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Abstract: Geoffroy’s spider monkeys, an endangered, fast-moving arboreal primate species with a 
large home range and a high degree of fission–fusion dynamics, are challenging to survey in their 
natural habitats. Our objective was to evaluate how different flight parameters affect the detectabil-
ity of spider monkeys in videos recorded by a drone equipped with a thermal infrared camera and 
examine the level of agreement between coders. We used generalized linear mixed models to eval-
uate the impact of flight speed (2, 4, 6 m/s), flight height (40, 50 m above ground level), and camera 
angle (−45°, −90°) on spider monkey counts in a closed-canopy forest in the Yucatan Peninsula, Mex-
ico. Our results indicate that none of the three flight parameters affected the number of detected 
spider monkeys. Agreement between coders was “substantial” (Fleiss’ kappa coefficient = 0.61–0.80) 
in most cases for high thermal-contrast zones. Our study contributes to the development of stand-
ardized flight protocols, which are essential to obtain accurate data on the presence and abundance 
of wild populations. Based on our results, we recommend performing drone surveys for spider 
monkeys and other medium-sized arboreal mammals with a small commercial drone at a 4 m/s 
speed, 15 m above canopy height, and with a −90° camera angle. However, these recommendations 
may vary depending on the size and noise level produced by the drone model. 

Keywords: unoccupied aerial vehicles; population monitoring; Ateles; primates; flight speed;  
flight height; drone camera angle; Yucatan Peninsula 
 

1. Introduction 
Drones have become an increasingly popular tool for wildlife monitoring because 

this technology is becoming more affordable, easier to obtain [1,2], and can offer several 
advantages over traditional monitoring methods [3]. One of the key advantages is their 
ability to survey large areas rapidly and efficiently, providing detailed aerial imagery 
from which population measures such as animal distribution and abundance (number of 
individuals or groups in an area) can be calculated. Such calculations rely on information 
on the presence of the animal of interest in the area (distribution and occupancy) or the 
number of individuals present in the area (abundance, population density). In turn, these 
measures are influenced by the detectability of the animal of interest [4,5]. 

Detectability refers to the probability of sighting an individual animal during a sur-
vey when the animal is present in the surveyed area [6,7]. Detectability can be influenced 
by different factors such as habitat type, species abundance, social structure, animal be-
havior, weather conditions, and survey methods [8–10] and can significantly affect 
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population measures [6]. The latter occurs because the factors affecting detectability can 
lead to false negatives and false positives. False negatives occur when individuals that are 
present are not detected [8], and therefore lead to the underestimation of population pa-
rameters. False positives occur when individuals of another species or other elements in 
the environment are recorded as the species of interest [8], and lead to the overestimation 
of population parameters. It is therefore crucial to understand the factors that affect de-
tectability so that they can be accounted for statistically, e.g., using hierarchical modeling 
(e.g., occupancy modelling, N-mixture modeling), and surveys can be designed to obtain 
accurate population estimates [11]. 

Some of the main factors influencing animal detectability with drones are the type of 
sensor employed and the flight parameters used to program the surveys. Among the most 
commonly used sensors are acoustic, image, and thermal sensors [12]. Acoustic sensors 
(sound recorders) can detect sounds emitted by animals, including their vocalizations and 
mating calls [13]. Image sensors (red–green–blue RGB visual spectrum cameras) can de-
tect the presence of animals or their signs (e.g., great ape nests [14,15]) by capturing high-
resolution images or videos [16–20]. Thermal infrared (TIR) cameras can detect the pres-
ence of animals by detecting the temperature difference between the animal and its envi-
ronment [21–25]. The use of drones with TIR cameras (hereafter TIR drones) allows for 
the detection of animals in low light conditions or at night, which may make it possible to 
obtain data on cryptic or nocturnal species, or species with ecological characteristics that 
make it very difficult to obtain accurate and up-to-date information on their distribution, 
such as arboreal non-volant mammals [23,24,26]. In recent years, the number of studies 
aimed at determining the distribution or abundance of arboreal mammals using TIR 
drones has increased considerably (howler monkeys Alouatta palliata [21,25]; koalas Phas-
colarctos cinereus [27,28]; orangutans Pongo pygmaeus [29]; long-tailed macaques Macaca 
fascicularis [30]; spider monkeys Ateles geoffroyi [21,23,25]; kinkajous Potos flavus [25]; 
northern muriqui Brachyteles hypoxanthus [31]; greater gliders Petauroides volans [32]; Hai-
nan gibbon Nomascus hainanus: [24,33]; and Lumholtz’s tree kangaroo Dendrolagus lum-
holtzi [34]), but knowledge gaps still remain regarding the flight parameters that maximize 
the detectability of species in different habitat types. 

When using TIR drones, it is important to consider several factors that can affect ar-
boreal mammal detection. For example, the time of day at which flights are conducted can 
be crucial, because if they are conducted during daylight hours with high solar radiation, 
environmental elements, such as leaves and branches, absorb that radiation and can have 
temperatures similar to those of arboreal mammals [21]. This situation can make it chal-
lenging to differentiate individuals from their environment, potentially leading to false 
negatives or false positives. Therefore, the best time to fly drones with TIR cameras is at 
night or around dawn and dusk [21,25,35], although flying during the day has been suc-
cessful under heavy cloud cover (Fabiano de Melo, personal communication) and in areas 
where the body temperature of endotherm animal species is easily differentiated from the 
temperature of the other elements of the environment [36]. The time of the day to fly 
drones may be highly variable in mountain environments. Forests located on different 
sides of a mountain receive sunlight at different times of the day, lengthening the possi-
bility for early-morning TIR drone flights (if sunlight is received later in the morning) or 
early-evening flights (if the sun sets early in the day). The presence of human infrastruc-
ture in the environment (e.g., roads or houses) also absorbs solar radiation and retains it 
for a prolonged period of time [37], which may hinder the detection of arboreal mammals. 
Surveying arboreal mammals in heterogenous habitats (i.e., where there is a combination 
of natural and anthropogenic elements, such as roads, houses, and other infrastructure, or 
a variety of natural elements that differ in thermal contrast such as rocky outcrops, 
rupestrian fields, or grasslands) can result in differences in detectability between zones 
with high thermal contrast (e.g., forested areas where the temperature difference between 
the animals and environmental elements is high) and zones with low thermal contrast 
(e.g., areas with anthropogenic infrastructure with high temperatures that limit the 
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detectability of the animals). Therefore, knowing the conditions of the study site in ad-
vance can help to plan flight survey designs that overcome these limitations. 

Previous studies show that flying TIR drones at night maximizes the temperature 
difference between the study species and their environment, and thereby enhances their 
detectability [21,25,38]. This increased contrast between the temperature of the study spe-
cies and the environment can also include diurnal species that spend time in parts of the 
environment where they can be detected. To date, little research has been conducted on 
other factors that may affect arboreal mammal detectability in TIR drone footage. Flight 
speed influences the overall survey area that can be covered in a single flight. For instance, 
when flying slower, the battery may last longer but the area covered is smaller than when 
flying faster. Although more area can be covered when flying faster, this causes a decrease 
in the level of detail in the TIR drone footage, making it more difficult to differentiate 
individuals from other elements of the environment, and some individuals may even re-
main undetected [25]. This is because flight speed influences the accuracy with which dif-
ferent arboreal mammal species can be detected and the individuals taxonomically classi-
fied [21,25]. Although flying faster does not impact the number of detections of group 
living species, it negatively impacts the number of detections of solitary species [25], be-
cause it is easier to detect a group of individuals than a single individual in TIR drone 
footage. Although previous studies have shown that flight speed influences the level of 
detail that can be observed in TIR drone footage [21,25], it is not yet clear what flight speed 
balances fast sampling and maintaining sufficient detail to achieve a species level taxo-
nomic determination of the sighted individuals. 

The height at which the drone is flown is another factor that can influence the detect-
ability of the study species [21,39–42]. The appropriate flight height depends on the size 
of the animals and location, as well as the environmental conditions and objectives of the 
study [38]. The topography of the terrain and the height of the trees are important factors 
to take into account when deciding the flight height. For example, in areas where the to-
pography is irregular, presenting a high variation in the elevation, e.g., mountainous ar-
eas, and/or where trees differ largely in height, it is necessary to consider such variation 
when deciding the flight height to avoid accidents that may endanger the physical integ-
rity of wildlife, humans, and the drone [43]. Flying lower above the ground increases im-
age resolution, improving the differentiation of the species of interest from other detected 
species, and results in a higher detectability [21,38,44]. For TIR drones, it is recommended 
that the individuals appear at least ten pixels in size in the image for the camera to perform 
the temperature measurement [38]. To achieve this minimum pixel size, the height at 
which the drone is flown must reflect the size of the species of interest. For smaller species, 
the drone needs to be flown lower than for larger species. 

The effects of flight height on mammal detectability have been tested for different 
species with drones equipped with RGB visual cameras, such as kangaroos (Macropus gi-
ganteus [39]) and hippopotamus (Hippopotamus amphibius [40]), and with TIR drones (Eu-
ropean hare Lepus europaeus [41]). Although flying the drone higher results in a decrease 
in image resolution (and therefore detectability), a larger sampling area can be covered in 
a single flight, and the potential disturbance to the study species is lesser than when flying 
at lower heights [39,42]. However, more information is needed as to the maximum height 
that can be flown before detectability is too low. It is therefore necessary to balance achiev-
ing detection of the species without affecting the animals or altering their natural behav-
ior. Although appropriate flight height has been evaluated for some species, it must be 
evaluated at the species level, as different species have different characteristics (e.g., body 
size and levels of tolerance to disturbance). The appropriate flight height should therefore 
ensure a high image resolution, animal wellbeing, and the optimization of flight time and 
battery life [21]. 

Another critical factor to consider when monitoring arboreal mammals using TIR 
drones is the camera angle, although it is one of the least evaluated factors [45]. The angle 
at which the camera is positioned can affect both the detectability of the animal and the 
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amount of area that can be covered during a single flight [38]. However, it must be noted 
that choosing a fixed camera angle also depends on the terrain where one is flying. At a 
−90° angle, the camera is pointed downwards, creating a flat image of the tree canopy. 
Individuals that are located under the leaves of the canopy trees may therefore go unde-
tected. This is because TIR sensors detect the temperatures of the surface elements of the 
forest (i.e., the very top of the canopy) and cannot penetrate to the lower or middle parts 
of the canopy in the absence of canopy gaps [38]. A −90° angle increases the probability of 
“poacher” detection in canopy gaps when using a TIR camera compared to a −45° angle 
[35]. At a −90° angle, the leaves and small branches at the top of the canopy make up most 
of the background elements, but leaves do not absorb and retain as much heat as tree 
trunks, which make up a greater proportion of the background elements with a −45° angle. 
As such, the contrast between the “poachers” and the background elements is greater at a 
−90° angle, facilitating their detection [35]. 

With a camera angle at −45°, individuals stay in the drone’s field of view for a greater 
amount of time, which in principle may facilitate their detection [38]. However, when us-
ing a −45° angle, the apparent size of any object in the field of view is distorted [38], which 
may make it difficult to determine whether particular objects are individuals of a given 
species. At the same time, this distortion of the field of view results in a larger sampling 
area being covered at a −45° angle than at a −90° angle, generating an image with a nar-
rower area at the bottom of the field of view and a wider area at the top. Despite its im-
portance, research on identifying the optimal camera angle for species detectability with 
TIR drones is limited. Therefore, evaluation of this flight parameter is crucial for the effec-
tive implementation of future drone surveys. 

In the case of primates, several studies have carried out TIR drone surveys using dif-
ferent flight heights, speeds, and camera angles (Table 1). Most TIR drone surveys of pri-
mate populations used a −90° angle configuration, while the speed and flight height were 
highly variable (Table 1). However, only a few studies have evaluated how these flight 
parameters influence species detectability [25,29,30,42,46]. 

Table 1. Flight parameters and camera types used in studies of primates conducted with drones. 

Species Camera 
Type 

Flight Height 
Above Ground 

Level (m) 

Drone 
Speed 
(m/s) 

Camera 
Angle (°) 

Reference 

Alouatta palliata 
TIR and 

RGB 80–100 3 N.S. [21] 

TIR 90–100 2.8–5 −90 [25] 

Ateles geoffroyi 

TIR and 
RGB 80–100 3 N.S. [21] 

TIR 90–100 2.8–5 −90 [25] 
TIR 60–70 N.S. −90 [23] 
RGB 35–40 0.8 −90 [20] 

Hylobates moloch 
TIR and 

RGB 10–120 5 −90 [42] 

Macaca fascicularis TIR 10–100 8.5–11 N.S. [30] 

* Macaca fuscata 
TIR and 

RGB 120–150 2–5 N.S. [36] 

Nasalis larvatus TIR 80–120 1–7 −90 [29] 

* Nomascus gabriellae 
TIR and 

RGB 50–80 N.S. N.S. [47] 

Nomascus hainanus 
TIR 50 N.S. N.S. [24] 

TIR and 
RGB 

5–50 5 −90 [33] 
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Nomascus nasutus 
TIR and 

RGB 
30–120 ** N.S. [48] 

Pan troglodytes 
RGB 120 N.S. N.S. [14] 
TIR N.S. N.S. −90 [49] 

Pan paniscus TIR 100–120 8–12 N.S: [50] 
# Papio anubis RGB 20 N.S. N.S. [51] 

Pongo sp. TIR 60–200 N.S. N.S. [46] 
Pongo pygmaeus TIR 80–120 1–7 −90 [29] 

Presbytis comate 
TIR and 

RGB 
10–120 5 −90 [42] 

Propithecus tattersalli RGB 15–55 N.S. N.S. [52] 

* Pygathrix cinérea 
TIR and 

RGB 50–80 N.S. N.S. [47] 

Rhinopithecus 
roxellana 

TIR and 
RGB 150–250 6 −90 [53] 

Trachypithecus auratus 

TIR and 
RGB 10–120 5 −90 [42] 

TIR and 
RGB 20–100 8.5–11 N.S. [54] 

* Trachypithecus dela-
couri 

* Trachypithecus 
hatinhensis 

TIR and 
RGB 50–80 N.S. N.S. [47] 

* This study was performed with captive primates in enclosures. ** Drone speed was not standard-
ized. # It is a preprint and has not yet undergone peer review. N.S. = Not specified. 

Geoffroy’s spider monkeys (Ateles geoffroyi) are diurnal, arboreal, fast-moving pri-
mates with a high degree of fission–fusion dynamics [55], making it difficult to obtain 
accurate population estimates with traditional methods such as line-transect surveys 
[20,23,56]. However, information on the distribution and abundance of their populations 
is vital because the species is listed as Endangered on the IUCN Red List of Threatened 
Species [57] and has been listed as one of the world’s 25 most endangered primate species 
[58]. Constant monitoring of their populations is therefore needed to identify population 
changes over time and create timely and targeted conservation programs [58]. To date, 
TIR drones have successfully detected and counted spider monkeys [21,23,25]. The influ-
ence of TIR drone flight speed on the detectability of spider monkeys and other primate 
species was evaluated in Costa Rica [25]. Detectability remained stable for primate species 
as a whole across flight speeds [25], suggesting that flights can be performed at high 
speeds, thereby covering larger sampling areas in a single flight, saving time and drone 
battery. However, it is unknown whether this result only applies to the entire primate 
community at the site or whether it also applies to each single species. While these studies 
have helped to understand the feasibility of using TIR drones for spider monkey monitor-
ing, information on the flight parameters that ensure greater spider monkey detectability 
is lacking. For example, the appropriate flight height and camera angle needed to monitor 
spider monkey populations that balance the overall area covered during the flight (and 
therefore flight time and drone battery life), the species wellbeing, and the level of detail 
needed to clearly determine whether the detected animals are spider monkeys (therefore 
providing accurate abundance estimates), remain unclear. 

Another important aspect to take into account is the reliability of the results obtained 
from manually coding TIR drone footage (i.e., manual review of videos to detect and 
count individuals of the species of interest). Manual coding of TIR imagery remains com-
mon practice for many research groups [25,41,42]. Although there has been an increase in 
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the development of algorithms for the automatic detection of wildlife species with TIR 
cameras [19,59,60], not everyone has access to these, and the feasibility of using automatic 
detection algorithms in complex environments (i.e., with irregular topography, dense can-
opy cover, and the presence of elements that may complicate the detection of individuals) 
still remains poorly understood [59]. Inter-coder agreement is fundamental for result va-
lidity in population-based studies [61] and ensures the consistency and reliability of indi-
vidual animal detection and species identification in TIR drone footage. 

The first aim of our study was to evaluate how flight parameters such as flight speed, 
flight height, and camera angle influence the number of spider monkeys detected in vid-
eos recorded during flights with a TIR drone. We expect that flight parameters that allow 
for a more detailed observation of individual spider monkeys lead to a greater number of 
individuals to be detected in the videos. We therefore predict a higher count of spider 
monkeys in videos recorded when the drone is flown at lower flight speed, lower height, 
and with the camera positioned at a −90° angle than when the drone is flown with other 
parameters. The second aim was to compare the level of agreement between the main 
coder and two additional coders with varying levels of experience on the number of spider 
monkeys detected in the videos depending on flight parameter combinations and thermal 
contrast zones. We predict a higher inter-coder agreement in high thermal contrast zones 
in the videos recorded at lower speed, lower heights, and with the camera angle at −90°. 

2. Materials and Methods 
2.1. Study Site 

The study was conducted in Los Arboles Tulum (20°17′50′′ N, 87°30′59′′ W), located 
in the municipality of Tulum, Quintana Roo, Mexico (Figure 1). Los Arboles Tulum (here-
after LAT) is a 400 ha residential development where only 5% of 2 ha lots can be used for 
construction and the remaining area is medium evergreen forest <30 m in height [23]. LAT 
is characterized by relatively flat (i.e., non-mountainous) terrain, as most of the Yucatan 
Peninsula. This site was chosen to evaluate the effects of flight parameters on spider mon-
key counts (i.e., number of detected individuals) from videos captured during TIR drone 
flights because a long-term project on wild spider monkeys has been underway there since 
2017 [62], and drone flights have been performed in the past [23]. As such, the spider mon-
keys in LAT are habituated to human presence, are familiar with the noise produced by 
drone flights, and information on the location of several sleeping sites (i.e., clusters of trees 
in which the monkeys sleep) is available. 
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Figure 1. Map of Los Arboles Tulum, Tulum, Mexico, with 2 ha lots (white lines) showing the drone 
take-off and landing points (white dots with a black center) and flight routes (yellow lines) over five 
spider monkey sleeping sites (red squares) where we tested the effect of three flight parameters on 
spider monkey detectability. 

2.2. Data Collection Flights 
We used a Mavic 2 Enterprise Advance drone to conduct spider monkey surveys. 

This drone has a high-resolution TIR camera (the lens has a 9 mm focal length, 38 mm for 
35 mm equivalent) with an image size of 640 × 512 pixels. This camera has a capture rate 
of 30 frames per second and a temperature measurement accuracy of 2 degrees (DJI Tech-
nology Co, Shenzhen, China). The drone weighs 909 g and has a maximum flight time of 
31 min. 

We flew over five known sleeping sites of two groups of spider monkeys in LAT (Fig-
ure 1; mean distance between sleeping sites: 1052 m; minimum distance: 305 m; maximum 
distance: 2040 m). Flying over sleeping sites ensures a higher probability to detect and 
count spider monkeys at the end of the afternoon, at night, or in the early morning than 
flying over other parts of their home range at any given time, thereby providing better 
conditions under which to test the drone flight parameters. Little is known in general 
about spider monkey sleeping behavior after sunset in the wild. In the first nocturnal 
study on wild spider monkeys, we observed the behavior of the spider monkeys that 
would arrive and sleep at one particular sleeping site in Los Arboles Tulum for 6–12 h per 
night (personal observation Denise Spaan and Filippo Aureli). Some nights, single indi-
viduals or very small subgroups (e.g., two individuals) would arrive after dark at the 
sleeping site to join other monkeys that were already there. It is improbable that this oc-
currence would have substantially influenced the results since flights included all 
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combinations of flight parameters and lasted only approximately 110 s. It is therefore un-
likely that subgroup size changed between flights. 

We performed 8 drone flights per sleeping site (n = 40). The flight routes were created 
in Google Earth Pro (version 7.3.4.8248) and flights were performed using the DJI pilot 
application (version 1.7.0). During each flight, we flew the drone on a straight-line transect 
(220 m in length) over the sleeping site at a constant speed of 2 m/s four times with differ-
ent combinations of flight height and camera angle: (1) 50 m high with the camera at −90° 
(Video S1, Supplementary Materials), (2) 50 m high with the camera at −45° (Video S2, 
Supplementary Materials), (3) 40 m high with the camera at −90° (Video S3, Supplemen-
tary Materials), and (4) 40 m high with the camera at −45° (Video S4, Supplementary Ma-
terials). We selected a maximum height of 50 m a.g.l. (i.e., approximately 25 m above can-
opy level) because we considered it to be the maximum flight height that would ensure 
sufficient detail in the TIR drone videos to accurately differentiate the spider monkeys 
from other possible species or sources of noise. We selected a minimum height of 40 m 
a.g.l. to minimize disturbance to the monkeys by the drone being too close to the tree 
canopies (i.e., approximately 15 m above canopy level). We recorded one video for each 
of the 40 flights performed at a flight speed of 2 m/s. We subsequently cut these 40 videos 
into videos corresponding to the four flight parameter combinations (n = 160 videos) with 
the VLC program (version 3.0.17.4). We extracted frames from each of the 160 videos using 
the Batch Video to Image Extractor (version 0.1.7) program to simulate flight speeds of 4 and 
6 m/s by reducing the number of frames per second from the original video (2 m/s). At the 
end of this process, we obtained three versions of each of the 160 original videos, corre-
sponding to flight speeds of 2, 4, and 6 m/s, resulting in a total of 480 videos (i.e., 12 videos 
per flight). 

The videos recorded at a camera angle of −45° have a larger field of vision, thereby 
including sampling areas that are not visible in the corresponding −90° angle videos. Sim-
ilarly, flights at 50 m above ground level (a.g.l.) produce videos that cover a larger sam-
pling area than videos recorded at 40 m a.g.l. Thus, differences in the number of detected 
spider monkeys could simply be due to monkeys being present in areas sampled only in 
one condition, and not due to differential detectability related to the flight parameters. To 
ensure that the sampled area was the same in all 480 videos, we made the following ad-
justments. First, to ensure that the sampled area was the same in the videos recorded with 
the camera angles at −45° and −90° (and therefore that the same monkeys were visible in 
all transects), we edited the end points of the videos recorded with the camera at −45° to 
ensure that the 220 m transect started and ended in the same points as in the videos cor-
responding to the camera at −90°. 

To control for the sampling area difference between the two camera angles evaluated 
(−90° and −45°), we determined how the projected length on the ground of a camera with 
a field of view 𝜃 on a drone at height H varies the angle of the camera from pointing 
straight down, to arbitrary angle 𝜒. We first determined the projected distance D on the 
ground when the camera was pointed straight down (𝐷ଽ଴; Figure 2a), and how this varied 
when the camera was shifted to a different angle 𝜙 (Figure 2b,c), 𝐷ேௐ, with W being width 
and referring to the horizontal distance on the ground subtended by the drone camera 
and N being near and referring to the nearest location on the ground in the drone camera 

field of view. The ratio in the projected distance on the ground is ஽ೈಿ஽వబ = ଵୡ୭ୱቀ థ –ഇమቁ, and for 

an arbitrary angle, 𝜒, the ratio of projected distance is ஽ഖೈ஽వబ = ଵୡ୭ୱሺఞሻ. 
Footage recorded with the camera angle pointed at −45° was 10% wider at the bottom 

and 56% wider at the top of the image compared to footage taken with a −90° camera 
angle. We therefore masked 5% on each side of the screen at the bottom and 28% at the 
top to ensure that the coder counted the number of monkeys in the same sampled area for 
footage recorded at both camera angles. 
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Figure 2. (a) Drone at height H with camera pointing directly down (−90°). The value 𝐷ଽ଴ is the 
distance on the ground subtended by a camera with an angular field of view 𝜃. (b) Side-on view of 
drone at height H facing toward the right, with the center of the camera field of view pointing an 
angle of 𝜙. 𝐷ே is the distance on the ground from directly below the drone to the nearest point of 
the drone’s field of view. 𝐷ேீ  is the distance from the drone to this point, with G being ground. 𝐷ெ 
and 𝐷ி are the distances on the ground from directly below the drone to the middle (𝐷ெ) and far-
thest (𝐷ி) point on the drone’s field of view. The angle 𝜒 is an arbitrary angle between zero and 𝜃 to 
generalize the mathematical expressions. (c) Reprojected view of (b), rotated to show the width (W) 
of the field of view on the ground at the point nearest to the drone, 𝐷ேௐ. 

Second, to control for the sampling area difference between the two evaluated 
heights, we used the ground sample distance (GSD; represented by each pixel in an image 
captured by a drone [63]) to determine that the images recorded at 50 m height were 55.2% 
larger than those recorded at 40 m height. To review the same area in videos taken at 
different heights a.g.l., the coder counted the number of spider monkeys observed only in 
the center of the computer screen by masking 13.8% of the image at each of the four sides 
of the videos recorded at 50 m a.g.l. 

2.3. Spider Monkey Detection 
The 480 videos were coded by Denise Spaan (hereafter the main coder), who has 

substantial experience in detecting and counting spider monkeys in thermal images and 
videos. The videos were randomly assigned a unique code; this way, the main coder did 
not know the flight height and the camera angle of each video prior to its review (i.e., 
blind coder). We chose this methodology to avoid the main coder biasing toward any of 



Sensors 2024, 24, 5659 10 of 21 
 

 

the flight parameter combinations. However, to facilitate data transfer, the videos were 
grouped according to flight speed, making the coder aware of flight speed ahead of the 
video review. For each video, the main coder recorded the number of detected spider 
monkeys. A subset of 120 videos (25%) of varying flight height, speed, and camera angle 
combinations were reviewed by two additional coders (with a similar level of experience 
in detecting spider monkeys in thermal videos and knowledge of the morphology and 
characteristic movements of spider monkeys in the wild) to compare the level of agree-
ment between coders. These two coders did not know the number of monkeys detected 
by the main coder and were not informed about any of the flight parameters. For each of 
the 120 videos, the three coders recorded the number of detected spider monkeys in zones 
of high and low thermal contrast. For each video, the main coder noted the time contain-
ing zones of high and low thermal contrast to allow for comparison between coders. High 
thermal contrast zones were sections of the videos where only forest elements were pre-
sent and therefore the spider monkeys could easily be distinguished from their surround-
ings (Figure 3a). Low thermal contrast zones included areas around houses and roads, 
where the heat from these structures made it more difficult to differentiate spider mon-
keys from their environment (Figure 3b). All videos were reviewed in VLC Media Player 
3.0.8 at normal speed. 

 
Figure 3. Examples of (a) high thermal contrast zones and (b) low thermal contrast zones, and how 
the spider monkeys appear in the videos (inside the white circle). 

2.4. Data Analysis 
To evaluate whether the three flight parameters were associated with the number of 

spider monkeys detected in the recorded footage during TIR drone surveys, we ran a gen-
eralized linear mixed model (GLMM) with a Poisson distribution, which is appropriate 
for count data [64]. We ran the GLMM using the gmler function in the “lme4” package [65] 
of R version 4.3.0 [66]. We included the number of spider monkeys as the response varia-
ble, flight speed (2, 4 and 6 m/s), flight height (40 and 50 m), and camera angle (−45° and 
−90°) as categorical predictor variables, and flight number as a random intercept to control 
for the 12 videos obtained from each flight (1 video for each combination of the three flight 
parameters). We used Cramer’s V coefficient using the assocstats function to evaluate po-
tential collinearity between the predictor variables [67] with the “vcd” package [68]. 
Cramer’s V values range from 0 to 1, where 0 refers to a weak or lack of association and 1 
refers to a strong association between variables [69]. All comparisons between predictor 
variables had Cramer’s V values of <0.01, and therefore the three categorical variables 
were included in the model. By using the function check_model of the “Performance” pack-
age [70], we realized that the model assumptions of normal distribution of residuals, 
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homogeneity of variance, and dispersion of residuals were not met. We dealt with this 
issue in two ways. 

First, we ran a GLMM with the same variables as the initial model with a reduced 
dataset where we only included the 300 videos of the 25 flights where at least one spider 
monkey was detected in at least one of the 12 videos corresponding to the combinations 
of the three parameters of the same flight. That is to say, that if monkeys only appeared in 
one of the 12 videos from the same flight, all the 12 videos were included in the model. 
When no monkeys were detected in any of the 12 videos, none of the 12 videos of that 
flight were included in the model. We included the number of monkeys as the response 
variable, flight height, flight speed, and camera angle as categorical predictor variables, 
and flight number as a random intercept in the GLMM. The model met the assumptions 
of homogeneity of variance and dispersion of the residuals but did not meet the assump-
tion of normal distribution of the residuals. 

Second, we ran two separate GLMMs: one for the videos recorded with the camera 
at a −45° angle (n = 240) and another for the videos recorded with the camera at a −90° (n 
= 240). In both models, the number of monkeys was included as the response variable, 
flight height and flight speed as categorical predictor variables, and flight number as a 
random intercept. Both GLMMs met the assumptions of homogeneity of variance and dis-
persion of residuals but did not meet the assumption of normal distribution of the resid-
uals. We present the results of the three GLMMs given that the non-normal distribution 
of the residuals does not affect the model results if the model meets all other assumptions 
[71,72]. We compared those GLMMs with the corresponding null models, including only 
the random intercept (flight number), using likelihood ratio tests [73,74]. 

We evaluated the level of agreement between coders on the number of detected spi-
der monkeys in TIR footage using Fleiss’ kappa coefficient [75]. We used the kap-pam.fleiss 
function in the “irr” package [76]. We followed the levels of agreement established in [77]: 
“poor” (<0.00), “slight” (0.00–0.20), “fair” (0.21–0.40), “moderate” (0.41–0.60), “substan-
tial” (0.61–0.80), or “almost perfect” (>0.81). We compared the number of monkeys 
counted by the main coder and the two additional coders for the 120 selected videos var-
ying in flight speed, flight height, camera angle, and thermal contrast (Table S1, Supple-
mentary Materials). 

3. Results 
The main coder detected at least one spider monkey in 263 of the 480 videos (54.7%; 

Figure 4), with a mean of 2.7 monkeys per video. When the dataset included only videos 
where at least one spider monkey was detected in at least one of the 12 videos from the 
same flight (n = 300), the GLMM was not significantly different from the null model (χ2 = 
2.46, df = 4, p = 0.65). Similarly, when the 480-video dataset was divided by camera angle, 
both GLMMs did not differ significantly from the corresponding null models (videos at 
−45°: χ2 = 1.49, df = 3, p = 0.68; videos at −90°: χ2 = 1.06, df = 3, p = 0.79). 
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. 
Figure 4. Spider monkeys (within white circles) in TIR drone footage under different combinations 
of flight height and camera angle: (a) 50 m and −90°, (b) 40 m and −90°, (c) 50 m and −45°, and (d) 40 
m and −45°. 

The level of agreement among coders ranged from “slight” to “substantial” (Figure 
5; Table S1, Supplementary Materials). We found that the level of agreement between cod-
ers in high thermal contrast zones was substantial for 58% of flight parameter combina-
tions (Figure 5; Table S1, Supplementary Materials). The level of agreement between cod-
ers in low thermal contrast zones was “fair” to “moderate” in 75% of the cases, although 
there was one case of “almost perfect” for the flight parameter combination of 4 m/s speed, 
at 50 m height and at a −45° angle. In addition, the level of agreement was “substantial” 
for 83% of the videos at −90°, while for the videos at −45° the level of agreement was “sub-
stantial” for only 33% of the cases for high thermal contrast zones. Regarding the level of 
agreement depending on the speed of flight, we found that, at a speed of 4 m/s, the level 
of agreement was “substantial” or higher in 62% of the cases, while this percentage de-
creased for the videos at 2 (37%) and 6 (25%) m/s. For flight height, in general we found 
that the level of agreement was substantial for 50% of flights performed at 50 m a.g.l., 
while it was substantial for only 25% of flights performed at 40 m a.g.l. 
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Figure 5. Level of agreement between coders for different flight parameter combinations for high 
(blue points) and low (orange point) thermal contrast zones. Gray points indicate that both contrast 
zones had the same level of agreement. The categories of level of agreement between coders on the 
y-axis are as follows: SL (slight), F (fair), M (moderate), SU (substantial), AP (almost perfect). The 
values of the flight parameter combinations on the x-axis are presented in the following order: flight 
speed (m/s), flight height (m a.g.l.), and camera angle (°). 

4. Discussion 
We evaluated how three flight parameters (flight speed, flight height, and camera 

angle) influence the number of spider monkeys detected in TIR drone footage. We found 
no evidence that the selected settings of the three flight parameters affected the number 
of detected monkeys. When we evaluated the reliability of the results obtained from cod-
ing the TIR images, we found, as predicted, the highest levels of agreement between cod-
ers for the videos recorded with the camera angle at −90° in high thermal contrast zones. 
However, contrary to our prediction, we found higher levels of agreement for the inter-
mediate speed of 4 m/s and for flights performed at 50 m a.g.l. 

Contrary to our prediction of a higher detection of spider monkeys at the lower speed 
setting (2 m/s), we found no evidence of flight speed being associated with the number of 
detected spider monkeys. Our result is similar to that reported for primate species in Costa 
Rica, although the number of detections in that study was higher at lower speeds for other 
taxonomic groups (e.g., bats, kinkajous, birds [25]). This taxonomic difference can be ex-
plained by the size and social habits of these species because Mesoamerican non-primate 
arboreal mammals are relatively small and solitary, and thus are likely to go undetected 
when flying fast. By contrast, spider monkeys are relatively large, live in groups, and 
gather in subgroups at sleeping sites [78,79], aiding detection in TIR footage. It is also 
important to consider that, when the drone flies faster, the time a monkey is in the cam-
era’s field of view is less. In real time, some individuals may go undetected. When counts 
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are performed based on post-flight video review, pausing the video to verify spider mon-
key presence and counts can help ensure detectability for fast flight speeds. We found 
higher levels of agreement between coders for the videos recorded at 4 m/s than for the 
videos recorded at 2 and 6 m/s. This indicates that teams with varying degrees of experi-
ence in detecting animals in TIR footage can achieve high levels of agreement at interme-
diate flight speeds. This could be especially useful when automatic detection algorithms 
are not available and manual coding is performed by people with different levels of expe-
rience. Thus, we propose flying at a speed of 4 m/s for TIR drone surveys of spider mon-
keys as this maximizes flight duration (and thus battery life) while maintaining the same 
degree of detectability and ensuring high levels of agreement between coders. 

We found no evidence of difference in the number of detected spider monkeys be-
tween flights performed at 40 and 50 m a.g.l. (equivalent to approximately 15 and 25 m 
above the canopy). One could argue that this result is due to the better detection expected 
in footage taken from a shorter distance being countered by the greater likelihood of mon-
key detection in the larger sampling area footage taken from a higher distance [21]. How-
ever, this was not the case as we controlled for the size of the sampling area. Thus, the 
result may be simply due to the difference between the two flight heights not being suffi-
ciently large to affect the difficulty in detecting spider monkeys [25]. Kays et al. [21] sug-
gested that flights at heights between 80 and 100 m a.g.l. are optimal to balance covering 
a greater area and maintaining high detectability of arboreal mammals. However, another 
study carried out in Mesoamerica reported that species could not be identified in >60% of 
the detections in TIR drone footage recorded at heights between 90 and 100 m a.g.l. [25]. 
This high percentage of indeterminate detections highlights the importance of selecting a 
lower flight height, which affords good image quality (to allow for accurate determination 
of the taxon of interest) and avoids biases in the population estimates obtained from drone 
flights due to false positives and/or false negatives. Although other mammals similar in 
size to spider monkeys are rare in LAT, and thus frequent indeterminate detections may 
not be a problem if flying higher than 50 m, maintaining good image quality is an im-
portant factor to consider in other parts of the spider monkey distribution where arboreal 
mammal species of similar size occur. 

To accurately record the temperature of an object with a TIR camera, the object must 
appear larger in the field of view than a minimum number of pixels [38]. Using Burke et 
al.’s [38] observation strategy optimization web tool and considering the characteristics of 
the camera and the spider monkey’s mean body length (0.5 m from the top of the head to 
the base of the pelvis, without considering the tail [23]), we obtained a maximum distance 
of 57 m between the drone and the spider monkeys, which would be equivalent to flying 
at 82 m a.g.l. at our study site. An 82 m flight height is greater than the heights we used 
and is more in line with flight heights suggested by Kays et al. [21]. However, although it 
is possible to detect the temperature of individuals at this height, the level of detail of the 
TIR footage is low, which would make it difficult to correctly identify the species of inter-
est. We noticed a similar pattern when reviewing our TIR footage, as the level of detail 
was greater in videos from flights performed at 40 m height than in videos from flights 
performed at 50 m height. Therefore, it is unlikely we would have been able to determine 
with certainty that heat signatures were spider monkeys if flying at a height of 82 m a.g.l. 
To solve this issue, other researchers have proposed using a visual camera (RGB) in addi-
tion to a TIR camera to aid in species identification [21], particularly if flights are per-
formed just after sunrise when the TIR camera can still pick up strong heat signatures. 
This can be very important in sites where the presence of other species with similar char-
acteristics can make the identification of individuals difficult and can produce biased es-
timates. Based on our results and experience, we recommend flying the TIR drone at a 
height of 40 m a.g.l. on flat ground such as that of LAT. Although the topography across 
the distribution of the Geoffroy’s spider monkeys is highly variable, we recommend flying 
at a maximum height of 15 m above the canopy to maintain a good level of detail in the 
TIR footage, allowing for the correct taxonomic identification of the detected individuals, 
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even though this implies longer flight times and higher battery consumption to cover the 
same area. 

Despite the importance of the camera angle for the field of view [38,80], only few 
studies have evaluated its influence on animal detectability in footage obtained from 
drone surveys [38,45]. We found no difference in the number of spider monkeys detected 
in the same sampling area between flights with camera angles at −45° and −90°. Our results 
differ from those previously reported [35,45]. For example, a −90° angle improved the de-
tection of potential “poachers” in forest canopy gaps compared to a −45° angle when using 
TIR drones [35]. By contrast, the probability of “poacher” detection was higher at a −45° 
angle when an RGB camera was used [35]. Similarly, in an experimental design where 
decoys of different species varying in shape and size were used to assess detectability, the 
number of incorrectly identified decoys was lower with a −45° angle compared to a −90° 
angle when using an RGB camera in open areas dominated by grasslands and shrubs [43]. 
These results with RGB drones may be due to the fact that more information about the 
size and/or color of the individuals can be obtained at a −45° angle than at a −90° angle. 
However, this information is not as relevant when using a TIR camera. 

Features such as tree trunks and branches are more visible in the −45° angle videos, 
making it more difficult to differentiate between them and the monkeys, especially when 
the monkeys do not move, as these features retain heat and therefore appear as bright as 
the monkeys in TIR drone footage. Additionally, when using a camera angle of −45°, the 
apparent size of the objects varies across the field of view due to the image distortion 
produced by this camera angle [38], which increases the difficulty of detecting spider mon-
keys. The high level of agreement between coders in TIR footage taken with the camera at 
a −90° angle supports the ease of detecting monkeys with this setting. We therefore rec-
ommend performing spider monkey TIR drone surveys with the camera angle at −90°, 
although this implies longer flights and higher drone battery consumption to cover the 
same area than if the flights were performed at a −45° angle. 

Even though not all coders had the same level of experience in detecting spider mon-
keys in TIR footage, agreement between coders was high. This result is promising because 
it indicates that individuals with prior knowledge of the species of interest (e.g., its mor-
phology or types of movement) may be able to appropriately code videos despite having 
little to no previous experience in detection in TIR footage, in line with findings reported 
in previous drone studies where manual video processing was performed [20,23,25,81]. In 
some studies, a higher level of agreement among coders was found with increased famil-
iarity with the study species in addition to having previous experience working with im-
ages or videos recorded with drones [23,81], indicating that coder agreement likely im-
proves with training. We therefore recommend training coders in TIR footage processing 
to familiarize themselves with the appearance and characteristics of the species of interest 
before starting coding, especially if more than one coder manually reviews the TIR foot-
age. 

The level of agreement between coders was likely influenced by the characteristics of 
the study site. In Los Arboles Tulum, the forest is interspersed with houses and dirt roads 
that absorb solar radiation and the spider monkeys tend to sleep in trees close to the 
houses. It was therefore difficult at times to differentiate the spider monkeys from these 
heat-absorbing elements because they masked the heat signature of the spider monkeys. 
This is reflected in the higher levels of agreement between coders for high thermal contrast 
zones than for low thermal contrast zones. We therefore recommend that future studies 
consider thermal contrast within their study area and include this variation in analyses, 
when possible, to avoid biases when manually processing TIR drone footage with multi-
ple coders. 

The high consistency in the number of spider monkeys detected in high thermal con-
trast zones (i.e., forested areas) between different observers is promising for future TIR 
drone surveys, as surveys are urgently needed across large portions of the spider monkey 
distribution, most of which is still forested to some degree [58]. A high level of inter-coder 
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agreement implies that teams of coders can be involved in manual data processing, speed-
ing up data gathering, when access to machine learning algorithms is not available. As 
such, drone TIR surveys with manual processing of video footage are a potentially rapid 
survey technique in forested areas, which can aid to understand the current state of spider 
monkey populations. 

Although our study represents a step forward toward understanding the implica-
tions of flight parameters for counting spider monkeys with TIR drones, it is important to 
consider the following aspects. First, we did not know the actual number of spider mon-
keys that were present at the sleeping site during the flights. This implies that we could 
not know whether any combination of the three flight parameters allowed us to count the 
exact number of monkeys that were present. Still, it is feasible to assume that the majority 
of individuals present were detected based on a previous study at the same study site, in 
which the number of individuals counted in the TIR drone images was similar to ground 
counts when spider monkey subgroups were small, and even higher numbers of individ-
uals were detected from the TIR images when subgroups were large [23]. Second, it is 
possible that, during or after some of the four transects of the same flight route, some 
spider monkeys may have moved to/from areas outside the drone’s field of vision or 
to/from the middle strata of the canopy, making the number of detectable individuals dif-
ferent between transects. To minimize the occurrence of this situation, we performed the 
flights at sleeping sites, where spider monkeys are less likely to move. Third, a combina-
tion of the flight parameters could have affected the behavior of the monkeys, which could 
have altered their detection (e.g., they moved away from the canopy). While this is a pos-
sibility, we believe that this was unlikely during our study because these monkeys have 
previously been exposed to drone flights [20,23], to which the spider monkeys did not 
respond with substantial behavioral changes [23]. It is therefore reasonable to assume that 
the monkeys did not descend to the lower levels of the canopy in response to the drone. 
Fourth, coders may have mistaken an individual of another species for a spider monkey. 
However, this was likely a rare event in our study as the only other arboreal animal of 
similar size at LAT is the black howler monkey (Alouatta pigra), which is rare in the region 
and [82] was reported on fewer than 20 occasions during more than 5 years of monitoring 
in LAT (personal observation by Denise Spaan and Filippo Aureli). Fifth, we conducted 
the flights using a Mavic 2 Enterprise Advanced drone, which is a relatively small model 
and does not produce a significant amount of noise. The level of disturbance generated is 
therefore expected to be minor and to not negatively influence spider monkey behavior 
[83]. However, it is possible that larger drone models that generate more noise may cause 
a greater behavioral response from the spider monkeys. Hence, when planning to monitor 
animal populations with drones, it is important to consider these aspects in the study de-
sign to define the optimal flying altitude and speed [83]. 

Evaluating the influence of different flight parameters on the number of individuals 
detected in footage recorded during TIR drone flights is an essential first step to develop 
optimal and standardized flight protocols for TIR drone surveys of arboreal mammals. 
Our study contributes to the standardization of such protocols, with which it is then pos-
sible to obtain reliable data on the distribution and abundance of species in locations that 
are difficult to access or where the species have not been studied. Knowing the distribu-
tion and abundance of different species is critical to understand the current status of their 
populations and propose effective and informed actions for their conservation [84]. 

5. Conclusions 
This study provides important insights toward the optimization of flight parameters 

for spider monkey detection using TIR drones. Although we found no evidence that flight 
speed, height, or camera angle significantly affect the number of monkeys detected, our 
results suggest that an intermediate speed of 4 m/s and a camera angle of −90° provide 
higher levels of agreement among coders, regardless of their level of experience. This is 
especially relevant when automatic detection algorithms are not available, and analysis 
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relies on manual coding. In addition, flying at a height of 40 m a.g.l. (approximately at 15 
m above the canopy) is optimal for maintaining a good level of detail in the TIR drone 
footage to ensure accurate spider monkey identification, especially in areas with high ther-
mal contrast. These findings are crucial for the standardization of monitoring protocols, 
facilitating studies on arboreal mammal distribution and abundance, which is essential 
for the conservation of spider monkeys and other arboreal mammals.  

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/s24175659/s1, Table S1: Level of agreement for each of the 
different flight parameters combinations, for each of the thermal-contrast zones. We present the 
number of subjects evaluated for each category, the number of coders, the Kappa and p-value, and 
the corresponding agreement level; Video S1: Route of the drone flight at 50 m high with the camera 
at −90°; Video S2: Route of the drone flight at 50 m high with the camera at −45°; Video S3: Route of 
the drone flight at 40 m high with the camera at −90°; Video S4: Route of the drone flight at 40 m 
high with the camera at −45°. 
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