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Summary
Background Atrial fibrillation (AF) is the most common heart arrhythmia worldwide and is linked to a higher risk of
mortality and morbidity. To predict AF and AF-related complications, clinical risk scores are commonly employed,
but their predictive accuracy is generally limited, given the inherent complexity and heterogeneity of patients with
AF. By classifying different presentations of AF into coherent and manageable clinical phenotypes, the
development of tailored prevention and treatment strategies can be facilitated. In this study, we propose an
artificial intelligence (AI)-based methodology to derive meaningful clinical phenotypes of AF in the general and
critical care populations.

Methods Our approach employs generative topographic mapping, a probabilistic machine learning method, to
identify micro-clusters of patients with similar characteristics. It then identifies macro-cluster regions (clinical
phenotypes) in the latent space using Ward’s minimum variance method. We applied it to two large cohort
databases (UK-Biobank and MIMIC-IV) representing general and critical care populations.

Findings The proposed methodology showed its ability to derive meaningful clinical phenotypes of AF. Because of its
probabilistic foundations, it can enhance the robustness of patient stratification. It also produced interpretable vis-
ualisation of complex high-dimensional data, enhancing understanding of the derived phenotypes and their key
characteristics. Using our methodology, we identified and characterised clinical phenotypes of AF across diverse
patient populations.

Interpretation Our methodology is robust to noise, can uncover hidden patterns and subgroups, and can elucidate
more specific patient profiles, contributing to more robust patient stratification, which could facilitate the tailoring of
prevention and treatment programs specific to each phenotype. It can also be applied to other datasets to derive
clinically meaningful phenotypes of other conditions.

Funding This study was funded by the DECIPHER project (LJMU QR-PSF) and the EU project TARGET (10113624).

Copyright © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Clinical phenotypes; Atrial fibrillation; Generative topographic mapping; UK-Biobank; MIMIC-IV;
Probabilistic modelling; Machine learning; Clustering; Stratification
Introduction
Atrial fibrillation (AF) is the commonest heart
arrhythmia worldwide,1 affecting 2% of the European
*Corresponding author. Data Science Research Centre, Liverpool John Moor
E-mail address: S.Ortega-Martorell@ljmu.ac.uk (S. Ortega-Martorell).

www.thelancet.com Vol 107 September, 2024
population (15 M patients). AF risk increases with age,
with ∼18 M patients with AF estimated by 2060.2 AF is
linked to a higher risk of mortality and morbidity from
es University, Liverpool L3 3AF, UK.
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Research in context

Evidence before this study
Clinical complexity associated with atrial fibrillation (AF)
patients has major implications for treatments and outcomes.
To predict AF and AF-related complications, clinical risk scores
are commonly employed, but their predictive accuracy is
generally limited, given the inherent complexity and
heterogeneity of patients with AF. Conventional classification
of patients with AF based solely on disease subtypes or
arrhythmia patterns (e.g., paroxysmal, persistent, or
permanent) may fall short of adequately characterising this
diverse population. By classifying different presentations of
AF into coherent and manageable clinical phenotypes, the
development of tailored prevention and treatment strategies
can be facilitated. Previous studies have demonstrated the
value of phenotyping, with each identifying between three
and six clinically distinct AF phenogroups. However, the
methodological approaches followed to derive such
phenotypes may not be particularly suited to model complex
relationships in the data, and they lack resiliency to data
uncertainty and robustness across datasets.

Added value of this study
Our study proposes an AI-based probabilistic approach to
identify clinically relevant AF phenotypes for specific patient
cohorts, from the general and the critical care populations.

Our approach can handle uncertainty, is robust to noise,
derives more specific patient profiles, and can uncover hidden
subgroups, contributing to more robust patient stratification.
We tested our methodology on two large databases, and
generated phenotypes using two different AF cohorts: one
derived from general population data from the UK-Biobank,
and the other derived from critically ill patients admitted to
the intensive care unit from the MIMIC-IV database. The
phenotypes in both cohorts were derived from vitals and
laboratory test data (no medical history/comorbidities or
demographic data was explicitly included in the modelling
stage to prevent possible bias), and remarkably, the derived
phenogroups were still able to identify significant differences
in those variables when studied post-hoc. Link to the code:
(https://zenodo.org/doi/10.5281/zenodo.12207621).

Implications of all the available evidence
Using our methodology, we identified and characterised
clinical phenotypes of AF across diverse patient populations,
which could facilitate the tailoring of prevention and
treatment programs specific to each phenotype. The
proposed approach not only can be used to extract AF
phenotypes but can also be applied to other datasets to
derive clinically meaningful phenotypes of other conditions.
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stroke, heart failure, dementia, and hospitalisations.
Patients with AF are often associated with various car-
diovascular and non-cardiovascular risk factors,2 and
these often do not occur in isolation, co-existing in
clusters of comorbidities, leading to multimorbidity,
polypharmacy and frailty.3 Such clinical complexity
associated with patients with AF major implications for
treatments and outcomes.4 To predict AF and AF-related
complications, clinical risk scores are commonly
employed, but their predictive accuracy is generally
limited, given the inherent complexity and heterogene-
ity of patients with AF.

Artificial Intelligence (AI), and more specifically
machine learning (ML), is increasingly used in clinical
practice for disease prediction and detection, as well as
events and treatment optimisation.5 Most ML applica-
tions in AF leverage supervised ML learning (requiring
labelled data), however in recent years, there has been a
rise in the application of unsupervised ML approaches
as they can be used for exploring and understanding the
inherent structure and characteristics of the data
without requiring labelled outcomes or targets.

Conventional classification of patients with AF based
solely on disease subtypes or arrhythmia patterns (e.g.,
paroxysmal, persistent, or permanent) may fall short of
adequately characterising this diverse population.1 The
task of categorising patients into meaningful sub-
groups/phenotypes is inherently challenging and
susceptible to misclassification. These phenotypes, in
the context of medical research, are constructs based on
clinical and physiological measurements that enable the
characterisation of patient subgroups within a specific
disease.6 They comprise either individual disease attri-
butes or combinations thereof, offering a comprehen-
sive description of distinctions among affected
individuals, including clinically significant outcomes
such as symptoms, exacerbations, treatment responses,
disease progression rate, or mortality. By classifying
different presentations of AF into coherent and
manageable clinical phenotypes, the development of
tailored prevention and treatment strategies can be
facilitated. This is aligned with the current holistic
approach to AF management,7 as recommended in
guidelines.8

Different approaches have been followed previously
to identify AF phenotypes such as hierarchal clustering
(namely Ward’s minimum variance method9–11 and
complete linkage using Gowers distance12) and k-pro-
totype.1 These methods are not particularly suited to
model complex relationships in the data, they assume
clusters are generally homogeneous, they tend to be less
interpretable,13 they may be sensitive to initialisation,14,15

they may not handle cluster membership uncertainty,
and they lack robustness across datasets.14 However,
these studies all demonstrate the potential value of
phenotyping, with each identifying between three and
www.thelancet.com Vol 107 September, 2024
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six clinically distinct AF phenogroups. The population
groups studied also vary, including Japanese,1,10,16 Eu-
ropean,9,11,17 and North American9 populations.

This study proposes a methodological approach for
generating clinically relevant AF phenotypes for spe-
cific patient cohorts, from the general and the critical
care populations. To test the proposed approach, we
generated phenotypes using two different AF cohorts:
one derived from general population data from the
UK-Biobank, and the other derived from critically ill
patients admitted to the intensive care unit (ICU)
from the MIMIC-IV database. These databases were
chosen as they are both large and offer a rich pool of
variables.

Our approach employs generative topographic map-
ping (GTM),18,19 a probabilistic ML method chosen for
its ability to elucidate meaningful data representations
from large datasets. AF phenotypes were derived from
the GTMmodel, and the inherent clinical characteristics
associated with each of them were explored for both
cohorts.

Methods
Proposed AI-based methodology to generate
reliable phenotypes
Micro-cluster segmentation using GTM
Our approach (Fig. 1) first uses GTM, an unsupervised
ML methodology grounded in probability theory18 that
offers a principled alternative to the widely used Self
Organising Map algorithm.20 GTM addresses several
known issues associated with SOM, such as non-
guaranteed convergence, limited neighbourhood pres-
ervation, lack of an objective function, and the absence
of an explicitly defined probability density function.21

Alternative algorithms such as t-SNE22 and UMAP23

have become popular for reducing dimensionality
and visualising data. Whilst they have different
Fig. 1: Proposed AI-based methodology to generate reliable phenotyp
into a 2-dimensional latent space, visualised in the membership map. Th
influence of a variable over a micro-cluster. Hierarchical clustering is th
together into larger macro-clusters, which in turn are used to derive the

www.thelancet.com Vol 107 September, 2024
mathematical underpinnings, both methods aim to
reflect the underlying structure of the data. However, as
opposed to GTM, they are not probabilistic methods; t-
SNE and UMAP are deterministic techniques that focus
on preserving local and global structures without
explicitly modelling probability distributions. This is a
limitation of the latter two methods since we are inter-
ested in generating probabilistic representations and
explicit cluster modelling for the AF phenotypes. A
probabilistic approach would offer advantages such as
uncertainty quantification, robustness to noise, more
specific patient profiles, and the ability to uncover hid-
den subgroups, ultimately contributing to a more robust
stratification of patients.

GTM operates by assuming first that the observed
data are generated through a nonlinear, topology-
preserving mapping from a low-dimensional latent
space to a high-dimensional data space. Let the data in
the original data space D be represented as
x = (x1, x2,…, xD) and the latent variables be repre-
sented as u = (u1, u2, …, uL). The projection of points
from the latent space to the data space is carried out
using the non-linear function y(u;W) where W repre-
sents a set of parameters that maps points u in the latent
space into the points y(u;W) that lie in the data space.
The probability density function of the latent space,
p(u), is set to the sum of delta functions, as described in
eq. (1), constraining the latent points to a uniform
discrete grid of centres.

p(u)= 1
K

∑K
l=1

δ(u−ul)

Each centre in the latent space, xl, is responsible for
generating a spherical Gaussian density function in the
data space centred on y(xl;W), with variance β for a
given xl and W. The distribution in the dataspace can
es. Data is modelled by the GTM algorithm, which projects the data
e GTM also produces reference maps, which are used to indicate the
en applied to the reference vectors to group similar micro-clusters
phenotypes.

3
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therefore be understood as a Gaussian mixture model
defined by eq. (2).

p(x|W , β)= 1
K

∑K
l=1

p(x|ul,W , β)

Where the parameters W and β can be determined by
using maximum likelihood, whereby the log-likelihood
is defined as

L(W , β)=∑N
n=1

ln{1
K

∑K
l=1

p(xn|ul,W , β) }
The optimisation of this log-likelihood is carried out

using a variant of the expectation-maximisation (EM)
algorithm. For the full details on the calculations, please
refer to the original publications.18,21

In practice, GTM calculates the probability of an
observed data point, represented in here by a patient/
participant, belonging to each cluster. The cluster with
the highest probability determines the final cluster
assignment, resulting in a fine-grained, micro-segmen-
tation of the original data space. This means that GTM
performs soft assignments of patients to clusters. This
soft assignment strategy yields data clusters within the
latent space, where all participants within a given cluster
exhibit similar characteristics. This robust approach
minimises the likelihood of data clusters comprising
dissimilar participants. Since we have chosen a 2-
dimensional latent space, these data clusters can be
visually represented on a 2-dimensional map, which we
will refer to as the “membership map”.

To perform the GTM modelling, we used the “ugtm”

Python package. As with any ML modelling, a crucial
step in the development of ML models is the careful
selection of appropriate hyperparameters. This is to
ensure the model can learn the key relationships within
the data whilst minimising the risk of overfitting and
ensuring the model can generalise to unseen data.
Although there are scenarios where hyperparameter
tuning may be less critical with the GTM method, in
this context, where the intended use of phenotypes is
not purely prescriptive, the paramount objective was to
ensure that the model could generalise effectively, and
accurately project new, unseen patients into the most
fitting phenotype.

Consequently, we conducted a comprehensive
search of a predefined parameter space to identify the
most suitable hyperparameters for our model. The
specific hyperparameters subjected to tuning included
the number of latent clusters (and by extension, the
number of Gaussian centres in the data space), the
number of radial basis functions (RBFs) (denoted as
“W") employed for projecting data from the latent space
to the data space, and the penalisation term used to
regulate the mapping process.
Each combination of hyperparameters underwent
rigorous evaluation through 10-fold cross-validation.
The primary performance metric for each test involved
assessing the negative log-likelihood of the test data fold
projections. The optimal hyperparameters were selected
based on their ability to perform exceptionally well on
the test data while also exhibiting minimal standard
deviation across all results from each cross-validation
fold. The results of the hyperparameter tuning showed
that the parameter set of a latent space grid size of
15 × 15, 196 RBFs arranged in a 14 × 14 grid with a
regularisation term of 1 was optimal and was therefore
used when training the GTM models for both the UK
Biobank and MIMIC-IV cohorts.

After obtaining a trained GTM model, each cluster
centre can be seen as a composite representation of the
data residing in the observed data space, hereafter
referred to as the “reference vector”. The components of
these reference vectors, derived from the data used to
train the model, serve as the basis for creating reference
maps for the variables (Fig. 1), which help to show their
influence on each patient cluster through heatmap vis-
ualisations, i.e., the intensity of high and low values
represents the extent to which each variable influences
different areas of the membership map. An additional
approach to interpreting the clusters involves super-
imposing other variables not seen by the model during
the training, presented in the form of a heatmap onto
the membership map visualisations. This provides users
with an alternative method for comprehending the
clusters through post-hoc analysis.

A crucial property of GTM is the preservation of data
topology, meaning that similar clusters should be posi-
tioned closer together in the latent space. Even if the
most probable cluster assigned to a participant does not
precisely correspond to the actual one, it is expected to
be closer to the correct one. This makes GTM repre-
sentations valuable for visualising complex high-
dimensional data in a more interpretable lower-
dimensional space. In contrast, common clustering
techniques such as k-means, lacking probabilistic
foundations, are not specifically designed to handle such
levels of uncertainty.

Macro-cluster analysis to generate AF phenotypes
Defining macro-clusters within the array of micro-
clusters generated by GTM is crucial for the identifica-
tion of AF phenotypes. The outcome of such analysis
would shed light on regions in the latent space where
micro-clusters with similar characteristics are concen-
trated, representing natural groupings and inherent
common patterns in the data space. As defined in eq.
(2), the centres in the latent space are projected into the
data space to create a non-linear manifold using GTM.

Our approach (Fig. 1) was inspired by an algorithm
introduced by Vellido et al.24 Instead of identifying
macro-cluster regions in the latent space, we used
www.thelancet.com Vol 107 September, 2024
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agglomerative hierarchal clustering using Ward’s min-
imum variance method25 on the reference vectors, and
the distances between the vectors were computed using
the Euclidean metric. The reference vectors corre-
sponded to the Gaussian centres projected from the
centres in the latent space, each residing in the data
space. Subsequently, the cluster assignment of each
reference vector was mapped to their respective centres
in the latent space, effectively generating the desired
macro-clusters comprising the latent space’s micro-
cluster centres. The full code implementing this
approach can be found on Zenodo26 at the following link
(https://zenodo.org/doi/10.5281/zenodo.12207621).

Data used for deriving AF phenotypes
Modelling variables extracted from the UK-Biobank database
The first dataset used for this analysis was a subset
extracted from the UK-Biobank, a large, population-
based database27 encompassing over 500,000 partici-
pants aged 40–69 from across the UK. To identify
eligible participants with AF, we searched ICD-10 codes
related to AF diagnosis recorded in the participants’
conditions and causes of death variables. Eligible par-
ticipants would have at least one of these codes recor-
ded. See list of codes in SM, Supplementary Table S1.

In total, 67 variables from the UK-Biobank were
used for modelling, 40 genomic variables and 27 bio-
logical sample variables. We only included these vari-
ables to ensure that participants were clustered based
on the similarity of their biological and genetic profiles,
rather than being influenced by external demographic
factors. The genomic variables are a set of 40 principal
components generated using >100,000 single nucleo-
tide polymorphisms (SNPs).28 The 27 biological sample
variables selected aim to represent key risk markers
associated with AF: clotting, inflammation, renal
function, liver function, cholesterol, diabetes, and sex-
related markers.29

Modelling variables extracted from the MIMIC-IV database
Data was extracted from the Medical Information Mart
for Intensive Care IV (MIMIC-IV30), a freely available
database of de-identified electronic health records linked
to patients admitted to the Beth Israel Deaconess Med-
ical Centre in Boston, Massachusetts. We used version
2.2 (January/2023), which includes 73,181 ICU stays.

Patients were included in this study if they had at
least one episode of AF during the ICU admission. The
latter was extracted from the chartevent table, using the
code for heart rhythm: 220048, and identifying from
those the ones that have value “AF (Atrial Fibrillation)”.
Therefore, this would include patients with pre-existing
AF, and those with new-onset AF, although the first AF
episode recorded occurred after the first 24 h of the ICU
admission. Patients <18 years old, patient admissions
with short ICU stays (<24 h), and patients with multiple
ICU stays were excluded from the study.
www.thelancet.com Vol 107 September, 2024
In total, 21 variables from the MIMIC-IV database
were used for modelling. These variables were extracted
from sequences of vitals (e.g., temperature, and heart
rate) and lab test results (e.g., glucose and haemoglobin)
used to monitor the condition of the patient in the ICU.
The variables used for modelling were selected as they
represent key risk markers associated with AF in
ICU.31,32

Selection of variables associated with AF
AF in the general population: UK-Biobank data
AF is associated with ageing and comorbidities, as re-
flected in our phenotypic data. Indeed, multiple studies
have shown how comorbid risk factors do not occur in
isolation, but cluster together contributing to clinical
complexity phenotypes.3,4 There are well-recognised as-
sociations of common comorbidities such as hyperten-
sion, heart failure and diabetes, as well as renal and liver
dysfunction.33 The choice of biological sample variables
selected for our modelling aims to represent key risk
markers associated with AF since they are essential for a
comprehensive understanding of the factors contrib-
uting to AF. For example, inflammatory processes play a
role in the development and progression of AF.34

Certain genetic variants have also shown significant
association with silent AF.35

Various risk prediction tools have been proposed for
the prediction of incident AF,36 e.g., CHARGE-AF (The
Cohorts for Heart and Ageing Research in Genomic
Epidemiology AF) score, developed for the general
population, which uses variables such as age, ethnicity,
height, weight, blood pressure, medication use, and
comorbidities.37 Simpler clinical risk factor scores such
as C2HEST have also been investigated to predict inci-
dent AF in population and post-stroke cohorts.38

AF in the critical care population: UK-Biobank data
AF stands as the most prevalent arrhythmia among
critically ill patients, occurring at an incidence rate of
10–15%39 within the critical care population. Patients in
the ICU that have AF suffer with a worse prognosis,
longer ICU stays and higher mortality.40 Treatments for
managing AF that are used for patients in the general
population may not be appropriate for critically ill pa-
tients,41 therefore having ICU focused results is crucial
for optimising patient outcomes. The risk factors for AF
can significantly differ between the general and the
critical care populations. Common risk factors for AF in
the community involve structural and valvular heart
disease, but these factors may not be distinctly associ-
ated with AF in critical illness.42 In addition, acute fac-
tors are thought to be associated with increased risk for
newly diagnosed AF during critical illness.37 For
example, invasive ventilation is associated with AF epi-
sodes in critically ill patients.42 Monitoring oxygenation
is crucial in these patients to assess respiratory function
and optimise oxygen delivery, as compromised
5
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oxygenation can exacerbate cardiovascular stress and
contribute to complications.43 Electrolyte imbalances,
such as phosphate abnormalities, observed in medical
conditions like kidney dysfunction, may indirectly
contribute to AF development.

Additional investigative variables
Additional investigative variables were extracted for
further exploration, and they were not used during
model development. Instead, they are employed post-
hoc to provide further context/insights related to the
composition of individual or group of clusters and to
help identify potential meaningful AF phenotypes.

Investigative variables extracted from the UK-Biobank
database
We used a set of 18 UK-Biobank variables for visual-
isation purposes. This selection consisted of 15 assess-
ment centre variables, and two population characteristic
variables, with the remaining variable belonging to the
health-related outcomes category. Several of these vari-
ables were previously identified in prior AF studies29 and
includes sex (determined either from the NHS central
registry or by what was self-reported by the participant),
BMI, activity levels and alcohol consumption.

We consider that incorporating comorbidity data is
fundamental for understanding how various medical
conditions can be differentiated among clusters of AF
participants in the general population. To effectively
convey information on thousands of diverse comorbid-
ities in a clear, meaningful manner, we integrated the use
of phecodes.44 Each phecode is composed of several indi-
vidual diagnoses, defined using ICD-10 codes, which are
subsequently grouped into various phecode categories.

In our analysis of AF participants from the general
population using UK-Biobank data, we included several
phecode categories that encompassed diagnoses from a
predefined set of comorbidities commonly associated
with individuals suffering from AF. To assign a phe-
code, and subsequently associate it with a phecode
category, a patient’s record was examined for a match
with the ICD-10 code of either primary or secondary
diagnoses to one within a phecode. The list of all
phecodes, and their respective phecode categories, that
were considered in this study can be found in
Supplementary Table S2. For the full details regarding
which ICD10 codes make up each phecode, please refer
to the original publication.44

Investigative variables extracted from the MIMIC-IV database
A selection of 27 variables from the MIMIC-IV database
were extracted for further investigation. They include
demographic data such as sex (reported in the dataset as
gender however we used this term as it is more appro-
priate as it refers to the biological sex of the patient), age,
and ethnicity. They also include the Glasgow Coma
Scale (GCS), a neurological assessment tool commonly
employed in critical care settings, which is used to
evaluate a patient’s level of consciousness based on their
eye, verbal, and motor responses. Ventilation status
(invasive and non-invasive), acute kidney injury (AKI)
and acute respiratory distress syndrome (ARDS) are also
investigated as variables of interest, as well as a series of
variables related to length of stay and mortality.

Data pre-processing
To ensure the development of a robust and represen-
tative dataset for modelling, we undertook several pre-
processing steps. First, we implemented a set of miss-
ingness criteria (defining appropriate levels/thresholds
of data completion) to determine which variables and
participants to include. The thresholds were set at 25%
and 30% for data that could be missing for a variable or
a participant, respectively. We also identified certain
variables that exhibited positive skewness in their value
distributions. To address this, we applied a log trans-
formation to these variables, rendering their distribu-
tions more Gaussian in nature.

Subsequently, any remaining missing data were
addressed through imputation, employing a multivar-
iate imputer. This imputer estimated missing values by
considering known values from other variables. To
accomplish this, we utilised the “IterativeImputer”
function, which is part of the Scikit-Learn Python
package and draws inspiration from the R MICE pack-
age 6. Invalid values of the variables (e.g., heart rate < 0)
were marked as not available. Variables recorded with
different units were harmonised, e.g., in MIMIC-IV,
height was present in inches and centimetres (cm),
and they were all converted to cm.

Ethics
The UK Biobank is approved from the North West
Multi-centre Research Ethics Committee as a Research
Tissue Bank and researchers do not require separate
ethical clearance. The use of MIMIC-IV data did not
require ethical approval as the analysis is based on
secondary data which is publicly available, and no
permission is required to access the data.

Statistics
Medians and interquartile ranges were calculated for
continuous variables, and frequencies and proportions
(percentages) were used for categorical variables. There
were several ordinal variables used for the exploratory
analysis of the GTM output. These were one-hot enco-
ded and then treated as a categorical variable and rep-
resented in the data as such.

To study the characteristics of the generated pheno-
type groups, differences between continuous variables
were analysed using the Kruskal–Wallis test and differ-
ences between categorical variables were analysed using
the Chi-squared test. In both cases, a p-value < 0.05 was
the threshold for statistical significance.
www.thelancet.com Vol 107 September, 2024
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Variable name Value
Model l ing  variables:

Inflammation markers:

Neutrophil count [x109 cells/L] 4.3 (3.49, 5.24)

Lymphocyte percentage [%] 27.03 (22.3, 31.93)

Monocyte percentage [%] 7.24 (5.91, 8.68)

C-reactive protein [mg/L] 1.77 (0.86, 3.57)

Clotting markers:

Haematocrit percentage [%] 41.78 (39.31, 44.1)

Mean corpuscular volume [Femtolitres] 91.7 (88.95, 94.5)

Red blood cell (erythrocyte) distribution width [%] 13.5 (13.07, 14.09)

Platelet count [x109 cells/L] 235 (201, 274)

Mean platelet (thrombocyte) volume [Femtolitres] 9.3 (8.64, 10.06)

Platelet distribution width [%] 16.5 (16.2, 16.86)

Mean reticulocyte volume [Femtolitres] 106.99 (102.5, 111.83)

Mean sphered cell volume [Femtolitres] 83.1 (79.8, 86.66)

Diabetes risk markers:

Glucose [mmol/L] 5.04 (4.68, 5.49)

Glycated haemoglobin (HbA1c) [mmol/mol] 36.4 (33.8, 39.5)

Liver function:

Albumin [g/L] 44.65 (43.13, 46.1)

Alanine aminotransferase [U/L] 21.56 (16.68, 28.19)

Direct bilirubin [umol/L] 1.74 (1.39, 2.24)

Gamma glutamyltransferase [U/L] 32.4 (22.2, 50.3)

Renal function:

Creatinine [umol/L] 75.6 (65.6, 86.1)

Sodium in urine [millimole/L] 69.3 (44.0, 100.5)

Urea [mmol/L] 5.69 (4.85, 6.63)

Urate [umol/L] 338.01 (284, 393.7)

Cholesterol markers:

Cholesterol [mmol/L] 5.31 (4.53, 6.09)

HDL cholesterol [mmol/L] 1.32 (1.11, 1.57)

Triglycerides [mmol/L] 1.6 (1.14, 2.23)

Sex-related markers:

SHBG [nmol/L] 44.98 (33.62, 58.9)

Testosterone [nmol/L] 8.73 (1.62, 12.2)

Addit ional  invest igat ive  var iables :  
Demographics:

Age at recruitment [years] 63 (59, 67)

Sex

Male 23,284 (63.5%)

Female 13,396 (36.5%)

Waist circumference [cm] 96 (87, 106)

Hip circumference [cm] 105 (99, 111)

Standing height [cm] 172 (164, 178)

Weight [kg] 83.3 (72.9, 95)

BMI [kg/m2] 28.16 (27.1, 29.98)

Activity level:

Summed minutes activity [mins] 95 (50, 180)

MET minutes per week for vigorous activity [mins/week] 120 (0, 720)

Blood pressure:

Diastolic blood pressure, automated reading [mmHg] 82 (75, 90)

Systolic blood pressure, automated reading [mmHg] 143 (130, 157)

Pulse rate, automated reading [bpm] 68 (60, 77)

Respiratory measures:

Forced expiratory volume in 1 second (FEV1) [L] 2.68 (2.15, 3.27)

Peak expiratory flow (PEF) [L/min] 383 (295, 484)

Forced expiratory volume in 1 second (FEV1) Z-score 0.62 (-0.12, 1.37)

FEV1/ FVC ratio Z-score 0.4 (-0.13, 1)

Alcohol intake frequency:

Daily or almost daily [yes] 7,170 (19.6%)

Three or four times a week [yes] 6,417 (17.5%)

Once or twice a week [yes] 6,869 (18.7%)

One to three times a month [yes] 2,734 (7.5%)

Special occasions only [yes] 3,354 (9.1%)

Never [yes] 2,734 (7.5%)

Ethnic background:

White [yes] 35,536 (96.9%)

Asian or Asian British [yes] 406 (1.1%)

Black or Black British [yes] 247 (0.7%)

Mixed [yes] 111 (0.3%)

Other ethnic group [yes] 160 (0.4%)

Chinese [yes] 36 (0.1%)

AF and flutter diagnosis (main/secondary):

ICD10 - AF and flutter [yes] 20,966 (57.2%)

ICD10 - Paroxysmal AF [yes] 6,558 (17.9%)

ICD10 - Persistent AF [yes] 1,274 (3.5%)

ICD10 - Chronic AF [yes] 570 (1.6%)

ICD10 - Typical AF [yes] 216 (0.6%)

ICD10 - Atypical atrial flutter [yes] 86 (0.2%)

ICD10 - AF and atrial flutter, unspecified [yes] 21,767 (59.3%)

Systems (phecode categories):

Endocrine/metabolic [yes] 10,119 (27.6%)

Circulatory system [yes] 26,628 (72.6%)

Respiratory [yes] 6,097 (16.6%)

Diabetes:

Type 1 diabetes [yes] 839 (2.3%)

Type 1 diabetes with ketoacidosis [yes] 81 (0.2%)

Type 1 diabetes with renal manifestations [yes] 60 (0.2%)

Type 1 diabetes with ophthalmic manifestations [yes] 175 (0.5%)

Type 1 diabetes with neurological manifestations [yes] 96 (0.3%)

Diabetes type 1 with peripheral circulatory disorders [yes] 52 (0.1%)

Type 2 diabetes [yes] 7,130 (19.4%)

Type 2 diabetes with ketoacidosis [yes] 96 (0.3%)

Type 2 diabetes with renal manifestations [yes] 233 (0.6%)

Type 2 diabetes with ophthalmic manifestations [yes] 852 (2.3%)

Type 2 diabetes with neurological manifestations [yes] 427 (1.2%)

Diabetes type 2 with peripheral circulatory disorders [yes] 351 (1%)

Hypertension:

Essential hypertension [yes] 24,442 (66.6%)

Other hypertensive complications [yes] 86 (0.2%)

Cardiovascular disease:

Myocardial infarction [yes] 6,544 (17.8%)

Other forms of chronic heart disease [yes] 2 (0%)

Congestive heart failure (CHF) NOS [yes] 3,760 (10.3%)

Chronic pulmonary heart disease [yes] 1,105 (3%)

Heart failure NOS [yes] 4,680 (12.8%)

Coronary atherosclerosis [yes] 163 (0.4%)

Peripheral vascular disease:

Peripheral vascular disease, unspecified [yes] 1,911 (5.2%)

Other specified peripheral vascular diseases [yes] 23 (0.1%)

Pulmonary hypertension:

Primary pulmonary hypertension [yes] 403 (1.1%)

(Table 1 continues on next column)

(Continued from previous column)

Stroke:

Hemiplegia [yes] 1,214 (3.3%)

Liver disease:

Liver abscess and sequelae of chronic liver disease [yes] 373 (1%)

Alcoholic liver damage [yes] 379 (1%)

Other chronic non-alcoholic liver disease [yes] 1,441 (3.9%)

Other disorders of the liver [yes] 808 (2.2%)

Kidney disease:

End-stage renal disease [yes] 484 (1.3%)

All data presented below was taken from the first data instance available. Medians
and interquartile ranges were calculated for continuous variables, and frequencies
and proportions (as percentages) were calculated for the categorical variables. Red
shades were used for the modelling variables, whilst blue was used for the
additional investigative variables.

Table 1: Characteristics of the participant subset extracted from the
UK-Biobank database.
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Role of funders
The funders did not participate in the study’s design and
implementation, data collection, management, analysis,
or interpretation. They were also not involved in the
preparation, review, or approval of the manuscript, nor
in the decision to submit it for publication.

Results
Characteristics of the participants/patients cohorts
From the UK-Biobank we extracted 36,680 participants
with AF from this general population cohort using the
criteria set out in 2.2.1 (median age 63 years (IQR 59–67),
range 40–72 years; 63.5% male). Table 1 contains the
summary of the biological variables used for modelling,
and the investigative variables used in the post-hoc
analysis. A second dataset of 2695 critically ill patients
with AF using the criteria set out in section 2.2.2 (median
age 73 years (IQR 65–81), range 21–89 years; 60.4%
male) was extracted from the MIMIC-IV (Table 2).

Visualisation of reference vectors for the modelling
variables
Reference vectors of the modelling variables – used to derive
AF phenotypes
Fig. 2 contains the reference vectors extracted from the
trained GTM models for the UK-Biobank and MIMIC-
IV AF cohorts. For the UK-Biobank data, it contains
the reference vectors for the biological sample variables,
with plots grouped by the different risk factors they relate
to, whilst for the MIMIC-IV, it displays all modelling
variables used for modelling. Each point in every plot
within Fig. 2 corresponds exactly to the same point in
their respective membership map (SM, Supplementary
Fig. S1). A light grey–red colour scheme was used for
the reference vectors plot such that areas of the plots that
are redder indicate that participants in that cluster had a
higher value of that variable. Likewise, if the point in the
reference vector is greyer, the lower the value is for par-
ticipants in this cluster. All plots using the light grey–red
colour scheme indicate variables used in the GTM model
development, whereas plots using a light grey–teal
7
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Variable name Value
Model l ing variables:

Diabetes risk marker:

Glucose [mg/dL] 131.88 (118.17, 155.5)

Bone profile:

Phosphate [mg/dL] 3.58 (3.05, 4.22)

Oxygenation:

Oxygen saturation [%] 96.33 (94.38, 97.83)

Respiratory rate [breaths per min] 18.51 (16.5, 21.27)

Fraction inspired oxygen, FiO2 [%] 56.47 (50, 63.24)

Positive end-expiratory pressure (PEEP) [cmH2O] 5.6 (5, 7.11)

Partial pressure of oxygen [mmHg] 135.08 (99.15, 168.5)

Haemoglobin [g/dL] 10.16 (9.11, 11.48)

Respiratory/metabolic markers:

pH 7.35 (7.21, 7.39)

Anion Gap [mEq/L] 13.42 (11.33, 16.0)

Lactate [mmol/L] 2.0 (1.49, 2.75)

Cardiac markers:

Heart rate [beats per min] 81.33 (74.24, 90.42)

Capillary refill rate 0.0 (0.0, 0.02)

Diastolic BP [mmHg] 57.25 (51.5, 63.38)

Systolic BP [mmHg] 111.93 (104.73, 121.34)

Clotting markers:

Prothrombin time [sec] 14.47 (13.07, 16.45)

Platelet count [K/uL] 165.0 (125.12, 223.0)

Renal function:

Creatinine [mg/dL] 1.03 (0.8, 1.56)

Electrolytes:

Magnesium [mg/dL] 2.15 (1.91, 2.44)

Potassium [mEq/L] 4.29 (3.95, 4.61)

Other:

Temperature [°C] 36.74 (36.55, 37.0)

Addit ional  invest igat ive  var iables :
Demographics:

Age [years] 73 (65, 81)

Sex

Male 1,627 (60.4%)

Female 1,068 (39.6%)

Height [cm] 170.09 (162.78, 177.9)

Weight [kg] 82.43 (68.39, 97.37)

Ethnicity:

White [yes] 1971 (73.1%)

Other ethnic group [yes] 453 (16.8%)

Black [yes] 138 (5.1%)

Hispanic [yes] 68 (2.5%)

Asian [yes] 65 (2.4%)

Glasgow Coma Scale (GCS):

GCS eye-opening 2.88 (1.92, 3.75)

GCS motor response 4.83 (3.5, 6)

GCS verbal response 2.54 (1, 4.33)

Ventilation:

Non-Invasive ventilation [yes] 209 (7.8%)

Invasive ventilation [yes] 2116 (78.5%)

Outcomes:

Time to AF diagnosis [hours] 53 (38, 83)

In-hospital length of stay [hours] 256.78 (166.48, 407.12)

In-ICU length of stay [hours] 109.18 (72.9, 200.43)

Death after ICU [hours] 167.07 (17.64, 2700.04)

Death after hospital discharge [hours] 20.44 (10.55, 2551.06)

Death after hospital discharge [days] 0.85 (0.44, 106.29)

In-hospital mortality [yes] 567 (21.0%)

In-ICU length of stay of 3+ days [yes] 2040 (75.7%)

In-ICU length of stay of 7+ days [yes] 840 (31.2%)

Mortality after hospital discharge within 30 days [yes] 711 (26.4%)

Mortality after hospital discharge within 365 days [yes] 936 (34.7%)

Mortality after hospital discharge after 365 days [yes] 152 (5.6%)

Acute Kidney Injury (AKI) [yes] 545 (20.2%)
Acute Respiratory Distress Syndrome (ARDS) [yes] 174 (6.5%)

Summary statistics and colours as in Table 1. The data represented for each variable is the average of all data
recorded during the ICU stay.

Table 2: Characteristics of the ICU patient subset extracted from the MIMIC-IV database.
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represent variables that were not used in the modelling
and have no direct impact on the clusters themselves.

Visualisation of the additional investigative variables
Fig. 3 contains a selection of visualisations showing how
data from different investigative variables are distrib-
uted within the membership maps for the UK-Biobank
and MIMIC-IV cohorts. The visualisations representing
the investigative variables all use a light grey-teal colour
scheme as they were not used in model development.
The value assigned to each micro-cluster is the average
of the variable for all participants assigned to each
cluster, the more teal a micro-cluster is, the higher the
value. In SM, section 5, visualisations for all investigated
variables are displayed.

Description of AF phenotypes
For the UK-Biobank cohort, we identified five clusters
within the reference vectors residing in the data space,
as demonstrated by the dendrogram in Fig. 4(a).
Transferring these reference vector cluster assignments
to their corresponding latent centres gave five macro-
cluster regions, which in turn were used to define the
five AF phenotypes. These macro-cluster regions are
visualised in Fig. 4(b) and (c).

When applied to the MIMIC-IV cohort, the analysis
identified four clusters within the reference vectors, as
presented in Fig. 5(a). The macro-cluster regions
generated by transferring these clusters to their
respective latent centres are presented in Fig. 5(b) and
(c). The baseline data for each of the two databases were
split according to the number of phenotypes and
compared, in Tables 3 and 4 for the UK-Biobank and
MIMIC-IV data, respectively. A description of the
headline features that characterise both sets of pheno-
types can be found in Fig. 4(d) and 5(d).

Interpreting the visualisations
The membership maps show us which participants share
the same cluster indicating that they share similar fea-
tures. The probabilistic foundations of GTM allows us to
calculate, for each data point, the probability that it was
generated from the ith latent node. By calculating the
probability for each latent node and overlaying the result
onto the membership it allows the user to visualise the
probability distribution for each data point. Some exam-
ples of this are displayed in Fig. 6. Fig. 6(a) and (b) are the
probability distributions for participants from the UK
Biobank dataset and Fig. 6(c) and (d) are the probability
distributions for patients from the MIMIC-IV dataset. As
discussed in section 2.1.1, the latent node that has the
highest distribution of generating the data point de-
termines its final cluster assignment. These plots illus-
trate the soft cluster assignments GTM performs, whilst
also demonstrating the robustness of the approach in so
far as the next highest probability surround the node the
data point was assigned to.
www.thelancet.com Vol 107 September, 2024
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Fig. 2: Reference vector visualisations demonstrating how each biological sample variable affects the cluster distribution in the latent
space for both, the UK-Biobank and the MIMIC-IV AF cohorts.
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Fig. 3: Membership maps showing how a selection of investigative variables data are distributed within the latent space for the UK-
Biobank and the MIMIC-IV cohorts. AF: Atrial Fibrillation. AKI: Acute Kidney Injury. ARDS: Acute Respiratory Distress Syndrome. GCS: Glasgow
Coma Scale.
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To unlock deeper insights, superimposing modelling
data onto the membership maps provides a better un-
derstanding of why patients were clustered in such a way
(Figs. 2 and 3). Extra insights can be learnt by super-
imposing post-hoc data, unseen during modelling. One
example from the UK-Biobank cohort relates to sex-
related markers, specifically testosterone and SHBG
levels. By assessing their respective reference vectors,
individuals with higher testosterone and lower SHBG
tended to be in the middle and top-right sections of the
membership map. In contrast, those with heightened
SHBG and lower testosterone were clustered towards the
bottom left. Given that testosterone levels are generally
higher in males,45 and SHBG levels are typically elevated
in females,46 we can deduce that the membership map
effectively delineated male and female participants dur-
ing clustering. This can be seen in Fig. 3(A), where we
visually represent the participants’ sex (the bluer area in
Fig. 3(A) predominantly corresponds to males), and in
Supplementary Fig. S2 (in SM), which shows the mem-
bership map stratified by sex.
Discussion
Using our AI methodology, we have identified and
characterised clinical phenotypes of AF across diverse
patient populations, which could facilitate the tailoring
of prevention and treatment programs specific to each
phenotype. The principal findings of this study are: (i)
The proposed AI-based methodology showed its ability
to derive meaningful clinical phenotypes of AF in the
general and critical care populations. (ii) Our approach
is probabilistic, offering advantages such as the ability to
handle uncertainty, robustness to noise, more specific
patient profiles, and the ability to uncover hidden sub-
groups, contributing to more robust patient stratifica-
tion and visualising complex high-dimensional data in a
more interpretable lower-dimensional space, enhancing
understanding.

Identifying clinical phenotypes of diseases using
methods like hierarchical clustering (specifically Ward’s
minimum variance method and complete linkage with
Gowers distance) and k-prototype used in previous
phenotyping studies,9–12 may not always be the best
www.thelancet.com Vol 107 September, 2024
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Fig. 4: Derived phenotypes of AF in the general population using UK-Biobank data. a) Dendrogram produced using Ward’s minimum
variance method. The graph shows the 5 clusters that are used to define the 5 AF phenotypes for the general population. b) Membership map
with a uniform size for the micro-clusters to show the distribution of the macro-cluster regions. c) The size of the micro-clusters in the
membership map dictated by the number of participants assigned to it. d) Main characterising features for each of the phenotypes.

Articles
option for several reasons: (i) Clinical data often con-
tains diverse information, and these methods may not
effectively capture the complexity of relationships within
the data, and they may also be influenced by outliers or
noise.47 (ii) In clinical phenotyping, diseases may exhibit
considerable heterogeneity,9–12 however hierarchical
clustering assumes that data points within a cluster are
homogeneous. (iii) High-dimensional clinical data may
pose challenges for hierarchical clustering and k-proto-
type methods for interpreting results, which in the
www.thelancet.com Vol 107 September, 2024
context of clinical phenotypes may render unin-
tuitive.13,47 (iv) In the case of k-prototype, it can be sen-
sitive to the choice of initial cluster centroids and may
converge to local minima.13 (v) Clinical data often in-
cludes a mix of continuous and categorical variables.
Some clustering methods, like k-prototype, handle both
types, but the integration of different variable types can
be challenging and may not fully capture the informa-
tion. (vi) Results obtained from these methods may not
generalise well across different datasets or populations
11
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Fig. 5: Derived phenotypes of AF in the general population using MIMIC-IV data. a) Dendrogram produced using Ward’s minimum variance
method. The graph shows the 4 clusters that are used to define the 4 AF phenotypes for ICU patients. b) Membership map with a uniform size
for the micro-clusters to show the distribution of the macro-cluster regions. c) The size of the micro-clusters in the membership map dictated
by the number of participants assigned to it. d) Main characterising features for each of the phenotypes.
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due to variations in data characteristics.11 (vii) They lack
probabilistic foundations and hence are not specifically
designed to handle such levels of uncertainty.18,19

Alternative approaches, such as probabilistic or
ensemble methods, may provide more robust and inter-
pretable clinical phenotypes. Our approach involves
deriving micro-clusters using a probabilistic method (i.e.,
GTM), followed by hierarchical clustering to identify
macro-clusters, i.e., the phenotypes. The latter differs
from previous studies as the hierarchical methods were
applied to the reference vectors from a probabilistic
model rather than the original data space, which makes
the clusters more stable and resilient to data uncertainty.
Our use of GTM often provides highly interpretable
representations as it explicitly models clusters and pro-
totypes, offering insights into the underlying structure of
the data. The membership map produced by GTM cap-
tures the underlying relationships and clusters within the
data by mapping data points to these prototypes. This
enables comprehensible and interpretable representa-
tions of complex data, aiding in knowledge extraction and
facilitating insights that might otherwise remain hidden
www.thelancet.com Vol 107 September, 2024
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Variable name Phenotype 1
(n =19,335)

Phenotype 2
(n =4,480)

Phenotype 3
(n =4,561)

Phenotype 4
(n =47)

Phenotype 5
(n =8,257) p-value

MODELLING VARIABLES:

Inflammation markers:

Neutrophil count
4.27

(3.46, 5.18)

4.37

(3.57, 5.3)

5.1

(4.1, 6.35)

4.46

(3.95, 5.22)

3.99

(3.25, 4.77)
<0.05

Lymphocyte 

percentage

26.53

(22.1, 31.4)

27.27

(22.63, 32.1)

24.5

(19.01, 29.74)

26.15

(23.53, 29.4)

29.2

(24.67, 33.9)
<0.05

Monocyte percentage
7.6

(6.24, 9.04)

7.4

(6.11, 8.8)

6.7

(5.4, 8.15)

7.45

(6.16, 8.76)

6.7

(5.53, 7.91)
<0.05

C-reactive protein
1.54

(0.79, 2.94)

2.15

(1.07, 4.11)

4.75

(2.08, 10.82)

2.05

(0.9, 3.33)

1.44

(0.72, 2.86)
<0.05

Clotting markers:
Haematocrit 

percentage

43

(40.98, 44.93)

42.92

(40.6, 45.13)

39.82

(37.39, 42.18)

42.3

(38.6, 45.16)

39.3

(37.55, 41.07)
<0.05

Mean corpuscular 

volume

92.06

(89.46, 94.73)

91.82

(89.03, 94.9)

90.1

(86.8, 93.28)

91.6

(89.03, 93.55)

91.53

(88.9, 94.12)
<0.05

Red blood cell 

distribution width

13.5

(13.06, 14)

13.43

(13, 13.99)

13.95

(13.34, 14.89)

13.6

(13.1, 13.94)

13.47

(13, 14)
<0.05

Platelet count
228

(198, 261.45)

209

(174, 248.53)

262

(223.6, 308)

242

(197.45, 275.5)

253.4

(218.6, 292.8)
<0.05

Mean platelet volume
9.27

(8.6, 9.91)

9.9

(9, 10.95)

9.19

(8.53, 9.8)

9.17

(8.65, 10.01)

9.3

(8.61, 10.04)
<0.05

Platelet distribution 

width

16.5

(16.2, 16.8)

16.9

(16.5, 17.36)

16.49

(16.2, 16.8)

16.5

(16.17, 16.9)

16.37

(16.08, 16.7)
<0.05

Mean reticulocyte 

volume

107.37

(102.93, 112.11)

106.47

(101.9, 111.62)

106.39

(101.8, 111.82)

105.6

(101.82, 108.46)

106.6

(102.28, 111.3)
<0.05

Mean sphered cell 

volume

83.27

(80, 86.7)

82.55

(79.36, 86.5)

81.9

(78.5, 85.56)

81.71

(79.19, 85.15)

83.7

(80.4, 87.13)
<0.05

Diabetes risk markers:

Glucose
5.02

(4.66, 5.44)

5.28

(4.8, 6.36)

5.13

(4.72, 5.76)

5.09

(4.73, 5.42)

4.97

(4.67, 5.31)
<0.05

HbA1c
36.2

(33.6, 39.1)

37.6

(34.2, 44.63)

38.5

(35.6, 42.6)

37.2

(33.35, 40.95)

35.6

(33.4, 37.9)
<0.05

Liver function:

Albumin
44.81

(43.38, 46.2)

45.09

(43.42, 46.9)

43.72

(41.96, 45.22)

44.42

(43.41, 46.41)

44.5

(43.08, 45.86)
<0.05

Alanine 

aminotransferase

22.72

(17.88, 28.67)

30.56

(22.69, 42.64)

20.25

(15.68, 26.3)

21.54

(16.14, 28.11)

17.33

(14.13, 21.39)
<0.05

Direct bilirubin
1.91

(1.52, 2.41)

1.88

(1.47, 2.46)

1.57

(1.25, 1.99)

1.66

(1.31, 2.11)

1.48

(1.22, 1.81)
<0.05

Gamma 

glutamyltransferase

34.1

(24.3, 50.6)

53.9

(34.5, 96.3)

34.1

(24.2, 52.3)

34.9

(22.1, 51.55)

22

(16.9, 31.3)
<0.05

Renal function:

Creatinine
79.8

(71.7, 88.8)

77.1

(67.2, 87.4)

76.1

(64, 95)

81.8

(63.3, 90.25)

63.8

(57.3, 71.5)
<0.05

Sodium in urine
76.4

(49.5, 108.6)

74.9

(48.9, 106)

69

(43.5, 96.3)

57.4

(35.65, 86.15)

53.2

(34.3, 77.7)
<0.05

Urea
5.73

(4.94, 6.63)

5.69

(4.83, 6.66)

6.08

(5, 7.79)

5.94

(5.05, 6.52)

5.41

(4.61, 6.23)
<0.05

Urate
354.8

(310.5, 402.6)

370.1

(312.3, 428.42)

354.44

(297.4, 429)

358.9

(312.05, 402.7)

269.3

(230.3, 311.2)
<0.05

Cholesterol markers:

Cholesterol
5.16

(4.4, 5.88)

5.3

(4.44, 6.18)

5.09

(4.29, 5.95)

5.13

(4.41, 6.07)

5.8

(5.1, 6.53)
<0.05

HDL cholesterol
1.26

(1.08, 1.46)

1.17

(0.99, 1.43)

1.24

(1.04, 1.45)

1.27

(1.16, 1.56)

1.6

(1.4, 1.84)
<0.05

Triglycerides 
1.6 

(1.14, 2.18) 

2.24 

(1.44, 3.4) 

1.82 

(1.32, 2.5) 

1.78 

(1.27, 2.44) 

1.32 

(0.99, 1.76) 
<0.05 

Sex-related markers: 

SHBG 
42.75 

(33.16, 53.73) 

37.27 

(26.76, 50.01) 

38.3 

(28.58, 50.66) 

46.57 

(37.98, 59.25) 

61.46 

(48.69, 78.23) 
<0.05 

Testosterone
11.03 

(8.4, 13.72)

9.28 

(6.05, 12.16)

5.03 

(1.09, 9.64)

9.8 

(1.34, 13.18)

1.17 

(0.76, 2.48)
<0.05

(Table 3 continues on next page)
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ADDITIONAL INVESTIGATIVE VARIABLES:

Demographics:

Age at recruitment
63

(59,67)

62

(58,66)

64

(60,67)

63

(60.5,67)

63

(60,67)
<0.05

Sex [Male]
16,842

(87.1%)

3,535

(78.9%)
2,216 (48.6%) 30 (63.8%) 661 (8%) <0.05

Waist circumference
98

(91,106)

102

(94,111)
100 (91,110)

100 

(91.75,105.5)
85 (77,93) <0.05

Hip circumference
104

(100,110)

107

(101,113)
107 (101,116)

106 

(101.75,113)
103 (97,109) <0.05

Standing height 175 (169,180)
174

(168,180)
168 (161,175)

173 

(163.25,180)
164 (159,169) <0.05

Weight
86.2

(77.2,96.7)

90.2 

(80.3,102.5)

85.4 

(74.4,98.8)
86.5 (73.2,95.3)

70.9 

(63.4,80.33)
<0.05

BMI
28.15 

(27.03,29.85)

29.79 

(28.45,31.64)

30.26 

(28.7,32.26)

28.9 

(27.47,29.41)

26.36 

(25.08,28.12)
<0.05

Activity level:
Summed minutes 

activity

100

(50,180)

90

(40,160)

80

(30,150)

120

(62.5,180)

105

(55,180)
<0.05

MET minutes/week 

for vigorous activity

160

(0,960)

0

(0,720)

0

(0,480)

320

(0,960)

120

(0,720)
<0.05

Blood pressure:

Diastolic BP
83

(76,91)

84

(77,92)

81

(74,89)

81.5

(73,87)

80

(73,88)
<0.05

Systolic BP
144

(131,157)

145

(133,160)

143

(130,157)

145 

(124.75,151.75)

142

(128,156)
<0.05

Pulse rate
67

(59,76)

70

(61,80.25)

71

(63,81)

69

(63.75,76.25)

68

(61,76)
<0.05

Respiratory measures:

(FEV1)
2.99

(2.42,3.49)

2.85

(2.26,3.39)

2.28 

(1.84,2.77)

2.71

(2.19,3.18)

2.27

(1.93,2.64)
<0.05

PEF
433

(334,520)

414 

(313,507.75)

332

(258,415)

366 

(304.5,469.5)

318

(260,375)
<0.05

FEV1 Z-score
0.57

(-0.18,1.33)

0.77

(0.07,1.53)

0.97 

(0.22,1.73)

0.72

(0.08,1.08)

0.5

(-0.22,1.2)
<0.05

FEV1/FVC ratio Z-

score

0.36

(-0.17,0.98)

0.29

(-0.22,0.95)

0.43

(-0.12,1.08)

0.45

(-0.28,0.95)

0.51

(0.01,1.02)
<0.05

Alcohol intake frequency:

Daily or almost daily
4,196

(21.7%)

1,071

(23.9%)

624

(13.7%)

15

(31.9%)

1,264

(15.3%)
<0.05

3 or 4 times a week
3,761

(19.5%)

794

(17.7%)

580

(12.7%)

5

(10.6%)

1,277

(15.5%)
<0.05

Once or twice a week
3,665

(19%)

801

(17.9%)

822

(18%)

7

(14.9%)

1,574

(19.1%)
0.363

1 to 3 times a month
1,241

(6.4%)

299

(6.7%)

409

(9%)

5

(10.6%)

780

(9.5%)
<0.05

Special occasions 

only

1,404

(7.3%)

329

(7.3%)

640

(14%)

4

(8.5%)

977

(11.8%)
<0.05

Never
1,172

(6.1%)

311

(6.9%)

532

(11.7%)

4

(8.5%)

715

(8.7%)
<0.05

Ethnic background:

White
18,578

(96.1%)

4,445

(99.2%)

4,264

(93.5%)

46

(97.9%)

8,203

(99.4%)
<0.05

Asian or Asian 

British

157

(0.8%)

2

(0%)

244

(5.4%)

1

(2.1%)

2

(0%)
<0.05

Black or Black 

British

243

(1.3%)

1

(0%)

2

(0%)

0

(0%)

1

(0%)
<0.05

Mixed
72

(0.4%)

9

(0.2%)

15

(0.3%)

0

(0%)

15

(0.2%)
0.0641

Other ethnic group 135 5 12 0 8 <0.05

(0.7%) (0.1%) (0.3%) (0%) (0.1%) 

Chinese 
36 

(0.2%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 
<0.05 

(Table 3 continues on next page)
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AF and flutter diagnosis (main/secondary):
ICD10 - AF and 

flutter

11,302

(58.5%)

2,684

(59.9%)

2,740

(60.1%)

27

(57.5%)

4,213

(51%)
<0.05

ICD10 - Paroxysmal 

AF

3,209

(16.6%)

696

(15.5%)

811

(17.8%)

7

(14.9%)

1,835

(22.2%)
<0.05

ICD10 - Persistent 

AF

740

(3.8%)

149

(3.3%)

106

(2.3%)

1

(2.1%)

278

(3.4%)
<0.05

ICD10 - Chronic AF
327

(1.7%)

80

(1.8%)

63

(1.4%)

0

(0%)

100

(1.2%)
<0.05

ICD10 - Typical AF
128

(0.7%)

31

(0.7%)

18

(0.4%)

0

(0%)

39

(0.5%)
0.1045

ICD10 - Atypical 

atrial flutter

43

(0.2%)

13

(0.3%)

13

(0.3%)

0

(0%)

17

(0.2%)
0.8072

ICD10 - AF and atrial 

flutter, unspecified

11,455

(59.2%)

2,723

(60.8%)

2,678

(58.7%)

24

(51.1%)

4,887

(59.2%)
0.6494

Systems (phecode categories):

Endocrine/metabolic
4,467

(23.1%)

1,865

(41.6%)

1,947

(42.7%)

12

(25.5%)

1,828

(22.1%)
<0.05

Circulatory system
14,062

(72.7%)

3,559

(79.4%)

3,783

(82.9%)

35

(74.5%)

5,189

(62.8%)
<0.05

Respiratory
2,991

(15.5%)

804

(18%)

1,200

(26.3%)

9

(19.2%)

1,093

(13.2%)
<0.05

Diabetes:

Type 1 diabetes
300

(1.6%)

258

(5.8%)

225

(4.9%)

0

(0%)

56

(0.7%)
<0.05

Type 1 diabetes with 

ketoacidosis

18

(0.1%)

40

(0.9%)

14

(0.3%)

0

(0%)

9

(0.1%)
<0.05

Type 1 diabetes with 

renal manifestations

16

(0.1%)

13

(0.3%)

29

(0.6%)

0

(0%)

2

(0%)
<0.05

Type 1 diabetes with 

ophthalmic 

manifestations

58

(0.3%)

61

(1.4%)

41

(0.9%)

0

(0%)

15

(0.2%)
<0.05

Type 1 diabetes with 

neurological 

manifestations

26

(0.1%)

36

(0.8%)

29

(0.6%)

0

(0%)

5

(0.1%)
<0.05

Diabetes type 1 with 

peripheral circulatory 

disorders

13

(0.1%)

13

(0.3%)

23

(0.5%)

0

(0%)

3

(0%)
<0.05

Type 2 diabetes
3,400

(17.6%)

1,620

(36.2%)

1,462

(32.1%)

9

(19.2%)

639

(7.7%)
<0.05

Type 2 diabetes with 

ketoacidosis

35

(0.2%)

41

(0.9%)

14

(0.3%)

0

(0%)

6

(0.1%)
<0.05

Type 2 diabetes with 

renal manifestations

66

(0.3%)

55

(1.2%)

103

(2.3%)

1

(2.1%)

8

(0.1%)
<0.05

Type 2 diabetes with 

ophthalmic 

manifestations

326

(1.7%)

244

(5.5%)

226

(5%)

3

(6.4%)

53

(0.6%)
<0.05

Type 2 diabetes with 

neurological 

manifestations

132

(0.7%)

139

(3.1%)

137

(3%)

2

(4.3%)

17

(0.2%)
<0.05

Diabetes type 2 with 

peripheral circulatory 

disorders

122

(0.6%)

109

(2.4%)

110

(2.4%)

0

(0%)

10

(0.1%)
<0.05

Hypertension:
Essential 

hypertension

12,827

(66.3%)

3,334

(74.4%)

3,571

(78.3%)

31

(66%)

4,679

(56.7%)
<0.05

Other hypertensive 

complications

34

(0.2%)

5

(0.1%)

42

(0.9%)

0

(0%)

5

(0.1%)
<0.05

(Table 3 continues on next page)
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End-stage renal 

disease

155 

(0.8%)

54 

(1.2%)

247 

(5.4%)

0 

(0%)

28 

(0.3%)
<0.05

 

Chronic pulmonary 

heart disease

500

(2.6%)

168

(3.8%)

209

(4.6%)

0

(0%)

228

(2.8%)
<0.05

Heart failure NOS
2,452

(12.7%)

662

(14.8%)

834

(18.3%)

8

(17%)

724

(8.8%)
<0.05

Coronary 

atherosclerosis

92

(0.5%)

28

(0.6%)

30

(0.7%)

1

(2.1%)

12

(0.2%)
<0.05

Peripheral vascular disease:
Peripheral vascular 

disease, unspecified

934

(4.8%)

316

(7.1%)

408

(9%)

2

(4.3%)

251

(3%)
<0.05

Other specified 

peripheral vascular 

diseases

8

(0%)

4

(0.1%)

6

(0.1%)

0

(0%)

5

(0.1%)
0.2495

Pulmonary hypertension:
Primary pulmonary 

hypertension

193

(1%)

53

(1.2%)

84

(1.8%)

0

(0%)

73

(0.9%)
<0.05

Stroke:

Hemiplegia
598

(3.1%)

167

(3.7%)

208

(4.6%)

1

(2.1%)

240

(2.9%)
<0.05

Liver disease:
Liver abscess and 

sequelae of chronic 

liver disease

165

(0.9%)

117

(2.6%)

60

(1.3%)

0

(0%)

31

(0.4%)
<0.05

Alcoholic liver 

damage

155

(0.8%)

147

(3.3%)

65

(1.4%)

0

(0%)

12

(0.2%)
<0.05

Other chronic non-

alcoholic liver 

disease

654

(3.4%)

300

(6.7%)

268

(5.9%)

1

(2.1%)

218

(2.6%)
<0.05

Other disorders of the 

liver

387

(2%)

135

(3%)

125

(2.7%)

0

(0%)

161

(2%)
<0.05

Kidney disease:

Cardiovascular disease:

Myocardial infarction
3,684

(19.1%)

972

(21.7%)

1,027

(22.5%)

11

(23.4%)

850

(10.3%)
<0.05

Other forms of 

chronic heart disease

2

(0%)

0

(0%)

0

(0%)

0

(0%)

0

(0%)
0.7735

Congestive heart 

failure (CHF) NOS

1,891

(9.8%)

539

(12%)

727

(15.9%)

2

(4.3%)

601

(7.3%)
<0.05

As in Table 1, medians and interquartile ranges were calculated for continuous variables, and frequencies and proportions (as percentages) were calculated for the
categorical variables. Shades of red/blue were used per variable to illustrate differences between lower and higher values. Red shades were used for the modelling variables,
whilst blue was used for the additional investigative variables.

Table 3: Characteristics of the participants per phenotype of AF in the general population using UK-Biobank data.

Articles

16
in the original high-dimensional space. Indeed, GTM has
been applied in diverse real-world situations spanning
various domains such as bioinformatics48,49; in the
financial sector50; and more recently also in modelling
freedom of expression.51 To the best of our knowledge,
GTM has not been used before to study AF or to generate
clinical phenotypes.

The identification and characterisation of clinical
phenotypes of AF across diverse patient populations
show potential for personalised risk assessment and
prognosis. Leveraging these phenotypes could facilitate
the tailoring of prevention and treatment programs
specific to each phenotype.

The proposed methodology provides several advan-
tages to extract meaningful phenotypes. First, as
opposed to previous approaches,1,9,10,12,17 we define phe-
notypes based on a non-linear clustering approach
which can capture more complex relationships.
Furthermore, we can visualise the clusters, and by
extension the phenotypes, and how each variable affects
each cluster, which provides interpretability, crucial for
validation and understanding. It also allows for a
convenient method of looking at phenotype differences.
For example, phenotype 2 in Fig. 4(b) occupies pre-
dominantly the right side of the membership map. The
reference vector for glucose in Fig. 2 (top) highlights
that participants in the bottom right micro-clusters have
the highest glucose values when compared to the other
micro-clusters. This information can be translated back
to phenotype 2 to provide more context about its
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Variable name Phenotype 1
(n = 1,705)

Phenotype 2
(n = 631)

Phenotype 3
(n = 250)

Phenotype 4
(n = 109) p-value

MODELLING VARIABLES:

Diabetes:

Glucose
139

(115.22, 184.71)

136.15

(118.3, 160.6)

127.94

(119.24, 137.89)

134.04

(114.84, 159.54)
< 0.05

Bone profile:

Phosphate
4.57

(3.65, 5.65)

3.5

(3, 4.1)

3.38 

(2.99, 3.79)

3.36

(2.8, 3.86)
< 0.05

Oxygenation:

Oxygen saturation
96.08 

(93.88, 97.75)

96.22 

(94.67, 97.65)

96.36 

(93.66, 97.85)

97.03 

(95.37, 98.4)
< 0.05

Respiratory rate
19.25 

(16.9, 22.32)

20.5 

(17.97, 23.09)

16.98 

(15.7, 18.62)

18.46 

(16.5, 20.63)
< 0.05

FiO2
57.5 

(50, 66.27)

56.07 

(50, 62.16)

58.33 

(52.08, 64.58)

53.57 

(46.15, 57.54)
< 0.05

PEEP
6.45 

(5.08, 8.11)

6.37 

(5.1, 7.68)

5.05 

(5, 5.94)

5.38 

(5, 6.24)
< 0.05

Partial pressure of oxygen
109 

(72.0, 150.97)

114.79 

(85.64, 139.45)

168.96 

(143.3, 205.26)

133.93 

(111.1, 152.19)
< 0.05

Haemoglobin
9.62 

(8.58, 10.79)

10.5 

(9.14, 11.91)

9.92 

(9.23, 10.79)

11.81 

(10.4, 13.2)
< 0.05

Respiratory/metabolic markers:

pH
7.29 

(7.17, 7.36)

7.32 

(7.15, 7.38)

7.37 

(7.35, 7.4)

7.22 

(7.08, 7.38)
< 0.05

Anion Gap
17 

(14.0, 20.21)

13.83 

(12, 15.97)

11.67 

(10, 13.08)

14 

(12.16, 15.94)
< 0.05

Lactate
2.33 

(1.6, 3.39)

1.9 

(1.4, 2.62)

2.14 

(1.62, 2.78)

1.6 

(1.16, 2.12)
< 0.05

Cardiac markers:

Heart rate
83.39 

(73.36, 93.75)

85.03 

(76.83, 96.06)

80.46 

(75.33, 85.81)

75.86 

(68.26, 86.2)
< 0.05

Capillary refill
0.03 

(0, 0.42)

0 

(0, 0.02)

0 

(0, 0)

0 

(0, 0)
< 0.05

Diastolic BP
56 

(50.34, 61.62)

58.21 

(52.49, 63.98)

55.19 

(50.21, 59.87)

65.62 

(59, 72.69)
< 0.05

Systolic BP
109.24 

(101.74, 119.08)

110.19 

(103.3, 118.4)

111.01 

(105.38, 117.38)

131.09 

(121.45, 143.2)
< 0.05

Clotting markers:

Prothrombin time
16.53 

(13.95, 22.29)

14.65 

(13.02, 16.7)

14.2 

(13.2, 15.37)

13.1 

(12.17, 14.3)
< 0.05

Platelet count
148.42 

(102.73, 223.19)

187.79 

(139.22, 254.14)

146.29 

(120.05, 185.56)

197 

(151.08, 245.71)
< 0.05

Renal function:

Creatinine
2.12 

(1.3, 3.7)

1 

(0.75, 1.33)

0.9 

(0.73, 1.16)

0.9 

(0.7, 1.2)
< 0.05

Electrolytes:

Magnesium
2.11 

(1.91, 2.4)

2 

(1.8, 2.25)

2.4 

(2.19, 2.7)

2 

(1.8, 2.13)
< 0.05

Potassium
4.49 

(4.05, 4.92)

4 

(3.83, 4.55)

4.33 

(4.11, 4.57)

4.05 

(3.74, 4.33)
< 0.05

Other:

Temperature
57.5 

(36.45, 36.97)

56.07 

(36.62, 37.11)

58.33 

(36.52, 36.85)

53.57 

(36.67, 37.24)
< 0.05

(Table 4 continues on next page)
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0.5042

Sex
405

(63.4%)

453

(57.2%)

563

(62.3%)

206

(57.2%)
0.3317

Height
172.86 

(162.78, 177.9)

170.09 

(162.72, 177.9)

170.09 

(162.78, 177.9)

172.86 

(162.78, 180.17)
0.2896

Weight
83.93 

(69.84, 98.29)

81.42 

(65.9, 99.36)

83.05 

(70.33, 95.92)

79.79 

(65.85, 95.97)
0.0768

Ethnicity:

White
434.0 

(67.9%)

589.0 

(74.4%)

700.0 

(77.4%)

248.0 

(68.9%)
0.1263

Other ethnic group
117.0 

(18.3%)

128.0 

(16.2%)

136.0 

(15.0%)

72.0 

(20.0%)
0.1785

Black
51.0 

(8.0%)

43.0 

(5.4%)

23.0 

(2.5%)

21.0 

(5.8%)
< 0.05

Hispanic
16.0 

(2.5%)

16.0 

(2.0%)
28.0 (3.1%)

8.0 

(2.2%)
0.5508

Asian
21.0 

(3.3%)

16.0 

(2.0%)

17.0 

(1.9%)

11.0 

(3.1%)
0.2400

Glasgow Coma Scale (GCS):

GCS eye-opening
2.83 

(1.75, 3.83)

3.29 

(2.29, 4.0)

2.5 

(1.67, 3.08)

3.29 

(2.34, 4.0)
< 0.05

GCS motor response
5.0

(3.06, 6.0)

5.67 

(4.28, 6.0)

4.12 

(2.79, 4.75)

5.79 

(4.67, 6.0)
< 0.05

GCS verbal response
2.04 

(1.0, 4.62)

3.33 

(1.0, 5.0)

2.25 

(1.0, 3.5)

3.25 

(1.0, 5.0)
< 0.05

Ventilation:

Non-Invasive ventilation
56.0 

(8.8%)

75.0 

(9.5%)

54.0 

(6.0%)

24.0 

(6.7%)
< 0.05

Invasive ventilation
485.0 

(75.9%)
557.0 (70.3%) 852.0 (94.2%) 222.0 (61.7%) < 0.05

Outcomes:

Time to AF diagnosis (hours)
59.0 

(41.0, 94.0)

52.0 

(36.0, 91.0)

49.0 

(37.0, 70.0)

55.0 

(36.75, 89.0)
< 0.05

In-hospital length of stay (hours)
296.32 

(180.18, 498.3)

262.41 

(169.22, 427.41)

228.08 

(159.62, 340.88)

246.62 

(161.07, 413.97)
< 0.05

In-ICU length of stay (hours)
143.89 

(82.93, 264.94)

112.97 

(70.99, 211.78)

98.33 

(69.63, 148.69)

110.16 

(69.28, 212.26)
< 0.05

Death after ICU (hours)
26.57 

(16.46, 1021.61)

183.27 

(17.17, 2350.5)

1558.35 

(21.98, 10015.99)

394.49 

(18.8, 3513.18)
< 0.05

Death after hospital discharge 

(hours)

17.5 

(8.5, 849.0)

20.25 

(10.1, 2106.35)

1330.07 

(16.3, 9930.92)

27.81 

(12.62, 3271.6)
< 0.05

Death after hospital discharge 

(days)

0.73 

(0.35, 35.38)

0.84 

(0.42, 87.76)

55.42 

(0.68, 413.79)

1.16 

(0.53, 136.32)
< 0.05

In-hospital mortality
245.0 

(38.3%)

191.0 

(24.1%)

60.0 

(6.6%)

71.0 

(19.7%)
< 0.05

In-ICU length of stay of 3+ days
526.0 

(82.3%)

587.0 

(74.1%)

665.0 

(73.6%)

262.0 

(72.8%)
0.1785

In-ICU length of stay of 7+ days
274.0 

(42.9%)

257.0 

(32.4%)

186.0 

(20.6%)

123.0 

(34.2%)
< 0.05

Mortality after hospital discharge 

within 30 days

301.0 

(47.1%)

245.0 

(30.9%)

77.0 

(8.5%)

88.0 

(24.4%)
< 0.05

Mortality after hospital discharge 

Within 365 days

368.0 

(57.6%)

325.0 

(41.0%)

121.0 

(13.4%)

122.0 

(33.9%)
< 0.05

Mortality after hospital discharge 

after 365 days

36.0 

(5.6%)

49.0 

(6.2%)

43.0 

(4.8%)

24.0 

(6.7%)

AKI
161.0 

(25.2%)

159.0 

(20.1%)

184.0 

(20.4%)

41.0 

(11.4%)
< 0.05

33.0 

(5.2%)

58.0 

(7.3%)

37.0 

(4.1%)

46.0 

(12.8%)
< 0.05

ADDITIONAL INVESTIGATIVE VARIABLES:

Demographics:

Age
71.0 

(63.0, 81.0)

73.0 

(64.0, 82.0)

74.0 

(67.0, 80.0)

75.0 

(65.75, 84.0)
< 0.05

ARDS

As in Table 2, medians and interquartile ranges were calculated for continuous variables, and frequencies and proportions (as percentages) were calculated for the
categorical variables. As in Table 3, shades of red/blue were used per variable to illustrate differences between lower and higher values. Red shades were used for the
modelling variables, whilst blue was used for the additional investigative variables.

Table 4: Characteristics of the participants per phenotype of AF in an ICU population using the MIMIC-IV database.
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Fig. 6: Membership map with the probability distributions for different data points superimposed. Maps a) and b) show the probability
distribution for two randomly selected participants from the general population taken from the UK Biobank database. Maps c) and d) show the
probability distribution for two randomly selected patients from the critical care population taken from the MIMIC-IV database.

Articles
participants, and how risk factors may not be uniformly
distributed within a given phenotype.

Comparing the phenotypes of previous studies with
those derived from our proposed methodology is not
straightforward. Starting with the general population
phenotypes generated using the UK Biobank data, the
population we analyse (UK) differs from the Japa-
nese,1,10,16 European,9,11,17 and North American9 pop-
ulations previously analysed. As determinants of AF can
greatly differ across geographical locations,9 this in-
troduces a certain level of expected difference between
our results and those already stated. However, one
example that stands out is that phenotype 2 (Fig. 4(d))
www.thelancet.com Vol 107 September, 2024
matches almost identically to cluster 3 identified as part
the study conducted by Vitolo et al.,9 which groups the
youngest participants/patients who are likely to be male
with high burden of cardiovascular comorbidities and
risk factors, along with the highest rates of chronic
(permanent) AF. We also see other similarities however
they are not fully homogeneous, for example comparing
phenotype 3 again in Fig. 4(d) with cluster 2 outlined in
the study by Bisson et al.17 They both group together the
oldest patients/participants with a high prevalence of
cardiac conditions, however they differ in that pheno-
type 3 is split between Male and Female, whereas cluster
2 defined in Bisson et al. is mostly male with almost
19
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exclusively permanent AF. What this does indicate is
that our approach is able to capture the key relationships
between patients with AF and find population-specific
relationships that allow the phenotypes to be more
representative. The phenotypes generated for the critical
care population in our study will be inherently different
to the general population, which means a comparison
with those developed in the literature would not be
appropriate.

Another key difference lies in the selection of
modelling variables. The phenotypes for both data co-
horts were generated using only vitals and laboratory
test data, as opposed to previous studies that also
included demographics and medical history/comorbid-
ity information in the modelling. This results in their
stated phenotypes having significant differences for
such variables as they were used to initially stratify the
data. The phenotypes generated in our study show sig-
nificant differences with these key risk factors,
but without including explicit information on these
variables during modelling. Additionally, as the
between-phenotype differences for variables such as
demographics and comorbidities are performed post-
hoc, should new data become available from variables
not yet examined, their distribution between and within
each phenotype can be swiftly identified.

From a clinical perspective, the availability of reli-
able and robust phenotypes could be a major asset to
their assortment of diagnostic tools. Phenotypes pro-
vide a different way of visualising a targeted popula-
tion, which for context of this study is patients with AF.
Many of these patients have multiple comorbidities,
and management based on a single comorbidity in a
binary (yes/no) matter is inappropriate, as many
comorbidities tend to cluster leading to clinically
complex phenotypes. While clustering can be per-
formed using biostatistical approaches, our proposed
methodology using GTM provides a more principled
approach to clustering, with the capacity to elucidate
more specific patient profiles. This would result in
more robust patient stratification, as well as the
tailoring of prevention and treatment programs spe-
cific to each phenotype.

One of the limitations of this study relates to the
genomic principal components used for the UK-Biobank
cohort, as their loadings were not available, limiting the
ability to interpret them. Another limitation is related to
the transferability of the derived phenotypic clusters to
other cohorts of data, as they could vary across diverse
populations due to genetic, environmental, and cultural
differences. Additionally, differences in clinical settings,
such as healthcare access, diagnostic criteria, and treat-
ment approaches, may contribute to distinct phenotypic
patterns among various patient groups. Since this study’s
main objective is to present a robust AI methodology for
the derivation of AF phenotypes, this limitation can be
mitigated by the derivation of specific phenotypes for
different patient cohorts, as and when required. The dy-
namic nature of risk is also another possible limitation, as
the current approach does not address how phenotypes
change over time.

Our study proposed an AI-based approach for the
derivation of clinically meaningful AF phenotypes. We
applied it to two large cohort databases representing
general and critical care populations. Our approach is
probabilistic, contributing to robust patient stratifica-
tion. It produces interpretable visualisation of complex
high-dimensional data, enhancing understanding. It
showed its ability to identify clinical phenotypes of AF,
which could enable prevention and treatment programs
specific to each phenotype. Our methodology can be
applied to other datasets to derive clinically meaningful
phenotypes of other conditions.
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