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A B S T R A C T 

Cosmology is poised to measure the neutrino mass sum M ν and has identified several smaller-scale observables sensitive to neu- 
trinos, necessitating accurate predictions of neutrino clustering o v er a wide range of length scales. The FlowsForTheMasses 

non-linear perturbation theory for the the massive neutrino power spectrum, � 

2 
ν( k), agrees with its companion N -body simulation 

at the 10 per cent − 15 per cent level for k ≤ 1 h Mpc −1 . Building upon the Mira-Titan IV emulator for the cold matter, we 
use FlowsForTheMasses to construct an emulator for � 

2 
ν( k), Cosmic-E ν, which co v ers a large range of cosmological 

parameters and neutrino fractions �ν, 0 h 

2 ≤ 0.01 ( M ν ≤ 0.93 eV). Consistent with FlowsForTheMasses at the 3.5 per cent 
level, it returns a power spectrum in milliseconds. Ranking the neutrinos by initial momenta, we also emulate the power spectra 
of momentum deciles, providing information about their perturbed distribution function. Comparing a M ν = 0.15 eV model to 

a wide range of N -body simulation methods, we find agreement to 3 per cent for k ≤ 3 k FS = 0.17 h Mpc −1 and to 19 per cent 
for k ≤ 0.4 h Mpc −1 . We find that the enhancement factor, the ratio of � 

2 
ν( k) to its linear-response equi v alent, is most strongly 

correlated with �ν, 0 h 

2 , and also with the clustering amplitude σ 8 . Furthermore, non-linearities enhance the free-streaming-limit 
scaling ∂ log ( � 

2 
ν/� 

2 
m 

) / ∂ log ( M ν) beyond its linear value of 4, increasing the M ν-sensitivity of the small-scale neutrino density. 

Key words: cosmology: theory – large-scale structure of Universe – neutrinos. 
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 I N T RO D U C T I O N  

osmology o v er the ne xt sev eral years will measure the neutrino
ass sum M ν = 

∑ 

m ν , an as-yet-unmeasured fundamental particle 
hysics parameter, assuming that the dark energy is a cosmological 
onstant (Audren et al. 2013 ; Chudaykin & Ivanov 2019 ). Fu-
ure space-based experiments will provide completely independent 
ounds on M ν (Petracca et al. 2016 ; Lin et al. 2022 ). Ho we ver,
oth forecasts and analyses of the current data are consistent 
ith a weakening of the M ν bound by a factor of ≈3 when the
ark energy equation of state is allowed to vary with time (Font-
ibera et al. 2014 ; Upadhye 2019 ; Di Valentino, Melchiorri &
ilk 2020 ). Additionally, neutrinos and dark energy may play roles

n the resolution of persistent tensions in measurements of the 
osmic expansion and clustering amplitude (B ̈ohringer & Chon 2016 ; 
eauthaud et al. 2017 ; McCarthy et al. 2018 ; Poulin et al. 2018 ;
ogoi et al. 2021 ; Di Valentino & Melchiorri 2022 ; McCarthy et al.
023 ). 
On the particle physics side, persistent anomalies in the neutrino 

ector moti v ate models containing additional ‘sterile’ neutrinos as 
ell as non-standard neutrino interactions (Alvarez-Ruso & Saul- 
 E-mail: a.upadhye@ynu.edu.cn (AU); jk945@cam.ac.uk (JK) 

t
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2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whic
rovided the original work is properly cited. 
ala 2021 ; Aguilar-Are v alo et al. 2022 ; Denton 2022 ). Furthermore,
ther hot dark matter species such as axions could mimic the cos-
ological effects of massive neutrinos (D’Eramo et al. 2022 ; Giar ̀e

t al. 2022 ; Di Valentino et al. 2023 ). A quantitative understanding
f neutrino clustering in the non-linear regime will pro v e invaluable
or breaking these degeneracies. 

In cosmology, several neutrino clustering signatures deep in the 
on-linear re gime hav e been identified and quantified through N-
ody simulations. These include ‘w ak es’ of neutrinos streaming 
oherently past haloes (Inman et al. 2015 ; Zhu et al. 2016 ); an odd-
arity contribution to the angular momentum field of galaxies (Yu, 
en & Wang 2019 ); neutrino-dark-matter relativ e v elocities (Zhu
t al. 2014 ; Inman et al. 2017 ; Zhu & Castorina 2020 ; Zhou et al.
022 ); modifications to the halo mass function (Costanzi et al. 2013 ;
u et al. 2017 ; Biswas et al. 2019 ; Bocquet et al. 2020 ; Ryu & Lee
022 ); a neutrino contribution to the scale-dependent bias of dark
atter haloes (LoVerde 2014 ; LoVerde & Zaldarriaga 2014 ; Chiang

t al. 2018 ; Chiang, LoVerde & Villaescusa-Navarro 2019 ; Banerjee
t al. 2020 ); and inhomogeneities in the cosmic neutrino background
etectable in laboratory searches (Baracchini et al. 2018 ; Betti et al.
019 ; Aker et al. 2022 ). Since the systematic bias associated with
hese phenomena are substantially different from those of joint 
nalyses of large-scale cosmic surv e ys, some of them may be decisive
o a convincing detection of massive neutrinos. 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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Accurate theoretical modelling of non-linear neutrino cluster-
ng effects, possibly through an extension of the halo model to
eutrino clustering, will require fast and reliable calculations of
he neutrino power spectrum. A recent code comparison by the
uclid collaboration, Adamek et al. ( 2023 ), tested a wide range
f simulation methods (specifically, Teyssier 2002 ; Springel 2005 ;
pringel et al. 2008 ; Beck et al. 2016 ; Adamek et al. 2016a , b ;
damek, Durrer & Kunz 2017 ; Dakin et al. 2019 ; Springel et al.
021 ; Dakin, Hannestad & Tram 2022 ; Marin-Gilabert et al. 2022 ;
auland et al. 2023 ; Schaller et al. 2023 ) and found agreement at

he 30 per cent − 40 per cent level over the range k ≤ 1 h Mpc −1 of
ave numbers. Ho we ver, simulations are computationally expensive,
oti v ating an exploration of alternative methods with comparable

ccuracies. 
Linear perturbative calculations of massive neutrino clustering can

e carried out to high precision by tracking the evolution of the neu-
rino distribution function (Ma & Bertschinger 1995 ) in both position
nd momentum. An alternative approach introduced by Dupuy &
ernardeau ( 2014 , 2015a , b ) discretizes the Fermi-Dirac distribution
f initial neutrino velocities. Each neutrino fluid, defined by its initial
elocity, can then be treated as a separate fluid individually obeying
he continuity and Euler equations of fluid dynamics. This approach is
agrangian in momentum space, since neutrinos cannot mo v e from
ne initial-velocity bin to another. Since non-linear cosmological
erturbation theory begins with the continuity and Euler equations,
his momentum-Lagrangian method is a natural starting point for
on-linear neutrino perturbation theories. 
FlowsForTheMasses , the first non-linear perturbative power

pectrum calculation for free-streaming particles such as massive
eutrinos, began with precisely this approach (Chen, Upadhye &
ong 2023b ). Since a fluid with non-zero initial velocity � v has

 preferred direction ˆ v , Chen et al. ( 2023b ) began by extending
he Time-Renormalization Group perturbation theory of Pietroni
 2008 ); Lesgourgues et al. ( 2009 ) to fluids with homogeneous initial
 elocities. Their F ourier-space clustering depends not only upon the
agnitude of the F ourier v ector � k but also its angle with ˆ v , whose

osine is μ = 

ˆ k · ˆ v . 
Expanding the density contrast and velocity divergence in Legen-

re polynomials in μ, Chen et al. ( 2023b ) showed that the mode-
oupling integrals of non-linear perturbation theory couple different
egendre moments, drastically increasing the computational cost.
o we ver, by applying Fast Fourier Transform (FFT) techniques

ntroduced by McEwen et al. ( 2016 ), Schmittfull, Vlah & McDonald
 2016 ), and Fang et al. ( 2017 ) to its mode-coupling integrals, Chen
t al. ( 2023b ) was able to accelerate them by more than two orders
f magnitude. The resulting FlowsForTheMasses perturbation
heory can compute a non-linear massive neutrino power spectrum
ith reasonable accuracy settings at relati vely lo w computational

ost. 1 

Though the computational expense of FlowsForTheMasses is
uch lower than that of N -body neutrino simulations, it remains too

igh to be included in cosmological data analysis pipelines; the 50-
ow production runs of Chen et al. ( 2023b ) each took about a day on a
2-core machine. A machine learning technique known as emulation,
ntroduced into cosmology by Heitmann et al. ( 2009 , 2010 ) and
awrence et al. ( 2010 ), is ideal for quickly approximating expensive

unctions. Emulation begins with a training set of e v aluations of
n e xpensiv e function (in our case, the FlowsForTheMasses
NRAS 530, 743–760 (2024) 

 The FlowsForTheMasses perturbation theory code is publicly available 
t github.com/ upadhye/ FlowsForTheMasses . 

2

E

eutrino power spectrum) the size of which is determined by
omputational budget and required level of accuracy. To mitigate
he computational expense associated with emulating multi v ariate
ata, the spectra are represented via a principal component (PC)
ecomposition. Gaussian process (GP) models are then used to model
he cosmology-dependent PC weights, enabling fast prediction at
ew cosmologies. 
Our goal in this work is an emulator of the FlowsForThe-
asses non-linear neutrino power spectrum. Furthermore, since
lowsForTheMasses already divides neutrinos by their initial
omenta and tracks the evolution of each one separately, our

raining set includes individual neutrino momentum deciles at no
 xtra computational cost. F or both the z ≤ 2 CDM + baryon
ower spectra and the emulator design points, we use the Mira-Titan
V (MT4) emulator of Moran et al. ( 2023 ). We demonstrate that
ur emulator, Cosmic-E ν, precisely reproduces FlowsForThe-
asses to < 3 . 5 per cent for 10 −3 h Mpc −1 ≤ k ≤ 1 h Mpc −1 and
 ≤ z ≤ 3. 2 

Next, we compare Cosmic-E ν to a range of N -body neutrino
imulations. We begin with the Euclid code comparison of Adamek
t al. ( 2023 ) for M ν = 0.15 eV, which runs simulations with a
ariety of resolutions, box sizes, and massive neutrino implemen-
ations. Compared with their highest-resolution SWIFT simulation
f Schaller et al. (), Cosmic-E ν is accurate to 3 per cent up to
 = 3 k FS = 0.17 h Mpc −1 , 19 per cent to k = 0.4 h Mpc −1 , and
9 per cent to k = 1 h Mpc −1 , all of which are somewhat larger
han but comparable to the scatter among very different simulation

ethods. This qualitative picture is unchanged when M ν is raised to
.3 and 0.6 eV in the Adamek et al. ( 2023 ) simulations, and when the
ark energy is allowed to vary rapidly in one of our own simulations
described below). 

Finally, we employ Cosmic-E ν to study enhancements to the
atios � 

2 
ν/� 

2 
ν[LR] and � 

2 
ν/� 

2 
m 

due to the non-linear clustering of
assive neutrinos. The first of these, the non-linear enhancement of

eutrino clustering relative to linear response (LR), was considered
n Chen et al. ( 2023b ). After confirming the accuracy of Cosmic-
 ν for this quantity, we quantify the sensitivity of � 

2 
ν/� 

2 
ν[LR] to

ach of the eight cosmological parameters, showing that �ν, 0 h 2 is
y far the most significant for determining the neutrino clustering
nhancement, followed by �b, 0 h 2 , �m, 0 h 2 , and σ 8 . The second ratio,
 

2 
ν/� 

2 
m 

, was shown by Ringwald & Wong ( 2004 ) and Wong ( 2008 )
o scale as the fourth power of M ν , hence �ν, 0 h 2 , for LR neutrinos
n the free-streaming limit. We confirm this result in the linear case,
hen show that non-linear corrections enhance this scaling relation.
 or e xample, at k = 1 h Mpc −1 and �ν, 0 h 2 = 0.002, � 

2 
ν/� 

2 
m 

∼ M 

4 . 5 
ν .

This study is organized as follows. Section 2 briefly describes the
mulation procedure and the FlowsForTheMasses perturbation
heory. Our emulator training set is assembled in Section 3 after im-
roving the high- M ν numerical stability of FlowsForTheMasses .
ection 4 constructs the Cosmic-E ν emulator and quantifies

ts accuracy with respect to FlowsForTheMasses . Cosmic-
 ν is then compared with a wide variety of N -body simulation
ethods in Section 5 . Finally, Section 6 quantifies the non-linear

nhancements to the � 

2 
ν/� 

2 
ν[LR] and � 

2 
ν/� 

2 
m 

ratios, and Section 7
oncludes. 
 Cosmic-E ν is publicly available at github.com/upadhye/Cosmic- 
nu . 

https://github.com/upadhye/FlowsForTheMasses
https://github.com/upadhye/Cosmic-Enu
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 B  AC K G R  O U N D  

.1 Emulation 

 thorough discussion of emulation in cosmology may be found in 
eitmann et al. ( 2009 ). Here, we briefly summarize their procedure,
ith slight differences in notation. 
Suppose that we wish to approximate a dimensionless function 
 ( k, z, � C ) of the wave number k , redshift z, and cosmological

arameters � C . This may be proportional to the power spectrum itself,
r a function of the power spectrum chosen to reduce its dynamic
ange. At each of m ∈ [0, N M 

) cosmological models defined by
arameters � C 

∗
m 

, we are given P at each of i ∈ [0, N kz ) points ( k i , z i ),
hat is, P 

∗
im 

= P ( k i , z i , � C 

∗
m 

). We seek an approximation of the form

 ( k i , z i , � C ) ≈ μ∗( k i , z i ) + σ ∗
N PC −1 ∑ 

j= 0 

w j ( � C ) φj ( k i , z i ) (1) 

∗( k i , z i ) : = 

1 

N M 

N M −1 ∑ 

m = 0 

P 

∗
im 

(2) 

 σ ∗) 2 : = 

1 

N M 

N kz 

N M −1 ∑ 

m = 0 

N kz −1 ∑ 

i= 0 

(
P 

∗
im 

− μ∗( k i , z i ) 
)2 

(3) 

here μ∗
i is the mean input P 

∗
im 

across cosmologies, the φj are a set
f N PC orthogonal basis functions to be defined below, and w j ( � C )
re the corresponding basis weights. If the number of bases N PC is
hosen equal to the number of training models N M 

minus one 3 , then
he approximation of equation ( 1 ) can be made exact for the N M 

input
odels, though we will typically choose N PC smaller than this. 
Let D 

∗
im 

= ( P 

∗
im 

− μ∗
i ) /σ

∗, so D 

∗
im 

for fixed i has zero mean by
onstruction, and D 

∗
im 

is an N kz × N M 

matrix. By means of a compact
ingular value decomposition, we may write 

 

∗
im 

= 

N M −1 ∑ 

m 

′ = 0 

N M −1 ∑ 

m 

′′ = 0 

U im 

′ D m 

′ m 

′′ ( V 

T ) m 

′′ m 

(4) 

here U is an N kz × N M 

orthogonal matrix, D an N M 

× N M 

diagonal
atrix, and V an N M 

× N M 

orthonormal matrix. In terms of these
hree matrices, we may write the PC basis functions φj ( k i , z i ) and the
eights of the input data w 

∗
jm 

as 

ij : = φj ( k i , z i ) = 

1 √ 

N M 

N M −1 ∑ 

m = 0 

U im 

D mj (5) 

 

∗
jm 

= 

√ 

N M 

V mj (6) 

here the j index may be truncated to j < N PC for any chosen N PC 

 N M 

. Since the functions φj ( k , z) may be interpolated from the φij 

sing standard methods, our remaining task is to model the weight 
unctions w j ( � C ) using w 

∗
jm 

. 

We model each w j ( � C ) using a GP. A GP is an infinite dimensional
eneralization of a multi v ariate Gaussian distribution, in which any 
nite set of random variables is defined to follow a multivariate 
aussian distribution specified by a mean function and a covariance 

unction (Williams & Rasmussen 2006 ). We define the GP o v er each
 j ( � C ) to have a mean function of 0 and a Gaussian correlation

unction R j ( � C , � C 

′ , � βj ). This correlation function is specified by
 set of correlation hyperparameters β j 	 , one for each of the N C 
 Including the mean term reduces the remaining degrees of freedom in the 
odel by one. 

s  

e  

4

osmological parameters of � C : 

 j ( � C , � C 

′ , � βj ) = 

N C −1 ∏ 

	 = 0 

exp 
(−βj	 ( C 	 − C 

′ 
	 ) 

2 
)

(7) 

The input data weights w 

∗
jm 

are now assumed to arise from the
ollowing hyperparameter-dependent probability distribution: 

p ( w 

∗
j | λW ,j , λU ,j , � βj ) 

= 

exp 
[ 
− λW ,j 

2 

∑ N M −1 
m = 0 

∑ N M −1 
n = 0 w 

∗
jm 

R ( � β) −1 
jmn w 

∗
jn 

] 
√ 

det R (2 π/λW ,j ) N M / 2 
(8) 

 jmn ( λW ,j , λU ,j , � βj ) = λ−1 
U ,j R j ( � C 

∗
m 

, � C 

∗
n , 

� βj ) + λ−1 
W ,j δ

(K) 
mn , (9) 

here δ(K) 
mn is the Kronecker delta. Heitmann et al. ( 2009 ) has included

n additional set of hyperparameters, a scaling term λU, j and a 
nugget’ term λW, j . The former scales the correlation function into a
ovariance function, while the latter accommodates slight numerical 
uctuations in the computation of P 

∗
im 

. For each PC j , we thus
ave one λU, j , one λW, j , and N C different β j 	 , for a total of N C + 2
yperparameters. 

Since we are given w 

∗
jm 

but not the hyperparameter values, our next
tep is to find the hyperparameter values most consistent with w 

∗
jm 

.
e do so using a 50 000-step Markov chain Monte Carlo sampling

hrough the SEPIA code of Gattiker et al. ( 2020 ) 4 , using the default
yperparameter priors and bounds defined in SEPIA . Let ̂  λU ,j , ̂  λW ,j ,

nd ˆ � βj be the posterior mean values of these hyperparameters. 
We have now arrived at our goal, a predictive model for the

eights w j ( � C ) in equation ( 1 ) for a given cosmology � C . Let
ˆ 
 = { ̂  � βj , ̂  λU ,j , ̂  λW ,j } . Using these optimal hyperparameter values,
e specify the conditional Gaussian probability distribution of each 
f the weights as follows: 

 j ( � C | w 

∗
j , 

ˆ 
 ) ∼ N ( W̄ j ( � C ) , �̄ j ( � C )) , (10) 

¯
 j ( � C | w 

∗
j , 

ˆ 
 ) = [ � r ∗j ( � C )] T [ ̂  R 

∗
j ] 

−1 � w 

∗
j , (11) 

¯
 j ( � C | ˆ 
 ) = r j ( � C ) − [ � r ∗j ( � C )] T [ ̂  R 

∗
j ] 

−1 � r ∗j ( � C ) , (12) 

 

∗
jm 

( � C | ˆ 
 ) = 

ˆ λ−1 
U ,j R j ( � C 

∗
m 

, � C , 
ˆ � βj ) . (13) 

ere, � w 

∗
j is the N M 

× 1 vector of observed weights, ˆ R 

∗
j is the N M 

×
 M 

matrix of realizations of equation ( 9 ) e v aluated at the optimal
alues of the hyperparameters, � r ∗j ( � C ) is an N M 

× 1 vector having m th

ntry r ∗jm 

( � C ), and r j ( � C ) = 

ˆ λ−1 
U ,j R j ( � C , � C , 

ˆ � βj ) + ̂

 λW ,j . Equation ( 10 )
ndicates that w j is drawn from a normalized Gaussian distribution 
f mean W̄ j ( � C ) and standard deviation �̄ j ( � C ). As in Heitmann et al.
 2009 ), we use W̄ j ( � C ) as our emulated prediction of w j ( � C ). We see
rom equation ( 11 ) that this mean value is a weighted average of the
bserved weights � w 

∗
j , with weights determined by the covariance 

etween the observed and predictive cosmological parameters. 
Thus far, we have assumed the initial data P 

∗
im 

to be given.
hoosing the N M 

input models used to train the emulator is a separate
roblem known as emulator design. The goal of emulator design is
o co v er the giv en parameter space to a specified accurac y using
he smallest number N M 

of input cosmological models, since each 
odel is computationally e xpensiv e. A simple grid in parameter

pace is one of the least efficient designs for this purpose. Heitmann
t al. ( 2009 , 2016 ), Lawrence et al. ( 2017 ), and Moran et al. ( 2023 )
MNRAS 530, 743–760 (2024) 

 SEPIA is publicly available at github.com/ lanl/ SEPIA . 
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mploy efficient space-filling Latin hypercube designs or similar
ested, space-filling lattices; the latter is useful when runs are to
e done in ‘batches’ so that interim analyses may be performed as
artial results are available. The training sets we construct, described
n Section 3.1 , are built on the design choices made by these authors.

The batched MT4 emulator design allows for the addition of more
esign points to impro v e its accurac y. We leav e this possibility open
or future work. Ho we ver, we will see in Section 4.2 that even
ith the existing MT4 design, Cosmic-E ν attains an accuracy of
3 . 5 per cent , which is subdominant to the 14 per cent error in
lowsForTheMasses itself, as measured by Chen et al. ( 2023b ).
hus we do not pursue here the possibility of including additional
esign points. 

.2 Non-linear perturbation theory for neutrinos 

e are particularly interested in the non-linear growth of the neutrino
ensity perturbations, which occurs at late times and at scales
ell within the Hubble horizon. Thus, to excellent approximation,
e assume that all matter in the Univ erse obe ys the scalarized
on-relativistic continuity, Euler, and Poisson equations in a box
xpanding uniformly at a rate given by the time-dependent Hubble
arameter. General Relativistic clustering including vector and tensor
erturbations, as well as multiple fluids, has been considered previ-
usly (e.g. Hwang & Noh 2006a , b , 2007 ; Jeong et al. 2011 ; Hwang &
oh 2013a , b ; Adamek, Durrer & Kunz 2014 ; Yoo 2014 ; Yoo &
aldarriaga 2014 ; Fidler et al. 2015 , 2016 ; Hwang, Noh & Park 2016 ;
damek et al. 2016a ; Adamek et al. 2017 ; Fidler et al. 2017 ; Gong

t al. 2017 ; Fidler et al. 2019 ; Magi & Yoo 2022 ). Generalizing these
esults to multiple fluids with different non-zero initial velocities is
eyond the scope of the present study, as well as unnecessary to our
oal of accuracy in the non-linear regime. Furthermore, following
Moran et al. 2023 ), we restrict our consideration to spatially flat
osmologies. 

The chief difficulty in applying the continuity and Euler fluid
quations to neutrinos is that, in the Eulerian fluid description,
eutrinos are not fluids. At each spatial point, neutrinos have a
elocity dispersion arising from their initial Fermi–Dirac distri-
ution; the number of degrees of freedom required to describe
eutrino perturbations is therefore technically infinite. F ̈uhrer &
ong ( 2015 ) devised a Eulerian fluid-like perturbation theory for

he neutrino bispectrum by absorbing the infinite degrees of freedom
nto temporally non-local couplings, while Garny & Taule ( 2021 ,
022 ) combined a linear treatment of free streaming with non-linear
orrections to the density and velocity monopole perturbations. 

On the other hand, the approach of Dupuy & Bernardeau ( 2014 ,
015a , b ) and Chen, Upadhye & Wong ( 2021a , 2023b ), which we
escribe in below, is to formulate a neutrino perturbation theory that
s Lagrangian in momentum space. Let � τ be the lower-index three-
omentum in the limit of an unperturbed universe, P 

(0) 
i , which is

ime-independent. The Fermi–Dirac distribution may be binned by
he magnitude τ = | � τ | of this momentum, allowing us to approximate
he neutrino population using N τ momenta, τα , for α ∈ [0, N τ ). 

For a given momentum vector � τα in bin α, the set of neutrinos
ith initial momentum � τα has no thermal velocity dispersion. Thus it
ehaves as a fluid obeying the continuity and Euler equations. Spatial
sotropy implies that these equations depend upon the direction of
� α only through its angle with respect to the Fourier vector � k , that
s, through μα : = 

� k · � τα/ ( kτα). Chen et al. ( 2021a ) demonstrates that
his μα-dependence can be expanded in N μ Legendre polynomials
 	 ( μα), using an appropriate boundary term at 	 = N μ − 1, with an

rror of order N 

−2 
μ . Furthermore, for given τα , all neutrino fluids with
NRAS 530, 743–760 (2024) 
nitial momenta � τ such that | � τ | = τα obey the same fluid equations.
e use the term ‘flow’ for this entire set of fluids. 
The subhorizon non-relativistic linear theory of Chen et al.

 2021a ) began with dimensionless scalar perturbations to the density,
α( � x ) = ( ρα( x) − ρ̄α) / ̄ρα , and the momentum divergence, θα( � x ) =
� ∇ · � P / ( m νaH), with m ν the neutrino mass and H the conformal
ubble expansion rate. Since linear theory allows us to choose an

rbitrary normalization for the perturbation variables, we normalize
hem to the square roots of their corresponding power spectra, 
� k 
α = 

∑ 

	 

( −i) 	 P 	 ( μα) δk 
α	 and θ

� k 
α = 

∑ 

	 

( −i) 	 P 	 ( μα) θk 
α	 (14) 

 

� k 
α00 = 

∑ 

	 

P 	 ( μα) 2 δk 
α	 δ

k 
α	 = : 

∑ 

	 

P 	 ( μα) 2 P 

k 
α00 	 (15) 

 

� k 
α11 = 

∑ 

	 

P 	 ( μα) 2 θk 
α	 θ

k 
α	 = : 

∑ 

	 

P 	 ( μα) 2 P 

k 
α11 	 (16) 

here P 	 ( x) is the Legendre polynomial of order 	 . Above we have
mplo yed tw o conventions we will use henceforth. 

(i) Power spectrum indices b and c in P αbc take the value 0 for δ
nd 1 for θ , so, for example, P α00 = P αδδ . 

(ii) Wave number superscripts denote a functional dependence, so
hat P 

� k 
αbc = P αbc ( � k ) and δk 

α	 = δα	 ( k). 

The perfect correlation between the random variables correspond-
ng to δα( � k ) and θα( � k ) in linear theory breaks down beyond the linear
rder, leading the FlowsForTheMasses perturbation theory of
hen et al. ( 2023b ) to introduce the quantities 

k 
α	 : = 1 − P 

k 
α01 	 √ 

P 

k 
α00 	 P 

k 
α11 	 

⇒ P 

k 
α01 	 = (1 − χk 

α	 ) δ
k 
α	 θ

k 
α	 . (17) 

ince P α01 = P α10 , equations ( 14 –17 ) completely specify the power

pectra P 

� k 
αbc in terms of the perturbation variables. 

In terms of the bispectrum integrals I k α,ac d,b ef ,	 of Chen et al.
 2023b ), the evolution of δα	 , θα	 , and χα	 is given by 

 δk 
α	 ) 

′ = 

kv α

H 

(
	 

2 	 − 1 
δk 
α,	 −1 −

	 + 1 

2 	 + 3 
δk 
α,	 + 1 

)

+ θk 
α	 + 

2 

δk 
α	 

I k α, 001 , 001 ,	 (18) 

 θk 
α	 ) 

′ = −
(

1 + 

H 

′ 

H 

)
θk 
α	 + 

kv α

H 

×
(

	 

2 	 − 1 
θk 
α,	 −1 −

	 + 1 

2 	 + 3 
θk 
α,	 + 1 

)
. . . 

− δ
(K) 
	 0 

k 2 � 

k 

H 

2 
+ 

1 

θk 
α	 

I k α, 111 , 111 ,	 (19) 

 χk 
α	 ) 

′ = 

2(1 − χk 
α	 ) 

( δk 
α	 ) 2 

I k α, 001 , 001 ,	 + 

1 − χk 
α	 

( θk 
α	 ) 2 

I k α, 111 , 111 ,	 . . . 

− 2 

δk 
α	 θ

k 
α	 

I k α, 001 , 101 ,	 −
1 

δk 
α	 θ

k 
α	 

I k α, 111 , 011 ,	 . (20) 

here v α : = τα/( m νa ) is the flow velocity, and primes denote
eri v ati ves with respect to η : = log ( a / a in ) for given initial scale
actor a in . The gravitational potential � is given by the Poisson
quation 

 

2 � 

k = −3 

2 
H 

2 

( 

�cb ( η) δk 
cb + 

N τ −1 ∑ 

α= 0 

�α( η) δk 
α0 

) 

(21) 

here δcb is the density contrast of the CDM and baryons, treated
s a single fluid, labelled cb; �cb ( η) = �cb , 0 H 

2 
0 / ( aH 

2 ) is the time-
ependent density fraction of this cb fluid; �cb, 0 its density fraction
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Table 1. Allowed ranges of each cosmological parameter in Cosmic-E ν. 
As with the MT4 emulator, we have assumed three degenerate-mass neutrinos. 

Parameter Minimum Maximum 

�m, 0 h 2 0.12 0.155 
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oday; �α( η) = �α, 0 H 

2 
0 / ( aH 

2 (1 − v 2 α) 1 / 2 ) the time-dependent den-
ity fraction of neutrino flow α; and �α, 0 its density fraction today. 

The bispectrum integrals I k α,ac d,b ef ,	 are defined and thoroughly 
tudied in Chen et al. ( 2023b ). For our purposes, we may define
hem by their evolution equations 

 I k α,ac d,b ef ,	 ) 
′ = −� 

k 
αbg 	 I 

k 
α,acd,gef ,	 − ˜ � 

k 
αeg 	 I 

k 
α,acd,bgf ,	 . . . 

− ˜ � 

k 
αfg 	 I 

k 
α,ac d,b eg,	 + 2 A 

k 
α,ac d,b ef ,	 (22) 

 

k 
αab	 = 

[ 

0 −1 
k 2 � 

k 

H 

2 δk 
α0 

δ
(K) 
	 0 1 + 

H 

′ 
H 

] 

. . . 

− δ
(K) 
a0 δ

(K) 
b0 

kv α

H 

( 

	 

2 	 − 1 

δk 
α,	 −1 

δk 
α	 

− 	 + 1 

2 	 + 3 

δk 
α,	 + 1 

δk 
α	 

) 

. . . 

− δ
(K) 
a1 δ

(K) 
b1 

kv α

H 

( 

	 

2 	 − 1 

θk 
α,	 −1 

θk 
α	 

− 	 + 1 

2 	 + 3 

θk 
α,	 + 1 

θk 
α	 

) 

(23) 

˜ 
 

k 
αab	 = 

[
0 −1 
0 1 + 

H 

′ 
H 

]
(24) 

ith initial conditions I k α,ac d,b ef ,	 = 2 A 

k 
α,ac d,b ef ,	 at η = 0. Here, the

ode-coupling integrals are given by 

 

� k 
α,ac d,b ef : = 

∫ 
d 3 q 

(2 π) 3 
d 3 p 

(2 π) 3 
(2 π) 3 δ(D) ( � k − � p − � q ) γ

� k � q � p 

acd 

[
γ

� k � q � p 

bgh P 
� q 
αg e P 

� p 

αhf . . . 

+ γ
� q , − � p , � k 
egh P 

� p 

αgf P 
� k 
αhb + γ

� p , � k , −� q 
fgh P 

� k 
αg b P 

� q 
αhe 

]
. (25) 

= : 
∑ 

	 

P 	 ( μα) 2 A 

k 
α,ac d,b ef ,	 (26) 

� k � q � p 

001 = 

( � q + � p ) · � p 

2 p 

2 
, γ

� k � q � p 

010 = γ
� k � p � q 

001 , γ
� k � q � p 

111 = 

( � q + � p ) 2 � q · � p 

2 q 2 p 

2 

(27) 

ith all other γ abc vanishing. In equations ( 22 , 25 ), we have assumed
mplicit summation o v er the indices g and h for compactness.
umerical computation of these mode-coupling integrals A 

k 
α,ac d,b ef ,	 

s the main computational expense of FlowsForTheMasses 
erturbation theory. Chen et al. ( 2023b ) shows that they may be
educed to FFTs and then computed using the methods of Hamilton 
 2000 ), McEwen et al. ( 2016 ), Schmittfull et al. ( 2016 ), Fang et al.
 2017 ), and Upadhye ( 2019 ). 

 T R A I N I N G  DATA  SET  

.1 Emulator design 

e begin by constructing the training set P 

∗
im 

upon which the 
mulator is built. Emulator design is described broadly in Heitmann 
t al. ( 2009 ), and the particular design of the Mira-Titan IV (MT4)
mulator upon which Cosmic-E ν is built is described in Heitmann 
t al. ( 2016 ), Lawrence et al. ( 2017 ), and Moran et al. ( 2023 ). The
11 design points in cosmological parameter space, � C 

∗
m 

, are chosen 
o strike a balance between broad parameter co v erage and a high
ensity of points, necessary for achieving high accuracy. Out of 
hese, N M 

= 101 design points have non-zero neutrino masses, with 
hysical density fractions �ν, 0 h 2 ranging from 0.00017 to 0.01, 
orresponding to M ν from 0.0158 to 0.931 eV. 

Our strategy is to build upon the MT4 emulator design. Since 
assless neutrinos are already described well by linear theory, 
osmic-E ν uses only these N M 

= 101 massive-neutrino points. 
e build our emulator upon MT4 for two reasons. Firstly, the MT4

esign has already been optimized and thoroughly tested for a balance 
etween breadth and accuracy . Secondly , the MT4 CDM + baryon
ower spectrum is used as an input to the FlowsForTheMasses
eutrino perturbation theory. Since MT4 is most accurate at its own
esign points, choosing this same design for Cosmic-E ν a v oids the
ompounding of errors that would result from using the outputs of
ne emulator as the inputs for another. Another potential error is the
ack reaction of enhanced neutrino clustering on the CDM + baryon
ower. Chen et al. ( 2021a ) quantified the LR back reaction to be 0.05
er cent for �ν, 0 h 2 = 0.01, the largest value considered here, while
ection 6.3 argues that non-linear clustering only increases this by a
actor of ∼3. Thus, this back reaction is a negligible source of error
or Cosmic-E ν. 

Table 1 lists the parameter ranges co v ered by the Cosmic-E ν
mulator. The allowed range of �ν, 0 h 2 values is determined by 
he set of 101 massive-neutrino MT4 models. Its lower bound of
.00017 is o v er three times smaller than the lower bound imposed
y laboratory oscillation experiments (Capozzi et al. 2018 ; de 
alas et al. 2018 ; Esteban et al. 2020 ). In Section 4.2 , we will
uantify Cosmic-E ν errors near this low- �ν, 0 h 2 boundary. For still 
maller values, the non-relativistic-neutrino approximation made by 
lowsForTheMasses becomes increasingly inaccurate, and we 

nstead recommend the use of relativistic linear perturbation theories 
uch as CLASS (Blas, Lesgourgues & Tram 2011 ; Lesgourgues 2011 ;
esgourgues & Tram 2011 ) and CAMB (Lewis, Challinor & Lasenby
000 ; Lewis & Bridle 2002 ). The upper bound on �ν, 0 h 2 , consistent
ith M ν = 0.931 eV, allows for a broad exploration of the parameter

pace, which may be useful for finding solutions to the Hubble and
8 tensions (McCarthy et al. 2018 ; Di Valentino & Melchiorri 2022 ;
cCarthy et al. 2023 ). As with the MT4 emulator, we have assumed

hree degenerate-mass neutrinos. 
Allowed ranges on the remaining seven parameters are taken 

irectly from the MT4 emulator. We parametrize the dark energy 
quation of state as w( z) = w 0 + w a z/(1 + z), follo wing Che v allier &
olarski ( 2001 ); Linder ( 2003 ). The final range in Table 1 implies that

f w 0 = −1, then −1.77 ≤ w a ≤ 0.99. Allowing significant variation
n the dark energy equation of state is important for cosmological
onstraints, as Upadhye ( 2019 ) showed that this variation weakens
he neutrino mass bound by a factor of ≈3. 
Cosmic-E ν is most useful at large neutrino masses, for which 

on-linear corrections to the neutrino power spectra are significant 
ompared with its error. Though it accurately reproduces its input 
ata even at small M ν , to a level which we will quantify in subsequent
ections, these training data assume three non-relativistic degenerate- 
ass neutrinos. Before proceeding to construct our training set, we 

riefly discuss the applicability of Cosmic-E ν to realistic low- M ν

odels, for which we may use linear theory. For �ν, 0 h 2 = 0.00017
 M ν = 0.016 eV), the smallest value in our training set, we find
arge-scale differences between our training data and the relativistic 
MNRAS 530, 743–760 (2024) 
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Figure 1. Accuracy of truncation 	 < N μ, AI in mode-coupling and bis- 
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2 h Mpc −1 , so the power spectrum for each has been divided by that for 
N μ, AI = 11, the maximum value. (Bottom) MT4 design model with �ν, 0 h 2 = 
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AMB power spectrum to be 24 per cent, 17 per cent, 8 per cent,
nd 0.7 per cent at redshifts 3, 2, 1, and 0, respectiv ely. F or �ν, 0 h 2 =
.00067 ( M ν = 0.063 eV), near the lower bound of Salas et al. ( 2018 ),
rrors at these same redshifts are 6 per cent, 5 per cent, 3 per cent,
nd 0.1 per cent, respectively. 

Po wer spectrum dif ferences for normal (NO), inverted (IO), and
egenerate (DO) neutrino mass orderings are more significant. The
ower spectra are nearly identical at large scales, but well below
he free-streaming scales the linear power of each neutrino species
cales as the fourth power of its mass (Ringwald & Wong 2004 ).
onsider models with M ν = 0.06 eV, which for NO implies masses
f ≈0.05 eV, 0.01 eV, and 0. The small-scale power spectrum
ill be dominated by the heavy neutrino, comprising 5/6 of the
eutrino mass density. Hence, the small-scale neutrino power will
xceed its DO counterpart by a factor of (0.05 eV/0.02 eV) 4 (5/6) 2 

27. A similar calculation for the minimal-mass IO case, M ν ≈
.1 eV, shows the ratio of small-scale IO to DO power spectra to be
0.05 eV/0.0333 eV) 4 ≈ 5. By M ν = 0.2 eV, small-scale differences
ith DO have fallen to 10 per cent for NO and 12 per cent for IO. 

.2 Stabilizing perturbation theory 

ur next challenge is the high- k numerical instability of the Flows-
orTheMasses perturbation theory. The mode-coupling integral
 

k 
α,ac d,b ef ,	 at low k and large 	 rises sharply with k , increasing

ts dynamic range. Since FFTs spread errors across the entire
ange, small numerical errors near the peak of A α,ac d,b ef ,	 lead to
arge fractional errors where A α,ac d,b ef ,	 is small. These lead to
nstabilities, prev enting inte gration of the equations of motion at
igh k . Additionally, the computational cost of the full set of mode-
oupling integrals A 

k 
α,ac d,b ef ,	 of equations ( 25 –26 ) was shown by

hen et al. ( 2023b ) to scale as N 

6 
μ, further moti v ating a truncation in

he range of 	 . 
In practice, FlowsForTheMasses integrates 128 values of the

ave number, logarithmically distributed between 10 −4 h Mpc −1 and
0 h Mpc −1 , and sets a stability threshold k st to 10 h Mpc −1 at the
eginning of integration. The integration step size in η is chosen
ynamically. Each time that high- k numerical instabilities drive this
tep size below 10 −6 , the integrator discards the highest k value,
f fecti vely lo wering k st by 9.1 per cent, and then resumes integration
or k ≤ k st . Since non-linear physics causes power to flow from low
o high k , we may safely discard wave numbers above this stability
hreshold without affecting those below it. We will see below that no
ignificant noise or discontinuities affect the power spectrum in the
ange k ≤ k st . As an added precaution, we will require stability up to
 threshold k st that is 20 per cent larger than our largest wave number
f interest, 1 h Mpc −1 . 
In order to stabilize FlowsForTheMasses for its fiducial
odel, with �ν, 0 h 2 = 0.005, Chen et al. ( 2023b ) truncated the power

pectra P 

k 
αb c 	 used to compute A 

� k 
α,ac d,b ef to 	 < N μ, NL , while allowing

 μ, NL ≤ 	 < N μ elsewhere. They demonstrated that N μ, NL of 6, 7,
nd 8, respectively agreed with their N -body neutrino simulations
o 14 per cent, 12 per cent, and 10 per cent for k ≤ 1 h Mpc −1 .
o we ver, N μ, NL of 9 suf fered from se vere numerical instabilities
reventing the equations of motion from being integrated to the
resent time. Henceforth, we fix N μ, NL = 6 since its substantial
eduction in computational e xpense relativ e to 7 and 8 only modestly
ecreases its accuracy. 
Although the 	 < N μ, NL truncation of Chen et al. ( 2023b )

ufficed to stabilize their �ν, 0 h 2 = 0.005 model o v er the range k ≤
 h Mpc −1 , we find that increasing the neutrino density fraction tends
NRAS 530, 743–760 (2024) 
o exacerbate the numerical instabilities in FlowsForTheMasses .
he MT4 emulator of Moran et al. ( 2023 ) allows �ν, 0 h 2 to be twice as
igh as the fiducial model of Chen et al. ( 2023b ). Requiring stability
p to k = 1.2 h Mpc −1 , so as to allow for a buffer around our desired
ange k ≤ 1 h Mpc −1 , we find that 19 of the 101 design models are
umerically unstable (that is, have k st < 1.2 h Mpc −1 ). The mean and
inimum �ν, 0 h 2 values for these models are 0.0083 and 0.0063,

espectively, so this instability is a high- �ν, 0 h 2 problem. 
As �ν, 0 h 2 , hence the neutrino mass sum, increases, flow velocities

 α decrease, gradually decoupling the neutrino density and velocity
onopoles from higher Legendre moments 	 . Thus we employ a
ore aggressive high- 	 truncation in order to stabilize these high-
ν, 0 h 2 models. In addition to truncating the power spectrum used

o compute mode-coupling integrals, we truncate the 	 expansions
f the mode-coupling integrals A 

k 
α,ac d,b ef ,	 and bispectrum integrals

 

k 
α,ac d,b ef ,	 themselves, 	 < N μ, AI . The power truncation 	 < N μ, NL 

tself implies an N μ, AI of 2 N μ, NL − 1, or 11 for N μ, NL = 6, so we
llow N μ, AI to be reduced below this number. 

As an upper bound on the error associated with this truncation,
onsider the �ν, 0 h 2 = 0.005 fiducial model of Chen et al. ( 2023b ).
ig. 1 (Top) compares neutrino power spectra for several N μ, AI values

o the maximum value 2 N μ, NL − 1 = 11. In the range k ≤ 1 h Mpc −1 ,
 μ, AI = 4 is accurate to 4 per cent, while the higher N μ, AI considered
re accurate to 1.3 per cent or better. 

Fig. 1 (Bottom) makes a similar comparison for one of the MT4
esign points with �ν, 0 h 2 = 0.0091. Since power spectra with
 μ, AI > 5 cannot be stably integrated to z = 0 all the way to k =
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.2 h Mpc −1 , we use the N μ, AI = 5 power spectrum for comparison.
ncouragingly, the N μ, AI = 4 power spectrum agrees with this to 
etter than 1 per cent at all k ≤ 1 h Mpc −1 . Also, even those higher-
 μ, AI power spectra with k st < 1 h Mpc −1 agree with the N μ, AI = 5
ower to better than 1 per cent across their entire stable ranges k ≤
 st . Evidently from the figure, our stabilization procedure discards 
igher k early enough to prevent them from contaminating k ≤ k st at
ven the per cent level. 

Out of the nineteen MT4 design points requiring a mode-coupling 
runcation N μ, AI < 2 N μ, NL − 1, 15 reach k = 1.2 h Mpc −1 with
 μ, AI = 5, and the remaining four reach that wave number with
 μ, AI = 4. These four N μ, AI = 4 models all have �ν, 0 h 2 > 0.008,
ith a mean �ν, 0 h 2 value of 0.0092. All have stability thresholds k st 

 0.7 h Mpc −1 when run with N μ, AI = 5. By comparison with Fig. 1
Bottom), we may estimate their truncation error as ∼ 1 per cent . 
nother estimate of the truncation error, for all nineteen stabilized 
odels, is the difference between the N μ, AI = 4 and N μ, AI = 5 power

pectra, either to k = 1 h Mpc −1 or to k st if this is less than one. By
his measure, we find that one of these nineteen has a 2.5 per cent
runcation error, while all others have ≤ 2 per cent and nine of them 

ave ≤ 1 per cent . Since these nineteen represent nearly half of the 
0 design models with �ν, 0 h 2 ≥ 0.0063, we estimate that truncation 
eads to a ≈ 1 per cent power underestimate in that range. 

.3 Reduced power spectrum 

he power spectrum of massive neutrinos declines sharply below the 
ree-streaming scale, k 
 k FS , giving � 

2 
ν( k) a large dynamic range,

hich in turn makes it difficult to emulate. Our strategy is to divide
he neutrino power spectra, the total power as well as the single-
ecile power spectra, by quickly calculable linear approximations. 
urther reduction in the dynamic range is achieved by taking the 
atural logarithm of this power spectrum ratio, for each of the MT4
odels, resulting in the training set P 

∗
im 

. 
As a starting point for a fast linear approximation to the neutrino

ower spectra, we take the matter power spectra of Eisenstein and 
u (Eisenstein & Hu 1997 , 1998 ; Hu & Eisenstein 1998 ). In the

lustering limit, k � k FS , neutrinos and cold matter cluster very 
imilarly. In the free-streaming limit, k 
 k FS , the ratio of the neutrino
nd total matter density contrasts scales as k 2 FS /k 

2 , as shown by
ingwald & Wong ( 2004 ) and Wong ( 2008 ). Those studies developed
nd tested an interpolation function, δν / δm 

≈ (1 + k / k FS ) −2 , that
pplies to linearly clustering neutrinos, even when the CDM and 
aryons cluster non-linearly. 
Chen et al. ( 2021a , b ) generalized the free-streaming scale of

ingwald & Wong ( 2004 ) to individual neutrino flows through the
eplacement of their neutrino sound speed c ν by the flow velocity v, 

 FS ( a , v) 2 = 

3 �m 

( a ) H( a ) 2 

2 v( a ) 2 
(28) 

here, in the non-relativistic approximation, v( a ) = τ /( am ν), imply-
ng that k FS ( a, v) ∝ 

√ 

a . Thus our Eisenstein-Hu-like approxima-
ions to the total and decile neutrino power spectra are, respectively, 

 

2 
EH ,ν( k, a) = � 

2 
EH ( k, a) 

(
1 + 

k 

k FS ( a, c ν) 

)−4 

with c 2 ν

= 

3 ζ (3) T 2 ν, 0 

2 log (2) m 

2 
νa 

2 
(29) 

 

2 
EH ,L ( k, a) = � 

2 
EH ( k, a) 

(
1 + 

k 

k FS ( a, v L ) 

)−4 

with v L = 〈 v α〉 L 
(30) 
here <v α > L in the final line denotes an average over all flows α
aking up decile L , and ζ ( x ) is the Riemann zeta function. 
Next, we consider the range of scales over which we emulate the

eutrino power spectra. We set the upper limit of our range of wave
umbers to 1 h Mpc −1 , since beyond that we expect non-perturbative
ffects, such as the capture of neutrinos by haloes, to dominate the
ower spectrum. Meanwhile, our minimum wave number should 
e small enough that FlowsForTheMasses agrees closely with 
AMB below it, but no smaller, so as to a v oid a tradeoff between
igh- k and low- k accuracy. Fig. 2 demonstrates that this minimum
ave number should not be much larger than ∼0.001 h Mpc −1 .
elow that value, all power spectra shown agree with CAMB to
5 per cent , with per cent-level agreement for nearly all models 

elow k = 0.0002 h Mpc −1 . Abo v e k = 0.001 h Mpc −1 , fractional
ifferences rise rapidly, reaching ∼ 20 per cent by k = 0.01 h Mpc −1 .
hus we choose to emulate log ( � 

2 
ν/� 

2 
EH ,ν) and log ( � 

2 
L /� 

2 
EH ,L ) o v er

he range 0.001 h Mpc −1 ≤k ≤ 1 h Mpc −1 . 

.4 Non-linear enhancement: A first look 

he chief goal of this study is to quantify the non-linear clustering
f neutrinos across a wide range of parameters. One tool we will
se for this is the non-linear enhancement ratio, that is, the ratio
f the FlowsForTheMasses power spectrum to that from the 
ulti-Fluid Linear Response code MuFLR of Chen et al. ( 2021a ): 5 

 ν( k, z) = � 

2 
ν , F lowsF or T heM as s es 

( k, z) / � 

2 
ν , MuFLR 

( k, z) . (31) 

uFLR allows the CDM + baryon fluid to cluster non-linearly 
hile limiting neutrino clustering to the linear terms. That is, 

he mode-coupling integrals A α,ac d,b ef , hence also the bispectrum 

ntegrals I α,ac d,b ef and the non-linear correlations ξα	 , are set to 
ero, leaving only equations ( 18 , 19 , and 21 ) to be solved for the
eutrinos. 
The enhancement ratio is instructive because it allows us to 

solate directly the effects of non-linearity in the neutrino sector. 
igh-quality simulations using neutrino LR include Ali-Haimoud & 

ird ( 2012 ), McCarthy et al. ( 2017 ), and Liu et al. ( 2018 ). R ν( k ,
) quantifies the amount by which these underestimate neutrino 
lustering. Furthermore, Chen et al. ( 2023a , b ) showed that Flows-
orTheMasses itself becomes inaccurate in the regime R ν −
MNRAS 530, 743–760 (2024) 
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Figure 3. Neutrino non-linear enhancement ratio of equation ( 31 ) for each 
of the N M 

= 101 MT4 M ν > 0 design points at redshift z = 0. Each curve is 
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 � 1, indicating the scales on which a particle neutrino simulation is
ecessary for accurate predictions of neutrino clustering. Section 6
ill use emulation to isolate the impact upon R ν of individual

osmological parameters. 
Fig. 3 provides a glimpse of the parameter-dependence of R ν( k ,

). From Fig. 3 (a), we immediately see that �ν, 0 h 2 ∝ M ν has a
ignificant effect upon R ν . Furthermore, non-linear corrections to
he lightest neutrinos reduce R ν slightly below unity. This is not
urprising, as non-linear corrections in the weakly non-linear regime
re known to suppress even the CDM clustering (Bernardeau et al.
002 ). Evidently from Fig. 3 , the clustering amplitude σ 8 also has
 discernible effect upon R ν , while the impact of the total matter
nd baryon fractions are less obvious. We will revisit the impact of
ifferent cosmological parameters upon R ν( k , 0) in Section 6.1 . 

 E M U LATION  O F  T H E  N O N - L I N E A R  

E U T R I N O  POWER  SPECTRUM  

.1 Emulation using SEPIA 

or each neutrino momentum decile L , we use the SEPIA code
f Gattiker et al. ( 2020 ) to determine the values of the PC basis
unctions φ( L ) 

j ( k i , z i ) as well as sample from the posteriors of the

yperparameters β ( L ) 
j	 , λ

( L ) 
U ,j , and λ( L ) 

W ,j . We use N PC = 50 PCs for each
 , comparable to the 45 used for the MT4 emulator. Hyperparameters
re optimized in SEPIA using N MCMC = 50 000 Markov chain Monte
arlo steps. Since the error on the total neutrino power spectrum for
 MCMC of 10 000, 20 000, and 50 000 is, respectively, 3.92 per cent,
.86 per cent, and 3.48 per cent, measured against ten randomly
hosen models outside of the MT4 sample, we regard N MCMC =
0 000 to have converged. 
SEPIA is designed to draw weights from the probability distri-

ution of equation ( 10 ). We instead prefer a deterministic emulator
uch as that described in Heitmann et al. ( 2009 ), which uses the
ean weights W̄ 

( L ) 
j ( � C ) of equation ( 11 ) as the emulator prediction.

hese depend on the hyperparameters’ posterior means ˆ β
( L ) 
j	 , ˆ λ( L ) 

U ,j ,

nd ˆ λ( L ) 
W ,j . Appendix A shows how to obtain these quantities from

EPIA . 
Our goal is now in sight: the mean weight W̄ 

( L ) 
j ( � C ) of equation

 11 ) for each decile L and PC j , for a given cosmological parameter
ector � C . The final ingredient needed to emulate W̄ 

( L ) 
j ( � C ) is the so-

alled Kriging basis [ ̂  R 

∗( L ) 
j ] −1 � w 

∗( L ) 
j . With fixed L and j , the quantity

ˆ 
 

∗( L ) 
j is an N M 

× N M 

matrix, [ ̂  R 

∗( L ) 
j ] −1 is its matrix inverse, and

�  ∗( L ) 
j and [ ̂  R 

∗( L ) 
j ] −1 � w 

∗( L ) 
j are vectors of length N M 

. Since ˆ R 

∗( L ) 
j and

�  ∗( L ) 
j are both known, we find the Kriging basis by solving the linear

ystem: 

ˆ 
 

∗( L ) 
j X 

( L ) 
j = � w 

∗( L ) 
j (32) 

or X 

( L ) 
j , which equals [ ̂  R 

∗( L ) 
j ] −1 � w 

∗( L ) 
j . 

Since the Kriging basis is independent of � C , we compute it
nce and save the result. No w, gi ven � C , we may readily compute
 

∗
jm 

( � C ) of equation ( 13 ) for each m = 0, . . . , N M 

− 1. The

ot product of the vector � r ∗j ( � C ) with the Kriging basis gives
¯
 

( L ) 
j ( � C ), as in equation ( 11 ). The emulated reduced neutrino power

 

( L ) ( k i , z i , � C ) = log ( � 

2 
L /� 

2 
EH ,L ) for decile L is given by: 

 

( L ) ( k i , z i , � C ) = μ
∗( L ) 
i + σ ∗( L ) 

N PC −1 ∑ 

j= 0 

W̄ 

( L ) 
j ( � C ) φ( L ) 

j ( k i , z i ) , (33) 
NRAS 530, 743–760 (2024) 



Cosmic-E ν: Emulator for the non-linear � ν
2 751 

Table 2. Cosmological parameters for the ten out-of-sample test models. Each is a spatially flat νwCDM model with w( a ) = w 0 + (1 − a ) w a . 

Model �m, 0 h 2 �b, 0 h 2 �ν, 0 h 2 σ 8 h n s w 0 w a 

E001 0.1433 0.02228 0.008078 0.8389 0.7822 0.9667 −0.8000 − 0 .0111 
E002 0.1333 0.02170 0.005311 0.8233 0.7444 0.9778 −1.1560 − 1 .1220 
E003 0.1450 0.02184 0.003467 0.8078 0.6689 0.9000 −0.9333 − 0 .5667 
E004 0.1367 0.02271 0.002544 0.8544 0.8200 0.9444 −0.8889 − 1 .4000 
E005 0.1400 0.02257 0.009000 0.7300 0.7067 0.9889 −0.9778 − 0 .8444 
E006 0.1350 0.02213 0.000700 0.8700 0.7633 0.9111 −1.0220 0 .5444 
E007 0.1383 0.02199 0.007156 0.7456 0.6500 0.9556 −1.1110 1 .1000 
E008 0.1300 0.02286 0.006233 0.7922 0.8011 1.0000 −1.0670 0 .2667 
E009 0.1417 0.02300 0.004389 0.7767 0.7256 0.9222 −0.8444 0 .8222 
E010 0.1317 0.02242 0.001622 0.7611 0.6878 0.9333 −1.2000 − 0 .2889 

Figure 4. Cosmic-E ν versus FlowsForTheMasses for the total neu- 
trino power spectra � 

2 
ν ( k, z) of the out-of-sample models of Table 2 . For each 

model, lines show the redshifts 3, 1, and 0, in order of increasing thickness. 
The grey shaded region is the mean plus-or-minus one standard deviation, 
maximized o v er all emulated redshifts. Across all k and z, this error is less 
than 3.5 per cent. 
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nd the total neutrino power spectrum � 

2 
ν( k i , z i ) is formed by

v eraging o v er the indi vidual decile po wers � 

2 
L ( k i , z i ): 

 

2 
ν( k i , z i ) = 

[ 

1 

10 

9 ∑ 

L = 0 

√ 

� 

2 
L ( k i , z i ) 

] 2 

. (34) 

s an alternative, we could have emulated � 

2 
ν( k i , z i ) separately.

o we v er, we find av eraging o v er decile powers to be more accurate.
urther, av eraging ensures consistenc y between � 

2 
ν( k i , z i ) and the

ndividual � 

2 
L ( k i , z i ), which should obey equation ( 34 ). 

.2 Tests of Cosmic-E ν

ow that our Cosmic-E ν emulator is complete, we quantify 
ts accuracy. We first consider the total neutrino power spectrum 

 

2 
ν( k, z), the main goal of this study. Power spectra of individual
omentum deciles, � 

2 
L ( k, z), are co v ered at the end of this section. 

We begin with the most accurate error measurement, which 
ompares emulator predictions to FlowsForTheMasses com- 
utations for a set of ten test models outside of the MT4 design
et. Table 2 lists the cosmological parameters of these out-of-sample 
odels, E001 through E010. They cover a large range of �ν, 0 h 2 

rom 0.0007, for E006, to 0.009, for E005, and allow for a substantial
ariation in the dark energy equation of state. 

Fig. 4 compares the total neutrino power spectra of Cosmic- 
 ν and FlowsForTheMasses for the 10 out-of-sample mod- 
ls of Table 2 . For each of the 27 redshifts emulated and at
ach k , the mean and standard deviation of the Cosmic-E ν-to-
lowsForTheMasses ratio are computed. The 1 σ error interval 

s the region within one standard deviation of the mean ratio at each
 and z emulated, i.e., the standard deviation across cosmologies for
 single redshift and wave number. At each k , the grey shaded region
hows the 1 σ error interval maximized o v er redshift. The 1 σ error,
he difference between this region and unity, is everywhere less than
.5 per cent. The maximum error across all 10 models, o v er all k and
, is 6.9 per cent. The largest error is for model E006, which has a
mall neutrino density. 

Another emulator error estimate, the leave-one-out holdout test, 
s performed directly through SEPIA . For each model m of the
 M 

models in the training set, SEPIA builds an emulator with all
 M 

− 1 models excluding m , then compares the resulting emulator
rediction P im 

at � C 

∗
m 

with the excluded training data P 

∗
im 

for that 
odel. Since leaving out model m creates a gap in the training data at

� 
 

∗
m 

, holdout tests tend to o v erestimate the emulator error, particularly
n the context of a space-filling design. 

Fig. 5 shows the results of leave-one-out holdout tests of Cosmic-
 ν. The maximum 1 σ error is now 5.7 per cent, about 60 per cent
igher than the out-of-sample test. Nevertheless, at all but the largest
cales, k < 0.002 h Mpc −1 , and the smallest scales, k > 0.8 h Mpc −1 ,
he error is 4 per cent or less. Meanwhile, the largest holdout test
rror across all k and z, and all 101 models, is 25.4 per cent. 

The two models with the largest holdout test errors are further
tudied in Fig. 6 . Out of the models in the MT4 training set, these two
ave the smallest �ν, 0 h 2 ; they are the only models allowing �ν, 0 h 2 to
all below half of its lower bound ≈0.00064 from neutrino oscillation
MNRAS 530, 743–760 (2024) 
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M

Figure 6. Holdout tests for the two lowest-neutrino-mass models, which 
also have the largest errors in Fig. 5 , colour-coded by the scale factor a . Solid 
(dashed) curves correspond to �ν, 0 h 2 = 0.00017 ( �ν, 0 h 2 = 0.00019). 
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xperiments. Evidently, the 25 per cent errors noted above are due to
harp falls in the Cosmic-E ν predictions at the earliest times and
argest scales. Errors are under 20 per cent for all k ≥ 0.0012 h Mpc −1 

nd all z. Since the holdout test errors of Fig. 5 o v erestimate the
ore accurate out-of-sample errors of Fig. 4 by about 60 per cent,
e estimate Cosmic-E ν errors of 10 per cent − 12 per cent at the

owest neutrino masses, in the range k ≥ 0.0012 h Mpc −1 . Meanwhile,
he model with the third-largest holdout error in Fig. 5 , which has
 22 per cent low- k holdout error giving way to ≤ 20 per cent
oldout errors at k ≥ 0.002 h Mpc −1 and ≤ 5 per cent errors at
 � 0.01 h Mpc −1 , has M ν ≈ 0.5 eV b ut near -maximal values of
b, 0 h 2 and w 0 + w a . 
Finally, we compare individual neutrino momentum deciles be-

ween Cosmic-E ν and FlowsForTheMasses . In multifluid
erturbation theories such as ours of Section 2.2 , the neutrino flow
peed v α behaves similarly to a sound speed, and the resulting power
pectrum exhibits oscillatory behaviour on sufficiently small scales.
v eraging o v er a large number of flows eliminates these oscillations.
o we v er, each decile av erages o v er only 5 flows, rather than 50 for

he total neutrino power, making the small-scale decile powers noisier
nd more difficult to emulate. This is especially true for the higher-
omentum deciles for which indi vidual-flo w oscillations are more

rominent. Thus, we expect less accuracy in � 

2 
L ( k, z), particularly

or high L , than in the � 

2 
ν( k, z) shown abo v e. 

Fig. 7 combines out-of-sample tests and leave-one-out holdout
ests for each of the ten momentum deciles. The 1 σ errors shown
re in line with our expectations above. For deciles L = 0 and 1,
rrors from out-of-sample tests are < 7 per cent , or about twice the
aximum error on � 

2 
ν( k, z). For higher L , errors remain at this level

or k ≤ 0.1 h Mpc −1 but grow substantially at large k , rising to nearly
our times the � 

2 
ν( k, z) emulator error at k = 1 h Mpc −1 . 

 C O M PA R I S O N  TO  N - B O DY  SIMULATIONS  

.1 Variation of the ν implementation 

he previous section quantified the precision with which Cosmic-
 ν reproduced its underlying FlowsForTheMasses perturbation

heory. Next, we consider its accuracy relative to numerical sim-
lations of the massive neutrino power spectrum. Adamek et al.
 2023 ) carried out an e xtensiv e comparison of neutrino simulation
ethods for a spatially flat ν� CDM model with M ν = 0.15 eV

 �ν, 0 h 2 = 0.00161), �m, 0 h 2 = 0.1432, �b, 0 h 2 = 0.022, A s =
NRAS 530, 743–760 (2024) 
.215 × 10 −9 ( σ 8 = 0.815), h = 0.67, and n s = 0.9619. Though
ll of the neutrino power spectra agree at about the per cent level
n the linear regime, k � 0.1 h Mpc −1 , the different methods are
iscrepant at the 30 per cent − 40 per cent level by k = 1 h Mpc −1 .
Even within a given simulation method, choices of initial condi-

ions and simulation parameters have a substantial impact on the
assive neutrino power spectrum. Sullivan et al. ( 2023 ) imple-
ented the ‘tiling’ method of Banerjee et al. ( 2018 ). They find

hat the number of allowed neutrino momentum directions is the
ost important parameter for determining convergence, and they

udge their highest-direction-number run to have converged at the
10 per cent level up to half of the neutrino Nyquist frequency,

r ∼1 h Mpc −1 in their standard run. Combining this with the
iscrepancies among the different simulation methods, we may
egard simulation uncertainty in the neutrino power at k � 1 h Mpc −1 

o be in the 30 per cent − 50 per cent range. 
Fig. 8 compares Cosmic-E ν and MuFLR LR to the results of

damek et al. ( 2023 ). Each power spectrum is compared to that
omputed using the SWIFT simulation of Schaller et al. ( 2023 ),
ith their ratio smoothed using a centered 10-point moving average.
ompared with SWIFT , the CO N CEPT code of Dakin et al. ( 2019 )
redicts 22 per cent more power at k = 1 h Mpc −1 , while gevolu-
ion (Adamek et al. 2016a ) predicts ≈ 15 per cent − 20 per cent

ess. 
Cosmic-E ν agrees closely with all of the simulated � 

2 
ν at low

 . Its predicted power spectrum falls below that of SWIFT by
3 per cent up to k = 0.17 h Mpc −1 , or three times the free-

treaming wave number for this neutrino mass. This power deficit
rows rapidly, rising to 19 per cent at k = 0.4 h Mpc −1 and 49 per cent
t k = 1 h Mpc −1 , somewhat greater than, but comparable to,
he scatter between different N -body simulation methods. Thus,
lowsForTheMasses and the Cosmic-E ν emulator appear to
rovide accurate computations of the non-linear neutrino power,
iven the current level of simulation uncertainty. 
Most of the scatter among the N -body methods at wave numbers

 ≈ 0.5 h Mpc −1 is due to a systematic difference between particle-
ased methods, such as SWIFT , and CO N CEPT , which integrates
he massive neutrino fluid equations on a grid. A priori we have no
eason to consider one of these more accurate. Ho we v er, if we e xclude
O N CEPT as an outlier among the N -body simulations, then the

ange spanned by the remaining simulations drops significantly, and
he Cosmic-E ν power deficit exceeds this range by a factor of a few
or k � 0.5 h Mpc −1 . Thus, it is not clear whether the Cosmic-E ν
mall-scale power deficit is due to systematic uncertainties among
he different non-linear methods or to a genuine non-perturbative
ffect such as the capture of neutrinos by CDM + baryon haloes. 

Also shown in Fig. 8 is the MuFLR LR power spectrum. As with
osmic-E ν, its power is less than that of the SWIFT simulation
sed as a reference. Its power deficits relative to SWIFT are
ignificantly larger than those of Cosmic-E ν, 6.1 times larger at
 = 0.1 h Mpc −1 and 1.8 times larger at k = 0.4 h Mpc −1 . Thus
osmic-E ν represents a significant accurac y impro v ement o v er
R approximations. 

.2 Variation of the ν mass 

ext, we consider variations in M ν . Adamek et al. ( 2023 ) varied
 ν from 0.15 to 0.6 eV, in their flat ν� CDM model with �m, 0 h 2 ,
b, 0 h 2 , h , A s , and n s fixed to the values of Section 5.1 . Fixing the

nitial power spectrum amplitude A s = 2.215 × 10 −9 implies σ 8 =
.815 for M ν = 0.15 eV, σ 8 = 0.776 for M ν = 0.3 eV, and σ 8 = 0.731
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Figure 7. Out-of-sample (light shaded regions) and holdout (dark shaded regions) tests for the individual neutrino decile power spectra � 

2 
L ( k, z). Shaded 

regions show the mean plus-or-minus one standard deviation, maximized o v er all emulated redshifts. 
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M

Figure 8. Comparison of Cosmic-E ν and MuFLR (LR) to N -body neutrino 
power spectra, for M ν = 0.15 eV, at z = 0, computed using a variety of methods 
by Adamek et al. ( 2023 ). Solid (dashed) lines represent power spectra that 
are greater (less) than that of SWIFT . Ratios have been smoothed using a 
centred 10-point moving average. 
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GADGET- 3 N -body neutrino power spectra of Adamek et al. ( 2023 ), at z = 

0, for neutrino masses M ν ranging from 0.15 to 0.6 eV. For M ν = 0.15 eV, the 
high-resolution 1024 3 -particle simulations of that reference are used. (Top) 
N -body power spectra are shown as filled circles for (512 Mpc) 3 simulation 
volumes and open circles for the (1024 Mpc) 3 M ν = 0.15 eV simulation. 
(Bottom) Fractional errors in Cosmic-E ν and MuFLR compared with the 
(512 Mpc) 3 -box simulations at k ≥ 0.1 h Mpc −1 and the (1024 Mpc) 3 -box 
simulation below that wave number. 
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or M ν = 0.6 eV. Their simulations for M ν = 0.3 eV and 0.6 eV use
12 3 neutrino particles in a (512 Mpc) 3 box. 
Fig. 9 compares Cosmic-E ν and MuFLR to the Adamek et al.

 2023 ) simulations with varying M ν . For k ∼ 0.1 h Mpc −1 , Cosmic-
 ν agrees with the simulations at the 2 per cent − 4 per cent level,
hile MuFLR underpredicts power by 7 per cent for the lower masses.
t larger k , both errors quickly increase. Cosmic-E ν errors at k =
.4 h Mpc −1 are 17 per cent and 14 per cent for M ν = 0.3 and 0.6 eV,
espectively, while those for MuFLR are respectively 46 per cent and
9 per cent. Abo v e k = 0.4 h Mpc −1 , particularly for M ν = 0.6 eV,
he slopes of the N -body power spectra in Fig. 9 (Top) flatten in a
anner not captured by either Cosmic-E ν or MuFLR . 

.3 Rapidly evolving dark energy 

ince neutrino mass bounds are dependent upon constraints on
he growth factor of large-scale structure, they are degenerate with
ariations in the dark energy equation of state. For example, Upadhye
 2019 ) found a factor-of-three degradation in the 95 per cent-
onfidence M ν bound when w 0 and w a were allowed to vary. In
ecognition of this de generac y, MT4 and Cosmic-E ν allow for
ubstantial variations in w 0 and w 0 + w a . Here, we test the accuracy
f Cosmic-E ν for such a rapidly varying equation of state by
omparison to a νwCDM N -body simulation. 

Our νwCDM simulation is a part of a forthcoming suite of simula-
ions designed to investigate the simultaneous variation of parameters
escribing physics beyond the � CDM model. Its cosmological
arameters are �m, 0 h 2 = 0.1429476, �b, 0 h 2 = 0.0240724, �ν, 0 h 2 =
.0015, σ 8 = 0.841333, h = 0.613333, n s = 0.9544, w 0 = −1.036,
nd w a = −0.872. It tracked N = 1260 3 particles in a cubic volume
ith box length 1400 Mpc and periodic boundary conditions. Its
LPT initial conditions were produced at z = 31 using Monofonic
Hahn, Rampf & Uhlemann 2021 ; Rampf, Uhlemann & Hahn 2021 ),
nd it tracked massive neutrinos using the δf method of Elbers et al.
 2021 , 2022 ). The simulation was evolved to z = 0 using SWIFT
Schaller et al. ). 

Fig. 10 tests Cosmic-E ν for this νwCDM simulation, with
 rapidly varying equation of state, at redshifts 0 and 1. The
ccuracy of Cosmic-E ν at z = 0 is in line with our previous
NRAS 530, 743–760 (2024) 
� CDM comparisons to the SWIFT simulations: ≈ 20 per cent
p to k = 0.3 h Mpc −1 − 0.4 h Mpc −1 , and ≈ 50 per cent up to k =
 h Mpc −1 . At z = 1, Cosmic-E ν is slightly more accurate up to k ≈
.7 h Mpc −1 , abo v e which quantifying its accurac y becomes difficult
ue to residual shot noise. Compared with MuFLR , Cosmic-E ν is
ignificantly more accurate at z = 0 and k ≥ 0.1 h Mpc −1 , while at
 = 1, Cosmic-E ν is somewhat more accurate at k � 0.1 h Mpc −1 

hus we conclude that even | w a | ∼ 1 does not diminish the accuracy
f Cosmic-E ν. 
This section has quantified the accuracy of the Cosmic-E ν
 

2 
ν( k, z) emulator across a wide range of M ν , for a cosmological

onstant as well as a rapidly evolving equation of state, by compari-
on to N -body simulations using a few very different massive neutrino
imulation methods. Its error at z = 0 is fairly consistent across a
ide range of methods: a few per cent up to k ≈ 0.15 h Mpc −1 ,

n ≈ 20 per cent power underestimate at k = 0.4 h Mpc −1 , and an
50 per cent underestimate at k = 1 h Mpc −1 . Since � 

2 
ν( k, z) for k

k FS scales approximately as M 

4 
ν (Ringwald & Wong 2004 ; Wong

008 ), these underestimates at k = 0.4 h Mpc −1 and k = 1 h Mpc −1 are
onsistent with 5 per cent and 13 per cent biases in M ν , respectively.
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Figure 10. Comparison of Cosmic-E ν (solid) and MuFLR (dashed) to our 
νwCDM N -body simulation for a model with rapidly-evolving dark energy, 
w 0 = −1.036 and w a = −0.872, as well as �ν, 0 h 2 = 0.0015 ( M ν = 0.14 eV), 
at z = 0 and 1. (Top) N -body power spectra are shown as points. (Bottom) 
Fractional errors in Cosmic-E ν and MuFLR compared with the N -body 
simulation, shown using a centred 10-point moving average. 
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Before proceeding, we comment upon the discrepancy between 
he 14 per cent error in FlowsForTheMasses reported in Chen 
t al. ( 2023b ), o v er the entire range k ≤ 1 h Mpc −1 , and the larger
ifferences with N -body simulations evident in Figs 8 , 9 , and 10 for
 ≈ 1 h Mpc −1 . There are two possibilities: errors in the hybrid simu-
ations of Chen et al. ( 2023a ) used to test FlowsForTheMasses ,
nd a systematic error causing the discrepancies between differing 
 -body implementations of neutrinos. 
Errors in Chen et al. ( 2023a ) may be due to a finite number of

eutrino flows, residual shot noise, and a finite simulation volume. 
inite-flow-number errors in the LR calculations of Chen et al. 
 2021a ) were found to be ≈ 10 per cent , and non-linear neutrino
lustering likely increases them somewhat. Of course, increasing 
he number of flows, or sampling the Fermi-Dirac distribution more 
fficiently, will impro v e the accurac y of FlowsForTheMasses as
ell as the simulations. While the estimated simulation shot noise 

 kL sim 

) 3 /(2 π2 N sim 

), for N sim 

particles in a volume L 

3 
sim 

, was subtracted
rom � 

2 
ν( k), residual shot noise remains. In an effort to mitigate shot

oise, Chen et al. ( 2023a ) chose a small box, L sim 

= 128 Mpc h −1 , at
he cost of neglecting the contributions of larger modes to small-scale 
on-linear growth. 
Meanwhile, the 30 per cent − 40 per cent spread among the 

ifferent simulations in Fig. 8 at k = 1 h Mpc −1 suggests small-scale
ystematic errors in some of these methods. The gevolution 
ower spectrum of Adamek et al. ( 2016a ) is about 15 per cent −
0 per cent lower than SWIFT at k = 1 h Mpc −1 , meaning that
orrecting the 14 per cent underestimate of Cosmic-E ν relative to 
hen et al. ( 2023a ), as well as the ≈ 10 per cent underestimate
ue to a finite number of flows, would put Cosmic-E ν within
 per cent − 10 per cent of gevolution . Moreo v er, in the k
 0.2 h Mpc −1 range where the N -body methods of Fig. 8 agree
ith one another to a few per cent, Cosmic-E ν also agrees with

hem at that level. The SWIFT - Cosmic-E ν difference rises along
ith the CO N CEPT - gevolution difference in Fig. 8 . Thus we

annot conclusively attribute the discrepancy between the 14 per cent 
lowsForTheMasses error estimate of Chen et al. ( 2023b ) and

he 49 per cent SWIFT - Cosmic-E ν difference to errors in Chen
t al. ( 2023a ). 

 N O N - L I N E A R  E N H A N C E M E N T  

.1 P arameter-sensiti vity of the enhancement ratio 

ow that we have quantified the accuracy of Cosmic-E ν, we
ay use it to study the non-linear clustering of massive neutrinos.
e focus here on the non-linear enhancement ratio R ν( k , z) of

quation ( 31 ), that is, the ratio of the neutrino power spectra using
lowsForTheMasses and MuFLR , with the CDM + baryon 

reatment held fixed. We emulate R ν by taking the ratio of Cosmic-
 ν to a MuFLR emulator. 
Fig. 11 compares perturbative (dashed) and emulated (solid) 

alculations of R ν at z = 0 for the out-of-sample models of Table 2 . A
ouple trends are evident. First, the total neutrino power is typically
ore accurate at high k than individual decile powers. At k =
 h Mpc −1 , the emulated R ν agrees with the FlowsForTheMasses
omputation to better than 2 per cent for eight of the 10 models. For
ecile 0, this error rises to 3.2 per cent, and for decile 1–4.8 per cent.
Secondly, the lower deciles and higher neutrino masses tend to 

ave smaller errors. This is due to the fact that larger L and smaller
asses lead to larger average velocities, hence more prominent 

scillatory behaviour in the free-streaming limit, making these flows 
ifficult to emulate. Both of these trends are consistent with the
ndividual-decile out-of-sample and holdout tests of Section 4.2 . 

Next, we consider the sensitivity of R ν to the cosmological 
arameters. As a fiducial model at which to test this sensitivity,
e choose a � CDM model in which each parameter except for w 0 

nd w a is set to the midpoint of its range in Table 1 . Fig. 12 shows the
eri v ati ve of log R ν with respect to each parameter about this fiducial
odel. We have checked that the results are qualitatively similar for
ν, 0 h 2 = 0.002. 
Abo v e k ≈ k FS = 0.16 h Mpc −1 , the dominant effect is a rise in R ν

ith �ν, 0 h 2 ∝ M ν . This can be understood by noting that, with all
arameters in Table 1 other than �ν, 0 h 2 held fixed, the small-scale
inear and linear-response neutrino power scales as ( �ν, 0 h 2 ) 4 , while
he non-linear power rises relative to the LR power. We can estimate
he non-linear enhancement to the linear scaling law from Fig. 12 : 

∂ log ( � 

2 
ν[ nonlin ]) 

∂ log ( �ν, 0 h 

2 ) 
= 

∂ log ( � 

2 
ν[ LR ]) 

∂ log ( �ν, 0 h 

2 ) 
+ 

∂ log ( R ν) 

∂ log ( �ν, 0 h 

2 ) 
. (35) 

he final term on the right, the logarithmic deri v ati ve of R ν , is
ν, 0 h 2 times d ln ( R ν)/ d ( �ν, 0 h 2 ) from the figure, or about 0.57 at
 = 1 h Mpc −1 ≈6 k FS . A similar analysis for �ν, 0 h 2 = 0.002 finds
his scaling enhancement to be 0.35 at k = 0.4 h Mpc −1 ≈6 k FS and
.59 at k = 1 h Mpc −1 ≈15 k FS , suggesting a rise in this scaling
nhancement with both �ν, 0 h 2 and k / k FS . Section 6.2 will explore
his enhancement further. 

At k � k FS = 0.16 h Mpc −1 , the next most significant parameter for
etermining R ν is the physical baryon fraction �b, 0 h 2 . The oscillatory
ature of ∂ ln R ν/ ∂ ( �b , 0 h 

2 ) for k � 0.8 h Mpc −1 , and its decline for
MNRAS 530, 743–760 (2024) 
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Figure 11. R ν ( k , z) for each L , at z = 0, for the out-of-sample cosmologies of Table 2 , computed using Cosmic-E ν (solid) and FlowsForTheMasses 
(dashed). 
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Figure 12. Sensitivity of R ν ( k , z) at z = 0 to variations of the eight 
cosmological parameters shown in Table 1 . 

Table 3. Parameter sensitivities from Fig. 12 multiplying the 95 per cent 
CL intervals � p for the νwCDM model of Upadhye ( 2019 ), analyzed using 
the combination of Planck, BOSS, and JLA supernova data, marginalized 
o v er a five-parameter bias model. Third and fourth columns, respectively, use 
sensitivities at k = 0.4 h Mpc −1 and k = 1 h Mpc −1 . We assume ��m, 0 h 2 ≈
��c, 0 h 2 . 

Parameter �p[95 %] 
∣∣∣∂ log R ν (0 . 4 h/ Mpc ) 

∂ p 

∣∣∣ �p 

∣∣∣∂ log R ν (1 . 0 h/ Mpc ) 
∂ p 

∣∣∣ �p

�ν, 0 h 2 0.0061 0.32 0.69 
σ 8 0.087 0.10 0.19 
n s 0.181 0.019 0.039 
h 0.028 0.016 0.037 
w 0 0.64 0.013 0.026 
w a 3.0 0.0086 0.042 
�b, 0 h 2 0.00059 0.0041 0.0007 
�m, 0 h 2 0.0053 0.0039 0.017 
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 � 0.9 h Mpc −1 , suggests that �b, 0 h 2 affects R ν primarily through
he baryon acoustic oscillations (BAO). Modifications to the BAO, 
n turn, are amplified by the non-linear clustering of neutrinos. 

After �ν, 0 h 2 and �b, 0 h 2 , the next parameters to which R ν is most
ensitive at k � k FS are σ 8 and �m, 0 h 2 . At first glance, the relative
ensitivities of R ν to σ 8 , �m, 0 h 2 , and �b, 0 h 2 appear to contradict
ig. 3 . Ho we ver, the range of R ν associated with each parameter in

hat figure is the deri v ati ve in Fig. 12 times the parameter range in
able 1 . This range for σ 8 is about six times larger than for �m, 0 h 2 ,
nd 100 times larger than for �b, 0 h 2 . 

Thus, given a particular data combination, we may define an 
lternati ve sensiti vity measure for each parameter p by multiplying 
 log R ν/ ∂ p from Fig. 12 by the range � p allowed by the data.
s an example, we choose the νwCDM analysis of Upadhye 

 2019 ), constrained using a combination of CMB, galaxy, and 
upernova data, and marginalized over a five-parameter model 
f scale-dependent galaxy bias. We approximate the 95 per cent 
L interval of �m, 0 h 2 by the corresponding one for the CDM
lone, its dominant component. Table 3 shows the result at two 
ave numbers. While �ν, 0 h 2 remains by far the most significant 
arameter for determining R ν , σ 8 is also important. In summary, 
hile R ν is most sensitive to �ν, 0 h 2 , σ 8 , �m, 0 h 2 , and �b, 0 h 2 , the
rst two of these are the most important given current parameter 
onstraints. 
.2 Relati v e clustering in the fr ee-str eaming limit 

ext, we consider further the mass scaling of the neutrino power
pectrum in the free-streaming limit, raised in the previous subsec- 
ion. Ringwald & Wong ( 2004 ) argues that neutrino LR to non-
inear CDM + baryon growth results in a scaling � 

2 
ν/� 

2 
m 

∝ M 

4 
ν ,

hile the Tremaine-Gunn bound of Shu ( 1978 ), Tremaine & Gunn
 1979 ), Shu ( 1987 ), and Kull, Treumann & Bohringer ( 1996 )
mplies ∂ log ( � 

2 
ν/� 

2 
m 

) / ∂ log ( M ν) < 6. Ringwald & Wong ( 2004 )
emonstrate using N -body simulations that haloes approach this latter 
ound, and, further, that the bound can be exceeded, especially in the
ase of small M ν , if one includes all neutrinos present, rather than
nly those captured by the halo’s gravitational potential. 
Thus, we may expect ∂ log ( � 

2 
ν/� 

2 
m 

) / ∂ log ( M ν) to rise above four
hile remaining below six. Fig. 13 numerically differentiates the 

atio of the neutrino power spectrum to the MT4 total-matter power
pectrum with respect to �ν, 0 h 2 ∝ M ν with a step size of 1 per cent
n �ν, 0 h 2 ∝ M ν . Solid and dashed lines, respectively, use non-linear
 Cosmic-E ν) and LR ( MuFLR ) neutrino power spectra. 

Consider first the larger wave numbers. The MuFLR curves ap- 
roach 4 from below but never exceed it, as expected. Meanwhile, the
osmic-E ν non-linear logarithmic deri v ati ves for k = 0.5 h Mpc −1 

nd k = 1 h Mpc −1 both exceed 4 for small �ν, 0 h 2 , where these wave
umbers are many times the free-streaming scale. The non-linear 
nhancement to the mass scaling in equation ( 35 ) is the difference
etween the solid and dashed lines. Focusing on k = 1 h Mpc −1 ,
e find this to be 0.67 for �ν, 0 h 2 = 0.002 and 0.58 for �ν, 0 h 2 =
.005. Since a 3.5 per cent emulator error implies an error of ∼0.1
n the logarithmic deri v ati ve, these are consistent with the results of
ection 6.1 . 
This emulator error means that the difference between the linear 

nd non-linear curves for k = 0.1 h Mpc −1 is consistent with zero. The
ame is true for k = 0.2 h Mpc −1 for �ν, 0 h 2 � 0.003. Further, the
mall oscillations observed in some of the logarithmic deri v ati ves
re consistent with emulator fluctuations. Thus Sections 6.1 –6.2 
onsistently demonstrate a non-linear enhancement of � 0.5 to the 
ower law scaling ∂ log ( � 

2 
ν) / ∂ log ( �ν, 0 h 

2 ) at k = 1 h Mpc −1 for
.002 � �ν, 0 h 2 � 0.005. 

.3 Neutrino contribution to the matter power 

he MT4 emulator includes fully linear neutrinos, as implemented 
n the CAMB code of Le wis et al. ( 2000 ) and Le wis & Bridle ( 2002 ),
n their CDM + baryon and total matter power spectra, as described
n Saito, Takada & Taruya ( 2008 ), Agarwal & Feldman ( 2011 ),
MNRAS 530, 743–760 (2024) 
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M

Figure 14. Direct non-linear neutrino contribution to the matter power 
spectrum at several z for �ν, 0 h 2 = 0.01. � 

2 
m 

( k, z), computed using the MT4 
CDM + baryon power and the Cosmic-E ν neutrino power as in equation 
( 36 ), is divided by the MT4 emulated total matter power � 

2 
m 

( k, z). 
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nd Upadhye et al. ( 2014 , 2016 ). Since the non-linear clustering
f neutrinos increases their power by an order-of-magnitude rel-
tive to linear theory, as shown in Fig. 2 , we quantify here the
mpact of neutrino non-linearity on the matter power spectrum.
eutrinos will affect � 

2 
m 

( k, z) in two ways: indirectly, by adding
o the gravitational potential, hence enhancing CDM + baryon
lustering; and directly, through their inclusion in the total matter
ower. 
Quantifying the indirect effect precisely, by incorporating
lowsForTheMasses into an N -body simulation, is beyond the
cope of this study. Ho we ver, we may bound this effect. Chen
t al. ( 2021a ) carries out an N -body simulation with neutrino LR
hrough the MuFLR code. For the largest neutrino fraction considered
ere, �ν, 0 h 2 = 0.01, that study finds an indirect enhancement of
.05 per cent to the CDM + baryon power spectrum. Since the non-
inear enhancement ratios R ν are less than 5 in Figs 3 and 11 , the
ndirect enhancement is < 0 . 25 per cent . A more accurate estimate
irectly multiplying the LR enhancement of Chen et al. ( 2021a ) by
 ν for their model finds an indirect enhancement of 0.16 per cent. 
Fig. 14 quantifies the direct effect, which is everywhere less

han 1 per cent. Even this is a slight overestimate, as Flows-
orTheMasses , hence Cosmic-E ν, assume that CDM, baryon,
nd neutrino density-contrast monopoles are perfectly correlated.
nder this approximation, the matter power spectrum is 

 

2 
m 

( k, z) = 

(
�cb 

�m 

√ 

� 

2 
cb ( k, z) + 

�ν

�m 

√ 

� 

2 
ν( k, z) 

)2 

. (36) 

ird et al. ( 2018 ) shows that the actual neutrino-CDM correlation
unction drops below unity by ≤ 4 per cent for k ≤ 0.5 h Mpc −1 and

8 per cent for k ≤ 1 h Mpc −1 . The smallness of this deviation is
ue to the fact that the initially-slowest neutrinos, which contribute
he most to small-scale clustering, are also closely correlated with
he CDM. This correlation being slightly less than one implies that
he actual direct contribution of neutrinos to � 

2 
m 

is slightly smaller
han in Fig. 14 . 

 C O N C L U S I O N S  

lowsForTheMasses , the first non-linear perturbati ve po wer
pectrum calculation for free-streaming particles such as massive
NRAS 530, 743–760 (2024) 
eutrinos, provides detailed information on the clustering of neutri-
os of different initial momenta. We have emulated the total non-
inear neutrino power spectrum as well as separate power spectra
or the 10 momentum deciles, each representing a 10th of the
eutrino number density. Our emulated � 

2 
ν( k, z) agrees precisely

ith FlowsForTheMasses to < 3 . 5 per cent for 10 −3 h Mpc −1 

k ≤ 1 h Mpc −1 and 0 ≤ z ≤ 3, as shown in Fig. 4 . Individual-decile
rrors range from about twice as large for the lowest momenta to four
imes as large for the fastest-moving neutrinos with highly oscillatory
ensity contrasts; see Fig. 7 . We have released our emulator as
osmic-E ν. 
Comparing Cosmic-E ν to the highest-resolution simulations of

damek et al. ( 2023 ) in Fig. 9 , we found agreement to 3 per cent up
o k = 3 k FS = 0.17 h Mpc −1 and 19 per cent to k = 0.4 h Mpc −1 .
bo v e this wave number, Cosmic-E ν increasingly underpredicts

he simulations of Adamek et al. ( 2023 ), with this underprediction
eaching nearly 50 per cent by k = 1 h Mpc −1 . Even this error
s not substantially larger than the 30 per cent − 40 per cent
catter between different simulation methods seen in Fig. 8 , so
e cannot definitively attribute it either to a non-perturbative

ffect beyond the capabilities of FlowsForTheMasses or to
 systematic error in the simulations. Importantly, Cosmic-E ν
rovides a neutrino power spectrum in about ten milliseconds on
 standard desktop machine, and we have confirmed that its accuracy
s unaffected by rapid variations in the dark energy equation of
tate. 

One strength of the emulation technique is our ability to dif-
erentiate numerically the emulated function without the result
eing dominated by the shot noise and sample v ariance af fect-
ng N -body power spectra. Section 6 took full advantage of this
apability by studying the non-linear enhancement ratio R ν( k , z)
f equation ( 31 ) and the neutrino-to-matter ratio � 

2 
ν/� 

2 
m 

. Dif-
erentiating R ν with respect to each of the cosmological param-
ters, we find that it is most sensitive to the physical neutrino
ensity �ν, 0 h 2 , but also to �b, 0 h 2 , σ 8 , and �m, 0 h 2 . Further-
ore, we demonstrated a non-linear enhancement of ≈0.5 to the

ree-streaming-limit scaling ∂ log ( � 

2 
ν/� 

2 
m 

) / ∂ log ( M ν) → 4, mean-
ng that non-linear clustering makes the small-scale density of
eutrinos even more sensitive to their mass. Our results demonstrate
he speed and efficacy of the emulation technique in neutrino
osmology. 
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PPENDI X  A :  I MPLEMENTATI ON  O F  Cosmic-E ν

e implement the emulator described in Sections 2.1 and 4.1
y extracting optimized hyperparameters from SEPIA . Following
eitmann et al. ( 2009 ), we construct a deterministic emulator which
ses the mean weights W̄ 

( L ) 
j ( � C ) of equation ( 11 ) as the emulated

eights. 
The hyperparameters upon which W̄ 

( L ) 
j ( � C ) depends may be

xtracted from SEPIA . For each decile L , and for a SepiaData
bject called data and a SepiaModel object called model , the
yperparameter means basis weights, and basis functions are stored
ithin SEPIA as follows: 

(i) w 

∗( L ) 
jm 

in model.nu.w ; 

(ii) ˆ β
( L ) 
j	 in model.params.betaU.val ; 

(iii) ˆ λ( L ) 
U ,j in model.params.lamUz.val ; 

(iv) ˆ λ( L ) 
W ,j in model.params.lamWs.val ; 

(v) μ∗( L ) 
i in data.sim data.orig y mean ; 

(vi) σ ∗( L ) in data.sim data.orig y sd ; and 

(vii) φ( L ) 
j ( k i , z i ) in the j th row, i th column of

ata.sim data.K . 
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