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Identifying Ships from Radar Blips like Humans 

Using a Customized Neural Network 
 

Feng Ma, Zhe Kang, Chen Chen*, Jie Sun, Xiao-bin Xu, Jin Wang 
 

 Abstract—An experienced helmsman can always distinguish ships 

from a pile of radar blips in scenarios such as nearshore waters 

and inland rivers with a single glance. To replicate this 

intelligence, a novel approach called MRNet based on deep 

convolutional networks is proposed. It employs a highly 

customized neural network to extract critical information from 

successive radar scans, ranging from low-level characteristics to 

high-level semantics. The feature fusion network of MRNet is also 

built with a Depthwise Separable Convolution-based network, 

which reduces parameter size and calculational usage while 

improving overfitting issues significantly. In the final prediction 

procedure, a method based on weighted-box fusion and a Scylla-

IoU function is used to accelerate convergence. A marine radar 

image dataset, namely radar3000, was established to validate the 

proposed approach. In the corresponding experiments, the recall, 

identification accuracy, and precision of MRNet reached 0.9663, 

0.9418, and 0.9267 respectively. On the other hand, the parameter 

size and calculational consumption were controlled to only 34.41M 

and 21.55G respectively. Compared with the commonly-used 

fractal algorithms and the YOLO series, the MRNet can be 

described as significantly superior in the application of 

recognizing ships from marine radar blips, especially in crowded 

scenarios, which is very similar to human eyes, and can be of great 

use to navigation and coastal surveillance.  

 
Index Terms—Marine radar; Ship identification; Depth 

convolutional neural network; Feature fusion network; Maritime 

management  

 

I. INTRODUCTION 

T is necessary to keep an eye on ships in congested waters, 

waterways close to harbors, and high-risk areas to ensure 

their safety. Diverse monitoring approaches are frequently 

utilized in ship navigation, harbor monitoring, and fishery 

management [1] to satisfy this demand. Marine radar (MR) 

systems are typically utilized as the primary sensors in these 

applications because they are capable of capturing images that 

are satisfactory in adverse conditions (rain, fog, etc.) or low 

visibility. Radar systems show any things, including moving 

and stationary ships, large waves, reefs, rocks, and shorelines, 

as blips. Thus, distinguishing ships from these blips requires 
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expertise and typically a helmsman. Presently, certain advanced 

marine radar systems have modules called ARPA, or Auto 

Radar Plotting Assistance, that allow them to monitor moving 

blips. Specifically, ARPA can extract abundant ship navigation 

information by processing the raw radar data [2], but the 

existence of considerable interference in some complex 

scenarios results in a significant amount of erroneous 

information. Consequently, Existing modules are unable to 

identify blips in crowded waters or inland rivers.  

In radar surveillance, ship blips are commonly categorized 

into high-speed and low-speed items. Presently, the ARPA 

modules integrated within radar systems demonstrate a notable 

capability to discern the distinct visual attributes of high-speed 

objects from the background in the majority of instances, owing 

to their inherent salience. In addition, these fast-moving objects 

are likely moving ships when viewed by a marine radar system. 

Conversely, the berthing and unberthing of low-speed ships are 

extremely comparable to reefs, noise, and coasts. Hence, a 

much deeper comprehension of the radar images is necessary 

for the reliable identification of these items.  

Yet, there are further challenges in trying to find ships in 

radar blips. First of all, radar images are frequently interfered 

with. Only a small percentage of radar blips in navigable waters 

correspond to moving ships. Radar photographs have far lower 

definition than regular images, thus there is not a lot of 

information there. In addition, it can be challenging to squelch 

additional contaminants like waves, clouds and rain. The 

images are greatly influenced by the radar system's angle of 

observation in relation to the ships. Moreover, ships are 

typically depicted as small, ineffective objects in radar images, 

which results in these ship blips containing only a small number 

of significant features. Identification becomes more challenging 

when the ships are close to the shore since the shore will 

effectively alter the ship’s blips.  

The conventional methods for identifying ships in marine 

radar images are based on fractal algorithms, filtering, doppler 

effects, and pattern recognition. They are typically used for 

target extraction from clutter suppression, motion estimation, 

and clutter suppression. They are perfectly able to follow 
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moving ships on the open sea. These techniques, however, do 

not work well with little radar blips, things moving slowly, or 

rather significant background disturbances. Instance 

segmentation, object identification, and tracking technologies 

have advanced quickly in the past ten years as convolutional 

neural networks (CNN) and other Deep Learning-based 

techniques have gained popularity. The extraction of deep 

semantic information using identification methods based on 

CNNs, including the YOLO series and the R-CNN-based 

networks, has clear advantages over traditional methods and is 

performed admirably in challenging situations like industrial 

production lines, autopilot, vehicles, and airplanes. These 

techniques are made for commonplace photos with lots of 

colors, contours, and spatial information. Radar images are 

challenging to grasp, even for human eyes, as was previously 

mentioned. In conclusion, when a dedicated network is created 

by the characteristics of marine radar, CNNs may exhibit 

improved proficiency in discerning ships within radar blips.  

In this research, a novel MRNet approach based on deep 

convolutional networks is suggested to extract ships in radar 

blips for navigation or coastal monitoring. Our approach 

considerably differs from earlier studies in the following areas, 

considering the present accomplishments.  

1) To extract important ship characteristics and improve 

the capacity to separate small-scale ships from 

interference, a distinctive feature network is applied.  

2) A unique multi-receptive field fusion structure and a 

novel receptive field expansion module are created to 

process the feature output and merge local and global 

information.  

3) To increase the positioning accuracy of the ships, the 

non-maximum suppression (NMS) and positioning 

loss computation of the prediction boxes are 

optimized.  

4) To facilitate the algorithms in learning ship features 

from radar images, a dataset containing multi-scene 

and multi-type data is constructed.  

The remainder of this paper is organized as follows. Section 

II briefly reviews the related studies on object identification 

under different scenarios. Section III proposes the enhanced 

ship identification method based on deep convolutional 

networks. Experimental results on marine radar images are 

comprehensively analyzed in Section IV. The main 

contributions of this work are concluded in Section Ⅴ.  

II. REFERENCE 

Finding specific objects in various radar images has been a 

well-known research topic for decades. Among the most 

popular techniques are fractal geometry, filtering, motion 

estimation, and pattern recognition. However, the accuracy of 

these techniques is typically poor in crowded or complicated 

situations. For instance, the so-called ARPA function in a 

marine radar system is created using the aforementioned 

techniques and is only reliable in open waters, making harbors, 

rivers, and busy waterways practically useless. It is logical to 

use CNNs to identify ship blips in marine radar images given 

that object identification and tracking technologies based on 

CNNs and other Deep Learning-based algorithms have been 

shown to outperform conventional methods in a variety of 

identification scenarios. To serve as a guide for the MRNet 

algorithm design, this section provides a summary of the state 

of ship identification techniques in marine radar images, 

followed by an overview of object identification technology 

and optimization techniques in other scenarios.  

A. Ship identification in marine radar images 

Traditional image processing, filtering, pattern recognition, 

etc. are the main components of traditional identification 

methods. The main technical details and development of the 

relevant methods' research will be succinctly summarized in 

this section.  

In many studies, the methods, including threshold 

binarization and extraction of the image-connected domain, are 

the beginning of radar image processing. Subsequently, the 

moving blips will be tracked by morphological characteristics. 

Chen et al. [3] estimated the ships’ position by calculating the 

features of the ship wakes in the images. However, with the 

increase of the radar reference distance, the positioning 

accuracy would decrease observably. Han et al. [4] extracted 

the coastline outline around the ship from the image, and then 

matched the coastline features with the pre-constructed map to 

estimate the ships’ position in the specific waterway. These 

methods perform satisfactorily when the blips of ships are 

relatively large and distinguishable.  

Meanwhile, researchers frequently employ filtering 

algorithms to determine the location, velocity, and course of 

ship blips in radar images. Such techniques presuppose that the 

ship always intends to sail straight ahead and that any deviation 

in the tracking of a blip is the result of observational noise. 

When a ship is berthing or unberthing, such an assumption is 

incorrect. Wen et al. [5] proposed an image clutter suppression 

and identification method based on time-domain joint filtering. 

This work converted image signals into a three-dimensional 

image spectrum through a 3D fast Fourier transform. Then, they 

designed a time-domain clutter suppression model to filter the 

image spectrum, achieving high accuracy in the testing image 

sequence. Wu et al. [6] used preprocessing methods to obtain 

static feature points in radar images. At the same time, they used 

synchronous positioning and mapping algorithms to calculate 

the actual trajectory of ships, which could extract the time and 

position data of ships from a large number of blips in images. 

Therefore, accurate ship motion modeling may enable an 

effective filtering algorithm. However, when ships are moving 

slowly or there is significant background interference, such 

filtering algorithms are no longer effective.  

Pattern recognition methods are very common in marine 

radar processing, which can be used to distinguish whether a 

blip is a ship or not. Such methods have a promising 

performance on ship identification in radar images. In 

particular, the extensive use of non-probability has improved 

recognition accuracy. Ma et al. [7] proposed a method based on 

evidential reasoning (ER), which obtained the likelihood 

information of the ships and used ER rules to estimate the 
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reliability of a specific blip being a ship.  

In addition, scholars have built several datasets to accelerate 

the research of identifying ships in radar systems. Osman et al. 

[8] established a database that combines synthesizing multi-

angle range profile data of ships in a radar system. At the same 

time, they proposed a method to identify ships in radar images 

with the help of a novel model and a database. This method 

analyzed the contour, space, and velocity characteristics of 

radar blips, then classified multiple types of ships using a so-

called object matching method. However, this method needs a 

huge dataset for learning, which also leads to high 

computational demands. Moreover, the generalization ability of 

the proposed method is dissatisfactory.  

In recent years, ship identification technologies based on 

CNNs have been developed from different perspectives in radar 

systems. Mou et al. [9] adopted hierarchical normalization 

methods to extract key features of ships in their proposed 

method. Meanwhile, they used a spatial attention network to 

suppress clutter and enhance effective feature signals. Chen et 

al. [10] improved Faster R-CNN from the aspects of the 

backbone network, the anchor box size, and the feature scale 

normalization. In the testing, their method achieved high 

accuracy and promising robustness in the application of 

identifying ships in radar images. Chen et al. [11] proposed a 

ship identification method based on a so-called dual-channel 

convolutional neural network (DCCNN) and a novel false 

alarm controllable classifier (FACC), which could effectively 

suppress clutter signals and accurately extract key features of 

ships. It can be concluded that the use of CNNs is capable of 

effectively extracting ships from images and achieving high 

accuracy. However, these methods are all designed and 

validated in open waters. Their abilities to adapt to complex 

environments, such as crowded waters and harbors, have not 

been proven.  

The accuracy of identifying objects in radar images is also 

determined by pre-posed noise suppression, image 

enhancement, and data fusion after preliminary identification. 

Mao et al. [12] proposed an efficient marine radar imaging 

method based on the non-uniform imaging theory, which 

combined a beam recursive anti-jamming method and a non-

uniform sampling model to extract ship distribution with lower 

computation, providing high-quality images. Zhang et al. [13] 

used a generated countermeasures network to remove the noise 

in radar images and utilized the registration methods to remove 

the imaging differences between radar and chart data. Then, 

they used the sparse theory and the Fourier transform to process 

the feature data and to fuse the image.  

In summary, the ship identification algorithms utilized deep 

learning, and CNNs are capable of efficiently suppressing 

various interference, i.e., complex weather, ocean clutter, 

islands, and reefs, which have high accuracy for multi-scale or 

multi-class ships. Such algorithms show more adaptability and 

resilience for ship identification in marine radar images than 

classic methods, which could be a fruitful research direction.  

B. Ship identification in natural and SAR images 

In the last decade, CNN-based methods have been the 

mainstream of object detection and identification in various 

fields gradually. These algorithms can be divided into one-stage 

[14],[15] and two-stage [16],[17] methods. The one-stage 

algorithms generally have fewer convolutional parameters, 

which consider inference speed and recognition accuracy at the 

same time. The two-stage algorithms that can achieve a higher 

accuracy usually have more parameters. However, these 

algorithms are slower than one-stage ones. Presently, a 

considerable proportion of ship identification algorithms are 

designed for Synthetic Aperture Radar (SAR).  

In the research of ship identification in ordinary images, the 

majority of these methods are designed based on one-stage 

algorithms. By constructing efficient feature extraction 

networks and dedicated fusion structures, such methods are 

capable of extracting features of images at different scales [18]-

[20]. In the research of identifying ships in SAR images, a 

considerable number of researchers chose to optimize the 

feature extraction structure of the widely-used CNN-based 

algorithms, aiming to improve their performances [21]-[23]. In 

addition, other dedicated optimization strategies have been 

adopted to ensure the generalization ability, e.g., the neural 

structure search method, the label redistribution strategy, and 

the feature pyramid network (FPN) [24]-[26]. Moreover, 

identifying small objects in SAR images seems to be a hot issue 

of many researchers’ study. Their experiments have proved that 

all the improvements including special structures, dedicated 

training strategies and robust datasets can increase the accuracy 

of identifying small objects in radar images [27]-[29].  

C. Optimization methods of ship identification  

It is a valid and natural way to increase the accuracy of a 

specific identification algorithm by building a specialized, 

labeled, and well-balanced dataset [30]. Moreover, methods 

such as feature enhancement, key point extraction, and 

interference suppression can also improve the accuracy of 

object identification [31],[32]. In some ship identification 

scenarios, the computing resource is limited, since the 

applications are deployed on embedded devices. Therefore, it is 

necessary to design lightweight identification algorithms. Yin 

et al. [33] designed an efficient lightweight feature extraction 

network using a so-called depthwise separable convolution 

network to balance accuracy and inference speed. Deng et al. 

[34] proposed a joint compression method composed of 

quantitative perception training and structure pruning based on 

Taylor expansion, reducing the parameters and computation 

according to hardware constraints.  

In conclusion, since identifying small objects is always a 

bottleneck problem in radar applications, it is essential to build 

a dedicated network by the imaging characteristics of marine 

radar systems. An effective feature extraction network and an 

appropriate predictive structure based on CNNs can 

significantly increase the accuracy of ship identification in kind 

of images, obviously superior to traditional methods. In the 

study, a proposed identification technique that combines a deep 

convolutional feature network with a fusion structure is capable 

of incorporating both high-level semantic data and low-level  
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Fig. 1. The flowchart of the ship identification framework 

 

feature information. Such a network can, however, withstand 

the effects of interference.  

III. A PROPOSED METHOD 

The framework for identifying ships in marine radar images 

proposed in this research is shown in Fig. 1, which is mainly 

composed of a feature extraction network and a lightweight 

feature fusion structure. In particular, the EfficientNet-B4 [35] 

network is selected as the kernel of the feature extraction 

network, which has a satisfactory performance in extracting 

small objects’ features at different levels in radar images. 

Moreover, a lightweight feature fusion network that includes 

three layers of prediction channels is designed, which 

respectively cover the identification process of ships at low-to-

high scales. Meanwhile, a depthwise separable convolution-

based network is integrated into the feature fusion network, 

which can significantly reduce the parameters and the 

computational cost. In addition, the spatial pyramid pooling 

(SPP) module is connected to the EfficientNet-B4 network. 

Hence, the feature maps of arbitrary sizes can be converted into 

a vector of a fixed size, which ensures the robustness of the 

proposed method facing the variable sizes of feature maps. 

Subsequently, inspired by the YOLO series, the weighted boxes 

fusion, namely WBF [36], is used to promote the NMS process. 

Moreover, the Scylla-IoU, namely SIoU [37], is introduced to 

optimize the positioning loss calculation of the prediction 

boxes, which accelerates the convergence and increases the 

accuracy at the backpropagation process.  

A. Feature extraction network  

Making a trade-off between the depth, width, structure, and 

resolution of the corresponding convolutional networks is 

essential to ensure the functionality and speed of the feature 

extraction network. The EfficientNet-based network scales the 

aforementioned three dimensions uniformly using a set of fixed 

coefficients, ensuring the convolutional results of the feature 

network at various scaling parameters are generally 

appropriate. A subtype of EfficientNet called EfficientNet-B4 
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Fig. 2. The structure of the EfficientNet-B4  
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has a relatively high number of convolutional layers, which 

makes it effective at extracting important characteristics of 

small ships. Additionally, the EfficientNet-B4 has a lot fewer 

parameters than the commonly used ResNet 50, ResNet 101, 

SENet, etc. In other words, the EfficientNet-B4 has managed to 

strike a balance between inference speed and accuracy.  

All objects in a marine radar system, such as ships, 

shorelines, and rocks, are represented by blips of varying sizes 

and shapes. To put it another way, unlike ordinary images, radar 

images contain very little information, thus the identification 

method must be highly capable of comprehending them, just 

like human eyes. As a result, the first priority is to extract 

important ship blip characteristics. To meet this requirement, 

EfficientNet-B4 adopts a multi-scale feature extraction 

approach by leveraging appropriate network’s depth, width, and 

resolution parameters to maintain efficiency while 

accommodating inputs of different scales, as illustrated in Fig. 

2. Additionally, the network employs several efficient feature 

extraction techniques, including depthwise separable 

convolution (DSC) [38], attention mechanisms, and residual 

connections. These modules reduce model complexity and 

parameters, while improving feature extraction efficiency. In 

particular, the extensive use of attention mechanisms, namely 

Squeeze and Excitation (SE), and residual connections helps the 

network to better learn features and reduce the loss of critical 

information, shown in Fig. 3. These feature extraction methods 

enable the network to preserve feature information when 

processing small-scale radar blips.  

B. Receptive field expansion module  

When performing convolutional calculations on input 

features of radar images in a feature network, some pixel 

information may be lost due to stretching, cropping, and other 

operations that the feature network generally applies to account 

for differences in input image sizes. Furthermore, small-scale 

ships often have fewer effective features preserved in deep 

convolutions, which can lead to lower identification accuracy 

of such ships by the model. To address these issues, 

concatenating an SPP module after the feature network can 

retain more abundant features. This is because SPP, through 

pyramid-like pooling operations, can increase the network's 

receptive field without changing the feature map resolution, 

thereby better capturing object-related features of different 

scales and enhancing the model's identification capability. The 

SPP structure is shown in Fig. 4, and it transforms multi-scale 

feature maps into fixed-size feature vectors by concatenating 

multiple differently sized max-pooling modules. After 

numerous tests, the SPP module proved to be more adaptable 

for ship identification in marine radar images and could produce 

better experimental results by splicing four layers of max-

pooling modules with sizes of 1×1, 5×5, 9×9, and 13×13 [15].  

C. Feature fusion network  

As previously stated, it is critical to obtain ship features with 

high sensitivity. Shallow features in convolutional networks are 

typically represented with a higher resolution that contains 
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Fig. 4. The structure of SPP  

 

more detailed spatial information. These characteristics are 

more closely related to target location accuracy in 

identification. By contrast, deep features have a lower 

resolution and contain more spatial and semantic information. 

Due to the absence of color information in radar images, it is 

advantageous to extract shallow features for ship identification. 

Considering the characteristics of marine radar images, fully 

concatenating feature information extracted from different 

scales of receptive fields into a dedicated feature fusion network 

is equally critical for ship feature extraction.  

The frequently-used feature fusion structures represented by 

the standard FPN [39] often include redundant calculations and 

cost much computation resources, which might be acceptable 

to extract semantic information from ordinary images. As 

discussed previously, shallow features are more important in 

the identification of radar blips. On this occasion, a 

considerable number of invalid convolutional calculations in 

the standard FPN could take a negative influence on the 

extraction of ship blips. Particularly in crowded waterways, 

characterized by a scarcity of distinctive ship features, the 

excessive convolution computations can potentially lead to the 

emergence of overfitting issues. In the long-term experiments, 

it has been found that the 3×3-sized convolutions of FPN are 

the main reason for the rise of invalid parameters. Moreover, 

the improved FPN constructed in the paper consists of three 

individual prediction channels, which predict large, medium, 

and small ship blips respectively. Thus, the feature tensor 

dimension of the input is expected to be much larger than that 

of a single prediction channel. It is acknowledged that the most 

direct way to reduce the size of model parameters is to reduce 

the convolutional calculation of feature information. Therefore, 

this research uses DSCs to replace the traditional 3×3-sized 

convolutions. This alteration will improve the ability to extract 

key ship features, which in turn increases the computational 

efficiency of the proposed MRNet. This newly designed 

lightweight feature fusion network, namely LightFPN, is shown 

in Fig. 5. The LightFPN inherits the fundamental structure of 

the standard FPN, strengthening the ability to extract ship 

features in low-resolution images.  

In a more detailed analysis, due to the fewer pixel features of 

ships in radar images, the detailed edge information of ships 

will be diluted after deep convolutional calculation, reducing 

target positioning accuracy. DSCs are used in this study to  
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simplify the calculational process of deep convolutions, reduce 

redundant information, and improve the expression of ships' 

significant features. Meanwhile, the LightFPN improves the 

expression of ships' edge information by constructing a three-

layer feature fusion structure to fuse details of shallow 

convolutions with semantic information of deep convolutions, 

improving the accuracy of small-scale ship locations.  

It should be noted that the parameter size in DSC is several 

times smaller than that of standard convolutions [38]. As a 

result, the DSC greatly simplifies the computation while 

maintaining the nearly identical performance. In other words, 

traditional convolution operations can be directly replaced by 

DSCs without any changes to the hierarchical structure of 

convolutional networks. In conclusion, the DSC is a technique 

for convolutional parameter compression. Due to the significant 

parameter reduction compared to standard convolution, the 

DSC is better able to determine the relative importance of 

convolutional features, which contributes to an elevated 

accuracy in ship identification within radar images.  

D. Non-maximum suppression  

A so-called LightFPN is used in MRNet to build a three-

channel target prediction structure that enables ship blips to 

possess multiple prediction boxes. The NMS method is used to 

choose an appropriate prediction box for a ship in order to solve 

this issue. The WBF has been introduced as the NMS's metric 

in the research. In contrast to the popular IoU method, the WBF 

uses weighted adjustment to consider the coordinate position 

and confidence value of the ship in its entirety, increasing the 

prediction accuracy of small-scale and crowded blips.  

As illustrated in Fig. 6, the MRNet generates multiple 

prediction boxes for a single ship. Standard NMS or Soft-NMS 

only filters the prediction boxes, which can result in retained 

box with suboptimal localization accuracy. In contrast, the 

WBF method significantly improves the final ship prediction 

accuracy by fusing the multiple prediction boxes.  

E. Position loss function  

The research also introduced the SIoU method, an advanced  

IoU or 

Soft-NMS

WBF

Prediction

boxes

Bounding

boxes

Filtered Box

Fused box

 
Fig. 6. The actual performance comparison of WBF and other 

methods in NMS  

 

IoU method, as the calculation standard for the position 

calculation of objects in order to further increase the positioning 

accuracy of the prediction boxes. This method fully considers 

the angle loss, distance loss, shape loss, and IoU loss between 

the prediction box and the bounding box. Through the 

consideration of multiple factors, the SIoU loss has a more 

stable and smoother gradient during algorithm training. 

Furthermore, this metric provides a more accurate assessment 

of the overlap between prediction and ground truth boxes, 

which can improve the effectiveness of the algorithm's training.  

In the following section, we will provide an overview of the 

calculation process for each component, while also referring to 

Fig. 7 [37]. Firstly, for the angle loss, its calculation process is 

as follows:  

cos(2 (arcsin( ) ))
4

hC 


 =  −  

Where   represents the distance between the prediction box 

center and the bounding box center, and hC  represents the 

distance between the centers of the two boxes in the vertical 
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direction.  

The definition of distance loss is as follows:  

2 yxe e
   − − 

 = − −  

2 2( ) ,   ( ) ,  2w h

x yb b

w h

C C

C C
  = = = −   

Where 
wC  represents the horizontal distance between the 

centers of the two boxes, and 
b

wC  and 
b

hC  represent the 

horizontal and vertical distances of the minimum bounding 

rectangle of the two boxes, respectively.  

The definition of shape loss is as follows:  

(1 ) (1 )w hW W
e e − −

 = − + −  

,  
max( , ) max( , )

gt gt

w hgt gt

w w h h
W W

w w h h

− −
= =  

Here, (w, h) and (
gtw , 

gth ) denote the width and height of 

the prediction and ground truth boxes, respectively, while   

represents a tuning parameter used to balance the importance of 

shape information in the loss function. In this paper, the value 

of   is set to 4. And, the definition of IoU loss is as follows:  

 

 

Intersection Area

Union Area
IoU =  

The IoU loss is calculated as the ratio of the intersection over 

the union of the predicted and ground truth boxes. Therefore, 

the SIoU loss function is finally expressed as:  

1
2

SIoULoss IoU
 + 

= − +  
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Fig. 7. Explanation of key metrics of the SIoU loss  

 

IV. A CASE STUDY 

A. Dataset 

The utilization of a high-quality dataset can greatly augment 

the experimental results of CNN-based identification 

algorithms. To establish the groundwork for this research, a 

radar-image dataset was meticulously curated. The dataset 

incorporates a JMA5300 marine radar system, depicted in 

Figure 8, serving as the primary sensor. Precisely, the radar 

system is installed at Zhujiajian Centipede Temple Pier in 

Zhoushan City, China. This radar system, in particular, was 

placed in an ideal location, facing two busy waterways, two 

harbors, and a 50-kilometer-long shoreline. The water area 

covered by the radar predominantly includes passenger ships 

and various auxiliary ships.  

 
Fig. 8. The shore-based marine radar  

Enlarge

 
(a) The images containing high-speed ships 

Enlarge

 
(b) The images containing low-speed ships 

Fig. 9. The marine radar images  

 

We named the dataset as Radar3000, which contains 3000 

images resulting from the deep treatment of radar echoes. Ship 

blips in these marine radar images can be roughly classified as 

high-speed or low-speed, as shown in Fig. 9. High-speed ones 

have more distinguishable visual characteristics, such as 

tadpole-like shapes, yellow heads, and long blue tails, as shown 

in Fig. 9. By contrast, the visual features of low-speed ones are 

very difficult to identify at a glance, they are very similar to 

islands, reefs, noise, and other disturbances. In addition, the 

Radar3000 dataset collects a considerable num of images under 

abnormal environments, e.g., bad weather, crowded ships, 

imaging in multipath interference, etc. Since misidentifications 

are inevitable when ships are crowded, Radar3000 collected 

more samples in the corresponding scenarios to ensure 

performance. In the location of the radar system, a majority of 
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the captured ships are small ships. Some of them are just 5 

meters long. Additionally, a K-means clustering-based pre-

processing was carried out, and the results showed that the 

average ship blip size in these marine radar images was 21×25 

pixels or roughly 0.05% of the entire image area. Therefore, the 

majority of ship blips visible on marine radar images are small-

scale targets in a common scenario.  

Since the ships are represented as blips in a marine radar 

system, the ship type, category, and other information cannot 

be determined. Therefore, the Radar3000 dataset marks all the 

known ship blips as one category. More precisely, we employed 

the universal open-source tool, LabelImg, to annotate all the 

images and draw bounding boxes to indicate the positions of the 

ships. Each bounding box was annotated with corresponding 

class information, specifically labeling the ship category as "B". 

Upon completion of the annotation process for all the images, 

the annotated results were exported in the standardized Pascal 

VOC format. Furthermore, all of the images used in the study 

are split into three groups, referred to as training sets, validation 

sets, and testing sets, with a ratio of 8:1:1. On the training and 

validation sets, as well as the testing sets, the proposed MRNet 

is trained, and its performance is assessed.  

B. Training 

The training process of MRNet is further improved, which is 

mainly based on three aspects, i.e., the pre-training, the learning 

rate attenuation, and the loss calculation. In the training process, 

the transfer learning method is adopted. Specifically, the 

network weights of EfficientNet-B4 trained on the ImageNet 

are used as the initial weights for training [40]. In addition, the 

algorithm is typically trained with a specific set of initial 

learning rates. However, the method might cause unstable 

changes in model convergence [41]. This issue is addressed by 

the introduction of the learning rate decay method of linear 

cosine decay, which quickens MRNet convergence. What's 

more, this study introduced the label smoothing method to 

enhance the method's loss calculation, ensuring that the training 

process is maintained in the right direction [42].  

C. Experiments  

To validate the proposed method, the experiments based on 

Tensorflow-GPU (2.7.0) in Ubuntu 20.04 have been conducted. 

In particular, all the experiments were carried out on a server 

that consists of an Intel(R) Core (TM) i7-12700K CPU and an 

Nvidia GeForce RTX 3090 GPU. The experiments compare the 

performances of several state-of-art methods, i.e., the 

traditional identification method, the YOLO algorithms, and the 

MRNet. The experiment of each algorithm is based on the same 

dataset discussed in Section 4.1.  

After many experiments and comparisons, the appropriate 

parameter settings are as follows. During the training processes, 

the input size is set to 416×416 pixels as customary [15],[16], 

and the momentum is set to 0.9. As discussed previously, the 

transfer learning strategy is adopted in this research, hence the 

proposed MRNet only needs to train the prediction layers first. 

On this occasion, it is appropriate to freeze the shallow layers 

to accelerate the training process. Moreover, the batch size is  

 

 
Fig. 10. The comparison of the training process of various 

algorithms  

 

set to 16 after several attempts, which can maximize the use of 

computing resources. In the comparisons, all the methods had 

run 15 epochs of iterations, and the initial learning rate was set 

to 10-4. After the transfer learning, the frozen convolutional 

layers of the proposed MRNet were activated. The batch size 

was set to 4 considering the observable increase of 

convolutional parameters, while the initial learning rate kept the 

value of 10-4. At this stage, 200 epochs of training iterations had 

been conducted.  

In the training discussed in the last paragraph, the loss 

convergences of different algorithms or methods are shown in 

Fig. 10. The YOLOv3, YOLOv4, YOLOv5(L), and MRNet 

carried out 145, 121, 129, and 165 epochs of iterations, 

respectively. Among the training of these algorithms, the losses 

based on the corresponding training sets converged to 9.52, 

8.31, 10.59, and 8.97, respectively. Meanwhile, the losses based 

on the corresponding validation sets converged to 10.33, 8.98, 

10.36, and 8.87, respectively. It can be easily concluded that the 

loss convergence of MRNet was more stable, and the difference 

between its two types of losses was minor, which was beneficial 

to obtain applicable convolutional parameters.  
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D. Comparisons and Discussions  

To make the comparisons more comprehensive, five 

indicators were selected to quantitatively evaluate the 

performances of individual algorithms respectively to the data 

discussed in Section 4.3, i.e., recall, accuracy (Ac), precision 

(Pr), parameter size (PARAMs), and floating point operations 

(FLOPs). It should be noted that when calculating recall, Ac, 

and Pr, the IoU and confidence thresholds are set to 0.25 and 

0.3, respectively.  

To better explain recall, Ac, and Pr in the context of 

evaluation metrics for identification algorithms, it is necessary 

to first define some concepts related to the confusion matrix. 

The confusion matrix categorizes the classification results of 

the model into four categories: True Positive (TP), False 

Positive (FP), True Negative (TN), and False Negative (FN). It 

should be noted that in the experiments focusing on the 

identification of a single class, the True Negative (TN) value is 

inherently fixed at 0.  

The definitions of the evaluation metrics are as follows:  

Pr

TP
recall

TP FN

TP TN
Ac

TP TN FP FN

TP

TP FP


= +


+

=
+ + +


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Moreover, supplementary experiments in four special 

scenarios were conducted to validate the performance of 

MRNet in severe environments. Specifically, the performances 

of typical algorithms were tested on radar images with different 

resolutions. Then, an experiment was designed to test the actual 

performance of different algorithms on specific evaluation 

indicators. In addition, ablation experiments aiming to analyze 

the effectiveness of each component of MRNet were conducted. 

In the final step, all the data from these experiments were 

carefully analyzed.  

 

(1) Different resolutions 

In the research, the input radar images of the training process 

were 416×416 pixels. Therefore, when images with different 

sizes are input into the algorithm, the accuracy might decrease 

since re-size operations cause distortions. Considering that 

several kinds of image sizes are existing in Radar3000, it is 

necessary to evaluate the adaptability of the MRNet to identify 

images with different sizes. Specifically, according to the 

references, YOLOv3, YOLOv4 and YOLOv5(L) used 

416×416, 608×608, and 800×800 as their default input sizes, 

respectively. Therefore, this experiment also used these sizes 

for comparisons. As shown in Fig. 11, with the increasing size 

of the input images, these algorithms' inference time also 

increased while reducing the accuracies of ship blips' 

identification. Compared with the other algorithms, the MRNet 

showed many advantages in the validation, which included an 

observably higher accuracy and relatively shorter inference 

time. In particular, the proposed MRNet was capable of 

adapting inputs of different resolutions.  

 
Fig. 11. The changes in identification accuracies of various 

algorithms under different resolutions  

 

(2) Further discussions  

To make the comparisons more comprehensive, more 

indicators are discussed as follows. The algorithms were all 

trained and tested using the same initial training coefficients 

and the same dataset. As shown in Table 1, the recall, 

identification accuracy, and precision of the proposed MRNet 

on the testing images reached 0.9663, 0.9418, and 0.9267, 

respectively. Compared with other algorithms, the recall and 

accuracy of MRNet were improved at least by 0.33% and 

0.28%, respectively, indicating that the MRNet has a more 

satisfactory performance for crowded waterways and small-

scale ships in marine radar images. Meanwhile, the parameter 

size and the computational consumption of the MRNet are 

significantly less than the ones of the other state-of-art methods, 

which are only 34.41M and 21.55G, respectively, less than 45% 

and 67.29% than the classical YOLOv3.  

The traditional method composed of the CV and the GHFilter 

achieved 0.8910, 0.8815, and 0.8744 in terms of recall [43]-

[45], identification accuracy, and precision, respectively for the 

ship identification, which were 7.53%, 6.03%, and 5.23% lower 

than MRNet. The traditional method cannot effectively extract 

the ship edge features due to the small-scale ships with fewer 

pixels information and the background interference, resulting in 

the inability to distinguish the target features and background 

information. Therefore, the traditional method is not credible 

for ship identification under radar images in many scenarios. 

This experiment proves that the methods based on depth 

convolutional neural networks represent a significant advantage 

for ship identification under marine radar images.  

Compared with YOLOv3, YOLOv4, YOLOv5(L), and 

YOLOv8(L) [46], the recall of MRNet increased by 4.46%, 

4.54%, 5.2% and 5.14% respectively on Radar3000, meaning 

that it performed better than these methods in an overall 

identification. Given that the dataset only includes labeled and 

trained samples of a single ship type, the recall values further 

indicate that MRNet exhibits fewer false negatives in ship 

identification. Additionally, the proposed method demonstrates 

a satisfactory capability to discriminate against false targets,  
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TABLE I 

THE EXPERIMENTAL RESULTS OF VARIOUS ALGORITHMS 

Algorithms Recall Ac Pr PARAMs/(M) FLOPs/(G) 

CV+GHFilter 0.8910 0.8815 0.8744 N/A N/A 

YOLOv3 0.9217 0.9195 0.9233 62.57 65.88 

YOLOv4 0.9209 0.9286 0.9225 63.94 59.87 

YOLOv5(L) 0.9143 0.9082 0.9044 47.39 108.09 

YOLOv8(L) 0.9149 0.9107 0.93 43.3 165.7 

Faster R-CNN 

(ResNet50) 
0.9277 0.9182 0.9274 48.7 292.9 

Mask R-CNN 

(ResNet50) 
0.9118 0.9196 0.9393 61.3 372.2 

Swin Transformer(T) 0.88 0.909 0.9361 28.4 4.71 

YOLOv3-Eff_B3 0.9213 0.9105 0.9201 60.31 40.57 

YOLOv3-Eff_B4 0.9396 0.9390 0.9235 81.96 52.13 

YOLOv3-Eff_B5 0.9362 0.9331 0.9247 115.44 75.11 

YOLOv3-Eff_B6 0.9206 0.8814 0.8878 151.41 98.25 

YOLOv4-Eff_B4 0.9311 0.9104 0.9219 133.58 84.14 

TinyYOLO-Eff_B4 0.8908 0.8835 0.8892 56.49 41.37 

MRNet_FPN 0.9530 0.9249 0.9293 85.30 56.84 

MRNet 0.9663 0.9418 0.9267 34.41 21.55 

 

effectively mitigating disturbances such as noise, islands, reefs, 

and clouds. Furthermore, MRNet surpasses the YOLO series in 

terms of convolutional parameters and real-time computational 

efficiency, suggesting its potential applicability in embedded 

systems.  

Compared with standard two-stage identification algorithms 

such as Faster R-CNN [47] and Mask R-CNN, MRNet achieves 

a recall improvement of nearly 4%, indicating a lower loss rate 

of ships. This finding further underscores that an excessive 

number of convolutions or excessively deep convolutional 

layers may potentially impede the feature extraction and target 

localization of ships in radar images. Additionally, MRNet has 

a more significant advantage in terms of model size and 

computational complexity compared to the two-stage 

algorithms. Meanwhile, Swin Transformer [48], a novel 

Transformer model, has been extensively applied in various 

identification fields and has achieved good experimental 

results. However, for marine radar images, the algorithm 

exhibits a higher loss rate in ship detection, resulting in lower 

recall. The analysis suggests that for small-scale or even tiny 

ships, the feature resolutions of Swin Transformer may be 

insufficient to capture subtle target characteristics. The details 

and edge information of small objects may become blurred or 

lost, leading to a decrease in identification performance.  

Since the YOLO series are the pioneering work of anchor-

based identification algorithms, much work had been conducted 

to improve their performance. The ones which adopt 

EfficientNet-based structures as the feature extraction network 

are often used as widely-acknowledged baselines to evaluate a 

new identification algorithm. In this research, the 

EfficientNet_B3~B6, namely Eff_B3~B6, is adopted to replace 

the original networks in various YOLO algorithms, providing 6 

individual supplementary baselines. Moreover, such baselines 

can be used to find which subtype of EfficientNet is more 

suitable for radar images. Notably, as depicted in Table 1, that 

algorithms based on Eff_B4 and Eff_B5 demonstrate relatively 

remarkable ship identification capabilities. The Eff_B4-based 

network is better in terms of recall and accuracy, which 

indicates that it can distinguish ships from easily-confused 

noise more efficiently. However, the Eff_B5-based network 

performs better in the aspect of identification accuracy. In 

addition, the convolutional parameters of Eff_B4 are about 40% 

less than that of Eff_B5, as well as the computation. 

Consequently, as a result of these findings, it can be concluded 

that the Eff_B5 and Eff_B6 networks, despite their increased 

number of convolutional layers and parameters, falls short of 

that achieved by the Eff_B4 network.  

Moreover, Eff_B4 is used as the feature network of YOLOv4 

for comparison, meanwhile validating Eff_B4’s performance. 

It can be found that the identification performance of the 
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TABLE Ⅱ 

THE EXPERIMENTAL RESULTS OF VARIOUS ALGORITHMS 

Methods Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

YOLOv3+Eff_B4       

+SPP       

+WBF       

+SIoU       

+LightFPN       

+Training 

optimizations 
      

Recall 0.9396 0.9448 0.9474 0.9498 0.9621 0.9663 

Ac 0.9390 0.9324 0.9369 0.9375 0.9391 0.9418 

Pr 0.9235 0.9247 0.9252 0.9258 0.9258 0.9267 

 

modified YOLOv4 associated with Eff_B4 is neck to neck with 

that of YOLOv3-Eff_B4, which is about 62% higher than that 

of YOLOv3-Eff_B4 in terms of the parameter size and the 

calculational consumption. However, experiments showed that 

the YOLOv4-Eff_B4 was easy to fall into local optimal 

solutions, which leads to interruption problems in training. In 

summary, it can be concluded that YOLOv3-Eff_B4 performs 

perfectly in all aspects of ship identification under marine radar 

images. Theoretically speaking, Eff_B4 employs multiple 

convolutional layers with varying depths and widths, each of 

which can extract target features of different scales. Through 

cross-layer connections, these layers are combined to enable the 

network to capture detailed information from images at 

multiple scales, thereby enhancing its ability to identify small-

scale radar blips. Evidently, the experimental results further 

validate this theoretical proposition. Considering the 

aforementioned factors, YOLOv3-Eff_B4 can be used as an 

appropriate benchmark for the MRNet.  

To validate the performance of the proposed LightFPN, we 

slightly modified the FPN network. In this modification, the 

prediction structure had been simplified, where the prediction 

channel with the smallest receptive field is removed, testing the 

corresponding influences of the cutting channel. After this 

modification, a so-called TinyYOLO-Eff_B4 algorithm is 

constructed. The results showed that the overall performance of 

TinyYOLO-Eff_B4 is significantly decreased compared with 

YOLOv3-Eff_B4 on Radar3000. Surprisingly, the recall and 

accuracy had reduced by about 5%. The findings suggest that 

the reduction in prediction channels has a pronounced negative 

impact on the identification process. Conversely, the reduction 

in prediction channels does not significantly affect the size of 

convolutional parameters or computational overhead. 

Consequently, the retention of all three prediction channels 

remains crucial in the context of this particular application.  

To make the comparisons more persuasive, we designed an 

algorithm named MRNet_FPN, which still uses standard FPN 

consisting of three prediction channels. In this experiment, it 

can be found that LightFPN performed better than FPN. 

Consequently, standard convolutions may inhibit the feature 

expressions of the ship targets, which will have a negative 

impact on the identification. The LghtFPN network, on the 

other hand, uses the DSCs to streamline the convolutional 

calculation of image features, preserving more precise ships' 

edge information and enhancing the identification precision of 

small-scale ships with fewer features in radar images. Besides, 

Compared with FPN, the convolutional parameter size, and 

computation of LightFPN were reduced by 59.67% and 

62.09%, respectively.  

 

(3) Ablation Experiments  

To analyze the individual performances or influences of each 

component of MRNet comprehensively, the ablation 

experiments had conducted based on Radar3000. Meanwhile, 

all the kernel components of the MRNet were replaced with a 

traditional module or removed one by one. The results are 

shown in Table 2, and the discussions are as follows.  

This research explores the adaptability of the SPP module in 

the identification of marine radar images. The results showed 

that this method increased the recall and identification accuracy 

of ships by 0.52% and 0.12%, respectively, which indicated that 

the method enhanced the ability to identify positive samples and 

decreased the probabilities of mistaking noise for ships. In 

addition, it should be noted that the SPP can significantly 

ameliorate the training of the MRNet since this module can 

improve the search capability of the globally optimal solutions 

and accelerate convergence. Especially for epochs near the end 

of the training, the calculated loss can still decrease steadily. 

Furthermore, the ships' movement trajectories in the images are 

very different. Particularly for ships moving slowly, image 

processing seriously dilutes their feature information, making 

them difficult to distinguish from other interference in the 

marine environment. The deep convolution output will splice 

feature maps of various resolutions after the introduction of 

SPP, which has a good feature enhancement on low-speed ships 
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in radar images. As a side note, the SPP can integrate global and 

local features in many experiments, which is essential for 

reducing overfitting issues during the training process.  

In addition, we carried out an analysis of the prediction 

module. In this structure, this research modified the two 

modules, i.e., the NMS calculation and the loss calculation of 

ship positioning. Specifically, the WBF method is used to 

optimize the candidate results of prediction boxes, meanwhile, 

the SIoU function is introduced to improve the calculation of 

the positioning loss of prediction boxes. In the experiments, the 

WBF method improved the recall, accuracy, and precision 

indicators by 0.26%, 0.45%, and 0.05%, respectively, which 

made the prediction boxes more accurate and further improved 

the overall identification performance in these experiments. In 

particular, the SIoU function takes a similar influence as the 

WBF method, which increased the recall by 0.24%. In addition, 

these experiments also proved that the SIoU method accelerated 

the training process of MRNet by 11 epochs.  

The experimental analysis for the lightweight feature fusion 

network is as follows. As mentioned previously, the DSCs had 

been used as the feature fusion structure, which might 

significantly reduce the convolutional parameters and 

computational consumption. As shown in Table 2, the 

application of LightFPN significantly improved the 

performance of the MRNet, which increased the recall by 

1.23%, meanwhile the identification accuracy also increased 

slightly. Compared with the standard FPN, it can be found that 

the increase of invalid convolutional parameters had observably 

reduced the ability to extract ships. The results shown in Table 

2 also indicate that the DSC structure is different from the 

classical methods of compressing identification modules, 

which not only cuts off redundant convolutional parameters but 

also improves the ship identification performance in various 

scenarios.  

While the experimental evaluations have demonstrated the 

relatively superior performance of LightFPN compared to the 

standard FPN, it remains to be ascertained how these models 

will fare when applied to real radar images. The results depicted 

in Fig. 12 indicate that the ships depicted in region 1, 

characterized by yellow radar blips with a blue tail, possess 

discernible visual attributes, and both types of feature fusion 

networks have successfully captured these features. However, 

when confronted with small ships in regions 2 and 3, the 

standard FPN exhibits inadequate performance, leading to 

omission errors. In contrast, the MRNet, leveraging the accurate 

recognition capability for small-scale detailed features of 

LightFPN, can precisely locate and identify small targets within 

radar images.  

To improve the performance of the MRNet, a variety of 

training optimization methods are used. As mentioned 

previously, several methods or tricks have been adopted as 

discussed in Section 4.2. As shown in Table 2, these training 

tricks increase recall by 0.42%. Meanwhile, the identification 

accuracy also raised a little bit. Perhaps the significant reason is 

that a step-by-step training process might be partly helpful in 

avoiding local optima and accelerating the convergences.  
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Fig. 12. The comparisons of experimental results of LightFPN 

and FPN  

 

(4) Comparisons in daily operations  

To validate the performances of the MRNet in real 

applications, more experiments of identifying ships in daily 

scenarios were carried out. The identification performances of 

the previously mentioned algorithms when recognizing high-

speed and low-speed ships were evaluated respectively. In 

particular, typical extreme scenarios such as tiny ships, 

crowded ships, overtaking, and crossing were selected for 

further comparisons.  

Several typical results of the experiments are shown in Fig. 

13, which demonstrated the adaptability of the MRNet in 

different scenarios. As shown in Fig. 13(a), MRNet accurately 

identified high-speed ships in different waters, which proved 

that the algorithm had a satisfactory performance when 

identifying high-speed ships with distinguishable visual 

features, even if the imaging of the corresponding ship blips 

was not stable or flickering. Especially, the MRNet achieved 

promising accuracy when identifying low-speed ships in 

different environments shown in Fig. 13(b). Notably, in the 

majority of cases, there was minimal occurrence of omission or 

misidentification when it came to small-scale ships. This 

observation suggests that MRNet exhibits a robust capability in 

extracting features from small targets while effectively 

suppressing disturbances such as shorelines, reefs, and noise. 

Furthermore, MRNet demonstrates a somewhat favorable 

ability to accurately identify and locate individual targets within 

dense ship scenarios, surpassing conventional fractal-

geometry-based methods, as evidenced in Fig. 13(c). Despite 

the relatively small receptive fields employed by MRNet, it 

successfully captures the inherent visual features and positional 

information of ship blips when dealing with small targets.  

 

(5) Performances under Interference  

As shown in Fig. 14, the original images contain three types 

of objects, i.e., low-speed ships, high-speed ships, and crowded 

ships, which are also the most common or challenging scenarios 

in daily operations. To test the ship identification ability of the 

MRNet under different interference, raw radar images were 

processed using three types of interference signals, including 

Pretzel noises, and Gauss noises, Speckle noises, to simulate the 
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influence of different interference. It can be found from Fig. 14 

that Speckle noises had the more significant impact on the radar 

images, and the pixel characteristics of the ships and other 

objects are severely disturbed. In contrast, Pretzel noises and 

Gauss noises had less impact on the original feature 

information. As anticipated, the experimental results 

demonstrate that the MRNet successfully achieved accurate 

ship identification in the presence of both Pretzel noises and 

Gauss noises, showcasing its enhanced robustness to 

interference. However, the MRNet exhibited a relatively lower 

adaptability to Speckle noises, as indicated by a slight decrease 

in ship identification accuracy under such interference, as 

illustrated in Fig. 14. In summary, the approach proposed in this 

research has satisfactory robustness to most interference.  

  

  
(a) The identification of high-speed ships 

  

  
(b) The identification of low-speed ships 
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(c) The identification of crowded ships 

Fig. 13. The ship identification results of MRNet under different scenarios  

 

  
Original image                                    Image with Pretzel noise                                                  

  
Image with Gauss noise                             Image with Speckle noise                                                

(a) The identification results for high-speed ships 
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Original image                                    Image with Pretzel noise                                                  

  
Image with Gauss noise                             Image with Speckle noise                                                

(b) The identification results for low-speed ships 

  
Original image                                    Image with Pretzel noise                                                  

  
Image with Gauss noise                             Image with Speckle noise                                                

(c) The identification results for dense ships 

Fig. 14. The identification comparisons of the MRNet under various noise 

 

(6) Comparisons in extreme scenarios  

To validate the performances of the MRNet in extreme 

scenarios, several supplementary experiments were conducted. 

To lay the foundation for these experiments, a dedicated sub-

dataset of Radar3000, which only collects images from extreme 

scenarios, is built. In such scenarios, all difficult-to-identify 

situations, such as crossing and overtaking, are deliberately 

selected. In these experiments, the commonly-used YOLOv3, 

YOLOv4, and YOLOv5(L) were chosen as references since 

they were widely acknowledged as superior tools for 

identifying small objects [49],[50]. The results are illustrated in 

Table 3. It can be found that the MRNet performed better than 

the comparison algorithms in all aspects, proving that MRNet 
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is more effective for ship identification in extreme scenarios.  

TABLE Ⅲ 

THE SHIP IDENTIFICATIONS OF DIFFERENT METHODS IN EXTREME SCENARIOS 

Algorithms 
Recognized 

Ships 

True 

Ships 

False 

Alarms 
Recall Pr 

YOLOv3 1592 1385 207 0.9314 0.8700 

YOLOv4 1581 1390 191 0.9348 0.8792 

YOLOv5 1633 1371 262 0.9220 0.8396 

MRNet 1543 1423 120 0.9570 0.9222 

 

To visualize such an experiment, several typical images of 

identification are further illustrated in Fig. 15. As shown in Fig. 

15(a), the identification ability of YOLOv5(L) was 

significantly weaker than that of MRNet_FPN and MRNet 

when recognizing side-by-side blips. Not surprisingly, both the 

YOLOv5(L) and MRNet_FPN missed some small ship blips 

occasionally on this occasion. The difference is that MRNet 

could lock these missing blips in subsequent frames, whereas 

YOLOv5(L) could not. The scenario of ship crossing is shown 

in Fig. 15(b). Such a scenario is considered as a difficult 

problem in processing the radar images, in which ship blips 

might conglutinate with each other. On this occasion, the 

tracking of a ship blip is very easy to be disturbed. Surprisingly, 

the proposed approach, MRNet, identified the ship blips with a 

large probability even if the conglutination had already 

happened. This observation indicates that the method, by 

emphasizing the dissimilarity between the overall features of 

the ships and their surrounding pixels, significantly enhances 

the identification accuracy. In addition, the MRNet could 

recognize every single target from crowded blips most of the 

time. In comparison, the YOLOv5(L) frequently lost targets on 

this occasion, MRNet_FPN performed even worse where an 

overfitting issue might happen, as shown in Fig. 15(c). The 

performances of YOLOv3 and YOLOv4 will not be discussed 

here, since they were widely believed to be worse than 

YOLOv5(L) in identifying micro-objects [29],[51].  

In conclusion, when recognizing ship blips in extreme 

scenarios, the proposed MRNet outperforms other state-of-the-

art CNN-based algorithms.  

  
Original image                                                YOLOv5(L)                                                           

  
MRNet_FPN                                                    MRNet                                                               

(a) The identification comparisons of micro ships 
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Original image                                                YOLOv5(L)                                                           

  
MRNet_FPN                                                    MRNet                                                               

(b) The identification comparisons of crossing ships 

  
Original image                                                YOLOv5(L)                                                           

  
MRNet_FPN                                                    MRNet                                                               

(c) The identification comparisons of dense ships 

Fig. 15. The identification comparisons of ship images in extreme scenarios

 

Ⅴ. CONCLUSIONS AND DISCUSSIONS 

Considering the challenges associated with ship 

identification in marine radar images, this paper presents 

MRNet, a novel neural network designed to accurately identify 

ships. Additionally, this is the first instance of a customized 

neural network-based ship identification algorithm created 

especially for marine radar images. It is commonly believed 

that ships’ blips in radar images have fewer contours and color 

features, which may lead to excessive convolution calculations 

and poor identification when using conventional CNN-based 

methods. To solve this problem, MRNet employs a variety of 

established network designs and convolution modules that 
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show superior adaptability in radar images and comparatively 

high accuracy in ship identification. In field testing, the MRNet 

achieved recall, identification accuracy, and precision scores of 

0.9663, 0.9418, and 0.9267, respectively. Meanwhile, MRNet's 

parameter size and calculational consumption are only 34.41M 

and 21.55G, respectively, down 45% and 67.29% from standard 

YOLOv3.  

Specifically, MRNet uses the EfficientNet-B4 network as the 

feature extraction network due to its deep convolutional 

structure and ability to extract features from low-resolution 

images, similar to that of humans.  Additionally, MRNet adopts 

a lightweight feature fusion network that replaces some kernel 

convolutions with DSCs to reduce convolutional parameters 

and computation, significantly inhibiting excessive calculations 

and overfitting problems. Moreover, the SPP module is 

connected to the EfficientNet-B4 network to improve the 

adaptability of processing radar images with different input 

sizes. In the prediction structure, the WBF method and SIoU 

function are respectively utilized to optimize the calculational 

process of non-maximum suppression and the localization loss 

of predicted boxes. Besides, this work constructed a radar 

image dataset, namely Radar3000, containing rich ship 

features, which improved the identification accuracy and 

generalization ability of the algorithm.  

In a variety of scenarios, especially in extreme ones like port 

waters and congested waterways, MRNet consistently 

demonstrates its capacity to accurately identify both high-speed 

and low-speed ships. As marine radar systems are often 

deployed in relatively harsh environments, this necessitates that 

the equipment itself exhibits high reliability, relatively low 

power consumption, etc. Therefore, MRNet, which is 

constructed based on developed modules, may satisfactorily 

meet these requirements and can be conveniently applied in 

existing devices. In addition, the MRNet might have a superior 

capability when identifying small objects with fewer pixel 

features, such as those in medical images and remote sensing 

images.  

This work can be further improved in the following aspects. 

The Radar3000 dataset should be further enriched in the future 

by including more samples from other commonly-used radar 

systems and images from more circumstances. Moreover, it 

may be worth combining the proposed approach with multi-

object tracking algorithms for further improving performance 

in identifying ships from radar blips.  

APPENDIX 

The marine radar image dataset, namely Radar3000, 

constructed in this paper has been published at the following 

website:  

https://github.com/kz258852/dataset_M_Radar/tree/main 
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