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Abstract: Many routes may lead to the transition from a healthy to a diseased phenotype. How-
ever, there are not so many routes to travel in the opposite direction; that is, therapy for different
diseases. The following pressing question thus remains: what are the pathogenic routes and how
can be they counteracted for therapeutic purposes? Human cells contain >500 protein kinases and
nearly 200 protein phosphatases, acting on thousands of proteins, including cell growth factors. We
herein discuss neurotrophins with pathogenic or metabotrophic abilities, particularly brain-derived
neurotrophic factor (BDNF), nerve growth factor (NGF), pro-NGF, neurotrophin-3 (NT-3), and their
receptor Trk (tyrosine receptor kinase; pronounced “track”). Indeed, we introduced the word track-
ins, standing for Trk-targeting drugs, that play an agonistic or antagonistic role in the function of
TrkBBDNF, TrkCNT−3, TrkANGF, and TrkApro-NGF receptors. Based on our own published results,
supported by those of other authors, we aim to update and enlarge our trackins concept, focusing on
(1) agonistic trackins as possible drugs for (1a) neurotrophin-deficiency cardiometabolic disorders
(hypertension, atherosclerosis, type 2 diabetes mellitus, metabolic syndrome, obesity, diabetic erectile
dysfunction and atrial fibrillation) and (1b) neurodegenerative diseases (Alzheimer’s disease, Parkin-
son’s disease, and multiple sclerosis), and (2) antagonistic trackins, particularly TrkANGF inhibitors
for prostate and breast cancer, pain, and arrhythmogenic right-ventricular dysplasia. Altogether, the
druggability of TrkANGF, TrkApro-NGF, TrkBBDNF, and TrkCNT−3 receptors via trackins requires a
further translational pursuit. This could provide rewards for our patients.

Keywords: Trk-targeting drugs (trackins); Trk receptors; NGF; proNGF; BDNF; NT-3; cardiometabolic
diseases; Alzheimer’s disease; cancer; pain

1. Introduction

Thus, the task is not so much to see what no one has yet seen but to think what nobody
has yet thought about that which everybody sees.

Arthur Schopenhauer

The discovery of nerve growth factor (NGF) in 1951 by Rita Levi-Montalcini was
the Rosetta stone in understanding neural differentiation, survival, and functions [1,2].
Life, at both the local and systemic levels, requires nutritional, immune, neurotrophic, and
metabotrophic support. Many routes may lead to the transition from a healthy to a diseased
phenotype. However, there are not so many routes to travel in the opposite direction; that
is, therapies for cardiometabolic diseases (CMD), neurodegenerative diseases, and cancers,
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thus extending human life expectancy and Quality of Life (QoL) [3–6]. The following
pressing question thus remains: what are the pathogenic routes and how can they be
counteracted for therapeutic purposes?

2. Neurotrophins and Their Receptors

At present, the neurotrophin family of proteins consists of NGF, pro-NGF, brain-
derived neurotrophic factor (BDNF), pro-BDNF, neurotrophin-3 (NT-3), NT-4/5, and NT-
6 [5,6]. Of these, NGF, pro-NGF, BDNF, and NT-3 are multifunctional proteins, which, in
addition to their neurotrophic action, exert various extraneuronal effects directed to im-
mune, endothelial, beta-pancreatic, muscle, epithelial, and other nonneuronal cells [3–10].
As well as the metabolism of lipids and carbohydrates, we named metabotrophic effects
and metabotrophic factors (MTF) [5,6].

Neurotrophins elicit their outcomes via ligation to p75NTR), the pan-neurotrophin
receptor, and Trk receptors, namely, TrkANGF, TrkApro-NGF, TrkBBDNF, TrkBNT−4/5, and
TrkCNT−3. The acronym Trk intends for tyrosine receptor kinases vs. non-receptor tyrosine
kinases, which have no transmembrane domain (Figure 1, Tables 1–3).
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Figure 1. Neurotrophins and their Trk receptors. Redrawn from [11].

Table 1. Neurotrophin receptors and ligands. * Notably, the Trk receptor’s transactivation through the G
protein-coupled receptor has lately arisen as an original perspective on neurotrophin functions [12].

Receptors * Neurotrophins

p75NTR NGF, BDNF, NT-3. NT-4/5
TrkA NGF, pro-NGF
TrkB BDNF, pro-BDNF, NT-4/5
TrkC NT-3

Table 2. Multiple effects of NGF and BDNF. * Arrhythmogenic right-ventricular dysplasia (ARVD)
is characterized by the accumulation and dysfunction of adipose tissue in the right ventricle of the
heart, leading to ventricular arrhythmias and progressive right-ventricular failure, and often sudden
cardiac death.

Physiotherapeutic Pathogenic

Neurotrophic [13–16] Oncotrophic (cancerogenic) [17–20]
Immunotrophic [21,22] Nociceptogenic [23]
Меtabotrophic [5,6,22] Arrhythmogenic [24] *
Psychotrophic [20,25–30] Pruritus [31,32]
Cognitogenic [33–42] Dry-eye disease [43]
Angiogenic [44–53]
Sperm vitality, mobility, fertility [54]
Skin, cornea, axon and bone wound/fracture healing [31,32,43,55–70]
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Table 3. Metabotrophic effects of NGF and BDNF [5,6,22,54].

NGF and BDNF are released by pancreatic beta cells and have an insulinotropic effect

NGF has homology with proinsulin

BDNF-deficient mice may develop metabolic syndrome-like abnormalities

NGF up-regulates the expression of PPAR-gamma

NGF and BDNF are trophic factors for pancreatic beta cells

BDNF improves cognition

NGF up-regulates the expression of LDL receptor-related proteins

NGF increases skin and corneal wound healing

NGF inhibits glucose-induced down-regulation of caveolin-1

NGF increases diabetic erectile dysfunction

NGF may rescue silent myocardial ischemia in diabetes mellitus

A healthy lifestyle potentiates brain and/or circulating BDNF and NGF

An atherogenic diet reduces brain BDNF

BDNF potentiates cognitive processes

BDNF-deficient mice may develop abnormalities similar to the metabolic syndrome

In this connection, Figure 2 illustrates our own results of the potential significance of
reduced local and/or blood levels of NGF and BDNF, functioning as metabotrophic factors
(MTF) for the pathobiology of obesity and its related cardiometabolic and neurodegener-
ative diseases, particularly Alzheimer’s disease (AD), with the latter being considered a
neurometabolic disease [3–6,8–10,18].
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Figure 2. Metabotrophic factors (MTF) and their Trk receptors on the crossroads of the pathogenesis
of and therapy for cardiometabolic diseases (CMD) and neurometabolic diseases (NMD), particularly
Alzheimer’s disease (AD). Credit Nikifor N. Chaldakov.

3. NGF, BDNF, and Their Trk Receptors: Druggable Targets for Disease Therapies

Druggability is a term used in drug discovery to describe biological targets [71,72].
In the context of the present article, these are the neurotrophins and their Trk receptors
that are known or predicted to bind with high affinity to a drug [71,72]. Furthermore, by
definition, the binding of the drug to a druggable target must alter the function of the target,
with a therapeutic benefit to the patient [71,72]. The idea of druggability is most often
constrained to low-molecular-weight chemicals (pharmaceuticals) but has also been revised
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to include biologicals such as therapeutic monoclonal antibodies, and nutraceuticals such
as polyphenols extracted from vegetables [73,74].

There are numerous pathways that can cause the transition from a healthy to a diseased
phenotype. In contrast, the pathways to reverse this process, such as treating conditions
like CMD and cancers to extend human life expectancy, are limited. The critical question is
as follows: what are these pathogenic pathways, and how can they be effectively countered
for therapeutic purposes?

Human cells contain >500 protein kinases and nearly 200 protein phosphatases acting
on thousands of proteins including cell growth factors in health and disease; see [3,4]. At
present, BDNF, NGF, and pro-NGF play a crucial role in the pathogenesis of a wide spectrum
of neuronal and non-neuronal disorders, such as Alzheimer’s and other neurodegenerative
disorders, including obesity and related CMD [3,4,6]. The decreased presence of resident
and/or blood circulating BDNF and NGF was described in metabolic syndrome, human
coronary atherosclerosis, and acute coronary syndromes [3–7,9,10], suggestive of (i) a key
function played by BDNF and NGF in the pathogenetic processes and (ii) a potential
therapeutic action of TrkBBDNF and TrkANGF receptor agonists in CMD. Indeed, it is well
known that BDNF acts in the leptin-mediated anorexigenic circuit to regulate the adipose-
brain regulation of food intake; see [5,6]. Mice heterozygous for BDNF-targeted disruption
and mice with a reduced expression of the TrkBBDNF receptor show hyperphagia and
obesity; see [4–6].

Notably, short-term myocardial ischemia produces a sympathetic cardiac innervation
dysfunction associated with a rapid elevation in NGF release, while the NGF exogenous
administration acts against such neuronal dysfunction, indicating that the endogenous pro-
duction of NGF is inadequate for efficient neural protection [75]. Since reduced local and/or
circulating levels of NGF and BDNF were found to be related to atherogenesis [3–10], the
stimulation of TkrANGF and TrkBBDNF receptors could create possible agonistic trackins
with an anti-atherosclerotic effect.

Furthermore, recent studies show the therapeutic potential of NGF in the healing of
corneal and cutaneous wounds [8,28,62,63,76,77], while TrkANGF receptor antagonists have
been studied for new drugs for prostate, breast, and other malignant tumors, as well as
for pain [20,29,30,78]. Stromal cells of the prostate and adipose stromal cells secrete NGF,
which, in a paracrine way, can stimulate the carcinogenic proliferation of prostatic epithelial
cells [79]. In support of such data, chemical substances that inhibit TrkANGF receptors
are increasingly being investigated as potential anticancer drugs. For instance, TrkANGF

receptor expression is positively associated with the invasion and malignancy of cancer
cells in the prostate, and its antagonist Lestaurtinib (codename CEP-701) was included in
some clinical trials focusing on prostate cancer [80]. This drug is the chemical substance
indolocarbazole that specifically inhibits the TrkANGF receptor [19,80]. It should be noted
that natural antibodies against NGF are also present in intravenous gammaglobulin (IVIg),
which may inhibit the in vitro migration of prostate cancer cells; see [81]. Intriguingly, it
was reported that tamoxifen, prescribed to breast cancer patients, may inhibit TrkANGF

phosphorylation and, respectively, the NGF-elicited proliferation of epithelial cells from
breast cancer [82]. Reflecting on the phenomenon of repurposed drugs (such as aspirin and
colchicine), the findings about tamoxifen align with numerous other instances where an
old drug has been found to have a new use.

Another “danger” arises from data showing that NGF-induced increases in the sympa-
thetic innervation of the myocardium are implicated in the pathobiology of sudden cardiac
death [83]. We consider these latter results as suggestive of a probable participation of NGF
and its TrkA receptor in the pathogenetic mechanisms of arrhythmogenic right-ventricular
dysplasia [24]. This is a genetic type of cardiomyopathy, characterized histologically by the
substitution of deteriorated cardiomyocytes with NGF/BDNF-produced adipocytes docu-
mented in our immunohistochemical study [24]. Despite this, the possibility of TrkANGF

and TrkCNT−3 receptor antagonists possessing an anti-arrhythmogenic action remains to
further be investigated.
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Intriguingly, high-pressure treatment with sterile physiological saline isotonic solution
into the nasal cavity of individuals with sensorineural hearing loss and tinnitus potentiates
NGF levels (in the nasal fluid), leading to improved hearing [84]. “Paradoxically”, recent
experimental results obtained with a TrkANGF receptor inhibitor, GW441756, suggest
that one component of an optimal therapy for Alzheimer’s disease may be a TrkANGF

antagonist [20].

4. Conclusions and Perspectives

In science, the Apollonian tends to develop established lines to perfection, while
the Dionysian rather relies on intuition and is more likely to open new, unexpected
alleys for research. The future of mankind depends on the progress of science,
and the progress of science depends on the support it can find. Support mostly
takes the form of grants, and the present methods of distributing grants unduly
favor the Apollonian.

Albert Szent-Gyorgyi (1972), Nobel Prize winner 1937 in Physiology or Medicine

This translational review highlighted the possible druggability of NGF-TrkANGF-
TrkApro-NGF, BDNF-TrkBBDNF, and NT3-TrkCNT−3 through agonistic or antagonistic track-
ins for therapy for different pathologies (Table 4). This may contribute to the theoretical
hypothesis of an innovative therapeutic frame for further translational investigations deal-
ing with trackins.

Table 4. Trackins and therapy for different diseases; see [3,4,6,23,27–32,57–59,62–64,78,79,85].
* T2/3DM, type 2/3 diabetes mellitus.

Agonists Antagonists

TrkANGF, TrkApro-NGF, TrkBBDNF, TrkCNT−3 TrkANGF
Cardiometabolic diseases Cancers

Atherosclerosis, hypertension Prostate, Breast
Obesity, T2DM *, metabolic syndrome Brain, Pancreas, Lung

Atrial fibrillation
Diabetic erectile dysfunction

Cardiovascular diseases
Arrhythmogenic right ventricular dysplasia

Sudden cardiac death
Neurometabolic diseases

Alzheimer’s disease (T3DM) * Pain
Parkinson’s disease Pruritus
Multiple sclerosis

Wounds
Skin, cornea, bone, axon

Let us remember that the plasma membrane contains microdomains termed lipid rafts
(LRs, existing as caveolae) that are enriched in lipids, such as glycosphingolipids, ganglio-
sides, and cholesterol [86]; LRs are scaffolds for many receptors. Much evidence indicates
that the functions of LRs depend upon the interactions with the cytoskeletal microtubules
(MT) and MT-associated motor proteins [87]. NGF enhances the interaction between TrkA
and MT at lipid rafts controlling different cellular responses including axonal growth [87].
These data suggest the existence of an intriguing quartet consisting of NGF-TrkNGF-MT-
LR. In the brain, pro-NGF is the only detectable form of NGF; thus, the dysregulation of
pro-NGF and/or its TrkApro-NGF receptor in the brain could be implicated in age-related
memory loss, including AD [87]. Further, the current data suggest that an increase in
reactive oxygen species (ROS) and reactive nitrogen species (RNS) reduces the expression
of the TrkApro-NGF receptor; additionally, the dysfunction of the MT motors kinesin and
dynein may lead to disruptions to the TrkApro-NGF receptor’s downstream survival signal-
ing [88]. Conventional thinking immediately proposes antioxidant treatments as beneficial
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in restoring pro-NGF signaling and reducing brain neurodegeneration and related deficits
in cognitive function. Since ROS-RNS also interferes with the abovementioned intriguing
quartet [88], we wonder whether the murburn concept of the biology of oxygen [89–91]
could explain such an association between Trk, ROS, RNS, MT, and AD.

Existing limits to Trk-targeting drug development include several critical tasks. One
main issue is achieving a high specificity for Trk receptors without distressing similar
kinases, leading to off-target results and unsolicited side effects. Furthermore, the progress
of resistance mechanisms in the disease through mutations or unusual signaling pathways,
obscures the long-term efficiency of these drugs. There are pharmacokinetic obstacles
too, such as limited bioavailability and impairments in drug delivery to target tissues,
restricting their therapeutic potential. Addressing these limits is crucial for advancing
Trk-targeting treatments and improving outcomes for people with Trk-driven disorders.

In a nutshell
The concept of trackins highlighted herein is a promising step forward, but not the

whole journey—however, it promises a reward in future translational research. Since 2016,
see [3–5,7,22], we have been “pondering what no one else has yet considered about what
everyone observes”, thus introducing the term trackins [4] with respect to the bivalent
nature of the druggability of TrkANGF and TrkBBDNF receptors and, consequently, their
stimulation or inhibition by trackins (pharmaceuticals, nutraceuticals, and/or biologicals),
showing the relevance of this subject to therapies for the different diseases discussed in the
present short review.

Doubtless, we remember René Descartes’ idea that “de omnibus dubitare, vel dubitare de
ipsa” (from Latin—“everything must be doubted”).

5. Addendum

Human love of knowledge leads to the wish to “see inside” the body of organisms.
Initially, this was achieved by Aristotle’s biology, the first in the history of science, which
included five major processes:

1. A metabolic process, whereby animals take in matter, change its qualities, and dis-
tribute these to use to grow, live, and reproduce.

2. Temperature regulation, whereby animals maintain a steady state, which progressively
fails in old age.

3. An information-processing model, whereby animals receive sensory information and
use it to drive movements of the limbs.

4. The process of inheritance.
5. The processes of embryonic development and spontaneous generation

These five processes formed what Aristotle (384–322 BC) called the soul, as illustrated
in Figure 3:
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