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Abstract—The ongoing efforts of wireless service providers to
build a Radio Access Network (RAN) architecture have been
noted in recent years. The primary goal was to design an
operator-defined RAN architecture capable of providing intel-
ligent radio control for Fifth-Generation (5G) wireless networks
as well as Beyond 5G (B5G). The Open Radio Access Network (O-
RAN) Alliance was formed to transform the telecommunications
ecosystem. In this paper, we propose an intelligent O-RAN
framework for vehicle communication. We propose a Machine
Learning (ML)-based model to predict the compatibility time
during which a vehicle remains within communication range
with another vehicle to establish a connection. We compare
the performance of Gaussian Naive Bayes (GNB), K Nearest
Neighbor (KNN), and Neural Networks (NN) in terms of training
and testing accuracy. We believe compatibility time estimation
helps to implement proactive forwarding for optimal network
performance. Finally, we conclude our work by providing direc-
tions for future research.

Index Terms—O-RAN, Vehicular Networks, Machine Learn-
ing, Cellular Networks, Handover, Mobility Prediction

I. INTRODUCTION

In the current scenario of Fifth-Generation (5G) and Beyond
5G (B5G) communications networks, efficient messaging in
dynamic and and mobile Vehicle-to-Everything (V2X) net-
works is very important [1]. With the continuous improvement
of communication technology, connected vehicles will enable
applications such as effective emergency response, intelligent
traffic congestion control, cooperative driving, and safety noti-
fications [2]. However, the speed and congestion of automobile
traffic can reduce the performance of communication technol-
ogy, which in turn adversely affects system performance. The
growing interest in Artificial Intelligence (AI) and Machine
Learning (ML) applications for quick and efficient decision-
making has resulted in many desirable performance solutions.
ML algorithms can be used in V2X communication, such as
resource allocation prediction, road safety measures, power
allocation, security challenges and routing [2]–[5].

To effectively support an unprecedented increase of the use-
cases with varying QoS demands, the evolution towards 5G
and B5G is the need of time. Open-Radio Access Network (O-
RAN) is an architectural transformation using the concept of
virtualization, flexibility, and intelligence [6], [7]. O-RAN can
enable RAN with openness and required intelligence, which
is also a primary motivation pursued by O-RAN alliance

[6]. Openness can be understood as the removal of vendor
constraints and proprietary hardware and software implemen-
tations by establishing open standard interfaces. This will help
reduce operating costs. Intelligence is vital for deploying,
optimizing, and operating wireless networks [8].

The internal structure of O-RAN consists of three main
components: Open-Central Unit (O-CU), Open-Distributed
Unit (O-DU), and Open-Radio Unit (O-RU). The O-CU and
O-DU components are connected using the F1 interface, and
the O-DU is connected to the O-RU using the O1 interface as
shown in Fig. 2. 1 [9]. The O-RU consists of a User Control
Synchronization (CUS) plane and an Open Management plane.
Radio Intelligent Controller (RICs) in the O-RAN architecture
is divided into (i) near-real-time (near RT-RIC) RICs and
(ii) non-real-time (non-RT-RICs) RICs in O-RAN architec-
ture. RIC aims to improve conventional network functions
with embedded intelligence. Non-RT-RIC is implemented in
Service Management Orchestration (SMO), which serves as a
software platform for rApp designed to optimize RAN. Non-
RT RICs in the O-RAN architecture operate for periods greater
than 1s. This is where policies are set and RAN analysis is
collected. Near-RT-RIC is placed in the peripheral network,
allowing control and optimization of RAN elements. O-RAN’s
quasi-RT-RIC controller handles real-time inference problems
with time scales from 10 ms to 1 s [8]. The highly modular
and programmable structure of future split RANs is suitable
for developing advanced AI-based modules to realize network
optimization through powerful communication schemes.

The capabilities introduced by RICs, i.e. open interfaces
and AI/ML workflow, help O-RAN support a wide range of
advanced use cases. These include handover management for
V2X communications, Quality of Service (QoS) optimization,
dynamic route-based drones, and radio resource allocation and
spectrum sharing. These applications demonstrate the practical
utility of the O-RAN architecture [8], [10].

The flexibility offered by O-RAN motivates us to propose an
intelligent O-RAN framework for vehicular communication. In
this paper, we propose an intelligent model by investigating
a reliable communication link between the two vehicles. The
vehicle chooses such a path so that it may remain connected
to a neighboring vehicle for a longer time and ensures an
uninterrupted message delivery and reduced handover delay.



Fig. 1. Illustration of Open-RAN Architecture

In our scheme, the information of the vehicle is fed to a
non-RT-RIC controller. The controller is trained to learn the
mobility pattern of the vehicles offline. Then the trained model
is placed on a near-RT-RIC controller which is capable of
performing proactive handover in real-time which minimizes
the communication overhead. This information can help in a
proactive handover algorithm that reduces data interruptions
and decreases delay. We evaluate widely used supervised ML
algorithms and Neural Networks (NN) to predict a compat-
ibility link between vehicles using the dataset described in
[11]. We further analyze the training and testing accuracy of
the proposed algorithms. The major contribution of this work
includes the introduction of O-RAN framework for proactive
handover to obtain seamless system performance in terms of
service interruption delay and improved system performance.

The remaining part of the paper is organized as follows:
Section II describes the work related to the research carried out
in this article. Section III discusses the proposed intelligent O-
RAN framework for vehicle communication. The performance
comparison of the proposed ML algorithms is presented in
Section IV. Finally, the conclusion of the work with a future
research direction is presented in Section V.

II. RELATED WORK

The mobility mechanisms in wireless networks enable the
users to move within the coverage area anywhere and still to

be serviced. This makes handover management an important
topic of discussion in the wireless community. A good amount
of research is conducted in this direction. Interested readers
can refer to the work found in [15].

Recently, the O-RAN network model is an interesting topic
that has attracted the research community’s attention. The
flexibility offered by RIC, open interfaces, and AI/ML-based
models can support new use cases, like in-car communication
and more. In recent years, we have seen an increase in O-
RAN-focused research on applications and use cases. The O-
RAN Alliance has compiled a complete list of 19 use cases
for O-RAN implementations described in [16]. The O-RAN
network can manage the mobility or performance of mobile
users by managing handover parameters, load balancing, mul-
tiple connections, and beamforming in the RAN. This can
be achieved in a closed loop using state information from
multiple base stations and predicting user mobility based on
RAN information [16].

Authors in [17] exploit O-RAN architecture and propose
ML-based proactive network optimization techniques to im-
prove handovers. Authors in [18] present the handover prob-
lem using graph NN and reinforcement learning to achieve
proactive and intelligent connection management and evaluate
the performance in terms of throughput and network coverage.
The O-RAN specification in [16] also includes context-based
handover for vehicular scenarios, where xApps leverages non-



Fig. 2. Proposed O-RAN based Intelligent Handover Model

RT RIC information and inferences about AI/ML RAN data
to manage the transmission. Unlike the other work, we exploit
the importance of compatibility time between the vehicles as
an important parameter for proactive handover.

In the preliminary work, we train a ML model using the
dataset in the non-RT-RIC (rAPP). The trained model is then
placed on the near-RT-RIC (xAPP). The accuracy of the ML
models is analyzed in this work. The evaluation of the trained
models is out of the scope of this paper and is considered as
a part of our future work.

III. PROPOSED INTELLIGENT COMPATIBILITY TIME
MODEL

In this section, we describe the proposed model followed
by the description of the dataset used in this work. We also
briefly describe the ML models used in the work.

A. A Proposed Model

In this work, a V2X scenario is considered where all vehi-
cles are within gNB coverage. The gNB can serve applications
that require high throughput and low latency. Each vehicle sup-
ports dual radios for cellular networks and Dedicated Short-
Range Communications (DSRC) devices. In V2X communi-
cations, vehicles can share safety messages using short-range
technology to ensure connectivity between vehicles. These
safety messages contain information, such as position (xi, yi),
velocity (vi), direction (ϑi) for each vehicle i, and vehicle
type. The time the vehicle j stays in the communication
range (Rij) of vehicle i is an integral part of the connection
establishment process, which can be defined as compatibility
time (γij) [11], [19]. Using [11] and [19] the compatibility
time can be calculated by the following equation:

γij =
Rij −

√
(xi − xj)2 + (yi − yj)2√

|vi + vj ||vi − vj |+ 1
. (1)

We propose ML-based algorithms for the prediction of
compatibility time (γ). Here ML algorithms run on the non-
RT-RIC controller, which is trained using the mobility pattern
of the vehicles offline, as shown in Fig. 2. The trained model
is placed on the near-RT-RIC controller which is capable of
performing proactive handover in real-time to minimize the
communication overhead and improving network performance.
This model can help in a proactive handover which may
improve data interruptions and decreases delay. We evaluate
widely used supervised ML algorithms and Neural Networks
(NN) to predict the compatibility link in the vehicular envi-
ronment using the dataset described in [11]. The ML models
discussed in our work are described in Section III-B. We fur-
ther analyze the training and testing accuracy of the proposed
algorithms.

B. ML Models
In this subsection, we will describe the ML models and

Neural Network architecture used in our analysis.
1) Gaussian Naive Bayes (GNB): Gaussian Naive Bayes

is often used for estimating the probability of instances in
each class. It can quickly create classification models with less
computational effort. A gaussian distribution works well when
the data is continuous, which means the continuous values
associated with the class are distributed according to normal
distribution [12]. The likelihood of the features is assumed
using the following equation:

P (A|B = b) =
1√
2πσ2

b

exp

(
− (a− µb)

2

2σ2
b

)
, (2)

where µb and σb are the mean and standard deviation of
continuous variable A computed for the class b of B.

2) K Nearest Neighbor (KNN): The KNN algorithm is a
supervised learning classifier that is non-parametric and easy
to implement. It uses proximity to classify or predict the
clustering of an individual data point. KNN can be used for
both regression and classification problems, but it works well
for classification algorithms. The KNN algorithm assumes that
similar points can be found next to each other [13]. The
algorithm can easily adapt new training samples because all
training data is stored in memory.

3) Neural Network (NN): NN is an iterative learning pro-
cess consisting of input, hidden, and output layers that perform
operations on the data. One of the applications of NN is the
classification of labeled data sets. The NN algorithm extracts
the features passed to the classifier for classification. The input
layers correspond to the number of layers, and the output
layers have a node for each layer. During the training phase,
the network is trained by adjusting the weights to predict
the correct class label of the input samples [14]. The main
advantages of NN include high noise tolerance and the ability
to classify patterns for which the network has not been trained.

IV. RESULTS AND DISCUSSION

In this section, we describe the features of the dataset
followed by the simulation setup. Next, we describe the
simulation results.



A. Dataset Description

In this work, we make use of the information in the dataset
described in [11] to estimate and predict the best route to
provide vehicle communication. The dataset generated in [11]
utilized the position (xi, yi), velocity (vi), direction (ϑi) for
each vehicle i, and velocity information of the vehicle. The
data features are described and calculated as follows:

• Euclidean distance (αij) between the vehicle i and j,
with 2D locations (xi, yi) and (xj , yj) can be calculated
as follows:

αij =
√
(xi − xj)2 + (yi − yj)2. (3)

• Relative velocity (∆Vij) between the two vehicle i and
j can be defined as follows:

∆Vij =
√

|vi + vj ||vi − vj |+ 1. (4)

• Direction difference (∆ϑij) is calculated using the cur-
rent direction of the vehicles (ϑi and ϑj) relative to each
other and is derived as follows

∆ϑij = |((ϑi − ϑj + 180)%360− 180)|. (5)

• Direction difference label (∆ϑl
ij) represents the direc-

tion of vehicles i and j relative to each other, i.e. same,
opposite direction, neither and is expressed as follows

∆ϑl
ij =


0 (same) if ∆ϑl

ij ≤ 60,

1 (opposite) if ∆ϑl
ij ≥ 120,

2 (neither) otherwise.
(6)

• Tendency label (T l
ij) shows that vehicles (i, j) are

moving in the same or opposite direction. The connec-
tivity time can be calculated based on this characteristic.
For instance, if vehicles are moving toward each other,
connectivity time will be longer and vice versa. It can be
defined as follows:

T l
ij =

{
0 if ∆ϑl

ij == 2 & αij(t2)− αij(t1) < 0,

1 if ∆ϑl
ij == 2 & αij(t2)− αij(t1) > 0.

(7)

where αij(t1) and αij(t2) are vehicle inter-distance at
time t1 and t2 respectively.

• Compatibility time label (γl
ij) shows the connectivity

duration between two vehicles (γl
ij) and is defined as

follows:

γl
ij =



C0 if γij == 0,

C1 if γij > 2 & γij ≤ 5,

C2 if γij > 5 & γij ≤ 10,

C3 if γij > 10 & γij ≤ 15,

C4 if γij > 15.

(8)

The ML classification model needs training data in the form
of a six column header i.e. αij , ∆Vij , ∆ϑij , ∆ϑl

ij and T l
ij .

These five features and the target γij are chosen by hit and
trial methods for optimal performance.

TABLE I
TRAINING AND TESTING ACCURACY

Models Training Accuracy Testing Accuracy
Gaussian Naive Bayes 97.67 97.28
K Nearest Neighbor 99.04 99.53
Neural Network 98.75 98.72

B. Performance Evaluation

In this article, we intend to calculate the compatibility time
between vehicles using the data set D obtained from work in
[11]. The total number of samples in the data set is 20,000.
We randomly partition the dataset into training (60%), testing
(20%), and validation (20%) datasets. We train our model
using the training dataset and the testing and validation dataset
is used to evaluate the effectiveness of the trained model.
The data is prepossessed to make it suitable for training the
ML classifiers and Neural Networks. The dataset consists
of 5 features {αij , ∆Vij , ∆ϑij , ∆ϑl

ij , ∆ϑl
ij} and 5 output

class labels {C0, C1, C2, C3, C4} which correspond to the
different connectivity duration between two vehicles i and j.

The two ML classifiers used in this work are GNB and
KNN. We have also used NN classifier for multiclass clas-
sification. We consider a three-layer feed-forward NN. The
batch size considered in our work is 16 and the learning rate
is assumed to be 0.001. The ReLU activation function and
the Adam optimizer are used. We use cross-entropy loss to
minimize the loss in the model. All ML models are imported
from Python Sci-kit-learn API while the NN model is imported
from PyTorch in our Python simulation.

It is imperative to meticulously observe and analyze the
training process of the ML and NN models to avoid overfitting
and underfitting problems and evaluate the trained model on
the dataset. Fig. 3 shows the accuracy curve of the GNB.
The training accuracy is very high initially and decreases
with increasing the number of samples. However, the testing
accuracy is low at the beginning and increases gradually. The
training and test accuracy becomes more realistic once the
entire dataset is used for training. Another learning curve for
the GNB classifier shows that the training accuracy remains
constant regardless of the size of the training set. While the
testing accuracy increases with the size of the training dataset.

Fig. 4 shows the accuracy curve of the KNN with respect
to K nearest neighbors. It can be seen from Fig. 4 that when
using higher values of K, the accuracy decreases. This is
because the model becomes complicated and will use more
data points that reduce the flexibility of the model. Fig. 5
shows the accuracy curve of NN with respect to the number
of epochs. We can see from Fig. 5 that the accuracy increases
with the increase in the number of epochs. During each
epoch, the model is exposed to the same data multiple times
which allows the model to learn from the data and improve
its accuracy considerably. Table I describes the training and
testing accuracies of the models proposed in the work.
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V. CONCLUSION

In this work, we discuss that vehicles in highly mobile
environments will be connected to each other for a longer
time depending on the compatibility time. The capability time
is calculated based on the communication range, Euclidean
distance, and vehicle velocity. We propose an ML-based model
to predict the compatibility time. We compare the performance
of GNB, KNN, and NN in terms of training and testing
accuracy. We endorse that KNN-based compatibility time
prediction is the most suitable option for the ML model based
on the training and testing accuracy.

Knowing the vehicle’s communication path and compatible
timing is a step toward proactive vehicle delivery and network-
ing. The flexibility brought by O-RAN prompts us to think of
an intelligent O-RAN framework for vehicle communication.
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Non-RIC-based controllers can be trained offline, and the
trained model is fed back to a nearby RT-RIC controller for
compatible timing prediction. This will help reduce communi-
cation costs by optimizing transmissions and improving overall
network performance. In future work, we will study the smart
handover process in detail using the information discussed
in the work. Additionally, we will consider more constraints
in the system model which will involve more complexities,
thereby impacting the performance of NN.
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