data processor or a TP rather than checking against the agreed policy with the data
controller. Hence, policy checks are carried out when data access is requested rather than prior to any data collection. The
platform does not differentiate between data collection consent and data processing consent nor offers regular checks
against the agreed policy with the SP. Finally, the data stored on the resource server is not encrypted.

A lightweight blockchain-based GDPR compliant personal data management platform is proposed in Reference 13.
The platform allows the data controller to specify the data collection policy including storage periods and purposes. If
the DS accepts it, then consent is given to the data controller via a SC. When a TP requests access to the data, the data
controller prepares a new purpose SC that is sent to the DS for approval before consent is given. The authors stated that
the platform is implemented on a Ganache local blockchain to validate its feasibility.14 However, the results of their tests
especially regarding GDPR compliance were not provided.

2.1 Comparison with this work

The main aspects in which this work differs from other works in the literature are accountability for SPs, fine-grained
access control, semi-automated compliance and auditing, and a practical implementation.

Unlike the simple ACL based policy, our approach enforces compliance with a more fine-grained policy, covering five
representative stages of the data lifecycle with a particular focus on the data controller (i.e., SP), and its privacy policy.
Our approach will automatically enforce that data are always being collected, used, stored, deleted, and transferred in
compliance with the agreed privacy policy of the SP. For example, while the approach proposed in Reference 12 only
verifies if a TP has access right to certain data, our approach also verifies if the data controller is permitted to collect certain
types of data for certain purposes. As part of the data collection sub-policy, our approach also verifies if consent has been
collected by the SP before collecting certain types of data. In addition, it enforces data storage and deletion specified in the
data storage and retention sub-policies. For example, suppose the SP has not yet fulfilled the retention delay policy for a
certain type of data. In that case, data deletion will be enforced automatically at the end of the retention delay period set in
the policy. With regards to data transfer, our approach enforces that only the set of TPs, which have been given the rights in
the data transfer sub-policy, can access the data. Finally, one of the main strengths of our approach is the semi-automated
compliance verification engine that is capable of proving that a (collection, usage, storage, deletion, transfer) request sent
by the SP, DS or TP conforms with the “agreed” privacy policy of the SP. This way, the enforcement carried out by SCs
will be based on mathematically proved compliance, reducing the chance of incorrect/false enforcement.

3 PRELIMINARIES

3.1 Privacy policy language

To verify data operations’ logs against the privacy policy of the SP based on automated proofs, we propose a variant of a
privacy policy language, which is an extended version of DataProVe.15 A privacy policy is defined on a data type 𝜃, and is
composed of five sub-policies as follows:

𝜋(𝜃) = (𝜋col, 𝜋use, 𝜋str, 𝜋del, 𝜋acc)
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1. Data collection sub-policy 𝜋col = (ccons, cpurps), where ccons ∈ {Y , N} specifies whether a consent is required to be
collected from the DS or not for a data type 𝜃, and cpurp is a set of collection purposes. A purpose has the form
SP ∶ act ∶ 𝜃, which specifies that a piece of data of type 𝜃 is collected by the SP to perform an action act. These capture
the consent and purposes limitation requirements of the GDPR.

2. Data usage sub-policy 𝜋use = (ucons,upurps), with a usage consent requirement, ucons ∈ {Y , N}, and upurps, a set of
usage purposes. These capture Articles 6 and 30(1)(b) of the GDPR.

3. Data storage sub-policy 𝜋str = (scons,where), with a storage consent requirement, scons ∈ {Y , N}, and where is a set of
places where a piece of data of type 𝜃 can be stored. These partially capture the storage limitation principle in Article
5(1)(e) of the GDPR.

4. Data deletion sub-policy 𝜋del = (fromwhere, delay). fromwhere is the location from where a piece of data of type 𝜃 can
be deleted. This strongly depends on the storage locations, where, as defined in the storage sub-policy 𝜋str. delay is the
delay value for retention. This value can be a specific numerical time value (e.g., 1 day (1d), 5 years (5y)). These two
elements partially capture Articles 5(1)(e) and 17(1)(a,e) of the GDPR.

5. We extend the data access sub-policy 𝜋acc in DataProVe15 to include the conditions and purposes of data access. 𝜋acc =
{entity1(args1), … , entityn(args_n)} defines that entity1, … , entityn can access the data besides the arguments args1,
… , argsn, respectively. Here args = (acons, conditions, purps, transfer), which contains an access consent requirement
acons ∈ {Y , N}, conditions that set out the conditions that must be met for accessing the data (e.g., a certain time inter-
val), purps is a set of purposes for the data access, and transfer ∈ {Y , N} indicates whether the data can be transferred
to that entity as a result of this access or not. These partially capture the requirement of transferring data to a TP in
Article 45(1) of the GDPR.

3.2 Blockchain and smart contracts

Blockchain technology ensures data consistency among distributed nodes in a Peer-to-Peer network without a trusted
TP by utilizing the Distributed Ledger Technology (DLT).16 Changes are only committed to the ledger if nodes reach
a consensus on the validity of these changes. Blockchains can be either (1) permissionless where virtually any node
can anonymously participate in the network (e.g., Bitcoin) or (2) permissioned where participants’ identities are veri-
fied before they can join the network (e.g., Hyperledger Fabric (HLF)17 and R3 Corda18). Permissioned blockchains do
not require mining activities thus, consensus can be reached quicker and with less computational power than in per-
missionless blockchains. Our system is based on the corporate blockchain concept, which is a sub-type of permissioned
blockchains. A corporate blockchain is designed for use within a single organization or a consortium of trusted par-
ticipants. The integrity of data stored on-chain can be accessed and verified by members of the consortium, thereby
addressing the (lack of) trust issues among them. As discussed later in Section 4, we define the following participants: SP,
DSt, TPs, and GA as part of the consortium where we utilize HLF as our CBN. The SCs are implemented using Node.js.19

To set up the CBN, each participant deploys their peer node P, which is responsible for transaction validation and
storage. These transactions represent different events such as a data access request or processing event. Transactions are
submitted by a peer node (e.g., the SP’s peer), which will get validated based on consensus rules and SC logic, which are
written to enforce SP′s privacy policy. Validated transactions (i.e., data access requests and processing events) are then
permanently added to the ledgers, creating an immutable and transparent record.

3.3 Public key with keyword search (PEKS)

The public key encryption with a keyword search (PEKS) scheme allows searching over encrypted data where the data
owner can authorize the search ability to a recipient R using a set of encrypted keywords associated with the encrypted
data, without compromising its security.20 The PEKS scheme can be generally described as follows:

• Setup(𝜆) → (PKR, SKR): The setup algorithm takes a security parameter 𝜆 and outputs a public key PKR and a private
key SKR for the recipient R.

• Enc(PKR,KW) → (SPEKS): The encryption algorithm takes PKR and a set of keywords KW = {kw1, kw2, … , kwn} and
generates a searchable encryption SPEKS of KW . The encryption algorithm is run by the data owner.
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• Trapdoor(SKR, kwi) → (Tkwi): To search for the encrypted data, R generates a trapdoor Tkwi that is associated with the
keyword kwi using its private key SKR.

• Test(SPEKS,Tkwi)→ True∕False: Upon receiving Tkwi, the storage server performs a keyword search process and returns
True if kwi ∈ KW or False otherwise. If the output is True, the ciphertext associated with the keyword kwi is returned
to R for decryption.

3.4 Ciphertext-policy attribute-based encryption (CP-ABE) with accountability
and proxy re-encryption (PRE)

CP-ABE allows the data owner to embed an access policy inside the ciphertext. Only those whose attributes match the
specified access policy 𝜋acc can decrypt and access the data.21 Furthermore, to ensure user accountability and address
user key abuse problem22 (i.e., when a malicious user could simply reveal his/her key to unauthorized users to gain
access to the encrypted data), user identity information ID is embedded into the user’s secret key. It also include private
information, which is unknown to the issuer entity (aka the authorization center), called key family number (KFN) to
mitigate the problem of authorization center key abuse.

Complementing the CP-ABE, in the proxy re-encryption (PRE) scheme, an authorized entity, aka delegator, can dele-
gate its search ability to other entities, aka delegatees, by re-encrypting the data without revealing its private key. Similar
to CP-ABE, the delegator can ask the data storage to re-encrypt the data under a different access policy that is dedicated
to the delegatee. Hence, the CP-ABE scheme with keyword search and PRE can be generally described as follows22,23:

1. Setup(𝜆, )→ (PKABE, MKABE): The setup algorithm takes a security parameter 𝜆 and a universe of attributes  and
outputs a public key PKABE and a master private key MKABE.

2. KeyGen(MKABE,AS, ID) → (SKAS): The key generator algorithm takes MKABE, a valid attribute set AS that satisfies
𝜋acc, and user’s identity information ID to generate a private key SKAS. The private key SKAS embeds the user ID.

3. Enc(data, 𝜋acc, kw)→ (CTABE): The encryption algorithm encrypts the data with the access policy 𝜋acc and a keyword
kw and generates a ciphertext CTABE.

4. TokenGen(SKAS, kw′) → (𝜏kw′): The token generator algorithm takes the private key SKAS and a keyword kw′ and
generates a search token 𝜏kw′ for kw′.

5. Test(CTABE, 𝜏kw′ )→ True∕False: Upon receiving 𝜏kw′ , the storage server performs a keyword search process on CTABE
under kw and returns True if kw′ = kw or False otherwise. Note that only those with SKAS that satisfies 𝜋acc can then
decrypt the data.

6. Dec(CTABE, SKAS, ID) → (data): The decryption algorithm takes the ciphertext CTABE, the secret key SKAS, which
contains the attribute set AS, and ID. It outputs data if and only if SKAS satisfies 𝜋acc.

7. RKeyGen(SKAS, 𝜋
′
acc, kw′, ID′,KFN) → (RK): The key re-generator algorithm takes the private key of the delegator

SKAS, a new access policy 𝜋′
acc, a new keyword kw′, the delegatee’s ID′ and the KFN to generate a re-encryption key

RK. Note that AS satisfies 𝜋acc but not necessarily 𝜋′
acc. Moreover, if kw ≠ kw′, it means the keyword in the ciphertext

will be updated during the re-encryption phase.
8. ReEnc(CTABE,RK)→ (CTPRE): The re-encryption algorithm encrypts the ciphertext CTABE with the re-encryption key

RK and generates a ciphertext CTPRE under a new access policy 𝜋′
acc and a new keyword kw′.

9. Trace(SKsuspected)→ (ID,KFN): Assuming SKsuspected is correctly formed, the algorithm checks if ID is equal to that of
the user who owns SKsuspected. If it is not, the algorithm indicates that the user with ID is dishonest. If KFN ≠ 𝜙, it
checks whether the KFN is equal to that of the user who owns ID. If not, it indicates that the authority is dishonest.

10. Using TokenGen and Test defined above, the delegatee can decrypt CTPRE if it satisfies 𝜋′
acc.

4 SYSTEM MODEL AND SPECIFICATIONS

In the following, we explain the system components in Figure 1 and their roles in the proposed service.

• CA is a fully trusted entity that is responsible for generating certificates and initializing the system security parameters
as to be explained later.
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F I G U R E 1 System model.

• DS refers to the owner of the personal data that will be collected by SP to access its services. The required personal data
is determined by SP′s privacy policy.

• GCL refers to the GDPR compliance ledger where all the operations’ logs, conducted by DSt and SP, on DS′s data
during the data lifecycle are recorded. These records are used by the GA for auditing purposes.

• DAL is data access ledger where all the operations, conducted by TP on DS′s data are recorded. These records are also
used by the GA for auditing purposes.

• PDSt, PSP, PTP and PGA are peer nodes that belong to DSt, SP,TP and GA, respectively. These nodes allow access to the
ledgers on can commit changes to them if consensus is reached.

• Ch1 is a communication channel for nodes that belong to GA, DSt and SP. This way, these organizations can commu-
nicate and transact privately without the involvement of TP, which does not need access to the GCL on Ch1. Hence,
the ledger records are only available for those who are admitted to Ch1 as determined by its configuration Ch1 Config.
Any changes to the channel configuration (e.g., adding a new node) must be approved by these organizations before it
is committed.

• Ch2 is a communication channel for nodes that belong to GA, DSt, SP and TP. This way, TP will only have access to
the DAL on Ch2.

• DSt is a storage server where personal data are stored encrypted. It is part of the CBN and has access to Ch1 and Ch2
and their ledgers. It can be independent or managed by SP. If SP collects the DS′s personal data, this will be stored
on DSt encrypted using PEKS while the encryption key is encrypted using CP-ABE. The DSt receives requests from
SP and TP to transfer the required DS′s data. All the logs of these operations, which do not contain any identifying or
personal data related to the DS, are recorded on the chain for auditing purposes. The format and contents of these logs
are explained in Section 4.4.

• SP refers to the service provider who has a specific privacy policy 𝜋. It determines the purposes of collecting and
processing DS′s data. It is also part of the CBN and has access to the ledgers on both Ch1 and Ch2. All the logs of
requests/operations carried out by SP are recorded on the chain.
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8 of 30 HASHEM EIZA et al.

• TP is a third party that may act as a data processor on behalf of the SP or request access to DS′s data for certain purposes.
DS′s data can be transferred to TP if 𝜋 allows such operation. Since the TP has limited access to DS′s data, it has access
only to Ch2 and its ledger, which records logs for access requests from TP.

• PE is the policy engine that implements the privacy policy language defined in Section 3.1 and runs the compliance
checks automatically to ensure a privacy policy and/or operations comply with the GDPR.

• GA is the auditor that ensures the SP privacy policy 𝜋 complies with GDPR, and all the operations during the data
lifecycle still comply with 𝜋. GA does that first by passing 𝜋 to the PE, which automatically proves if 𝜋 fully complies
with GDPR. Later on, GA periodically audits the current operations by checking the logs from the ledgers on Ch1 and
Ch2 to PE. Note that GA manages the CBN via its orderer node OGA.

• SC is the smart contract that implements functions to check the compliance of the data operations’ logs against each
of the five sub-policies in the privacy policy 𝜋. SC definition is committed and installed on all nodes. Note that SC
functionality has nothing to do with invoking the actual operations on DS′s data. Moreover, its role is different from
PE functionality, which checks the SP′s privacy policy compliance against GDPR before the system starts.

• OGA is the orderer node that is responsible for ordering transactions, creating a new block of ordered transactions, and
distributing a newly created block to all peers.

• ADSt, ASP, ATP and AGA are applications that allow DSt, SP,TP and GA to interact with SC and invoke its functions to
update the ledger records, respectively. Note that ATP does not have access to SC on Ch1.

4.1 Security model and design goals

Although the focus of this work is GDPR compliance, the following security considerations are important for the integrity
of the system model in Figure 1. The CA is fully trusted by all participants in the system. The DSt is honest but curious,
which means it will perform all the operations as dictated by the requests it receives but curiously tries to infer additional
information about the data available to it. The SP and TP are rational but might not handle DS′s personal data following all
the aspects of the privacy policy 𝜋 (e.g., a piece of data is collected without seeking consent first, data is not deleted when
its purpose is no longer valid, etc.) The GA is semi-trusted by all the parties in the system to conduct GDPR compliance and
auditing as long as it can provide irrefutable evidence of compliance or breach. As mentioned above, all communications
and transactions are encrypted in Figure 1 using PKI. In addition, DS′s data confidentiality is guaranteed as it is stored
encrypted using PEKS on DSt. None of DS’s data is stored on the CBN.

To achieve the desired outcomes, the system should achieve the following design goals:

1. Semi-automated GDPR compliance checks to alleviate the problem of irregular auditing and ensure continuous
conformance between GDPR rules and privacy policies during the full data lifecycle.

2. Transparency. This refers to all the actions that are carried out by all parties on DS′s personal data from collection all
the way up to deletion.

3. Data owner enforced fine-grained access control. The DS should be able to enforce fine-grained access control on his/her
data according to the agreed privacy policy.

4. Efficiency. The time overhead of compliance checks and continuous auditing during the data lifecycle should be
feasible and does not impair the system functionalities.

5. Accountability and traceability. These features are required to identify entities who accessed or delegated access to DS′s
personal data. It will also allow to identify any entity who could leak and/or reveal their attribute keys deliberately to
unauthorized entities to access the encrypted data. This addresses the entity key abuse problem in both CP-ABE and
PRE schemes.

4.2 Threat model

In Figure 1, any system entity can be considered as an adversary if it misbehaves or deviates from its legitimate operations.
The DSt is honest in its operations to return search results on personal data but is curious to find any distinctive properties
that can identify DSs. It is assumed that DSt might collude with revoked entities to help them gain unauthorized access
to DS′s data. Other entities including SP,TP and GA are all semi-trusted in the sense that they always perform their
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HASHEM EIZA et al. 9 of 30

assigned operations correctly. However, they might collude directly or indirectly for illegal access operations. They may
also misbehave independently (e.g., due to a security breach). Finally, the CBN is resistant to unauthorized access to
application channels and their ledgers. Note that issues such as compromised Membership Service Provider, CA and
ordering service are outside the scope of this work.

4.3 Policy specification

Based on the policy language in Section 3.1, for automated processing and verification purposes, a policy 𝜋(𝜃) of a SP
(identified with SP−ID) for a data type 𝜃 can be defined in JSON format as follows.

{
“SP_ID”: “”,
𝜋(𝜃): {

“𝜋col”: {“ccons”: “Y”/“N”,
“cpurps”: [“cpurp1”, …, “cpurpn”]},

“𝜋use”: {“ucons”: “Y”/“N”
“upurps”: [“upurp1”, …, “upurpn”]},

“𝜋str”: {“scons”: “Y”/“N”
“spurps”: [“spurp1”, …, “spurpn”],
“splaces”: [“spl1”, …, “spln”]},

“𝜋del”: {“delay”: “delayval”,
“dplaces”: [“dpl1”, …, “dpln”]},

“𝜋acc”: {
“entity”: {“acons”: “Y”/“N”

“conditions”: [“cond1”, …, “condn”],
“purps”: [“purp1”, …, “purpn”],
“transfer”: “Y”/“N” }}

}
}

SP should define the policy for each data type 𝜃 used by the service. A sub-policy can be empty if it does not apply to a
given data type (e.g., 𝜋str is empty for the data type that would not be stored). The specification of the policy can be done
either manually or automatically. Proposing an automated policy specification approach is beyond the scope of this article.
The purpose elements in 𝜋(𝜃) have the format of who ∶ [act] ∶ datatype−to, which captures the purpose of collecting,
using, storing, and accessing/transferring a piece of data of type 𝜃 is for an entity who to carry out the action act and get
a piece of data of type datatype−to as a result. For example, for 𝜃 = energy, a usage purpose can be SP ∶ [calculate] ∶ bill
where the energy consumption is used to calculate the bill.

This policy specification is relatively simple and focuses on the relevant aspects of the GDPR such as consent collec-
tion, deletion, storage and purpose limitation. However, there are other aspects of the GDPR including processing special
category data, and conditional transfer of data outside the EU (considering contractual aspects) that are subject to be
addressed in future extensions of the policy language. Given the complexity of the GDPR, to the best of our knowledge,
no existing policy language addresses/covers all rules in it.

4.4 Log events

A set of log events is defined on a given data type 𝜃 to capture the events linked to that data type in system operations’
logs. A log of 𝜃, denoted by (𝜃), is a set of log event sequences defined on 𝜃. The log of a service during a full system run
is the set of all logs on all data types in Θ:

(service) =
⋃

∀𝜃∈Θ
(𝜃).
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10 of 30 HASHEM EIZA et al.

Specifically, a log (𝜃) is defined as a sequence of events of four types: “write a consent,” “write,” “send” and “read” a
piece of data. Below is the definition of (𝜃) that can contain a sequence of these four types of events.

{
“Data_Type”: “𝜃”,
“WriteConsent”: {

“consent”: “ccons”/ “ucons”/ “scons”/ “acons”,
“ref_to”: “LOCATION”, “t”: “TIME_STAMP”,
“who”: “ENTITY_ID”,
“ID”: “UNIQUE_EVENT_ID”, “cond”: “condition”},

“Write”: {
“datatypeto”: “𝜃′”, “ref_to”: “LOCATION”,
“ref_from”: “LOCATION”, “t”: “TIME_STAMP”,
“who”: “ENTITY_ID”,
“ID”: “UNIQUE_EVENT_ID” },

“Send”: {
“from”: “ENTITY_ID”, “to”: “ENTITY_ID”,
“datatypeto”: “𝜃′”, “ref_to”: “LOCATION”,
“ref_from”: “LOCATION”, “t”: “TIME_STAMP”,
“ID”: “UNIQUE_EVENT_ID” },

“Read”: {
“ref_from”: “LOCATION”, “t”: “TIME_STAMP”,
“who”: “ENTITY_ID”,
“ID”: “UNIQUE_EVENT_ID”, “reason”: “condition”}

}

For consent collection, the log event WriteConsent(consent, 𝜃, ref−to, t, who, ID, cond) specifies that a collection, usage,
storage, or access consent for the data type 𝜃 has been collected and written into a location with the reference address
ref−to at time t by an entity who and satisfies a condition cond. ID is the unique ID of the log event. Note that cond is
mainly used for access consent collection.

For the collection, usage, storage, and access purposes of format who ∶ [act] ∶ datatype−to, where act ∈ {calculate,
create, … , generate}, we define the log event Write(datatype−to, ref−to, ref−from, t, who, ID). This event says that a piece
of data of datatype−to = 𝜃′ is written to ref−to after it has been generated from data of type 𝜃 by an entity who, where
ref−from denotes the reference address of the data of type 𝜃. For instance, Write(electricbill, DSt-456, DSt-123, November
10, 2021 3:08 p.m., SP, E092) that has an event ID E092 captures that an electric bill was written by SP at 3:08 p.m. on
November 10, 2021 into the location DSt-456, and electricity data (i.e., 𝜃 = electricity) from the location DSt-123 was used
to generate electricbill.

For the usage purposes of format who:[act]:datatype−to, where act ∈ {send, notify, share} we define the log event
Send(from, to, (datatype−to, ref−to), ref−from, t, ID) in which a piece of data of type datatype−to = 𝜃′ that was generated
from/related to a piece of data of type 𝜃 is made accessible by an entity from to an entity to at time t. Here, ref−to and
ref−from are the location references where 𝜃′ is written, and where 𝜃 is stored, respectively. Note that 𝜃′ can be the same
as 𝜃 (e.g., from sends a copy of the data).

The deletion action can be modeled by the log event Write(ND, ref−to, “-,” t, who, ID), which captures that a piece
of data of type 𝜃 has been deleted at time t by an entity who. Here, ND denotes the so-called undefined data type, which
means that the data value in the location ref−to will be overwritten with a ND value. Finally, “-” means that ref−from is
not defined in this case.

The store action is captured by the log event Write(datatype−to, ref−to, ref−from, t, who, ID). For example, a store event
can be, for example, when the data is stored by a TP after receiving a transferred data, or when the data of type datatype−to
has been generated using another type of data that needs to be stored. We also define a log event Write(datatype−to, ref−to,
“-”, t, who, ID) when datatype−to is only received and then stored without being transferred or generated from other data.

The data access action can be modeled with the log event Read(ref−from, t, who, ID, reason) and captures that an
entity who accessed some data of type 𝜃 from ref−from at t for a specific reason. Finally, the transfer of a piece of data of
type 𝜃 by an entity from to an entity to can be captured by Send(from, to, (𝜃, ref−to), ref−from, t, ID). This is a special case
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of the Send event when datatypeto = 𝜃. In this case, ref−to is the reference to the location where the data will be stored
after being transferred. Note that only a copy of the data will be sent and stored in the new place in case of data transfer.
The location of the original data remains unchanged.

4.5 System workflow

A full system workflow is presented here according to Figure 2. Details related to CBN internal operations such as channel
configurations, adding peers to channels, etc. are omitted for simplicity.

1. The CA generates the system public parameters that are available for all the participants including the security param-
eters, PKI certificates for each participant, and hash functions that will be used throughout the system. It publishes
these parameters including its public key.

2. The system participants form the CBN, install SC on their peer nodes and approve its definition, and install the
applications ADSt, ASP, ATP and AGA to interact with the ledgers on CBN.

3. The SP populates 𝜋(𝜃) for each data type 𝜃 ∈ Θ, where Θ is the set of all data types required by the service according to
SP′s privacy policy. After that, the SP packages all the privacy policies and calls the SC initialization function to submit
them to CBN. In addition to checking the policy format, this achieves transparency since all data privacy policies follow
this agreed/populated specification.

4. Before the SP′s privacy policy is committed on the ledger, the GA runs the submitted policy through the policy engine
PE to ensure its compliance with GDPR before any data collection takes place. This guarantees an early detection of
any breach. More details on how the automated verification is run can be found in Reference 15. If the compliance
check is successful, the record is committed on the chain. The GA also communicates the result to the DS to start
using the service in sub-step 4a in Figure 2. Otherwise, if the compliance check fails, the GA notifies the SP to fix the
identified issues and submits it again in sub-step 4b.

5. After receiving the GA′s notification, the DS uses CP-ABE to encrypt and embed fine-grained access permissions on
his/her personal data using the SP′s policy and the keywords that allow searching the encrypted data. If they exist,
the DS gives TPs access rights using PRE techniques where SP is the delegator and TP is the delegatee. Finally, it
uploads the encrypted data to the DSt. Note that PRE encryption is outsourced to DSt, which acts as a proxy, to save
DS′s computation resources. Furthermore, re-encryption according to PRE will only go ahead when there is a request
to access the data by TP. This is called lazy re-encryption mechanism,24 which reduces computing costs.

F I G U R E 2 System workflow.
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12 of 30 HASHEM EIZA et al.

6. Operations on DS′s data take place according to the data lifecycle. For every operation, a set of log events (𝜃) will be
recorded on CBN as a result of requests received by DSt from SP and/or TPs. These logs will be used for compliance
checks later by the GA.

7. At any time during the system run, the GA chooses to run auditing and compliance checks to ensure the operations on
the DS′s data comply with the approved data policies 𝜋(𝜃) for each 𝜃 ∈ Θ in Step 4. These checks are carried out using
the algorithms defined in the next Section 5.2, which are implemented as SCs. Should the GA finds any violation, the
system run terminates and all participants are notified.

5 SEMI-AUTOMATED GDPR COMPLIANCE SERVICE DESIGN AND
ALGORITHMS

5.1 Compliance between a log and a policy

We discuss five compliance properties between a log and a policy used in the verification algorithms, as
follows:

1. Consent collection compliance. Besides 𝜋col.ccons = Y , if there is a log event Write(𝜃, ref−to, “-", t, who, ID) in (𝜃),
then there must be a corresponding log event WriteConsent(consent, ref−to′, t′, who, ID, cond) in (𝜃), where t′ ≤ t,
𝜃 ∈ Θ, and ref−to′ ≠ “-.”

2. Usage purpose compliance. (Below, ∨ stands for or)
• For a usage purpose of a form who ∶ calculate ∨ create ∨ compute ∨ extract ∨ generate ∶ 𝜃′, the log complies with

the usage purpose for 𝜃 if there is a log event Write(𝜃′, ref−to, ref−from, t, who, ID) at t, where 𝜃′ is derived from
data type 𝜃.

• For a usage purpose of a form who ∶ send ∨ notify ∨ share ∶ 𝜃′, the log complies with the purpose for 𝜃 if there is
a log event Send(from, to, 𝜃′, ref−to, ref−from, t, ID) where 𝜃′ is derived from 𝜃.

3. Storage place compliance. If there is a log event Write(𝜃, ref−to, ref−from, t, who, ID) or Write(𝜃, ref−to, “-”, t, who,
ID), then ref−to must comply with 𝜋str of 𝜋(𝜃) (i.e., ref−to ∈ 𝜋str.splaces where 𝜋str ∈ 𝜋𝜃).

4. Deletion compliance and enforcement. If there is a log event Write(𝜃, ref−to, “-”, t1, who, ID), there must be an
event Write(ND, ref−to, “-,” t2, who, ID), where t2 − t1 ≤ 𝜋del.delay. If there is no Write(ND, ref−to, “-,” t2, who, ID) by
the time the delay elapsed, the deletion will be enforced from ref−to by the service entity SYS, and that will produce a
Write(ND, ref−to, “-,” t2, SYS, ID) log.

5. Access compliance. If there is a log event Read(ref−from, t, who, ID, reason), then who is an entity defined in 𝜋acc of
𝜋(𝜃). In addition, the conditions in 𝜋acc.entity.conditions and the purposes in 𝜋acc.entity.purps must be satisfied. This
means that reason must be a subset of/equal to conditions. Regarding the access consent, if acons = Y in 𝜋acc, there
must be a log WriteConsent(consent, ref−to, t, who, ID, cond), where consent = acons and ref−to complies with 𝜋acc.

5.2 Verification procedure

In the log for a given service (service), the logs for each datatype supported/used by the service will be stored and man-
aged separately to improve search efficiency. Logs only contain a reference (i.e., ref−to or ref−from) to the corresponding
entry stored in the DSt. Each entry in DSt is a triplet (value, loc−ref , t), where value is the concrete value of the datatype
(e.g., if datatype = name, then value can be “Peter”), loc−ref is the concrete location/address where the data can be found
physically, and t is the last modified time. In addition, value = ND if the data has been deleted, therefore, the value of
loc−ref prior to deletion is kept for a certain period of time for accountability and auditing purposes. For verifying com-
pliance of each sub-policy, we define a dedicated SC function namely SmartCollection(), SmartUsage(), SmartStorage(),
SmartDeletion(), and SmartTransfer().

We start with Algorithm 1 that presents the details of SmartCollection(Consent) that is responsible for checking
(service) in the CBN for verifying compliance regarding obtaining data collection consents.

In the following, we explain the algorithm steps in details as shown in its flowchart in Figure 3.

1. Iterate through each predefined time interval △T.
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Algorithm 1. SmartCollection (Consent)

1: for each △T interval do
2: for ∀𝜃 ∈ Θ do
3: if 𝜋(𝜃)col.ccons = Y then
4: if ∃ Write(𝜃, ref_to, “-”, t, who, ID) ∈ (𝜃) then
5: if ∃ WriteConsent(consent, ref −to′, t′, who, ID, cond) ∈ (𝜃), where t′ ≤ t ∧ consent = ccons ∧ ref−to ≠

“−” then
6: Return Compliance/Do Nothing
7: else
8: Return Violation
9: end if

10: end if
11: end if
12: end for
13: end for

2. Iterate through each data type 𝜃 in the set Θ.
3. Check the consent status (ccons) of the data type 𝜃.

• If the condition is true, proceed to the next step.
• If the condition is false, end the current data type’s processing and move to the next data type.

4. Check whether a Write action with the specified parameters exists in the log (𝜃) for the data type 𝜃.
• If it exists, proceed to the next step.
• If it does not, end the current data type’s processing and move to the next data type.

5. Check if a WriteConsent entry exists in (𝜃), satisfying the following conditions:
• The timestamp t′ of WriteConsent is less than or equal to t.
• The consent value is the same as the “ccons” value.
• The ref−to field is not equal to “-.” This condition is required to ensure that the consent has not been deleted from

the location ref−to (i.e., the consent has not been revoked).
• If these conditions are met, return compliance or do nothing.
• If any condition is not met, return a violation.

Note that SmartUsage() checks (service) for verifying compliance regarding data usage consent and usage purposes.
The verification for SmartUsage() is similar to SmartColection(Consent), but with the log event WriteConsent containing
usage consent instead of collection consent, and 𝜋(𝜃)use.ucons = Y.

Algorithm 2 implements the SmartCollection(Purpose) function. In the following, we explain the steps as shown in its
flowchart in Figure 4.

1. Iterate through each predefined time interval △T.
2. Iterate through each data type 𝜃 within the set Θ.
3. Check if there is a collection purpose (cpurps) for the data type 𝜃 that involves actions like calculate, create, etc.,

performed by who to generate another data type 𝜃′.
• If it exists, check if there exists a Write action with parameters (𝜃′′, ref_to, ref_from, t, who, ID) in the log (𝜃),

where 𝜃′′ is different from 𝜃′.

– If the above condition is met, return a violation.

4. Otherwise, check if the collection purpose (cpurps) for of the data type 𝜃 involves actions like Send, Notify, or Share
to another data type 𝜃′.
• If it exists, check if there exists a Send action with parameters (from, to, 𝜃′′, ref_to, ref_from, t, ID) in the log

(𝜃), where 𝜃′′ is different from 𝜃′.

– If the above condition is met, return a violation.
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14 of 30 HASHEM EIZA et al.

F I G U R E 3 Flowchart of SmartCollection (Consent).

SmartStorage(Places) in Algorithm 3 checks (service) for verifying compliance regarding data storage as follows. The
following steps are shown in its flowchart in Figure 5:

1. Iterate through each predefined time interval △T.
2. Iterate through each data type 𝜃 within the set Θ.
3. Check if there is a Write action with these parameters (𝜃, ref_to, ref_from, t, who, ID) or (𝜃, ref_to, “-,” t, who, ID) in

the log (𝜃).

• If it exists, verify if ref_to parameter of the Write action is included in the storage places (places) defined for 𝜃. This
ensures that the storage location for the ‘Write’ action is authorized.
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Algorithm 2. SmartCollection (Purpose)

for each △T interval do
for ∀𝜃 ∈ Θ do

if 𝜋(𝜃)col.cpurps = who:[act]:𝜃′, where act ∈ {calculate, create, etc.} then
if ∃ Write(𝜃′′, ref_to, ref_from, t, who, ID) ∈ (𝜃) where 𝜃′′ ≠ 𝜃′ then

Return Violation
end if

else if 𝜋(𝜃)col.cpurps = to:[act]:𝜃′, where act ∈ {send, notify, share} then
if ∃ Send(from, to, 𝜃′′, ref_to, ref_from, t, ID) ∈ (𝜃) where 𝜃′′ ≠ 𝜃′ then

Return Violation
end if

end if
end for

end for

F I G U R E 4 Flowchart of SmartCollection (Purpose).
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16 of 30 HASHEM EIZA et al.

Algorithm 3. SmartStorage (Places)

for each △T interval do
for ∀𝜃 ∈ Θ do

if (∃ Write(𝜃, ref_to, ref_from, t, who, ID) ∨ Write(𝜃, ref_to, “-,” t, who, ID)) ∈ (𝜃) then
if ref −to ∈ 𝜋(𝜃)str.places then

Return Compliance/ Do Nothing
else

Return Violation
end if

end if
end for

end for

F I G U R E 5 Flowchart of SmartStorage (Places).
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HASHEM EIZA et al. 17 of 30

– If the verification is successful, return compliance or do nothing.
– Otherwise, return a violation that indicates that the Write action does not comply with the authorized storage

locations.

SmartDeletion(Delay) captures the compliance verification and automated deletion enforcement as defined in
Algorithm 4. Note that SYS is a system identity that enforced a specific action where compliance was not verified. The
flowchart for this algorithm is illustrated in Figure 6:

1. Initialize delay value 𝜋(𝜃)del.delay to delayval for the deletion process.
2. Iterates through each predefined time interval △T.
3. Iterate through each data type 𝜃 within the set Θ.
4. Check if there is a Write action with parameters (𝜃, ref_to, “-,” t1, who, ID) in the log (𝜃). This identifies if any write

operation related to the entity 𝜃 occurred.
5. Check if there is a deletion Write action with parameters (ND, ref_to, “-,” t2, who, ID) in the log (𝜃), where t2 − t1 ≤

delayval. This verifies if a deletion Write action occurred within the delay period.
• If it exists, return Compliance/Do Nothing. This indicates the data has been deleted within the allowed delay

period, and hence is compliant.
• Otherwise, if the delay value delayval has elapsed, enforce the deletion of data at ref_to, add a log event Write(ND,

ref_to, “-,” t3, SYS, ID) in (𝜃) to be stored in the ledger, and Return violation as the deletion is enforced by the
system.

For SmartTransfer(Thirdparties), we define Algorithm 5 that is illustrated via its flowchart in Figure 7 and explained
below.

1. Iterate through each predefined time interval △T.
2. Iterate through each data type 𝜃 within the set Θ.
3. Verify if the policy 𝜋(𝜃)acc (i.e., access control permissions for 𝜃) is empty. This checks if there are any access control

permissions defined for 𝜃.
4. Check if there exists a Read action with parameters (ref−from, t, who, ID, reason) in the log (𝜃). This verifies if there

was a read operation related to 𝜃.
5. If the Read action exists, verify its conditions as follows.

• If who is an entity in 𝜋(𝜃)acc and the conditions specified in who.conditions are satisfied: Return compliance or do
nothing.

• Otherwise, return violation.
6. Otherwise, check if there exists a Send action with parameters (from, to, datatype−to, ref−to, ref−from, t, ID) in the log

(𝜃). This verifies if there was a send operation related to 𝜃.

Algorithm 4. SmartDeletion (Delay)

1: Let 𝜋(𝜃)del.delay = delayval.
2: for each △T interval do
3: for ∀𝜃 ∈ Θ do
4: if ∃ Write(𝜃, ref_to, “-”, t1, who, ID) ∈ (𝜃) then
5: if ∃ Write(ND, ref_to, “-”, t2, who, ID), where (t2 − t1 ≤ delayval) then
6: Return Compliance/Do Nothing
7: else if delayval has elapsed then
8: Enforce data deletion at ref_to.
9: Add Write(ND, ref_to, “-,” t3, SYS, ID) to (𝜃)

10: Return Violation - Deletion is enforced
11: end if
12: end if
13: end for
14: end for
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18 of 30 HASHEM EIZA et al.

F I G U R E 6 Flowchart of SmartDeletion (Delay).
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Algorithm 5. SmartTransfer (Thirdparties)

1: for each △T interval do
2: for ∀𝜃 ∈ Θ do
3: if 𝜋(𝜃)acc ≠ ∅ then
4: if ∃ Read(ref −from, t, who, ID, reason) ∈ (𝜃) then
5: if who is an entity in 𝜋(𝜃)acc AND the conditions in who.conditions are satisfied then
6: Return Compliance/Do Nothing
7: else
8: Return Violation
9: end if

10: else if ∃ Send(from, to, datatype−to, ref −to, ref −from, t, ID) then
11: if to is an entity in 𝜋(𝜃)acc AND the conditions in to.conditions are satisfied AND to.transfer = Y then
12: Return Compliance/Do Nothing
13: else
14: Return Violation
15: end if
16: end if
17: end if
18: end for
19: end for

7. If the Send action exists, verify its conditions as follows.
• If to is an entity in 𝜋(𝜃)acc, the conditions in to.conditions are satisfied, and to.transfer = Y: Return compliance or

do nothing.
• Otherwise, return violation.

Finally, Algorithm 6 checks the compliance of a privacy policy against the GDPR, which is implemented in the PE.
Given its simplicity, there is no flowchart for this algorithm. Note that we only consider consent as a legal basis for data
processing, however, in the GDPR, there are also other types of legal basis such as legitimate, vital or public interest.

6 THE FULL SYSTEM DEPLOYMENT AND OPERATIONS

6.1 System setup

Let (G1, ⋅) and (G2, ⋅) be two cyclic groups of prime order q and e ∶ G1 × G1 → G2 be an efficient admissible bilinear map,
which has the properties of bilinearity, computability and non-degeneracy. The CA chooses a random generator P ∈ G1,
a random master key s ∈ Z∗

q, and four collision resistant hash functions: H1: {0, 1 }∗ → G1, H2: G2 → {0, 1 }∗, H3: {0,
1 }∗ → Z∗

q and H4: {0, 1 }∗ × G2 → Z∗
q. The CA then sets Ppub = sP as its public key and publishes the system parameters

(G1,G2, q, e,P,Ppub,H1,H2,H3,H4, SEnc(⋅)) where SEnc(⋅) is a secure symmetric encryption algorithm.

Algorithm 6. PolicyCompliance

for each 𝜋∗ ∈ {𝜋col, 𝜋use, 𝜋str, 𝜋fw, 𝜋del} do
if GDPRCompliance(𝜋∗) = False then

Return Violation
else if for all 𝜋∗: GDPRCompliance(𝜋∗) = True then

Return Compliance
end if

end for
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20 of 30 HASHEM EIZA et al.

F I G U R E 7 Flowchart of SmartTransfer (Thridparties).

After receiving the system public parameters, GA, SP,DSt and TP form the CBN and establish Ch1 and Ch2. The SC
is installed and approved on all peer nodes. Then, all the applications ADSt, ASP, ATP and AGA are installed to interact
with SC on the CBN. Note that each organization can have its own CA as long as it is recognized by the system and uses
its parameters. Therefore, details of acquiring keys and certificates from the CA for each organization are omitted for
simplicity. Instead, we focus on the CP-ABE operations during the submission of DS′s encrypted personal data and access
to this data during the data lifecycle. Finally, we assume a secure digital signature scheme (e.g., ECDSA) is used to sign
the exchanged messages.
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6.2 Service registration

The SP uses the policy specification for each data type 𝜃 that is needed for its service. The SP will generate  =
⋃

∀𝜃∈Θ 𝜋(𝜃)
the representation of its privacy policy (step 3 in the system workflow in Section 4.5). Then, the SP defines the attribute
universe  that will be used during the CP-ABE of personal data by the DS.  is defined by the SP because it is related
to the service itself and any TP that requires access to the data for processing. It can contain specific attributes that will
identify the attribute set for those who will be granted access according to the access policy (e.g.,  = {“credit agency,”
“fraud prevention,” “law enforcement,” etc.} is an attribute universe for potential TPs a SP might use while providing a
service to their customers).

Once  and  are ready, the SP invokes init() function in SC via its application ASP and passes  and  . Before
the result is committed, the GA passes  to PE that verifies if the policy complies with the GDPR. In our case, we focus
on compliance with the rules in the GDPR that are closely related to the sub-policies of SP. Specifically, we focus on
the collection of consents, purpose minimization and consistency, retention delay, and right of access. The basis of the
verification relies on the algorithm we proposed in the DataProVe tool, which uses logic inference rules to prove three
types of conformance relations (privacy, data protection, and functional conformance). DataProVe feasibility has been
demonstrated in Reference 15 and more information can be found on GitHub.25 If  complies with GDPR (the considered
rules), the transaction is approved and committed on CBN. The GA then sends and to the DS to start using the service
(step 4a of the system workflow).

6.3 Encryption and submission of personal data

Utilizing the CP-ABE with accountability and PRE schemes, which were explained in Section 3.4, we provide details on
how the DS encrypts his/her personal data to enforce restrictive fine-grained access control and automatic revocation of
access rights.

1. Setup(𝜆, )→ (PKABE, MKABE): The DS requests the CA to run the setup algorithm using a security parameter 𝜆 and
the universe of attributes  received from the GA. The CA outputs a public key PKABE and a master private key MKABE.
The MKABE will be used later to produce a secret key SKAS for an entity E that is associated with a set of attributes
AS ⊂  .

2. KeyGen(MKABE,EID,AS) → (SKAS): Based on  , for each entity E in the access policy 𝜋acc, the DS extracts a set of
attributes AS that describes E and its access rights under 𝜋acc. AS include each entity’s ID EID, conditions for access
(e.g., consent is given, the purpose is approved, etc.), and any relevant information that identifies those entities. For
instance, AS = {“SP−ID” ∧ “whocanaccess” ∧ “(ent1 ∶ [cond1, … , condn])”}). This way, each authorized entity E will
have its private key SKAS that implicitly includes its AS and EID. Note that the SP is an example of these entities. Again,
KeyGen is run by the CA based on DS′s request and the resulted secret key(s) are delivered securely to those entities.

3. SEnc(data, Sr) → EncC: The DS chooses a random symmetric key Sr ∈ Z∗
q and encrypts his/her data using the sym-

metric encryption algorithm SEnc(⋅). For simplicity, we assume all the data requested by SP is encrypted under the
same key Sr. It is possible for the DS to encrypt his/her data under different keys where each will be associated with a
different entity. However, this adds more complexity to the system and requires further investigation, which is left for
future works.

4. The DS uses the public key of the SP (i.e., the recipient) to produce a searchable encryption of the keyword set KW ,
which identifies the data types required by the SP, as follows: Enc(PKSP,KW) → (SPEKS). The set KW should be concise
to avoid delays that may occur during the search process.

5. Using CP-ABE, the DS encrypts the symmetric key Sr under AS, which defines the access policy, as follows:
Enc(PKABE, Sr,AS)→ (CTABE).

6. The DS signs the tuple {EncC, SPEKS, CTABE} using his/her certificate and generates a digital signature 𝜎DS and finally
uploads {EncC, SPEKS, CTABE, 𝜎DS, H1(T)} to DSt where T is a timestamp.

This process can achieve restrictive fine-grained access control to DS′s data since the access policy to decrypt mirrors
that in 𝜋acc and can be extended to have more contextual conditions. The automatic revocation of access rights is achieved
via “(ent1 ∶ [cond1, … , condn])” in AS since these conditions can include a time seal that expires when E no longer
needs access to DS′s data. The direct application of this automatic revocation is the delay value in 𝜋del that indicates the

 24756725, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spy2.451 by T

est, W
iley O

nline L
ibrary on [21/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



22 of 30 HASHEM EIZA et al.

data must be deleted thus, access is no longer permitted. This design gives DS a lot of flexibility to enforce access controls
according to the SP policy.

6.4 Full data lifecycle operations and logs

Assuming that DSt acts as a proxy, SP is the delegator and TP is the delegatee for the purpose of PRE scheme, the
first step for the SP is to execute its collection policy 𝜋col to collect DS′s data from the DSt. However, before doing so,
the SP should register the collection of relevant consents and purposes following the details in the policy  . For each
data type 𝜃, the SP invokes the following event WriteConsent(consent, GAL, Θ, t, SP), which specifies that a consent
of type consent has been collected by the SP and written to the ledger GAL for the set of data types in Θ at time t.
After that, the SP executes TokenGen(SKSP, kw′) to generate a search token 𝜏kw′ and sends it to DSt. The later executes
Test(SPEKS, 𝜏kw′ ) and returns true if 𝜏kw′ ∈ KW or false otherwise. If the Test output is true, the SP receives the correspond-
ing tuple {EncC, SPEKS,CTABE, 𝜎DS,H1(T)}. After that, SP uses its key SKAS, which is generated and associated with AS in
Section 6.3, to decrypt the symmetric encryption key as follows: Dec(CTABE, SKAS) → Sr. Finally, it obtains DS′s data as
follows SDec(EncC, Sr) → data.

Following the successful collection of DS′s data, the SP can invoke the events related to collection, usage, transfer, and
storage actions. All these operations generate logs that are recorded on GAL for auditing and compliance checks later. If
a TP access is required according to the SP′s privacy policy, the following steps must be taken by the SP:

1. As a delegator, SP runs RKeyGen(SKAS, 𝜋′
acc, kw′,TPID,KFN)→ (RK) using its secret key SKAS, a new access policy 𝜋′

acc
that gives a TP access to specific data types, a new keyword kw′ to generate re-encryption key RK, TP′s identity and
KFN. The SP can choose kw′ different from the keyword set that was used earlier by the DS to encrypt in Section 6.3.
This allows the SP to grant access to TPs under different keywords and update them if necessary.

2. The SP shares the re-encryption key RK with DSt to encrypt the CTABE and generates a new ciphertext CTPRE that can
be accessed by the TP.

3. To ensure compliance, the SP invokes the event Send(SP, TP, (𝜃′, DSt), (𝜃, DSt), t) to specify that SP is sending data of
type 𝜃′, which was generated from type 𝜃, to TP from locations in DSt at time t. This log will be written on both ledgers
GAL and DAL.

The TP can follow the same steps (i.e., TokenGen(SKTP, kw′) to generate a search token and sends it to DSt to retrieve
CTPRE for decryption). Similarly, the TP invokes relevant log events to record logs only on DAL according to the system
model in Figure 1.

7 PERFORMANCE EVALUATION AND ANALYSIS

7.1 The scenario

In this section, we took a real world energy service and its relevant privacy policy*. For demonstration purposes, we
consider a simplified policy, which is a “subset” of OVO privacy policy to show how our compliance service works. The
SP collects the following data:

1. The customer’s DS contact details contact (e.g., full name, email, property address, phone number, etc.)
2. Account data account (e.g., unique account number, national insurance number, photos of the meter, etc.)
3. Financial data financial (e.g., bank account details.)
4. Energy consumption data energy (e.g., meter readings.)

The privacy policy of SP is then defined as follows:

1. 𝜋(contact) = (𝜋col, 𝜋use, 𝜋acc), where:
• 𝜋col = {Y , {[SP] ∶ create ∶ [account]}}
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HASHEM EIZA et al. 23 of 30

• 𝜋use = {Y , {[SP] ∶ send ∶ [notification, bill] ∶ [DS]}}
• 𝜋acc = {otherSP(Y , [switch], [otherSP] ∶ send ∶ [prediction] ∶ [DS],Y }

2. Similarly, for 𝜋(account), we have:
• 𝜋col = {Y , {[SP] ∶ create ∶ [account]}}
• 𝜋use = {Y , {[SP] ∶ create ∶ [bill]}}
• 𝜋acc = {marketingunit(Y , [loyaltyprogram], [DS] ∶ receive ∶ [voucher],N}

3. For the financial data, 𝜋(financial), we have:
• 𝜋col = {Y , {[SP] ∶ create ∶ [account]}}
• 𝜋use = {Y , {[SP] ∶ receive ∶ [payment]}}
• 𝜋acc = {creditcheckunit(Y , [−], [creditcheckunit] ∶ create ∶ [creditprofile],Y }

4. Finally, for meter reading, 𝜋(energy), we have:
• 𝜋col = {Y , {[SP] ∶ create ∶ [bill]}}
• 𝜋use = {Y , {[SP] ∶ calculate ∶ [fee]}}
• 𝜋acc = {marketingunit(Y , [loyaltyprogram], [DS]: receive: [voucher], N), otherSP(Y , [switch], [otherSP]: calculate:

[prediction], Y )}
5. For all the four data types above, the deletion policy is 𝜋del = {6y,DSt}, which means that all DS′s data must be deleted

from DSt within 6 years after the contract period starts assuming the contract is for 3 years.
6. For the four data types above, the storage policy is 𝜋str = {Y , {{[SP] ∶ create ∶ [bill]}, [SP] ∶ calculate ∶ [fee],

[marketingunit] ∶ send ∶ [voucher], [otherSP] ∶ calculate ∶ [switch], [otherSP]: calculate: [prediction]}, DSt}.

7.2 Efficiency metrics

The performance evaluation is done on an Ubuntu 20.04 server with Intel Xeon 6248 2.5 GHz, 64 GB RAM and 1 TB stor-
age. The CBN is setup using HLF v2.5 with four peer nodes, two channels’ configurations and one orderer node. Moreover,
there are four applications to interact with the CBN that are available for each system’s participant as depicted in Figure 1.
These applications and the SCs are written in Node.js. Furthermore, Crypto++ library 8.726 and cpabe toolkit27 are used
for cryptographic operations. The performance of the CBN is measured using Hyperledger Caliper v0.5.0 benchmarking
tool.28 The following efficiency metrics are considered:

1. Compliance check overhead including the initial SP′s policy check and the periodic operation logs checks later.
2. Transaction latency that measures the time from when a transaction is submitted to when the result becomes available

on the CBN.
3. Transaction throughput which is the rate at which valid transactions are committed on CBN. It is expressed as

transactions per second (TPS).

Note for Caliper, the benchmark runs using 10 workers processes where the number of submitted transactions (TXs)
is 1000 at a send rate that varies between 25 and 500 TPS. Finally, the time overhead needed for the system setup (e.g.,
create the system public parameters, form the CBN, configure/create Ch1 and Ch2 on the CBN, install SC on the peer
nodes, and populate the specifications for the privacy, etc.) is not considered here. The reason for that is it only happens
once before the service starts and has no impact on the operations later. Once the CBN is up and running, the system
starts when a SP registers its privacy policy, and it gets checked for compliance to start the data lifecycle. Hence, our
performance evaluation starts from point 3 of the system workflow in Section 4.5.

7.3 Security and privacy analysis

In this section, we evaluate the proposed system against the design goals we identified in Section 4.1, except for efficiency,
which is explained in more details in the next Section 7.4. For demonstration purposes, we assume a set of example
operation logs.

 24756725, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spy2.451 by T

est, W
iley O

nline L
ibrary on [21/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



24 of 30 HASHEM EIZA et al.

7.3.1 Semi-automated GDPR compliance checks

In the proposed system, these checks are achieved by enforcing compliance automatically via the PE by the GA before the
service can run. When SP upload its privacy policies into CBN via calling the SC initialization function, Algorithm 6 in
Section 5.2 is automatically triggered before the result is committed to the ledgers and the DS receives the green light to
use the service. Otherwise, if the SP′s policy fails to comply with GDPR, the GA asks the SP to fix the identified issues and
submit it again. Moreover, periodically, the GA checks the operation logs to ensure continuous compliance. This assures
the DS that their data is handled accordingly without having to perform any extra tasks.

7.3.2 Security and fine-grained access control

Once the SP′s privacy policy  is approved, the DS can start using the service, where the contact details will be collected
according to 𝜋(contact), and based on 𝜋(account), the national insurance number is needed. As discussed in point 5 of the
system workflow in Section 4.5, these DS′s personal data are encrypted using PEKS and CP-ABE algorithms according to
the attributes  required by the SP. Therefore, even if DSt is compromised, adversaries will not be able to read the data
unless they have been given access in the policy 𝜋acc. Moreover, it is infeasible for DSt to identify the DS via the stored data
given the restrictive access on the encrypted data. Other entities such as TP can only access pieces of specific data types
if and only if SP shares a new re-encrypted ciphertext CTPRE with TP. As pointed out earlier in our threat model, system
entities do not collude directly or indirectly for illegal access operations. Therefore, DS′s data security can be guaranteed
in this context.

7.3.3 Transparency

The transparency of the proposed system can be illustrated in the following examples. After the registration phase and
data collection, operations logs will be generated and recorded as a trace of log events according to the specification
defined in Section 4.4. Each new log event generated by DSt and SP will be recorded on the GCL ledger, while log events
related to data access from TP will be recorded on the DAL ledger. For instance, when SP collects a piece of contact data
(e.g., full name) from a DS at 1:01 p.m. on March 2, 2022, the following write log event will be generated and committed
to the GCL ledger.

(contact,E145) =
{“Write”: {

“datatypeto”: “contact”, “ref_to”: “DSt-Ref1234”,
“ref_from”: “-”, “t”: “02/03/2022 13:01”,
“who”: “SP”, “ID”: “E145”}

}

This log specifies that a piece of contact data was written by SP into the location DSt-Ref1234 at 1:01 p.m. on March 2,
2022. The log has the unique ID E145. In this case ref−from is not specified as the data has not been generated from any
other data. Later on, let us assume that there is another write log recorded into the GCL ledger as follows:

(contact,E235) =
{“Write”:{

“datatypeto”: “advideo”, “ref_to”: “DSt-Ref5567”,
“ref_from”: “DSt-Ref1234”, “t”: “12/04/2022 10:14”,
“who”: “SP”, “ID”: “E235”}

}

This log event specifies that an advertisement video was written by SP into DSt-Ref5567 at 10:14 a.m. on April 12, 2022.
The value of ref−from is DSt-Ref1234, which means that the video was generated using the contact data or contains the
contact data, which is stored at DSt − Ref 1234. Let us assume GA invokes the compliance check at 10:30 a.m. on April 12,
2022, then based on Algorithm 2, a violation of 𝜋(contact) is detected, as a piece of contact data is not allowed to be used
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to create an advertisement video by SP. Next, we consider another example related to the consent collection requirement.
Let us assume that at 2:45 p.m. on January 2, 2022 the following log event is committed to GCL:

(energy,E056) =
{“Write”: {

“datatypeto”: “energy”, “ref_to”: “DSt-Ref0045”,
“ref_from”: “-”, “t”: “02/01/2022 14:45”,
“who”: “SP”, “ID”: “E056”}

}

This log event captures the collection of a piece of meter reading (i.e., data type energy). When GA invokes the compli-
ance check the next day at 11:10 a.m. (i.e., on January 3, 2022), since, there is no log event WriteConsent for energy in DSt,
a violation is detected based on Algorithm 1. Finally, regarding the data deletion, as pointed out in the SP policy before,
the contract period is 3 years and data must be deleted from DSt within 6 years based on 𝜋del. Violation of the privacy
policy can happen if after the log event (contact,E145) above, the GCL contains any log event such as:

(contact,E333) =
{“Write”:
{

“datatypeto”: “ND”, “ref_to”: “DSt-Ref1234”,
“ref_from”: “-”, “t”: “time”,
“who”: “SP”, “ID”: “E333”,

}
}

where time is beyond 01/03/2028#13:00. In this case, the contact data stored at the location DSt − Ref 1234 will be
automatically deleted by DSt, which takes the role of the system identity SYS.

7.3.4 Accountability and traceability

During the encryption and delegating access operations, the use of entity’s ID EID and KFN allows tracking of users (i.e.,
DSs) and system entities’ activities. For instance, if a DS, who owns a private key SKAS, is suspected of being dishonest
and/or colluding with an entity E, the Trace(SKAS) function is used to check if the ID matches EID. In case of granting
access via PRE scheme, the Trace(SKAS) functions also checks if KFN is equal to that of the entity who owns EID.

7.3.5 Efficiency analysis

In this section, we focus our efficiency analysis on the compliance checks overhead, and CBN performance in terms of
average latency and throughput as explained in Section 7.2. Moreover, we include a comparison with current schemes in
the literature that consider GDPR compliance. The comparison with these schemes is based on the functionalities they
offer and their features. The rationale behind these choices is due to the fact that most of the schemes in the literature,
except for Reference 12, do not provide enough details of their implementation (e.g., policy language specification and/or
compliance checks algorithms for SC implementation). Hence, we are unable to implement their schemes on the CBN
and perform a fair comparison with ours.

Scope and limitations
The existing cryptographic schemes we used in our proposed system have already been benchmarked against their coun-
terparts (e.g., in Reference 22). However, for the sake of completeness, we should mention that the operations time
overhead in the proposed system is mainly related to authentication in terms of message signing and verification. It occurs
only when the DS encrypts and submits his/her data to DSt. Using AES/CBC (256-bit key) as SEnc(.) with the process-
ing speed of 455 MB/s and SHA-512 with the processing speed of 231 MB/s, it takes the DS approximately 0.02 ms to
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encrypt 10 KB personal data file. These processing speeds are obtained on the same Ubuntu 20.04 server with Intel Xeon
6248 2.5 GHz mentioned above in Section 7.2. On the other hand, the time needed to perform the encryption operation
Enc(PKSP,KW) → (SPEKS) and Enc(PKABE, Sr,AS)→ (CTABE) are approximately 37 and 62 ms, respectively, where AS has
four attributes. The measured time values stay relatively flat even when the number of attributes reaches 100 as shown in
the performance analysis of CP-ABE with accountability in Reference 22, which we have utilized in our scheme. Finally,
with their computational resources, the time needed for decryption by the DSt and SP are negligible.

Efficiency analysis of compliance checks
The initial compliance check against SP′s policy, which is defined in Section 7.1, takes on average 37 ms. Here, we only
verify the GDPR requirements for consent collection, purpose minimization and consistency, data retention delay, and
data access, which are related to the proposed sub-policy specifications. For the scenario above, the system generates four
log files; one for each data type which contains approximately 33–45 numbers of Writeconsent, Write, Send, and Read
events. After 30 runs, the compliance verification of the generated logs against the SP′s policy took on average 200 ms.
Table 1 shows the average time it takes the GA to run its compliance checks against (service) based on the transactions
rate on CBN. It also shows the performance of the read operation on CBN (i.e., getLogs). As pointed out before, the
transaction rate varies between 25 and 500 TPS for getLogs (i.e., when the GA retrieves these logs for continuous auditing
and conformance checks against SP′s policy).

Scalability analysis
Table 2 shows the results for the write operation recordLogs (i.e., when SP, TP, and DSt interact with CBN to record their
logs) for the same workload (i.e., send rates) in Table 1. Note that the average latency increases significantly for the write
operations on CBN as the workload increases since new records are created on CBN hence, consensus must be reached
first among peer nodes therefore, causing extra waiting time. Nonetheless, recording logs is not linked to data operations
that are taking place regardless. Therefore, our proposed system is feasible since the compliance check of logs against the
approved policy is not required to take place simultaneously (i.e., it takes place offline after the logs are recorded).

Finally, in a larger real-world environment where the full privacy policy is included along with larger number of system
participants (e.g., more TPs and DSs), the following considerations should be taken into account. First, as data operations
become very frequent and generate logs at high rate (e.g., more than 200 TPS), the compliance checks will be delayed.
In this case, fine tuning of the periodical compliance checks, which are carried out when the main operations are done,
and acceptable delays should be investigated. Second, since more peer nodes will join the CBN, this will have an impact
on the average latency since consensus among peer nodes will take longer to be achieved. In this case, measures such

T A B L E 1 Transactions latency, throughput and compliance check overhead on CBN—getLogs.

Send rate Average latency Throughput Compliance check

getLogs 25.2 TPS 20 ms 25.2 TPS 220 ms

50.4 TPS 20 ms 50.4 TPS 220 ms

200.8 TPS 40 ms 200.3 TPS 240 ms

399.8 TPS 40 ms 398.4 TPS 240 ms

497.5 TPS 40 ms 495.1 TPS 240 ms

T A B L E 2 Transactions latency and throughput on CBN—recordLogs.

Send rate Average latency Throughput

recordLogs 25.2 TPS 70 ms 25.2 TPS

50.4 TPS 80 ms 50.3 TPS

200.8 TPS 600 ms 200.6 TPS

399.8 TPS 1170 ms 310.3 TPS

497.5 TPS 1500 ms 317.1 TPS

 24756725, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spy2.451 by T

est, W
iley O

nline L
ibrary on [21/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HASHEM EIZA et al. 27 of 30

T A B L E 3 Comparison of features and functionalities.
Relevant
work

Collection
consent

Processing
consent

Policy
language Logs

Conformance
check Number of SCs

Our scheme Yes Yes Formal Yes Semi-automated 6

11 Yes Yes XACML Unknown Manual Undetermined

12 Yes Yes Access control list Unknown Manual 2

F I G U R E 8 recordLogs performance: Throughput.

as different consensus thresholds should be considered to minimize that delay. Third, although the initial compliance
check for the full privacy policy will take longer, it does not impact the system performance since it is done before the
data lifecycle. These considerations are left for our future work.

Comparison with related works
In this section, we choose the works by Daudén-Esmel et al.11 and Truong et al.12 to perform this comparison given their
proper documentation and similarity, in terms of the main objectives and functionalities, to this work. Table 3 compares
the different features and functionalities offered by these works. It can be noted in Table 3 that all schemes differentiate
between data collection and data processing consents. In terms of the utilized policy language, only our work uses a
bespoke privacy policy language designed for fine-grained specification of data protection and privacy requirements.
Our proposed policy language is defined on data types, and supports a systematic policy specification, as its syntax and
semantics cover five sub-policies capturing a representative data life-cycle from collection till deletion.

In terms of generating logs during the data lifecycle, it is unclear how other schemes generate and use these logs for
compliance checks. Therefore, the corresponding feature is left as unknown in Table 3. At least, we can confirm that our
generated logs are used to perform conformance checks semi-automatically while for other schemes, it is done manually
using the logs (i.e., records) on the ledger. A conformance check compares a policy and a log of events based on the privacy
properties. Specifically, if an entity does not have the right to have certain type of data or link two types of data, then in
the logs, during the data lifecycle, this entity cannot have or link those types of data.

Finally, our scheme defines six SCc each dedicated to a different stage of the full data lifecycle from collection, stor-
age and transfer, to deletion. This ensures separate processing and logging of different events during the data lifecycle to
check for compliance later. In the scheme proposed by Truong et al.,12 there are only two SCc; one for authentication,
authorization and access control, and another for access validation and logging. This design approach clearly underper-
formed in terms of average latency as shown in Figure 9 before. On the other hand, the number of SCc in the scheme
proposed by Daudén-Esmel et al.11 is undetermined since a new SC is created every time a new data processor requests
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F I G U R E 9 recordLogs performance: Delay.

to process some DS′s personal data collected by a data controller. This will result in many SCs that could result in high
computing and processing overhead.

In terms of performance, we compare the overhead of the write operation only with that in the scheme proposed by
Truong et al.12 The reason for this is the importance of the write operation in these systems in comparison to the read
operation, which does not cause delays since it does not require creating new blocks, reaching consensus, etc. Unlike the
read operations, write operations represent a bottleneck where blocks are created and are put in a queue waiting to be
verified. Figure 8 shows that our scheme outperforms that in Truong et al.12 when the number of transactions increases
beyond 200 TPS. In fact, our scheme throughput continues to have a success rate of over 63% when transactions reach
497.5. Thanks to the design of different SCs that handle different operations during the data lifecycle, we can keep the
throughput relatively high even when the workload increases. Note that the scheme in Reference 12 only have two SCc,
which are not clearly dedicated to the data lifecycle operations. This point will be explained further in the next sub-section
in conjunction with Table 3.

The advantage of our design approach, where we have six SCs each dedicated to a different stage of the data lifecycle,
can be seen clearly in Figure 9. The delay reaches a maximum of 1500 ms in our scheme when the workload reaches
its maximum capacity of 497.5 TPS. In comparison, the scheme in Reference 12 reaches nearly 4500 ms for the same
maximum workload.

8 CONCLUSION AND OUTLOOK

In this article, we proposed a novel semi-automatic GDPR compliance service with restrictive fine-grained access control.
The service is developed on top of a permissioned blockchain and uses smart contracts to enforce SP’s privacy policy
compliance with GDPR before and during the full data lifecycle. Operations’ logs on personal data are checked regularly
to ensure users’ data are handled according to the privacy policy, which is used to enforce access control on the data
using attribute-based encryption with keyword search and data sharing. The proposed service was evaluated using a real
world privacy policy of an energy SP. The analysis showed that our service achieved transparency and continuous GDPR
compliance checks during the full data lifecycle with low compliance time overhead and high throughput.

For future work, we will extend the proposed policy language to cater to all GDPR requirements and develop a control
panel for SPs to publish their privacy policies on the system. The control panel is envisaged to digest privacy policies
and produce the format required by the system. This can be part of the ASP application functionalities which SPs use to
interact with SCs. It can be developed in isolation of the system and used to call SCs’ functions via their APIs. On the
other hand, from users’ perspective, all the operations of CP-ABE are carried by the application provided by the SP for
their service. Some operations such as PRE are outsourced to the storage server DSt, as mentioned in Section 4.5 to ensure
users’ experience is not affected.

 24756725, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spy2.451 by T

est, W
iley O

nline L
ibrary on [21/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HASHEM EIZA et al. 29 of 30

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ENDNOTE
∗OVO energy, https://sse.co.uk/about-us/legal/privacy-policy.

ORCID
Max Hashem Eiza https://orcid.org/0000-0001-9114-8577
Vinh Thong Ta https://orcid.org/0000-0003-0399-9633

REFERENCES
1. Sun J, Ren L, Wang S, Yao X. A blockchain-based framework for electronic medical records sharing with fine-grained access control. PLoS

One. 2020;15(10):e0239946.
2. Guo Y, Lu Z, Ge H, Li J. Revocable blockchain-aided attribute-based encryption with escrow-free in cloud storage. IEEE Trans Cloud

Comput. 2023;72(7):1901-1912.
3. Yan H, Li J, Han J, Zhang Y. A novel efficient remote data possession checking protocol in cloud storage. IEEE Trans Inf Forensics Secur.

2017;12(1):78-88.
4. Li J, Yan H, Zhang Y. Certificateless public integrity checking of group shared data on cloud storage. IEEE Trans Serv Comput.

2021;14(1):71-81.
5. Zhang R, Li J, Lu Y, Han J, Zhang Y. Key escrow-free attribute based encryption with user revocation. Inform Sci. 2022;600:59-72.
6. Makhdoom I, Zhou I, Abolhasan M, Lipman J, Ni W. PrivySharing: a blockchain-based framework for privacy-preserving and secure data

sharing in smart cities. Comput Secur. 2020;88:101653.
7. Amato F, Cozzolino G, Moscato F, Moscato V, Xhafa F. A model for verification and validation of law compliance of smart contracts in

IoT environment. IEEE Trans Industr Inform. 2021;17(11):7752-7759.
8. Javed IT, Alharbi F, Margaria T, Crespi N, Qureshi KN. PETchain: a blockchain-based privacy enhancing technology. IEEE Access.

2021;9:41129-41143.
9. Wang Y, Su Z, Zhang N, et al. SPDS: a secure and auditable private data sharing scheme for smart grid based on blockchain. IEEE Trans

Industr Inform. 2021;17(11):7688-7699.
10. Heiss J, Ulbricht M-R, Eberhardt J. Put your money where your mouth is—towards blockchain-based consent violation detection. IEEE

International Conference on Blockchain and Cryptocurrency (ICBC), Toronto, ON. IEEE; 2020.
11. Daudén-Esmel C, Castellà-Roca J, Viejo A. Blockchain-based access control system for efficient and GDPR-compliant personal data

management. Comput Commun. 2024;214:67-87.
12. Truong NB, Sun K, Lee GM, Guo Y. GDPR-compliant personal data management: a blockchain-based solution. IEEE Trans Inf Forensics

Secur. 2019;15:1746-1761.
13. Dauden-Esmel C, Castella-Roca J, Viejo A, Domingo-Ferrer J. Lightweight blockchain-based platform for GDPR-compliant personal data

management. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). IEEE; 2021:68-73.
14. BC_GDPR-Compliant_PDManagement_System. Accessed November 8, 2021. https://github.com/toful/BC_GDPR-Compliant

_PDManagement_System
15. Thong Ta V, Hashem Eiza M. DataProVe: fully automated conformance verification between data protection policies and system

architectures. Proc Priv Enhanc Technol. 2022;2022(1):565-585.
16. Hu B, Zhang Z, Liu J, et al. A comprehensive survey on smart contract construction and execution: paradigms, tools, and systems. Patterns.

2021;2(2):100179.
17. Hyperledger Fabric. 2020. Accessed November 13, 2021. https://www.hyperledger.org/wp-content/uploads/2020/03/hyperledger_fabric

_whitepaper.pdf
18. Hearn M, Brown RG. Corda: a distributed ledger. August 2019. Accessed November 13, 2021. https://www.r3.com/wp-content/uploads

/2019/08/corda-technical-whitepaper-August-29-2019.pdf
19. Androulaki E, Barger A, Bortnikov V, et al. Hyperledger fabric: a distributed operating system for permissioned blockchains. Proceedings

of the Thirteenth EuroSys Conference. ACM; 2018:1-15.
20. Boneh D, Crescenzo GD, Ostrovsky R, Persiano G. Public key encryption with keyword search. Advances in Cryptology-EUROCRYPT.

Springer-Verlag; 2004.
21. Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute based encryption. 2007 IEEE Symposium on Security and Privacy. IEEE;

2007:300-314.
22. Li J, Zhang Y, Ning J, Huang X, Sen Poh G, Wang D. Attribute based encryption with privacy protection and accountability for CloudIoT.

IEEE Trans Cloud Comput. 2022;10(2):762-773.
23. Ge C, Susilo W, Liu Z, Xia J, Szalachowski P, Fang L. Secure keyword search and data sharing mechanism for cloud computing. IEEE

Trans Dependable Secure Comput. 2021;18(6):2787-2800.
24. Li J, Shi Y, Zhang Y. Searchable ciphertext-policy attribute-based encryption with revocation in cloud storage. Int J Commun Syst.

2017;30(1):e2942.
25. Dataprove. https://github.com/Dataprove/Dataprovetool/

 24756725, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spy2.451 by T

est, W
iley O

nline L
ibrary on [21/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://sse.co.uk/about-us/legal/privacy-policy
https://orcid.org/0000-0001-9114-8577
https://orcid.org/0000-0001-9114-8577
https://orcid.org/0000-0003-0399-9633
https://orcid.org/0000-0003-0399-9633
https://github.com/toful/BC_GDPR-Compliant_PDManagement_System
https://github.com/toful/BC_GDPR-Compliant_PDManagement_System
https://github.com/toful/BC_GDPR-Compliant_PDManagement_System
https://www.hyperledger.org/wp-content/uploads/2020/03/hyperledger_fabric_whitepaper.pdf
https://www.hyperledger.org/wp-content/uploads/2020/03/hyperledger_fabric_whitepaper.pdf
https://www.hyperledger.org/wp-content/uploads/2020/03/hyperledger_fabric_whitepaper.pdf
https://www.r3.com/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://www.r3.com/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://www.r3.com/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://github.com/Dataprove/Dataprovetool/
https://github.com/Dataprove/Dataprovetool/


30 of 30 HASHEM EIZA et al.

26. Crypto++ Library 8.7, Crypto++ community. Accessed May 13, 2023. https://www.cryptopp.com
27. Bethencourt J, Sahai A, Waters B. Advanced crypto software collection—ciphertext-policy attribute-based encryption. Accessed May 13,

2023. https://acsc.cs.utexas.edu/cpabe/
28. Hyperledger Caliper, Fabric v0.5.0. Accessed May 13, 2023. https://hyperledger.github.io/caliper/v0.5.0//fabric-config/new/

How to cite this article: Hashem Eiza M, Thong Ta V, Shi Q, Cao Y. Secure semi-automated GDPR compliance
service with restrictive fine-grained access control. Security and Privacy. 2024;e451. doi: 10.1002/spy2.451

 24756725, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spy2.451 by T

est, W
iley O

nline L
ibrary on [21/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.cryptopp.com
https://www.cryptopp.com
https://acsc.cs.utexas.edu/cpabe/
https://acsc.cs.utexas.edu/cpabe/
https://hyperledger.github.io/caliper/v0.5.0//fabric-config/new/
https://hyperledger.github.io/caliper/v0.5.0//fabric-config/new/

	Secure semi-automated GDPR compliance service with restrictive fine-grained access control 
	1 INTRODUCTION
	2 RELATED WORKS
	2.1 Comparison with this work

	3 PRELIMINARIES
	3.1 Privacy policy language
	3.2 Blockchain and smart contracts
	3.3 Public key with keyword search (PEKS)
	3.4 Ciphertext-policy attribute-based encryption (CP-ABE) with accountability and proxy re-encryption (PRE)

	4 SYSTEM MODEL AND SPECIFICATIONS
	4.1 Security model and design goals
	4.2 Threat model
	4.3 Policy specification
	4.4 Log events
	4.5 System workflow

	5 SEMI-AUTOMATED GDPR COMPLIANCE SERVICE DESIGN AND ALGORITHMS
	5.1 Compliance between a log and a policy
	5.2 Verification procedure

	6 THE FULL SYSTEM DEPLOYMENT AND OPERATIONS
	6.1 System setup
	6.2 Service registration
	6.3 Encryption and submission of personal data
	6.4 Full data lifecycle operations and logs

	7 PERFORMANCE EVALUATION AND ANALYSIS
	7.1 The scenario
	7.2 Efficiency metrics
	7.3 Security and privacy analysis
	7.3.1 Semi-automated GDPR compliance checks
	7.3.2 Security and fine-grained access control
	7.3.3 Transparency
	7.3.4 Accountability and traceability
	7.3.5 Efficiency analysis
	Scope and limitations
	Efficiency analysis of compliance checks


	Scalability analysis

	Comparison with related works
	8 CONCLUSION AND OUTLOOK
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

