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Discrete orthogonal polynomials (DOPs) have gained significant research attention owing to their crucial 
role in digital signal processing applications such as computer vision, pattern recognition, and compression. 
However, the computation of DOP coefficients often incurs a substantial computational burden, exacerbating 
for higher-degree moments along with the resulting numerical errors. To address this challenge, this paper 
exploits the inherent parallelism in Charlier polynomial coefficient calculations to achieve enhanced polynomial 
performance. Independent calculations are distributed among threads, making efficient use of the available 
processing resources. Two algorithms are presented, the first algorithm evenly distributes the rows in a sequential 
manner (straightforward). Additionally, to achieve a more equitable distribution of coefficient calculations, this 
paper proposes alternative distribution approaches, aimed at balancing processing load among threads. Through 
extensive comparative experiments, we have confirmed that the proposed approaches achieved high performance 
across different degrees (1540 to 7370) and at different numbers of threads (2 to 256). The results show 
processing time in the multithreaded case is improved by up to 9.1 times with respect to the unthreaded case. 
Furthermore, by increasing the number of threads from 2 to 256, the trend indicates that the most significant 
improvement occurs in the range of 32 to 128 threads, confirming the robustness of the proposed algorithm. 
These findings signify the importance of this paper.
1. Introduction

Discrete orthogonal polynomials (DOPs) play a pivotal role in vari-

ous scientific domains, particularly in digital signal analyses, including 
image and speech processing [1–4]. DOPs are invaluable tools for tack-

ling a wide range of challenges because they are able to represent 
data without redundancy, do not necessitate prior information, and ex-

hibit robustness against noise [5]. In addition, these polynomials are 
extensively used in a variety of applications, including edge detection 
[6–8], information concealment [9], speech enhancement [10,11], face 
recognition [12,13], and video content analysis [14]. Basis functions of 
orthogonal polynomials (OPs) can be utilized to estimate the solution 

* Corresponding author.

E-mail addresses: basheera.m@coeng.uobaghdad.edu.iq (B.M. Mahmmod), wam.nazar@coeng.uobaghdad.edu.iq (W.N. Flayyih), 
sadiqhabeeb@coeng.uobaghdad.edu.iq (S.H. Abdulhussain), firas.a.saber@coeng.uobaghdad.edu.iq (F.A. Sabir), bilal.khan@csusb.edu (B. Khan), 

of differential equations [15,16]. It is worth noting that by utilizing 
the characteristics of orthogonal polynomials to extract features and 
reduce dimensionality, they find utility in different applications, includ-

ing data clustering [17,18], tracking [19], and action recognition [20]. 
Additionally, orthogonal polynomials can be used as basis functions or 
approximation tools within the genetic algorithm to improve the ac-

curacy and efficiency of the optimization process [21–24]. Researchers 
have employed Charlier polynomials in various contexts. In [25], the 
speech enhancement algorithm is presented using Charlier polynomials. 
Li et al. [26] applies Charlier polynomials to reduce the model degree of 
discrete-time bilinear systems, while, Kang-Li et al. [27] utilize Charlier 
polynomials for model reduction of discrete time-delay systems.
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The computation of DOP coefficients (DOPCs) is time-consuming 
and subject to numerical errors [28], primarily attributed to the in-

volvement of Gamma functions and hypergeometric series. Conse-

quently, DOPCs are typically computed using the three-term recurrence 
(TTR). Numerous studies [29,30] have shown that the values of DOPC 
provide numerical propagation error for high-degrees with (>172). To 
this end, novel recurrence techniques have been proposed to address 
propagation errors for discrete Chebyshev and Krawtchouk polynomi-

als [31,32].

Charlier polynomials constitute a family of orthogonal polynomials 
defined on the real line with respect to the Poisson distribution. Notable 
characteristics of Charlier polynomials include their three-term recur-

rence relation, which involves the coefficients of the preceding poly-

nomial terms, and their orthogonality property concerning the Poisson 
distribution. These polynomials are commonly used in approximation 
theory, probability theory, and quantum mechanics, offering solutions 
to various mathematical problems and facilitating the analysis of statis-

tical distributions [33–35].

The recurrence relation and moment computing algorithms have 
been extensively explored for Charlier polynomials (CHPs). While re-

currence algorithms have been proposed in both 𝑛- and 𝑥-directions, 
they encounter limitations when generating high-degree polynomials. 
This limitation arises from the initial values and the number of recur-

rence times, making the generation impractical. Some algorithms have 
attempted to lower the computational cost of Charlier moments (CHMs) 
[28] by utilizing either the 𝑛- or 𝑥-direction recurrence algorithm.

Recently, a recurrence technique based on the Gram-Schmidt or-

thonormalization process (GSOP) has been introduced [36]. However, 
this method comes with a high calculation cost due to its involvement 
in multiple iterations and inner products. In a previous work [28], the 
authors addressed the issue of size and reduced the computational cost 
by identifying suitable initial values for various CHP parameter val-

ues (𝑎) and leveraging symmetry relations. However, they have stated 
that further reductions in computational cost were needed to enhance 
CHP generation performance. To date, efficiency and error minimiza-

tion have predominantly been focused in the related literature [37]. 
However, performance, on the other hand, is a key issue in CHP compu-

tation in high-degree polynomials. Motivated by the challenges raised, 
the present study aims to provide an improved recurrence relation that 
efficiently computes CHPs for higher-degree polynomials. The main ob-

jective is to explore the available parallelism in the CHP computations. 
To our knowledge, no previous research has considered the integration 
of multithreading in CHP computation. In essence, the coefficients are 
distributed among independent threads to enable parallel processing, 
and the results are finally combined together. Various threads are con-

sidered to identify the optimal outcome. Furthermore, the exploitation 
of symmetry properties along the primary diagonal serves to reduce the 
number of coefficients requiring processing, thereby further reducing 
the overall processing time.

2. Materials and methods

In this section, the materials and the details of our methodology will 
be introduced. First, the preliminaries are provided, and then, the func-

tions of CHP and their moments are described. Finally, the methodology 
of our proposed approach is explained in detail.

2.1. Preliminaries

CHPs and their moments (CHMs) have been widely used in differ-

ent applications [38] such as image classification, compressive sensing, 
compression, and encryption. This section provides the definition of 
CHPs as well as the calculation of CHMs. Existing TTR relationships are 
also discussed. The definition of CHP 𝐶̃𝑎

𝑛
(𝑥) for the 𝑛th degree (order) 
2

is derived from [34] as given below
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𝐶̃𝑎
𝑛
(𝑥) = 2𝐹0

(
−𝑛,−𝑥

−

||||| −1
𝑎

)
, (1)

𝑛,𝑥 = 0,1,… ,𝑁, 𝑎 > 0,

where 𝑎 represents the parameter of the CHP which influences the 
distribution of moments, parameter 𝑛 represents the degree of the poly-

nomials, 𝑥 is the signal index, 𝑁 denotes the polynomial size, and 2𝐹0
is the hypergeometric series [34]. It is noteworthy that the degree of or-

thogonal polynomials directly impacts the level of detail and accuracy 
in representing the signal. Higher-degree orthogonal polynomials allow 
for finer resolution and more precise representation of the signal, cap-

turing intricate details and variations. On the other hand, lower-degree 
orthogonal polynomials provide a coarser representation that may not 
capture fine details but can still convey the overall structure of the sig-

nal. The choice of the orthogonal polynomial degree depends on the 
application task, computational considerations, and the need to address 
potential numerical instabilities.

The normalized and weighted CHP can be expressed as:

𝐶̃𝑎
𝑛
(𝑥) =

∞∑
𝑘=0

(−𝑛)𝑘 (−𝑥)𝑘
𝑘!

(
−1
𝑎

)𝑘

. (2)

CHP satisfies the orthogonality conditions as explained in [39]:

∞∑
𝑥=0

𝐶̃𝑎
𝑛
(𝑥) 𝐶̃𝑎

𝑚
(𝑥) = 𝑎−𝑛 𝑒𝑎 𝑛!𝛿𝑛𝑚, (3)

where 𝛿𝑛𝑚 denotes the Kronecker delta function.

The use of (2) to compute CHP coefficients (CHPCs) causes numeri-

cal instability because of the binomial and gamma functions. Therefore, 
to address this issue a WNCHP (weighted and normalized CHP) is pro-

posed. The WNCHP of degree 𝑛 can be written as

𝐶𝑎
𝑛
(𝑥) =

√
𝜔𝐶 (𝑥;𝑎)
𝜌𝐶 (𝑛;𝑎)

𝐶̃𝑎
𝑛
(𝑥), (4)

where 𝜔𝐶 (𝑥; 𝑎) and 𝜌𝐶 (𝑛; 𝑎) represent the weight and norm functions of 
the CHPs.

Charlier Moments, also known as Charlier transform coefficients, are 
scalar values used as effective tools for object representation and image 
analysis. These moments provide a concise and non-redundant descrip-

tion of signals, enabling the characterization and analysis of objects in 
various domains, such as computer vision and pattern recognition. By 
capturing essential information, Charlier moments enable efficient rep-

resentation and meaningful analysis of signals (1D such as speech, and 
2D such as image). For a 2D signal 𝑓 (𝑥, 𝑦) with a size of 𝑁1 ×𝑁2, 2D 
CHMs 𝜙𝑛𝑚 can be calculated as follows:

𝜙𝑛𝑚 =
𝑁1−1∑
𝑥=0

𝑁2−1∑
𝑦=0

𝑓 (𝑥, 𝑦)𝐶𝑎
𝑛
(𝑥)𝐶𝑎

𝑚
(𝑦), (5)

𝑛 = 0,1, ...,𝑂𝑟𝑑1 and 𝑚 = 0,1, ...,𝑂𝑟𝑑2,

where 𝑂𝑟𝑑1 and 𝑂𝑟𝑑2 represent the maximal signal characterization de-

gree. The procedure for reconstructing the 2D signal 𝑓 (𝑥, 𝑦) from CHMs 
is as follows:

𝑓 (𝑥, 𝑦) =
𝑂𝑟𝑑1−1∑
𝑛=0

𝑂𝑟𝑑2−1∑
𝑚=0

𝜙𝑛𝑚 𝐶𝑎
𝑛
(𝑥)𝐶𝑎

𝑚
(𝑦), (6)

𝑥 = 0,1, ...,𝑁1 − 1 and 𝑦 = 0,1, ...,𝑁2 − 1.

When all moments are employed in the reconstruction procedure, 
the reconstructed signal is 𝑓 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦).

2.2. Methodology

In this section, the proposed algorithm used to compute CHP is in-
troduced. For more clarification, Fig. 1 depicts the proposed recurrence 
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Fig. 1. CHPs parts of the proposed methodology.

algorithm. The first step is to compute an initial value at location 𝑛0
[28]:

𝐶𝑎
𝑛0
(0) =

√
𝑒(−𝑎+(𝑎+1)𝑙𝑜𝑔(𝑎)−𝑙𝑜𝑔Γ(𝑎)), (7)

where 𝑛0 = 𝑎 (see Fig. 1). This enables the computation for a broad 
range of parameter values (𝑎) as well as for high-degrees polynomial 
[28].

To compute the rest of the CHP values at 𝑥 = 0 (𝐶𝑎
𝑛
(0)), the two-term 

recurrence relation is utilized. This computation involves two distinct 
ranges, as illustrated in part 1 in Fig. 1. For the first range (𝑛 < 𝑎), i.e., 
𝑛 = 𝑎 − 1, 𝑎 − 2, … , 0, the following formula can be used:

𝐶𝑎
𝑛
(0) =

√
𝑛

𝑎
𝐶𝑎
𝑛+1(0). (8)

For the second range (𝑛 > 𝑎), i.e. 𝑛 = 𝑎 + 1, 𝑎 + 2, … , 𝑁 − 1, the 
following two-term recurrence method is used, which is given as

𝐶𝑎
𝑛
(0) =

√
𝑛

𝑎
𝐶𝑎
𝑛−1(0). (9)

After computing the coefficients at 𝑥 = 0, the coefficients at 𝑥 = 1
(refer to part 2 in Fig. 1) are computed using the following two-term 
recurrence relation:

𝐶𝑎
𝑛
(1) = 𝑎− 𝑛√

𝑛
𝐶𝑎
𝑛
(0). (10)

To compute the values of CHP in the range 𝑛 = 0, 1, … , 𝑁 − 1, and 
𝑥 = 2, 3, … , 𝑁 − 1 (see part 3 and 4 in Fig. 1), we leverage a recently 
introduced symmetry relation (duality relation) described in [28]. This 
relation reduces the workload to ∼50% of the coefficients. To adopt 
the duality relation, the coefficients in Part 3 are first computed using 
the recurrence relation, and then the symmetry relation is applied to 
compute the CHP coefficients in Part 4. The utilized symmetry relation 
can be expressed as

𝐶𝑎
𝑛
(𝑥) = 𝐶𝑎

𝑥
(𝑛), (11)

𝑛 = 0,1,… ,𝑁 − 1, and 𝑥 = 0,1,… ,𝑁 − 1.

Accordingly, the coefficients that need to be computed are in the 
range 𝑥 = 2, 3, … , 𝑁 − 1 and 𝑛 = 𝑥, 𝑥 + 1, … , 𝑁 − 1, which is the tri-
angular stage. In this stage, the three terms recurrence relation can be 
3

used:
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Fig. 2. Distribution of unbalanced threads.

𝐶𝑎
𝑛
(𝑥+ 1) = 𝛽1𝐶

𝑎
𝑛
(𝑥) + 𝛽2𝐶

𝑎
𝑛
(𝑥− 1), (12)

where 𝑥 = 1, 2, … , 𝑁 − 1, and 𝑛 = 𝑥, 𝑥 + 1, … , 𝑁 − 1. However, this 
relation is only applied to part 3 (see Fig. 1).

𝛽1 =
𝑎− 𝑛+ 𝑎√
𝑎(𝑥+ 1)

,

𝛽2 = −
√

𝑥

(𝑥+ 1)
.

(13)

2.3. Exploiting the parallelism in the triangular region

Multithread processing refers to a computing approach that involves 
the simultaneous execution of multiple threads within an algorithm. 
Multithreading allows for concurrent execution of multiple tasks, where 
each task runs independently and concurrently, potentially utilizing 
separate processor cores or computing resources [40]. In the proposed 
algorithm, the coefficients in each row can be calculated independently 
from the other rows. This allows parallel computations of the rows by 
distributing them among threads. These threads can run simultaneously 
on different cores, which achieves parallelism.

Each thread will be given a number of rows to process, and since 
data in each row is independent of other rows, data consistency is pre-

served. The final results will be forwarded when all threads complete 
their calculations and the complete matrix is constructed. Two ap-

proaches are considered when distributing the rows among the threads. 
In the first approach, the (𝑁 − 2) rows are distributed among the 𝑘 dif-

ferent threads in sequence as shown in Fig. 2, where each thread takes 
the same number of rows 𝐵, where 𝐵 = (𝑁 −2)∕𝑘 represents the bunch 
of rows that each thread should process. Thread 1 is responsible for 
rows 1 to 𝐵, Thread 2 for rows 𝐵+1 to 2𝐵, and so on. It can be noticed 
that the number of coefficients in each row increases as the row num-

ber increases, where row 1 has the lowest number of coefficients. This 
approach leads to a non-uniform distribution of process load between 
threads since the number of coefficients to be calculated by the first 
thread will be the lowest whereas the last thread will have the highest 
load.

Mathematically, the number of coefficients that need to be com-

puted for the 𝑖th thread is:(
𝑁 − 2)2 1 (

𝑁 − 2)2

𝑇ℎ𝑖 = (𝑖− 1)

𝑘
+

2 𝑘
, (14)
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Fig. 3. UnBalanced approach coefficients distribution (four threads case study).

𝑇ℎ𝑖 =
(
𝑖− 1

2

)(
𝑁 − 2

𝑘

)2
, (15)

where parameter 𝑇ℎ𝑖 denotes the 𝑖th thread, 𝑁 denotes the polyno-

mial size, and 𝑘 represents the number of threads. For more clari-

fication, Fig. 3 shows an example for 𝑘 = 4. It can be noticed that 

thread 1 computes 12
(
𝑁−2
4

)2
coefficients; whereas thread 4 computes 

(4 − 1∕2) 
(
𝑁−2
4

)2
.

It is worth noting that reducing the bunch size would increase the 
number of threads. This should enhance the performance but at the 
same time will increase the overhead induced by the thread generation 
and context switching.

The second approach aims to provide a balanced processing load 
between the threads by dividing the set of rows for each thread (see 
Fig. 4). Each thread will be given half the bunch size (𝑀 = 𝐵∕2) from 
the top rows and the other half (𝑀) from the bottom rows, in a symmet-

ric manner. This ensures that each thread will have an almost identical 
processing load by having an equal number of coefficients to be calcu-

lated, namely 𝑀(𝑁 −1) coefficients. This balance is independent of the 
number of threads, as can be given by the following for the 𝑖th thread:

𝑇ℎ𝑖𝑢𝑝𝑝𝑒𝑟
= (𝑖− 1)𝑀2 + 1∕2𝑀2, (16)

𝑇ℎ𝑖𝑙𝑜𝑤𝑒𝑟
= (2𝑘− 𝑖− 1)𝑀2 + 1∕2𝑀2, (17)

𝑇ℎ𝑖 = 2(𝑘− 1)𝑀2 +𝑀2. (18)

By substituting 𝑘 = 𝑁−2
2𝑀

𝑇ℎ𝑖 =𝑀(𝑁 − 1), (19)

𝑇ℎ𝑖 =
(𝑁 − 2)(𝑁 − 1)

2𝑘
, (20)

which proves that the number of coefficients is independent of the 
thread number.

For the case of 4 threads (𝑘 = 4) as shown in Fig. 5, each thread will 
be given (𝑁 − 2)∕4 rows arranged in (𝑁 − 2)∕8 rows from upper half 
and the same number from the bottom half, but with a different number 
of coefficients. Each thread will process (𝑁 − 2)(𝑁 − 1)∕8 coefficients.

Since the data in the matrix is symmetric across the primary diag-

onal, this work proposes to write the second copy of each coefficient 
immediately after the first copy is written. This will take advantage of 
4

the availability of data that will be cached, thus reducing the memory 
Ain Shams Engineering Journal 15 (2024) 102657

Fig. 4. Distribution of balanced threads.

Fig. 5. Distribution of coefficients among four threads in the balanced approach 
(𝑘 = 4).

access by avoiding reading from the memory at a later point in time. 
This symmetry is embedded in all steps including the threads of part 4 
in Fig. 1.

3. Results and discussion

The proposed approaches were benchmarked with the unthreaded 
case in [28] for different polynomial sizes. Furthermore, the number of 

rows allocated to each thread (bunch size) is changed to see its effect on 
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Fig. 6. Proposed algorithm improvement over the work in [12] for polynomial-size of (a) 1540, (b) 1830, (c) 2330, (d) 3430, (e) 4420, (f) 4600, (g) 4910, (h) 5520, 

and (i) 7370.

Algorithm 1 Compute CHP Coefficients using Multithreading.

Input: 𝑁 , 𝑎, 𝑘
𝑁 Size of CHP, 𝑎 parameter of CHP, 𝑘 Number of threads

Output: 𝐶𝑎
𝑛
(𝑥) which represents the CHP.

1: 𝐶𝑎
𝑛
(𝑥) ← empty array of size 𝑁 ×𝑁

2: function COMPUTE_CHP_COEFFICIENTS(𝑁, 𝑝, 𝑘)

Computing initial values for CHP

3: Compute 𝐶𝑎
𝑛
(0) for 𝑛 = 𝑎 − 1, 𝑎 − 2, … , 0 using (8)

4: Compute 𝐶𝑎
𝑛
(0) for 𝑛 = 𝑎 + 1, 𝑎 + 2, … , 𝑁 − 1 using (9)

Compute initial set at 𝑥 = 1 and 𝑛 = 2, 3, … , 𝑁 − 1
5: for 𝑛 in range 2 to 𝑁 − 1 do

6: Compute 𝐶𝑎
𝑛
(1) using (10)

7: end for

8: Compute coefficients in the range 𝑥 = 0, 1 and 𝑛 = 0, 1, … , 𝑁−1 using 
similarity relation using (11).

9: if algorithm_choice = Unbalanced then

10: Call ALGORITHM_UNBALANCED(𝑁, 𝑎, 𝑘, 𝐶𝑎
𝑛
(𝑥))

11: else if algorithm_choice = Balanced then

12: Call ALGORITHM_BALANCED(𝑁, 𝑎, 𝑘, 𝐶𝑎
𝑛
(𝑥))

13: end if

14: end function

the achieved improvement. As demonstrated in Fig. 6, the largest bunch 
sizes have not achieved the highest improvement. This comes from the 
fact that the resultant number of threads is very small which gives lower 
flexibility in making use of the processor time and resources. It is note-

worthy that threads with a low number of coefficients as in thread 1 
will finish the computations much faster than thread 𝑘, and there will 
be no other threads to utilize the idle resources that were allocated to 
thread 1. The improvement of the balanced approach (case II) clearly 
5

outperforms that of the unbalanced approach (case I) at large bunch 
Algorithm 2 Compute CHP Coefficients using Unbalanced approach.

Input: 𝑁 , 𝑎, 𝑘, 𝐶𝑎
𝑛
(𝑥)

Output: 𝐶𝑎
𝑛
(𝑥)

1: function ALGORITHM_UNBALANCED(𝑁, 𝑝, 𝑘, 𝐶𝑎
𝑛
(𝑥))

Generate threads

2: 𝑇ℎ𝑟𝑒𝑎𝑑_𝑝𝑜𝑜𝑙← thread pool with 𝑘 threads

3: Compute Bunch of Rows (𝐵) 𝐵 = (𝑁 − 2)∕𝑘
4: for 𝑖 in range 0 to 𝑘 − 1 do

5: Set the start row and end row for thread 𝑖
6: 𝑟𝑠𝑡𝑎𝑟𝑡 = 2 + 𝑖 ⋅𝐵 and 𝑟𝑒𝑛𝑑 = (𝑖 + 1) ⋅𝐵 + 1
7: 𝑟𝑜𝑤𝑠 = 𝑟𝑠𝑡𝑎𝑟𝑡 to 𝑟𝑒𝑛𝑑
8: 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑇ℎ𝑟𝑒𝑎𝑑_𝑝𝑜𝑜𝑙, COMPUTE_COEFFICIENTS, 𝑟𝑜𝑤𝑠)
9: end for

10: 𝑤𝑎𝑖𝑡(𝑇ℎ𝑟𝑒𝑎𝑑_𝑝𝑜𝑜𝑙) ⊳ wait for all threads to complete

11: return 𝐶𝑎
𝑛
(𝑥)

12: end function

13: function COMPUTE_COEFFICIENTS(𝑟𝑜𝑤𝑠)

14: for 𝑘 in range 𝑟𝑜𝑤𝑠 do

15: for 𝑥 in range 2 to 𝑘 do

16: Compute coefficients using recurrence relation using (12).

17: Compute coefficients using similarity relation using (11).

18: end for

19: end for

20: end function

sizes. This is consistent with the main objective of this approach since 
a large bunch size brings larger allocation differences between threads 
if this approach is not applied. Having a small number of unbalanced 
threads leads to non-optimal utilization of the processing resources and 
time, and this is what the second approach (balancing approach) was 
designed to resolve. In general, the maximum improvement in all cases 

ranged from 7.5 to 9.1 with respect to the non-threaded case.
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Table 1

Size generated using the proposed algorithm and its improvement over existing algo-

rithms.

𝑎 in terms 
of 𝑁

Value of 𝑎 TTR-n TTR-x Method 
in [28]

Proposed Best improvement 
of the proposed 
and [28] over 
TTR-n and TTR-x

𝑁/6 257 80 76 1540 1540 19.25

𝑁/5 366 92 90 1830 1830 19.89

𝑁/4 583 116 116 2330 2330 20.09

𝑁/3 1114 168 162 3430 3430 20.42

𝑁/2 3685 162 172 7370 7370 42.85

2𝑁/3 3680 154 172 5520 5520 32.09

3𝑁/4 3683 150 172 4910 4910 28.55

4𝑁/5 3680 148 172 4600 4600 26.74

5𝑁/6 3684 148 172 4420 4420 25.7
Algorithm 3 Compute CHP Coefficients using Balanced approach.

Input: 𝑁 , 𝑎, 𝑘, 𝐶𝑎
𝑛
(𝑥)

Output: 𝐶𝑎
𝑛
(𝑥)

1: function ALGORITHM_BALANCED(𝑁, 𝑝, 𝑘, 𝐶𝑎
𝑛
(𝑥))

Generate threads

2: 𝑇ℎ𝑟𝑒𝑎𝑑_𝑝𝑜𝑜𝑙← thread pool with 𝑘 threads

3: Compute Bunch of Rows (𝐵) 𝐵 = (𝑁 − 2)∕𝑘
4: for 𝑖 in range 0 to 𝑘 − 1 do

5: Set the start row and end row for thread 𝑖
6: 𝑟𝑠𝑡𝑎𝑟𝑡1 = 2 + 𝑖 ⋅𝐵∕2 and 𝑟𝑒𝑛𝑑1 = (𝑖 + 1) ⋅𝐵∕2 + 1
7: 𝑟𝑠𝑡𝑎𝑟𝑡2 =𝑁 − 1 − (𝑖 + 1) ⋅𝐵∕2 and 𝑟𝑒𝑛𝑑2 =𝑁 − 1 − 𝑖 ⋅𝐵∕2
8: 𝑟𝑜𝑤𝑠 = 𝑟𝑠𝑡𝑎𝑟𝑡1 to 𝑟𝑒𝑛𝑑1 ∪ 𝑟𝑠𝑡𝑎𝑟𝑡2 to 𝑟𝑒𝑛𝑑2
9: 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑇ℎ𝑟𝑒𝑎𝑑_𝑝𝑜𝑜𝑙, COMPUTE_COEFFICIENTS, 𝑟𝑜𝑤𝑠)

10: end for

11: 𝑤𝑎𝑖𝑡(𝑇ℎ𝑟𝑒𝑎𝑑_𝑝𝑜𝑜𝑙) ⊳ wait for all threads to complete

12: return 𝐶𝑎
𝑛
(𝑥)

13: end function

14: function COMPUTE_COEFFICIENTS(𝑟𝑜𝑤𝑠)

15: for 𝑘 in range 𝑟𝑜𝑤𝑠 do

16: for 𝑥 in range 2 to 𝑘 do

17: Compute coefficients using recurrence relation using (12).

18: Compute coefficients using similarity relation using (11).

19: end for

20: end for

21: end function

On the other hand, a very small bunch size, which results in a large 
number of threads, achieved higher improvement as compared to large 
bunch sizes but was not the highest. Instead, the maximum improve-

ment ranged from 32 threads to 128 threads as can be seen in Fig. 7.

This clearly indicates that a very high number of threads with a 
small workload does not give the optimal performance, which could 
be due to the imposed overhead of the threads generation with respect 
to the actual workload in each thread, in addition to the overhead of 
context switching. This is clear in the improvement drop in small poly-

nomial sizes (Fig. 7 a to c) since the bunch size on the left side of the 
x-axis is small and the number of threads is high. This drop has less ef-

fect in the cases (d to f) and there is no drop in the higher polynomial 
size (g to i) since the bunch size is larger than in previous cases.

The same technique introduced in [41] is used here to evaluate the 
capacity of the proposed algorithm, which outperforms the existing al-

gorithms in terms of maximum produced threads. Comparison results of 
the proposed method and the existing methods are listed in Table 1. The 
results include the maximum size for TTR-n, TTR-x, [28], and the pro-

posed algorithms. The experiment is performed for different values of 
𝑎 for the CHP. The findings reveal that the proposed approach outper-

forms previous algorithms in terms of the size of CHP. In addition, the 
maximum size generated by the proposed algorithm and [28] are equiv-

alent. The numbers reveal that for 𝑎 =𝑁∕6, the minimum improvement 
6

is 19.25, and at 𝑎 =𝑁∕2, the maximum improvement is 42.85.
Fig. 7. Maximum improvement frequency distribution with respect to the num-

ber of threads.

4. Conclusion

The coefficients of Discrete orthogonal polynomials (DOPs) hold sig-

nificant importance in digital signal processing applications such as 
computer vision. Calculating the coefficients of Charlier polynomials 
represents a performance bottleneck that this paper addressed by im-

plementing multithreading. This threaded approach involves the distri-

bution of independent coefficients among different threads, harnessing 
the parallel processing capabilities of multicore resources. Additionally, 
this paper takes into account, the symmetry across the primary diago-

nal to further enhance performance. Two distribution approaches have 
been proposed to divide the processing load represented by the coef-

ficients calculations among the threads. The first approach assigns a 
consecutive set of rows to each thread, resulting in an unbalanced load 
distribution between threads. In contrast, the second approach aims to 
balance the load by allocating two subsets of rows to each thread. The 
results showed a substantial improvement in performance compared to 
the unthreaded case, reaching up to 9.1 times improvement. In gen-

eral, the second approach achieved higher improvement, especially at 
a smaller number of threads due to its ability to highly utilize the pro-

cessing resources. The results also confirmed that a very large number 
of threads, each having a small processing load, did not achieve the 
highest improvement due to the overheads induced. The maximum im-

provement was observed when the number of threads ranged from 32 to 
128. Threading may also be applied to other discrete orthogonal poly-

nomials after analyzing their characteristics and then deriving a suitable 
distribution approach to maximize the enhancement.
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