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Abstract. Demand for coconut is expected to rise, but the global distribution of coconut palm has been stud-
ied little, which hinders the discussion of its impacts. Here, we produced the first 20 m global coconut palm
layer using a U-Net model that was trained on annual Sentinel-1 and Sentinel-2 composites for the year 2020.
The overall accuracy was 99.04± 0.21 %, which was significantly higher than the no-information rate. The pro-
ducer’s accuracy for coconut palm was 71.51± 23.11 % when only closed-canopy coconut palm was considered
in the validation, but this decreased to 11.30± 2.33 % when sparse and dense open-canopy coconut palm was
also taken into account. This indicates that sparse and dense open-canopy coconut palm remains difficult to map
with accuracy. We report a global coconut palm area of 12.66± 3.96× 106 ha for dense open- and closed-canopy
coconut palm, but the estimate is 3 times larger (38.93± 7.89× 106 ha) when sparse coconut palm is included in
the area estimation. The large area of sparse coconut palm is important as it indicates that production increases
can likely be achieved on the existing lands allocated to coconut. The Philippines, Indonesia, and India account
for most of the global coconut palm area, representing approximately 82 % of the total mapped area. Our study
provides the high-resolution, quantitative, and precise data necessary for assessing the relationships between co-
conut production and the synergies and trade-offs between various sustainable development goal indicators. The
global coconut palm layer is available at https://doi.org/10.5281/zenodo.8128183 (Descals, 2023).

1 Introduction

Coconut (Cocos nucifera L.) is a palm species native to trop-
ical islands in the western Pacific, but it also grows in other
tropical areas (Gunn et al., 2011). Climate is an important
determinant of coconut palm growth and yield (Peiris and
Thattil, 1998). Climate factors such as temperature and rela-
tive humidity have been used in descriptive models for pre-
dicting coconut yield up to 4 years in advance (Kumar et

al., 2009a). Weather data explained past trends in coconut
production (Kumar et al., 2009b) and potential changes in
the coconut palm distribution area expected due to climate
change in India (Hebbar et al., 2022). Coconut palms produce
about 1.7 % of the global volume of vegetable oils, as well
as copra, coconut water, and coconut milk. Coconut palm
is generally overlooked in discussions about crop impacts,
and not many see this palm as a threat to biodiversity. How-
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ever, a recent study identified coconut palms as a potential
threat to tropical species, many of which are highly threat-
ened and restricted to tropical islands where coconut palm is
extensively grown (Meijaard et al., 2020). In some of these
islands, coconut palm is considered to be an invasive species
that drives near-complete ecosystem state change when it be-
comes dominant (Young et al., 2017).

Despite the potential impacts, the coconut palm distribu-
tion is poorly documented except for national-level statis-
tics on estimated harvest areas (FAO, 2022), local-level crop-
mapping studies (e.g. Palaniswami et al., 2006), and global
coarse-resolution modelling (Yu et al., 2020). This may be
because coconut palm is mostly grown in smallholdings un-
der 4 ha (Omont, 2022) and is often intercropped, making its
mapping difficult. A high-resolution global map of the co-
conut palm distribution can be used in geospatial analysis
to assess environmental impacts and, thus, to inform policy
(e.g. estimate the extent of coconut plantations in areas of
high biodiversity and assess the subsequent impact on bio-
diversity indices). Research is therefore needed to map the
extent of coconut palm on a global scale, especially using
high-spatial-resolution satellite data.

Sub-metre satellite data and aerial images have been used
for detecting individual coconut palms (Zheng et al., 2023;
Freudenberg et al., 2019; Zheng et al., 2021), delineating co-
conut palm canopies (De Souza and Falcão, 2020; Vermote
et al., 2020), and detecting coconut palm in the context of
land cover classification (Burnett et al., 2019). These studies
used various methodologies, including threshold-based clas-
sification, random forest using feature extraction, and more
advanced techniques such as object detection and semantic
segmentation using deep learning. Similar efforts have been
made to map coconut palm using decametric-scale satellites
such as Sentinel-1, Sentinel-2, or Landsat-7 (Lang et al.,
2021; Jenifer and Natarajan, 2021; Palaniswami et al., 2006).
Another study detected individual coconut palms using air-
borne laser scanning (Mohan et al., 2019). Despite previous
efforts to map coconut palm, these studies have focused on
the local and regional scales, and a global coconut palm map
has not been produced yet at a high spatial resolution. More-
over, it is still unclear how well satellite remote sensing can
differentiate between coconut palm and other palm species,
particularly oil palm (Gibril et al., 2017). The confusion be-
tween coconut palm and oil palm explains the potential com-
mission errors in previous oil palm datasets (Descals et al.,
2021; Danylo et al., 2021; Gaveau et al., 2022).

This study aims to produce the first global coconut palm
map at a high spatial resolution (20 m) and to estimate the
global coconut palm area using satellite remote sensing. To
achieve this aim, we first identified potential areas where cli-
mate was favourable for coconut palm growth. We then used
a semantic segmentation model to classify Sentinel-1 and
Sentinel-2 annual composites for 2020. Finally, we employed
a sampling-based approach to validate the results.

2 Methods

2.1 Overview

To map coconut palms globally, we first conducted a bio-
climatic analysis to determine regions in the world where
coconut can potentially grow. The bioclimatic analysis used
climate variables and terrain slope to produce a map of the
potential coconut palm distribution. The regions identified
in the bioclimatic analysis served as the focus of our map-
ping efforts. The mapping of coconut palm consisted of a
supervised classification of Sentinel-1 and Sentinel-2 data.
Specifically, we selected bands VV and VH from Sentinel-1
and band 11 from Sentinel-2 after evaluating their backscat-
ter and spectral separability for different tree plantations. The
selected bands (VV, VH, and band 11) were aggregated into
annual composites, which were then used as input in the clas-
sification model. The classification model was a U-Net that
predicted two classes: class “coconut” and class “other”. The
model was deployed within the regions identified in the po-
tential coconut palm distribution. To validate the resulting
classification layer, we used a sampling-based approach with
10 200 reference points. Lastly, due to data limitations in cer-
tain areas, such as the Pacific, we conducted a sampling-
based estimation of coconut palm area in small tropical is-
lands using sub-metre-resolution satellite images.

2.2 Bioclimatic analysis for mapping the potential
distribution of coconut palm

We used a bioclimatic analysis to determine the potential
coconut-producing regions and, subsequently, to constrain
the spatial extent of the classification of satellite data. To
achieve this, we first conducted a literature search to identify
regions known for coconut palm cultivation. Additionally, we
used the SPAM2010 (Spatial Production Allocation Model)
dataset (Yu et al., 2020), which depicts the global occurrence
of coconut production across a 5 arcmin grid (Fig. A1 in the
Appendix). Once the coconut-producing regions were identi-
fied, we visualized sub-metre-resolution satellite data shown
in Google Earth and collected points in locations where co-
conut palms were present (Fig. 1a). Three interpreters vi-
sualized the sub-metre resolution and collected at least five
points in each SPAM grid cell. Coconut palm can be distin-
guished from other palm species in sub-metre satellite im-
ages (Fig. 2). If available, the interpreters visualized images
from Google Street View to verify the presence of coconut
palms.

Once all coconut-producing regions were sampled, we ex-
tracted the values from a terrain slope layer and from the
WorldClim V1 Bioclim (Hijmans et al., 2005) at the col-
lected points. The terrain slope was derived from the Shuttle
Radar Topography Mission (SRTM) digital elevation dataset
(Jarvis et al., 2008). WorldClim V1 Bioclim consists of 19
bioclimatic variables derived from monthly temperature and
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Figure 1. Four point datasets used in the methodology. (a) A total of 1139 points depicting coconut palm locations found by visual inspection
of sub-metre satellite images. These points were used in a bioclimatic analysis to determine the potential distribution area of coconut palm.
(b) Location of the 146 training sites. In these locations, Sentinel-1 and Sentinel-2 annual composites were labelled in a 10× 10 km grid for
training a semantic segmentation model. (c) Validation dataset generated from a stratified random sampling. The dataset consists of 10 186
points and was used to evaluate the accuracy of the global coconut palm layer and to estimate the global coconut palm area. (d) A total of
5000 points randomly sampled in small tropical islands (areas from 1 to 200 ha). The points were used to estimate the coconut palm area in
small islands, where Sentinel-1 and Sentinel-2 might not be available.

precipitation. Given that the variables of WorldClim were ob-
tained from the same time series, we used the variance in-
flation factor (VIF) to address collinearity issues. The VIF
determines if sets of variables are strongly correlated with
each other. A VIF value higher than 5 indicates a high mul-
ticollinearity. We removed variables that presented a VIF
higher than 5, which resulted in a subset of eight World-
Clim variables and terrain slopes (Table A1). We used only
the subset of nine variables in the estimation of the potential
coconut palm distribution. The values in the nine variables
outlined the range of bioclimatic values for coconut palm,
and we used this range (minimum and maximum) to gener-

ate the potential coconut palm distribution map; a pixel in
the WorldClim dataset was considered to be suitable for co-
conut palm growth if the nine selected variables fell within
the bioclimatic range.

2.3 Sentinel-1 and Sentinel-2 compositing

Sentinel-1 and Sentinel-2 annual composites for the year
2020 were the input data for the classification model.
Sentinel-1 consists of two synthetic aperture radar (SAR)
satellites with a 6 d revisit time (Torres et al., 2012). We
used the polarization bands VV and VH, and the median
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Figure 2. Sub-metre-resolution images depicting (a) coconut palm and (b) other palm species found in the tropics. The images show (from
left to right and from top to bottom) a closed-canopy coconut palm stand in Papua New Guinea (6.124043◦ S, 134.13848◦ E) and Indonesia
(1.077958◦ N, 108.966256◦ E), a dense open-canopy coconut palm in the Philippines (13.792082◦ N, 123.016486◦ E), a sparse coconut palm
in Kenya (4.367173◦ S, 39.493028◦ E), an industrial oil palm in Indonesia (1.123642◦ N, 100.498538◦ E), a semi-wild oil palm in Nigeria
(6.641218◦ N, 5.388639◦ E), a sago palm forest in Papua New Guinea (6.122091◦ S, 134.139178◦ E), an areca palm in India (13.980709◦ N,
75.632272◦ E), a palmyra palm in Gabon (6.078832◦ S, 12.330894◦ E), a euterpe palm in Brazil (1.492261◦ S, 48.3734988◦W), an attalea
palm in Mexico (16.10187◦ N, 97.396666◦W), and a raffia palm in Brazil (4.295997◦ S, 42.943344◦W). The satellite images are the sub-
metre-resolution images that are displayed as the base layer in Google Earth © Google.

was computed for all available observations in the ascend-
ing and descending scenes separately. The annual composite
of Sentinel-1 was the mean of the two orbit composites for
2020. Sentinel-2 consists of two optical satellites that provide
images at a revisit time of 5 d. We used the Sentinel-2 level-
2A product, which provides terrain-corrected top-of-canopy
reflectance. Non-valid observations were masked using the
scene classification layer, which is produced by the Atmo-
spheric and Topographic Correction (ATCOR) algorithm for
the level-2A product (Drusch et al., 2012). The Sentinel-2
annual composites were generated using the median of all
available valid observations for 2020. The compositing for
Sentinel-1 and Sentinel-2 was identical to that of the global
oil palm layer described in Descals et al. (2021), with the ex-
ception that the global oil palm layer was created with images
from the second half of 2019 rather than the whole of 2020.
The coconut species is an evergreen plant, and its canopy

does not show substantial seasonal changes that can be cap-
tured in Sentinel-1 and Sentinel-2. The annual compositing
used in this study may not be effective for mapping crops and
vegetation that present a distinctive land surface phenology,
which can provide key information for successfully mapping
their extent (Son et al., 2013).

2.4 Feature selection

The coconut palm classification follows a methodology sim-
ilar to that used for the global oil palm layer (Descals et al.,
2021). The classification comprised a semantic segmentation
model that used three input layers. Two of these layers were
the VV and VH polarization bands from Sentinel-1 owing to
the capabilities of SAR data for mapping palm plantations
(Descals et al., 2019). The optical band 4 from Sentinel-2
(red band; wavelength centred at 665 nm) was the third input
layer in the global oil palm layer. Band 4 was chosen because
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it is the 10 m resolution band that provides the clearest depic-
tion of harvesting trails in industrial plantations. In the red
spectrum, harvesting trails have a high reflectance that con-
trasts with the low reflectance of the surrounding oil palm.

In contrast to industrial oil palm plantations, coconut palm
plantations do not present a harvesting road network that can
be identified in 10 m satellite data. Extensive coconut palm
plantations, such as those found in Tabou (Côte d’Ivoire) and
in small islands such as Talina (Solomon Islands) or Ma-
pun (Philippines), might present harvesting roads, but these
are not clearly visible in Sentinel-1 and Sentinel-2. In addi-
tion, there were coconut palm plantations incorrectly clas-
sified as oil palm in the global oil palm layer (Descals et
al., 2021), indicating that a spectral band other than band 4
could better distinguish oil palm from coconut palm. We also
found in our preliminary analysis that sago forests (Metrox-
ylon sagu Rottb.) and mango plantations (Mangifera spp. L.)
could also be confused with coconut palm in the VV–VH–
band 4 composites. Thus, we inspected the spectral separa-
bility between coconut palm, oil palm, sago palm, and mango
plantations for all 10 and 20 m Sentinel-2 bands. To test the
spectral separability, we collected 40 points for each tree
species. We normalized the Sentinel-1 and Sentinel-2 bands
using the z normalization and evaluated the separability us-
ing the one-dimensional Bhattacharyya distance (Theodor-
idis and Koutroumbas, 2006). The Bhattacharyya distance
evaluates the overlap between two independent distributions;
the higher the Bhattacharyya distance, the lower the overlap
between the spectral values of coconut palm and another tree
species.

The separability analysis revealed low separability be-
tween coconut palm and oil palm plantations in the VV and
VH bands (Fig. A2), which indicates that Sentinel-1 may not
be able to distinguish between oil palm and coconut palm.
Among the spectral bands, Sentinel-2 band 11 (short-wave
infrared spectrum; wavelength centred at 1614 nm) exhibited
the greatest spectral separability between coconut palm and
oil palm in terms of Bhattacharyya distance. Since oil palm
plantations potentially overlap with coconut palm to a greater
degree than mango and sago palm, we selected band 11 as
the optical band for the classification of coconut palm. Since
band 11 has a spatial resolution of 20 m, we aggregated the
Sentinel-1 composites to 20 m using bilinear interpolation.
As a result, the final coconut palm layer has a spatial resolu-
tion of 20 m.

2.5 Semantic segmentation

The Sentinel-1 and Sentinel-2 composites were classified
using a semantic segmentation model, specifically a U-Net
model with MobileNet-v2 as the backbone (Falk et al., 2019).
Semantic segmentation is a type of deep learning model that
consists of a pixel-wise classification of an image using a
convolutional neural network. Semantic segmentation is well
suited to mapping plantations, such as coconut palm, since it

can automatically capture the spatial and contextual infor-
mation in the image, and as a result, less effort is required
compared to feature engineering in standard machine learn-
ing (Ma et al., 2019). Such contextual information includes
the shape of the plantation or texture patterns within the plan-
tation.

Semantic segmentation models require image data with a
fixed size for both training and prediction. We set the size
of the input images to 512× 512 pixels, which is approxi-
mately 10× 10 km in a 20 m resolution image. The collec-
tion of training data consisted of digitizing polygons in re-
gions that were identified in the bioclimatic analysis. The
polygons were drawn in 146 training images (Fig. 1b) using
a sub-metre resolution to discriminate coconut palm planta-
tions from other land covers. The sub-metre-resolution im-
ages were the images displayed as the base layer in Google
Earth. The U-Net was used for binary classification of co-
conut palm (digitized polygons) and the rest of the land cov-
ers (image background; see Fig. A3) and, thus, the result-
ing layer was a binary raster, in which each pixel presented
values of 0 (coconut palms are not present) and 1 (coconut
palms are present). In addition, we generated a probability
layer using the second-last layers of the convolutional neural
network. Rather than probability layers, the second-last lay-
ers represent a confidence score (ranging from 0 to 100) for
each class prediction. The probability layer we provide cor-
responds to the second-last layer of the class of coconut. The
U-net model was trained and deployed using the PyTorch
framework in the Microsoft Planetary Computer Hub.

2.6 Validation

We evaluated the accuracy of the global coconut palm layer
using the good practices for estimating area and assessing ac-
curacy as described by Olofsson et al. (2014). To assess the
validity of the classification layer, we needed extensive, ran-
domly distributed, well-characterized reference points across
the coconut-producing region. We used a stratified random
sampling over the areas delimited by the potential coconut
palm distribution. A total of 10 200 reference points were
sampled: 557 points in pixels classified as the class of co-
conut and 9643 points in pixels classified as the class of
other. In stratified random sampling, the pixels that present
the same class have an equal probability of being sampled.
Here, we sought a cost-effective alternative by visually re-
viewing the sub-metre-resolution images from Google Earth
because coconut palms can be identified using such data. The
interpreters assigned a truth label based on the following five
interpretations:

0. Land cover could not be determined because sub-metre-
resolution data were not available.

1. Other land cover indicates that coconut palms are not
present within the 20 m pixel.
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2. Sparse coconut palm indicates a low density of coconut
palms, whereby there are between one and four coconut
palms within the 20 m pixel.

3. Dense open-canopy coconut palm indicates that there
are more than four coconut palms within the 20 m pixel,
but the coconut palms do not reach the full canopy clo-
sure.

4. Closed-canopy coconut palm indicates that there are
more than four coconut palms within the 20 m pixel and
that coconut palms fully cover the ground.

The validation points were first labelled by a team of three
interpreters, and then we used a second level of verification
(Szantoi et al., 2021). The second level of verification con-
sisted of an independent interpreter that verified the points
that the team labelled as coconut. There were 1814 points
in which the land cover could not be determined, and, thus,
the total number of reference points was 10 186 in the accu-
racy assessment (Fig. 1c). The number of points was 7581
for other land cover, 164 for sparse coconut, 120 for dense
open-canopy coconut, and 202 for closed-canopy coconut. In
the accuracy assessment, the points labelled other land cover
were recoded as 0 (class of other). For the class of coconut,
we considered three definitions (Fig. 2a). The first definition
assigned the class of coconut when at least one coconut palm
was found within a 20 m pixel. Points labelled as sparse co-
conut, dense open-canopy coconut, and closed-canopy co-
conut were recoded as 1. This initial definition aimed to pro-
vide an estimate of all coconut-producing regions. The sec-
ond definition considered as the class of coconut the points
labelled as dense open-canopy coconut and closed-canopy
coconut. This second definition aimed to evaluate the ca-
pability of Sentinel-1 and Sentinel-2 for mapping dense co-
conut stands that do not reach full canopy closure. The third
definition only considered points labelled as closed-canopy
coconut in the class of coconut.

The accuracy metrics included the producer’s accuracy
(PA), the user’s accuracy (UA), and the overall accuracy
(OA). The producer’s accuracy represents the proportion of
pixels of a given class that were not omitted in the classi-
fication, while the user’s accuracy shows the proportion of
pixels that were not committed for a given class. The OA
represents the proportion of pixels that were correctly classi-
fied. We also tested whether the OA was significantly higher
than the no-information rate. The no-information rate is the
overall accuracy obtained by classifying all pixels with the
largest land cover class – in our case, the class of other. An
overall accuracy significantly higher than the no-information
rate indicates that the classification model did better than
classifying indiscriminately all pixels with the class of other.
We reported the post-stratified metrics for PA, UA, and OA
using the practices in Olofsson et al. (2014) and Szantoi et
al. (2021). These practices also explain the area estimation
for each class in the land cover map. While the mapped area

reveals the area that was classified as a particular class, the
area estimates account for omission and commission errors
and provide an area with a confidence interval. All metrics of
accuracy and area estimates were reported with a confidence
interval of 95 %.

2.7 Area estimates for small tropical islands

The global coconut palm layer relies on the availability of
Sentinel-1 and Sentinel-2 data. These two satellites provide
images for the larger land masses across the globe, but the
data are missing in parts of the Pacific and other small tropi-
cal islands. On small islands with no Sentinel-1 or Sentinel-
2 data, coconut palm mapping was not possible using our
classification model. To overcome this issue, we used a
sampling-based method to estimate the coconut palm area
on small tropical islands owing to the availability of sub-
metre-resolution satellite images for most of these islands.
The sampling-based approach comprised randomly sampling
5000 points within the small tropical island extents (Fig. 1d).
Small tropical islands included islands with an area between
1 and 200 ha in the tropics (latitudes within 30◦ S and 30◦ N)
in a reference dataset (Sayre et al., 2019). The points were
visually interpreted and categorized into the following five
classes:

0. Land cover could not be determined because sub-metre-
resolution data were not available.

1. Non-vegetated land cover indicates that vegetation cov-
erage is < 50 % and that coconut palms are not present
within a 20 m bounding box.

2. Other vegetation indicates that vegetation coverage is
> 50 % and that coconut palms are not present within a
20 m bounding box.

4. Sparse coconut palm indicates a low density of coconut
palm, specifically between one and four coconut palms
within a 20 m bounding box.

5. Dense open-canopy and closed-canopy coconut palm
indicate more than four coconut palms within a 20 m
bounding box.

The area occupied by coconut palm on the small is-
lands was inferred using the proportion of coconut points
(ncoconut/ntotal); Areacoconut =Areaislands× ncoconut/ntotal,
where Areacoconut is the area covered by coconut palm, and
Areaislands is the total area of small islands per country or
globally. The 95 % confidence interval for Areacoconut was
estimated using the confidence interval for a population
proportion; CI= 1.96 ×

√
p(p− 1)/n, where CI is the

confidence interval, p is the proportion of points categorized
as coconut (ncoconut/ntotal), and n is the total number of
sampled points. The area estimates for small islands did
not consider the difference between dense open-canopy
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and closed-canopy coconut palm. The distinction was made
solely to assess the performance of the classification model
for mapping dense open-canopy coconut palm.

3 Results

We collected 1139 points in places where coconut palms
were visually identified using sub-metre-resolution images
(Fig. 1a). The points were located in the tropics between
25.24◦ S and 26.40◦ N, generally in low-elevation areas close
to the coast. The coconut palms at the highest elevation were
found at 988 m in the Indian state of Karnataka. Neverthe-
less, the average altitude was 101 m, and the average dis-
tance to the ocean was 750 m. Some coconut palms were
found hundreds of kilometres inland; for example, a co-
conut palm was found in Bolivia at 808 km from the Pacific
Ocean (Fig. A4a). These coconut palms presented yellow-
coloured leaves, indicating substandard growing conditions,
and were never observed as a plantation. The bioclimatic
analysis confirmed that coconut palm grows predominantly
in regions with a warm and humid oceanic climate, char-
acterized by low daily and seasonal temperature variations
due to the proximity of oceans. In the 1139 points used
for the bioclimatic analysis, the mean annual temperature
ranged from 22.4 ◦C (minimum) to 28.8 ◦C (maximum) (Ta-
ble A1). The lowest monthly mean temperature recorded dur-
ing the coldest month was 11.5 ◦C. The southern and north-
ern limits of the potential coconut palm distribution were
predominantly semi-arid regions (Fig. A5). We found that
coconut palm is cultivated in a variety of rainfall regimes.
Coconut palm plantations were found in arid and semi-arid
regions (annual rainfall < 250 mm), such as Dhofar Gover-
norate in Oman (17.0054◦ N, 54.1069◦ E), Sindh Province
in Pakistan (24.7204◦ N, 67.5855◦ E), and Tumbes Province
in Peru (4.0481◦ S, 80.9472◦W). However, coconut palm is
grown with irrigation in these regions and represents a negli-
gible area compared to the extensive plantations in the state
of Kerala in India, the Philippines, and Indonesia, where rain-
fall is abundant (annual rainfall > 2000 mm).

The global coconut palm layer has an overall accuracy of
99.04± 0.21 % (intervals represent 95 % confidence) based
on the post-stratified accuracy assessment of the 10 186 val-
idation points and considering the first definition of co-
conut palm, which included sparse coconut palm and dense
open- and closed-canopy coconut palm. The overall accuracy
was greater than the no-information rate (94.13± 0.51 %),
indicating that the classification improved upon one in
which all pixels were classified as the class of other. The
producer’s and user’s accuracy were 11.30± 2.33 % and
79.21± 3.46 % for the class of coconut, respectively, and
99.97± 0.01 % and 99.07± 0.21 % for the class of other (Ta-
ble 1). Without considering points in sparse coconut palm,
the producer’s accuracy increased to 32.32± 10.17 %. If
only closed-canopy coconut palms were considered, the pro-

ducer’s accuracy was 71.51± 23.11 % for the class of co-
conut. This large difference in the producers’ accuracy for
the different definitions of the class of coconut indicates that
sparse and dense open-canopy coconut palms were largely
omitted in the classification.

According to a visual examination of sub-metre satellite
images, we identified several palm tree species that were in-
correctly classified as the class of coconut (Fig. 2b), explain-
ing the low user’s accuracy for the class coconut (79.2 %).
We found false positives in sago palm and nypa palm (Nypa
fruticans Wurmb.) in southeast Asia and the Pacific, in raffia
palm (Raphia spp. P.Beauv.) in South America and Africa,
in areca palm (Areca catechu L.) in India, in euterpe palm
(Euterpe edulis Mart.) in South America, in attalea palm (At-
talea spp. Kunth) in central America, and in palmyra palm
(Borassus spp. L.) in Africa. Even though band 11 was in-
cluded in the classification model, oil palm plantations, es-
pecially those of smallholders, were residually detected as
coconut palm. Most of these false positives were eliminated
in the final layer by manually editing the output of the clas-
sification (Figs. 3 and A6). The vast bulk of these palms
was found apart from coconut palm plantations and could be
identified in the high-resolution satellite data. For instance,
in New Guinea, coconut palm typically covers the first kilo-
metres from the sea, while sago palm covers areas farther
inland (Fig. A7). We also found false positives for the class
of coconut in mango, a non-palm plantation. Mango planta-
tions were located on the Pacific coast of Mexico and in the
state of Gujarat, India. Removing false positives in mango
plantations was problematic due to the co-occurrence of co-
conut palm and mango plantations in the landscape. In ad-
dition, we found plantations that contained both mango and
coconut palm (Fig. A4b). Other intercropping settings were
found with maize (Zea mays L.), rice (Oryza spp. L.), and ba-
nana (Musa spp. L.) (Fig. A4c, d, and e). In contrast, we did
not find intercropping in closed-canopy coconut palm, which
was generally devoid of understories aside from grasslands
and small shrublands (Fig. A4f and g).

Most of the validation points for the class of coconut
fell within the three main coconut-producing regions: the
Philippines (115 points), Indonesia (130 points), and India
(162 points). Owing to this dense sampling, we could gen-
erate separate accuracy assessments for these three coun-
tries (Table 1). The next country was Sri Lanka, with only
14 points labelled as the class of coconut, which is insuffi-
cient for evaluating the accuracy. The accuracy assessment
revealed similar omission rates for closed-canopy coconut
palm at the country level compared to the global assessment.
The producer’s accuracy for the class of coconut was lowest
in the Philippines (70.25± 29.18 %) compared to Indonesia
(80.03± 31.37 %) and India (77.23± 34.56 %), although the
large confidence interval indicates that the difference is not
significant.

The total area mapped as coconut palm was 5.55× 106 ha
(Table 2). Coconut palm was mainly found in India and

https://doi.org/10.5194/essd-15-3991-2023 Earth Syst. Sci. Data, 15, 3991–4010, 2023



3998 A. Descals et al.: High-resolution global map of closed-canopy coconut palm

Table 1. Accuracy assessment of the global coconut palm layer for the year 2020. The accuracy metrics were estimated with 10 186 points
randomly distributed in the regions where coconut palm can potentially grow. The accuracy metrics are reported with a 95 % confidence
interval.

Overall User’s accuracy – Producer’s accuracy – Producer’s accuracy – Producer’s accuracy –
accuracy1 (%) coconut1 or other (%) coconut1 or other (%) coconut2 (%) coconut3 (%)

World 99.04± 0.21 79.21± 3.46/99.07± 0.21 11.30± 2.33/99.97± 0.01 32.32± 10.17 71.51± 23.11
Philippines 93.85± 2.82 84.75± 6.52/94.12± 2.89 29.66± 10.39/99.53± 0.20 53.06± 21.83 70.25± 29.18
Indonesia 98.99± 0.61 85.82± 5.78/99.06± 0.61 33.21± 14.51/99.92± 0.03 58.75± 27.47 80.03± 31.37
India 95.90± 1.61 74.73± 6.33/95.24± 1.79 12.88± 4.32/99.75± 0.06 36.87± 18.69 77.23± 34.56

1 Sparse and dense open- and closed-canopy coconut palm. 2 Dense open- and closed-canopy coconut palm. 3 Closed-canopy coconut palm.

Figure 3. Classification of a Sentinel-1 and Sentinel-2 annual composite into a land cover map of coconut palm in West Kalimantan (Indone-
sia). The Sentinel-1 and Sentinel-2 composite (a) includes the polarization bands VV and VH and the spectral band 11 (short-wave infrared).
In this composite, coconut palm and oil palm appear in different shades of green. Oil palm is present in the lower-right part of the image with
a brighter green colour than coconut palm. In this composite, water appears in yellow. The classification image (b) shows the coconut palm
plantations in red.

southeast Asia (Fig. 4), regions where we also found
most of the largest clusters of coconut palm plantations
(Figs. 5 and A8, which depict the coconut palm probabil-
ity layer). The area estimates revealed that coconut palm
covers 38.93± 7.89× 106 ha, including sparse and dense
open- and closed-canopy coconut palm. If only dense open-
and closed-canopy coconut palms were considered in the
accuracy assessment, the global coconut palm area was
12.66± 3.96× 106 ha, which is similar to the 11.61× 106 ha
reported globally by FAO. The coconut palm mapped area
was 1.54× 106 ha in the Philippines, 1.73× 106 ha in In-
donesia, and 1.29× 106 ha in India, which together repre-

sent 82 % of the global coconut palm mapped area (Fig. A9).
Other hotspots of coconut production were found along
the Pacific coast of Mexico, Brazil, Ghana, Côte d’Ivoire,
Tanzania, Mozambique, Sri Lanka, Vietnam, Thailand, and
Papua New Guinea. In some of these countries, the mapped
coconut palm area corresponded well with FAO statistics,
for instance, in Papua New Guinea, Vietnam, and Thai-
land. In contrast, Tanzania is the fourth largest coconut-
producing country with 0.60× 106 ha according to FAO, but
only 0.03× 106 ha was mapped. In eastern Africa, coconut
palm is sparsely planted (Fig. A4h), which could account
for our likely underestimation. The coconut palm area esti-
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mate for Tanzania (0.52± 0.48× 106 ha) was consistent with
FAO, although the estimate has a large confidence interval
due to low sampling in this country.

We found that several countries in the Pacific Ocean had a
large coconut palm area in comparison to their overall land
area. Papua New Guinea had the largest coconut palm area
mapped (0.17× 106 ha) followed by Vanuatu (0.6× 106 ha)
and the Solomon Islands (0.5× 106 ha). Figure 4 shows the
availability of Sentinel-1 and Sentinel-2 data, which are
lacking in many islands in the Pacific Ocean. According
to sampling-based estimates on small tropical islands (land
area < 200 ha), Indonesia and the Philippines were the coun-
tries with the largest coconut palm area (Fig. A10a), account-
ing for 33 798± 530 and 21 231± 630 ha of dense coconut
palm and 34 944± 556 and 16 681± 444 ha of sparse co-
conut palm, respectively. The ratio of coconut palm to total
area revealed that small islands in the Pacific had the highest
coconut palm area relative to land area (Fig. A10b). Tuvalu
had the highest percentage, with 81 % of the land in small
islands covered with coconut palm. Other small islands in
the Pacific countries presented a low proportion of coconut
palm relative to total area but a high proportion relative to
vegetated land. In French Polynesia, the overall proportion
of coconut palm was only 22 %, but it comprised 50 % of all
vegetated areas in the small islands.

4 Discussion

We produced the first global coconut palm layer with a 20 m
resolution and estimated the global area of coconut palm us-
ing remotely sensed data for the year 2020. We also gener-
ated a probability layer that provides a score indicating the
confidence level of the model output. This probability layer
could serve as a proxy for coconut palm density. The global
coconut palm layer demonstrates the capabilities of Sentinel-
1 and Sentinel-2 to map coconut palm. We observed that the
spectral separability in band 11 was imperfect as residual
false positives were still occurring in oil palm, sago palm,
and other palm species, explaining the low user’s accuracy
for the class of coconut (79.2 %). Our model omitted most of
the coconut palm that did not reach full canopy closure, and
coconut palm remained broadly undetected when trees were
sparsely distributed throughout the land. This issue was also
found in industrial plantations with a wide planting mark.
A similar problem was found in the global mapping of oil
palm, which reported higher omission errors in semi-wild
oil palm in western Africa (Descals et al., 2021). Despite
this, the producer’s accuracy for closed-canopy coconut palm
(71.51± 23.11 %) was similar to that obtained in the global
oil palm layer, which were 75.78± 3.55 % for smallhold-
ers and 86.92± 5.12 % for industrial oil palm. This indicates
that Sentinel-1 and Sentinel-2 can map closed-canopy palm
species with a similar accuracy.

Sub-metre-resolution images could be used in future re-
search to accurately map sparse coconut palm in small trop-
ical islands where Sentinel-1 and Sentinel-2 data are un-
available. Object detection using deep learning applied to
very-high-resolution images (< 1 m), such as those obtained
by DigitalGlobe or Planet, offers great potential for the de-
tection of individual coconut palms (De Souza and Falcão,
2020; Vermote et al., 2020; Freudenberg et al., 2019). This
approach could be used to detect coconut palm plantations
with incomplete canopy closure and coconut palms that are
scattered across the land. In our study, the decametric resolu-
tion of Sentinel-1 and Sentinel-2 images made the use of ob-
ject detection techniques unfeasible. Object detection using
deep learning and sub-metre images could complement our
closed-canopy coconut palm layer and could also be useful
for mapping different palm trees, including coconut palm, oil
palm, and sago palm. Because of the high costs of such im-
agery, sub-metre-resolution mapping would only be feasible
in specific areas where these high-resolution data are crucial
for informing planning and decision making about land use
and agricultural development.

The potential coconut palm distribution confirmed previ-
ous insights about coconut-growing requirements, with an
area covering most tropical coastal regions but not those
with high aridity or low temperatures. Our potential distri-
bution coincides with the coastal areas on a similar map for
coconut palm (Coppens D’Eeckenbrugge et al., 2018). Soil
types were not considered in the bioclimatic analysis for the
estimation of the potential coconut palm distribution. Co-
conut palm prefers sandy soils, but different types of soil can
support the growth of coconut palm as long as they are well
drained (Chan and Elevitch, 2006), which explains why co-
conut palm grows in the first few kilometres of coastline in
Papua, while sago palm dominates the landscape in inland
swampy areas. The drainage requirements for coconut culti-
vation also explain the unsuitability of Vertisols, also known
as black soils, which contain a high content of expansive clay
minerals with inherent poor drainage. Despite not including a
soil map in the bioclimatic analysis, the resulting layer from
the coconut palm classification presented a negligible overlap
with Vertisol areas, for instance the Deccan Traps in India.
Additionally, we found that coconut palm generally grows
in low-elevation coastal regions, but we also found coconut
palm in mountainous regions in Tanzania, India, and, espe-
cially, the Philippines, corroborating previous observations
in the country (Pabuayon et al., 2009). We did not include ar-
eas more than 200 km from the coast because we found very
few coconut palms beyond that 200 km threshold in our vi-
sual assessment of high-resolution images.

Our findings show that the area designated for grow-
ing sparse open- and closed-canopy coconut palm
(38.93± 7.89× 106 ha) is significantly larger than the
area recognized by the FAO (11.6× 106 ha). The FAO
underreports planted area because it is based on production
data and yield, and it does not account for areas sparsely
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Figure 4. Global occurrence map of coconut palm. Grid cells in red depict areas where coconut palm was detected using a U-Net model
and annual Sentinel-1 and Sentinel-2 composites for 2020. The cell size is 100× 100 km. Dark grey represents areas where Sentinel-1 or
Sentinel-2 were not available.

Figure 5. Density of coconut palm in India and southeast Asia at 1 km resolution. The map was generated using the 20 m global coconut
palm layer. The density map highlights the primary regions of coconut production.
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Table 2. Coconut palm area mapped for 2020, harvested area obtained from FAO statistics for 2020, and area estimates for three definitions
of coconut palm: (1) sparse and dense open- and closed-canopy coconut palm, (2) dense open- and closed-canopy coconut palm, and (3) only
closed-canopy coconut palm. The area estimates are reported with a 95 % confidence interval.

Coconut area Coconut area FAO Coconut area estimate1 Coconut area estimate2 Coconut area estimate3

(ha× 106) (2020) (ha× 106) (ha× 106) (ha× 106) (ha× 106)

World 5.55 11.61 38.93± 7.89 12.66± 3.96 5.03± 1.65
Philippines 1.54 3.65 4.41± 1.53 2.29± 0.95 1.46± 0.63
Indonesia 1.73 2.77 4.38± 1.91 2.38± 1.12 1.64± 0.66
India 1.29 2.15 7.46± 2.44 2.46± 1.24 0.79± 0.11

1 Sparse and dense open-, and closed-canopy coconut palm. 2 Dense open- and closed-canopy coconut palm. 3 Closed-canopy coconut palm.

covered in coconut palm. This finding indicates that much
more land has been allocated to coconut palm growing
than previously reported, even though coconut production
may not be very important on much of that land. We do
not know enough about the nature of sparsely planted
coconut areas to judge how productive these lands are. In
areas where coconut palm is intercropped with other crops,
overall land productivity depends on more than coconut
production. Sparse coconut palm areas may also relate to old
plantations with limited maintenance and low productivity,
which is a known problem in the coconut industry (Peiris et
al., 2001). Overall, the coconut industry is known to have
a gap between potential and actual yields, which relates
to the prevalence of pests and diseases, inferior varieties,
outdated agronomical practices, and the high proportion of
senile palms (Alouw and Wulandari, 2020). Therefore, the
large area of sparse and dense open-canopy coconut palm
indicates that production increases can likely be achieved on
the existing lands allocated to coconut production.

The potential increases in coconut production have envi-
ronmental consequences because demand for coconut prod-
ucts is rapidly growing, putting pressure on the industry to
expand land holdings. Global coconut revenues are predicted
to increase from USD 5.7 billion in 2022 to USD 7.4 billion
in 2027 (MarketsandMarkets, 2023), and the more produc-
tion increases that can be met on existing land, the less im-
pact this will have on food security and biodiversity in ar-
eas that would otherwise be displaced by new coconut palm
plantations. Furthermore, our map will help in predicting the
likely impact of climate change on coconut productivity, as
recently determined for India (Hebbar et al., 2022). While
we acknowledge that the impacts of these production predic-
tions remain unclear, having the first high-resolution map of
global coconut palm provides a solid basis for monitoring
how this crop develops. This map also allows for the quan-
tification of the effects of coconut palm expansion on natural
ecosystems such as tropical lowland forests, mangroves, and
beach forests, which helps to inform global biodiversity and
environmental policy. Such policies could focus on increas-
ing productivity on existing coconut lands so that no new ex-
pansion is required, potentially focusing on sparse and open-

canopy coconut palm regions where yield increases might be
less challenging. On the other hand, meeting coconut pro-
duction increases on existing dense coconut land could also
allow for phasing out unproductive sparse coconut lands and
restoring them to natural ecosystems with potential biodiver-
sity and other environmental benefits (Carr et al., 2021).

While we were unable to map coconut palm in small is-
lands in the Pacific (because of the absence of Sentinel-1
and Sentinel-2 data), our area estimates confirm that coconut
palm is a dominant species in many of these island nations,
with several countries having more than half of their land
area of small islands covered in coconut palm. This indicates
the importance of this crop for many smallholder producers
in the Pacific, who often grow this cash crop together with
other crops, with coconut palm being the permanent crop and
other crops being grown when their prices are high (Feintre-
nie et al., 2010). Like elsewhere, these smallholder produc-
ers struggle with low coconut productivity, but this may be
compensated for by good yields from other crops. Where co-
conut palm is grown as a monoculture, reorganization of the
coconut industry has been proposed, potentially along simi-
lar lines as palm oil production, based on the nucleus estate
or nucleus–plasma concept. High coconut palm coverage on
small islands in the Pacific and Indian oceans and to a lesser
extent in the Caribbean may be a significant threat to biodi-
versity and other ecosystem services (Meijaard et al., 2020),
especially because coconut palm can be invasive on tropical
islands (Young et al., 2017). More work needs to be done to
map coconut palm areas on these islands, ideally using sub-
metre-resolution data where Sentinel-1 and Sentinel-2 data
are currently unavailable. Once such maps become available,
they can provide better insight into the extent to which co-
conut palm has displaced natural ecosystems; relative co-
conut productivity (in areas with detailed harvest informa-
tion); and the potential for coconut palm expansion, conver-
sion to other forms of agriculture, or restoration of natural
ecosystems. Detailed and accurate spatial information is a
key component in any land use optimization planning for co-
conut palm and for other crops.
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5 Data availability

The dataset presented in this study is freely available
for downloading at https://doi.org/10.5281/zenodo.8128183
(Descals, 2023). The file “GlobalCoconutLayer_2020_v1-
2.zip” contains 878 raster tiles of 100× 100 km in geotiff
format. The raster files are the result of a convolutional neu-
ral network that classified Sentinel-1 and Sentinel-2 annual
composites into a coconut palm layer for the year 2020. The
images have a spatial resolution of 20 m and contain two
classes:

0. other land covers that are not coconut palm

1. coconut palm.

The file “GlobalCoconutLayer_2020_densityMap_1km_v1-
2.zip” contains the 20 m coconut palm layer aggregated to
1 km. The value of each pixel represents the coconut palm
area (in square metres) within the 1 km pixel.

The file “Validation_points_GlobalCoconutLayer_2020_v1-
2.shp” includes the 10 200 points that were used to validate
the product. Each point includes the attribute “Class”,
which is the class assigned by visual interpretation of
sub-mete-resolution images, and the attribute “predClass”,
which reflects the predicted class by the convolutional neural
network. The “predClass” values are the same as the raster
files:

0. other land covers that are not coconut palm

1. coconut palm.

The attribute “Class” contains the following values:

0. Land cover could not be determined because sub-metre-
resolution data were not available.

1. Other land covers that are not coconut palm are indi-
cated.

2. Sparse coconut palm indicates a low density of coconut
palms (between one and four coconut palms within the
20 m pixel).

3. Dense open-canopy coconut palm indicates more than
four coconut palms within the 20 m pixel, but coconut
palms do not reach the full canopy closure.

4. Closed-canopy coconut palm indicates more than four
coconut palms within the 20 m pixel, and coconut palms
fully cover the ground.

5. Palm species were found that are not coconut palm.

The global coconut palm layer, the probability layer for the
class of coconut, and the coconut palm density map can be vi-
sualized online at https://adriadescals.users.earthengine.app/
view/global-coconut-layer (Descals, 2022).

The Sentinel-1 SAR ground-range-detected (GRD) and
Sentinel-2 level-2A used in this study are available at the
Copernicus Open Access Hub: https://scihub.copernicus.eu/
(European Space Agency, 2022). We used all Sentinel-1 and
Sentinel-2 images that overlapped the potential distribution
of coconut palm for the year 2020.

The WorldClim bioclimatic variables (WorldClim V1 Bio-
clim) (Hijmans et al., 2005) can be accessed at https:
//www.worldclim.org/data/v1.4/worldclim14.html (last ac-
cess: 6 July 2022).

Very-high-resolution images (spatial resolution < 1 m)
from DigitalGlobe can be visualized in the Google Earth En-
gine code editor or Google Maps.

The 5 arcmin global coconut palm area mod-
elled with SPAM (Yu et al., 2020) is available at
https://doi.org/10.7910/DVN/PRFF8V (International Food
Policy Research Institute, 2019).

The country-wide harvested area of coconut palm was ex-
tracted from the FAOSTAT database at http://www.fao.org/
faostat/en/ (last access: 10 March 2022) under the item “Co-
conuts in shell – Crops and livestock products (Production)”
(FAO, 2022).

6 Code availability

The original code of the U-Net model can be found at
https://github.com/qubvel/segmentation_models.pytorch
(Iakubovskii, 2019).

7 Conclusions

We mapped the global distribution of coconut palm using
a deep learning model that classified satellite data (SAR
Sentinel-1 and optical Sentinel-2) into a 20 m land cover
map depicting the extent of closed-canopy coconut palm.
The model achieved a high accuracy for closed-canopy co-
conut palm, and the resulting coconut palm layer accurately
depicts the regions with the highest density of coconut palm.
The presented dataset can be integrated into the recently pub-
lished Essential Agricultural Variables’ “Perennial Cropland
Mask”, as well as the Food and Agricultural Organization’s
land cover classification system (LCCS) under “Cultivated
and Managed Terrestrial Areas” – “Tree Crops” (Di Grego-
rio, 2005).

Our global coconut palm layer study provides the accurate
high-resolution data required to evaluate the relationships be-
tween vegetable oil production and the synergies and trade-
offs between different sustainable development goal indica-
tors. Moreover, the global coconut palm layer can be used
in geospatial analysis to assess the spatial overlap between
coconut palm extent and areas of highly threatened species,
species endemism, and species richness. In this regard, the
coconut palm map presented in this study can be valuable for
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studying the environmental impacts associated with coconut
cultivation in biodiversity hotspots.

Appendix A

Table A1. Range of climate values extracted from 1139 coconut palm locations across the world. These ranges represent the minimum and
the maximum values of the 19 WorldClim bioclimatic variables, elevation, slope, and maximum distance to the sea. The variable names
bio05 and bio06 represent the maximum temperature of the warmest month and the minimum temperature of the coldest month. Variable
names in bold present a low collinearity and were used in the bioclimatic analysis for estimating the potential coconut palm distribution.

Variable name Minimum value Maximum value Unit

Annual mean temperature 22.4 28.8 ◦C
Mean diurnal range 4.1 12.2 ◦C
Isothermality 39.0 93.0 %
Temperature seasonality 1.1 37.8 ◦C
Max temperature of warmest month 28.3 37.7 ◦C
Min temperature of coldest month 11.5 25.1 ◦C
Temperature annual range (bio05–bio06) 5.4 22.3 ◦C
Mean temperature of wettest quarter 21.6 29.2 ◦C
Mean temperature of driest quarter 19.1 29.7 ◦C
Mean temperature of warmest quarter 23.7 31.4 ◦C
Mean temperature of coldest quarter 18.2 27.7 ◦C
Annual precipitation 108 5132 mm
Precipitation of wettest month 35 1427 mm
Precipitation of driest month 0 282 mm
Precipitation seasonality 8 165 Coeff. of variation
Precipitation of wettest quarter 83 3377 mm
Precipitation of driest quarter 0 935 mm
Precipitation of warmest quarter 28 1268 mm
Precipitation of coldest quarter 0 2776 mm
Elevation 0 988 m
Slope 0 26.4 ◦

Maximum distance to sea 0 278 km

Figure A1. Coconut palm map extracted from the Spatial Production Allocation Model for 2010 (SPAM2010). The layer represents areas
where the extent of coconut palm plantations exceeded 50 ha within each 5 arcmin grid of the SMAP dataset.
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Figure A2. Spectral and backscatter separability between coconut palm, oil palm, sago palm, and mango plantations. The overlap between
distributions was estimated for the VV and VH bands in Sentinel-1 and for the 10 and 20 m bands in Sentinel-2. The separability was
measured in terms of Bhattacharyya distance (BD) between distributions of coconut palm and other species. The Bhattacharyya distance is
displayed in parentheses in the x axis. The higher the Bhattacharyya distance, the lower the overlap between the two distributions.

Figure A3. Example of the 10× 10 km2 images used for training the U-Net model. The training pairs included a Sentinel-1 and Sentinel-
2 composite (upper panels) and the corresponding labelled image (bottom panels). The Sentinel-1 and Sentinel-2 composite includes the
polarization bands VV and VH and the spectral band 11 (short-wave infrared). The labelled image includes two classes: 0 (coconut palm is
not present) and 1 (coconut palm is present). The panels show four different coconut-producing regions: (from left to right) Manabí Province
(Ecuador), Tamil Nadu State (India), Jambi Province (Indonesia), West Kalimantan Province (Indonesia), and Bougainville (Papua New
Guinea).
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Figure A4. Images taken from Google Street View © Google. The images show (a) coconut palms in Bolivia at 808 km from the coast
(15.9220◦ S, 63.1761◦W), (b) an intercropping of coconut palm and mango in Mexico (17.2119◦ N, 100.7382◦W), (c) coconut palm and
maize in the Philippines (5.9776◦ N, 124.6742◦ E), (d) coconut palm and rice in Indonesia (8.5596◦ S, 116.3908◦ E), (e) coconut palm and
banana in Indonesia (1.0807◦ S, 103.7871◦ E), (f) a dense coconut palm plantation in Mexico (18.1230◦ N, 102.8654◦W), (g) a dense coastal
coconut palm in Indonesia (1.2783◦ S, 123.5367◦ E), and (h) a sparse coconut palm in Kenya (3.7843◦ S, 39.8228◦ E).
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Figure A5. Maps generated from the bioclimatic analysis. (a) Number of variables that fall within the range of values suitable for coconut
palm growth. The bioclimatic variables represent a subset of eight WorldClim variables and terrain slope that present a low collinearity.
The range of values was extracted from 1139 coconut palm locations. (b) Potential distribution suitable for coconut palm growth. The map
represents the pixels with the nine variables within the range observed in the 1139 coconut palm locations. Regions inland that are more than
200 km from the coast were masked. (c) The 100× 100 km grid used to classify the Sentinel-1 and Sentinel-2 composites into a land cover
map of coconut palm.

Figure A6. Classification of Sentinel-1 and Sentinel-2 annual composites into a land cover map of coconut palm. The Sentinel-1 and
Sentinel-2 composite (upper panels) includes the polarization bands VV and VH and the spectral band 11 (short-wave infrared). The regions
in the panels are, from left to right, state of Gujarat (India), Riau Province (Indonesia), West Kalimantan Province (Indonesia), and San-
daun Province (Papua New Guinea). These regions present crops that exhibit similarities to coconut palm in the Sentinel composites. The
classification image (bottom panels) shows the global coconut palm layer.
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Figure A7. Sub-metre-resolution images in the Gulf (upper-left) and West New Britain (upper-right) Provinces, Papua New Guinea. The
images show that coconut palm and other palms (sago and oil palm) grow in separate areas. The bottom panels feature detailed images
of coconut palm, sago palm, and oil palm. The satellite images are the sub-metre-resolution images that are displayed as the base layer in
Google Earth © Google.

Figure A8. Sentinel-1 and Sentinel-2 annual composite (left panel) and probability layer for the class of coconut (right panel) produced with
the U-Net model in Riau Province (Indonesia). The Sentinel-1 and Sentinel-2 composite includes the polarization bands VV and VH and the
spectral band 11 (short-wave infrared). The probability layer represents a score that indicates the confidence level of the classification model
in predicting the presence of coconut palm.
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Figure A9. Coconut palm area mapped using Sentinel-1 and Sentinel-2 and coconut harvested area from FAO for the top 15 coconut-
producing countries in 2020.

Figure A10. (a) Coconut palm area estimates in small tropical islands and (b) percentage of the coconut palm area compared to the total
island surface per country. The areas were estimated using a sampling-based approach; 5000 points were randomly sampled in small tropical
islands (areas from 1 to 200 ha and between latitudes of 30◦ S and 30◦ N), and the land cover was identified using sub-metre-resolution
images. The number between parentheses reflects the number of sampled points in each country. Error bars represent the 95 % confidence
interval.
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