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A new class of ultra-long duration (>10,000 s) gamma-ray bursts has recently been 

suggested
1,2,3

. They may originate in the explosion of stars with much larger radii than 

normal long gamma-ray bursts
3,4

 or in the tidal disruptions of a star
3
. No clear supernova 

had yet been associated with an ultra-long gamma-ray burst. Here we report that a 

supernova (2011kl) was associated with the ultra-long duration burst 111209A, at z=0.677. 

This supernova is more than 3 times more luminous than type Ic supernovae associated with 

long gamma-ray bursts
5,6,7

, and its spectrum is distinctly different. The continuum slope 

resembles those of super-luminous supernovae
8,9

, but extends farther down into the 

rest-frame ultra-violet implying a low metal content. The light curve evolves much more 

rapidly than super-luminous supernovae. The combination of high luminosity and low 

metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be 

reproduced by a model where extra energy is injected by a strongly magnetized neutron star 

(a magnetar), which has also been proposed as the explanation for super-luminous 

supernovae
20,20a

. 
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The gamma-ray burst (GRB) 111209A was detected by the Swift satellite at 07:12 UT on 

December 9, 2011. The X-ray and optical counterparts were discovered within minutes of the 

trigger
11

. The extraordinarily long duration of GRB 111209A was revealed by the continuous 

coverage with the Konus detector on the WIND spacecraft
12

, extending from 5 400 s before to 

10 000 s after the Swift trigger. The GRB occurred at a redshift of z=0.677, as determined from 

afterglow spectroscopy
3
. Its integrated equivalent isotropic energy output, Eiso = 

(5.70.7)1053 erg 
12

, lies at the bright end of the distribution of long-duration GRBs. 

 

The afterglow of GRB 111209A was observed over a period of about 70 days with the 7-channel 

optical/near-infrared imager GROND
13

. Starting around day 15, the optical light curve of the 

transient deviated from the earlier afterglow power law decay (Figure 1). The light curve remained 

essentially flat between day 15 and 30, and then started to decay again, approaching the 

host-galaxy level. After subtracting the afterglow and the well-modelled host galaxy emission 

(Methods, §1-§3), the excess emission is well constrained between rest-frame day 6 and 43 after 

the GRB (Figure 2). It is very similar in shape to other GRB-related supernovae (SN), but reaches 

a bolometric peak luminosity of 2.8
+1.2

-1.0 x 10
43

 erg/s (corresponding to M
bol

=20.0 mag) at 14 

rest-frame days, a factor 3 higher than the brightest known GRB-SN (Figure 2). 

 

A VLT/X-shooter spectrum was taken near the peak of the excess emission
3
 (Dec. 29, 2011),

 
11.8 

rest-frame days after the GRB. The afterglow and the (minimal) host contribution were subtracted 

(Methods, §3) and the resulting spectrum is shown in Figure 3 (blue line). The strong similarity of 

the evolution in time and colour to GRB-associated SNe, together with the spectral shape of the 

excess emission, leads us to conclude that this emission is caused by a supernova, designated SN 

2011kl, associated with GRB 111209A. 

 

Canonical long-duration GRBs are generally accepted to be linked to the core collapse of massive 

stars stripped of their outer H and He envelopes
5,6,7

, since every spectroscopically confirmed 

supernova associated with a GRB has been a broad-lined SN Ic so far. Although the spectrum of 

SN 2011kl associated with the ultra-long GRB 111209A also shows no H or He, it is substantially 

different from classical GRB-SNe. It is surprisingly featureless redwards of 300 nm, lacking the 

undulations from spectral line blends typical of broad-lined SNe Ic associated with GRBs
5,6,7

, and 

it does not drop in the 300–400 nm (rest-frame) region (Figure 3), suggesting a very low metal 

abundance. Applying standard parametrized SN light curve fits (Methods, §4), we derive an ejecta 

mass Mej = 31 M⊙ and a 56Ni mass of 1.00.1 M⊙, which implies a very high 
56Ni/Mej ratio. This 

large 
56

Ni mass is not compatible with the spectrum, suggesting that 
56

Ni is not responsible for the 

luminosity, unlike canonical stripped-envelope SNe (Methods, §4). 

 

Various models have been suggested to explain the ultra-long duration of GRB 111209A and other 

ULGRBs, but the otherwise inconspicuous spectral and timing properties of both the prompt and 

afterglow emission as well as the host properties provided no obvious clues
1-4,14-16

. With the 

detection of a supernova associated with the ultra-long GRB 111209A, we can immediately 

discard a tidal disruption interpretation
3
. Known supernovae from blue supergiants show hydrogen 

in their spectra and substantially different light curve properties
17

, inconsistent with our 

observations, thus ruling out a blue supergiant progenitor
4
. Finally, additional emission from the 

interaction of the SN ejecta with circum-stellar material is unlikely as well (Methods, §5). 

 

Our data suggest that SN 2011kl is intermediate between canonical overluminous GRB-SNe 

and super-luminous supernovae (SLSNe; Figure 3). SLSNe are a sub-class of SNe which are a 
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factor 100 brighter than normal core-collapse SNe, reaching M
V
~ 21 mag 

8,9
. They show slow 

rise and late peak times (20–100 days as compared to typically 9–18 days). Their spectra are 

characterized by a blue continuum with a distinctive “W”-shaped spectral feature often interpreted 

as O II lines
8
. A spinning-down magnetic neutron star is the favoured explanation for the energy 

input powering the light curve
10

. The comparison of SN 2011kl with SLSNe is motivated by two 

observational facts: (1) the spectrum is a blue continuum, extending far into the rest-frame UV, and 

(2) the peak luminosity is intermediate between GRB-SNe and SLSNe. Our interpretation is 

motivated by the failure of both the collapsar and the standard fall-back accretion scenarios, 

because in these cases the engine quickly runs out of mass for any reasonable accretion rate and 

mass reservoir, and thus is unlikely to be able to power an ultra-long GRB. 

 

We could reproduce the spectrum of SN 2011kl using a radiation transport code
18,19

 and a density 

profile where r7, which is typical of the outer layers of SN explosions. The UV is significantly 

depressed relative to a blackbody, but much less depressed than in the spectra of GRB-SNe, 

indicating a lower metal content (consistent with 1/4 of the solar metallicity). The spectrum 

appears rather featureless owing to line blending. This follows from the high photospheric 

velocity, vph ~ 20,000 km/s (Figure 3). In contrast, SLSNe, which show more line features, have vph 

~ 10,000 km/s. In the optical, on the other hand, only a few very weak absorption lines are visible in 

our SN spectrum. Our model only has 0.4 M⊙ of material above the photosphere. There is no 

evidence of freshly synthesized material mixed-in, unlike in GRB-SNe. This supports the notion 

that the SN light curve was not powered by 56Ni decay but rather by a magnetar.  

 

The spectrum can be reproduced without invoking interaction, and the low metal abundance 

suggests that it is unlikely that much 56Ni was produced. We therefore consider magneto-rotational 

energy input as the source of luminosity. Using a simple formalism
20

 describing rotational energy 

loss via magnetic dipole radiation, and relating the spin-down rate to the effective radiative 

diffusion time, one can infer the magnetar’s initial spin period, P
i
 and magnetic dipole field 

strength B from the observed luminosity and time to light-curve peak, t
peak

. The observed short 

t
peak

 (14 rest-frame days) and the moderate peak luminosity require a magnetar with initial spin 

period Pi ~ 12  ms for a magnetic field strength of (69)1014 G. Depending on the magnetic field, 

ejecta mass and kinetic energy are relatively uncertain ranging between 2 and 3 M⊙  and 

(29)1051 erg, respectively (Methods, §6). These values are actually more typical of normal 

SNe Ib/c than of GRB-SNe, including SN 2006aj, the first SN identified as magnetar-powered
21

. 

The GRB energy can be reconciled with the maximum energy that can be extracted from a 

magnetar if the correction for collimation of the GRB jet is a factor of 1/50 or less, which is well 

within typical values for GRBs
22

. 

 

The idea of a magnetar as the inner engine powering GRB-SNe
23,24

, SLSNe
10

, or even events like 

Swift 1644+57 
25

 (before consensus for this event favoured a relativistic tidal disruption), is not 

new. However, in all these cases the magnetar interpretation was one of several options providing 

reasonable fits to the data, but never cogent. Also, the suggestion that all GRB-SNe are 

magnetars
24

 rather than collapsars, based on the clustering of the kinetic energy of the GRB-SNe 

near 1052 erg, the rotational power of a millisecond neutron star, was only circumstantial evidence. 

The supernova SN 2011kl is clearly different from canonical GRB-SNe, and requires (rather than 

only allows) a new explanation. 

 

The ultra-long duration of the prompt emission of GRB 111209A and the unusual SN properties 

are probably related. We suggest that they are linked to the birth and subsequent action of a 



5 

magnetar following the collapse of a massive star. The magnetar re-energizes the expanding ejecta 

and powers an over-luminous supernova. This particular SN 2011kl was not quite as luminous as 

typical SLSNe, and it may represent a population of events that is not easily discovered by SN 

searches but may have a relatively high rate. This scenario offers a link between GRB-SNe, 

ultra-long GRBs and SLSNe. 
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Figure 1: Observed optical/near-infrared light curve following GRB 111209A.  
The light curve (GROND data: filled symbols; other data: open symbol) is the sum of the afterglow 

of GRB 111209A modelled by a broken power law (dashed line), the accompanying supernova 

2011kl (thin red line) and the constant GRB/SN host galaxy emission (horizontal dotted line). All 

measurements (given with 1σ uncertainty) are relative to the Swift trigger time and as observed, 

apart from the Vega-to-AB transformation for the J-band. The solid violet line is the sum of 

afterglow and host in the u-band, with no sign of the supernova. The solid red line is the sum of 

afterglow, host and supernova for the r΄-band. The vertical dotted line marks the time of the 

VLT/X-shooter spectrum. 

Figure 2: Light curve of the GRB 111209A supernova SN 2011kl. 
Bolometric light curve of SN 2011kl, corresponding to 230–800 nm rest frame (Methods, §1), 

compared with those of GRB 980425 / SN 1998bw 
5
, XRF 060218 / SN 2006aj 

21
, the standard 

type Ic SN 1994I 
26

, and the SLSNe PTF11rks 
27

 and PS1-10bzj 
28

 (among the fastest-declining 

SLSNe known so far), all integrated over the same wavelength band with 1σ error bars. Solid lines 

show the best-fitting synthetic light curves computed with a magnetar injection model
20

 (dark blue; 

Methods, §6) and 
56

Ni powering (light blue; Methods, §4), respectively.  

Figure 3: Spectra comparison. 
The X-shooter spectrum of SN 2011kl, taken on Dec. 29, 2011 after GRB afterglow and host 

subtraction and moderate rebinning (Methods, §1; ED Fig. 2), with its flat shape and high UV flux 

is distinctly different from the hitherto brightest known GRB-SN 1998bw (red), but reminiscent of 

some SLSNe (top three curves)
28-30

. The three grey/black lines show synthetic spectra with 

different photospheric velocities (as labelled), demonstrating the minimum velocity required to 

broaden unseen absorption around 400 nm rest-frame (CaII, CII), but at the same time explain the 

sharp cut-off below 280 nm rest-frame. The y-scale is correct for SNe 2011kl and 1998bw; all 

other spectra are shifted for display purposes. 
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Methods 

 

1. Observations and Data Analysis 
 

Simultaneous imaging in g'r'i'z'JHK
s
 with the 7-channel imager GROND

13
 was done on 16 epochs 

with logarithmic temporal spacing until 72 days after the GRB, when the nearby Sun prevented 

further observations, and a last epoch for host photometry was obtained 280 days after the GRB 

(Extended Data Table 1). GROND data have been reduced in the standard manner using 

pyraf/IRAF
31,32,33

. The optical imaging was calibrated against comparison stars obtained by 

observing a nearby SDSS field (immediately before the afterglow observation in the third night 

under photometric conditions) and calibrated against the primary SDSS
34

 standard star network. 

The NIR data were calibrated against the 2MASS catalog. This results in typical absolute 

accuracies of 0.03 mag in g΄r΄i΄z΄ and 0.05 mag in JHKS (1σ errors are reported everywhere). 

All GROND measurements are listed in Extended Data Table 1, and the properties of the GRB 

afterglow proper, including the two kinks in the early afterglow light curve (Fig. 1) will be 

described in detail elsewhere [Kann, D.A. et al. 2015, Astron. Astrophys. (in prep.)]. 

 

We have made use of two other sources of measurements: First, we add u-band observations 

obtained with Swift/UVOT (Extended Data Table 2). UVOT photometry was carried out on 

pipeline-processed sky images downloaded from the Swift data centre
35 

following the standard 

UVOT procedure
36

, and is fully compatible with earlier, independent publications of the UVOT 

data
2,3

. Second, we add selected complementary data
3
, in particular (i) HST F336W/F125W data 

from 11.1 and 35.1 days after the GRB, respectively; (ii) two epochs of VLT/FORS2 g΄RCi΄z΄ data 

during the SN phase, which agree excellently with our data due to their use of our GROND 

calibration stars; (iii) a late-time Gemini-S u΄-band observation (198 days after the GRB). 

 

With the constant host galaxy contribution accurately determined at late times in u΄g΄r΄i΄z΄J (see §3 

and Extended Data Fig. 4), the afterglow light curve shows clear evidence for a steeper afterglow 

decay at >10 days post-burst, particularly in the u΄-band where there is essentially no contribution 

from the supernova (as evidenced by the spectrum) and which therefore can be used as a template 

for the pure afterglow contribution. We link the decay slopes for all filters to be the same. This 

provides the two decay slopes α1=1.55±0.01 and α2=2.33±0.06, with a break time of tb=9.21±0.47 

days. The u΄-band fit is also shown in Figure 1 to visualize the decomposition. Apart from our 

much larger data set provided by our GROND observations, the difference to the decomposition of 

[3] is the fact that they ignored the host contribution in the redder bands at 3050 days (though 

they actually note this in their work). 

 

In order to create the SN light curve for each photometric band, we then subtracted both, the 

afterglow contribution in that band based on the extrapolation of the afterglow light curve, and the 

host galaxy contribution based on its spectral energy distribution; see §3. The error in the host 

galaxy subtraction is negligible as the host photometry is accurate to better than 10%, and the host 

contributes only between 5–15% to the total light during the SN bump. The error on the afterglow 

subtraction depends on whether or not the decay slope 
2
 remained constant after the last secure 

measurement right before the onset of the SN. The intrinsic GRB afterglow light curves at this late 

time are observed to only steepen, never flatten. Thus, our afterglow subtraction is conservative, 

and results in a lower limit for the SN luminosity. 
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The quasi-bolometric light curve of SN 2011kl was constructed from GROND g΄r΄i΄z΄J 

photometry and the supplementary data
3
 as follows. First, the individual filter bands have been 

extinction-corrected with AV
Gal

 = 0.06 mag Galactic foreground
37

, and rest-frame AV
Host

 = 0.12 

mag as derived from the GRB afterglow spectral energy distribution fitting. By deriving quadratic 

polynomials for sets of three consecutive filters (Simpson’s rule) they were then combined to 

create a quasi-bolometric light curve. 

 

The quadratic polynomials are then integrated over rest-frame wavelength from 3860/(1+z) Å 

(blue edge of the g΄-band filter) to 13560/(1+z) Å (red edge of the J filter). The k-correction was 

computed from the spectral energy distribution. In order to transform the integrated flux into 

luminosity, we employed a luminosity distance of d=4080 Mpc, using concordance cosmology 

(

=0.73, 

m
=0.27, and H

0
=71 km s1 Mpc1). 

 

No correction for the contribution of the unobserved near-infrared part of the spectrum has been 

applied to both, SN 2011kl and SN 1998bw (Figure 2), because this emission is usually sparsely 

sampled in wavelength and time, and thus is largely based on assumptions (and no data is available 

for the plotted SLSNe). For SN 2011kl we lack any rest-frame near-infrared measurements. We 

acknowledge that therefore the bolometric luminosity might be underestimated by 5%–30%. Other 

than that, all bolometric light curves shown in Fig. 2 are integrated over the same wavelength band 

(except for the UV band, which contributes less than a few percent at and after maximum). The 

SLSN light curves are plotted according to the observational constraints of their maxima, i.e. 

g-band peak at 16.8 days rest-frame for PTF11rks 
27

 and using the first measurement 17.5 days 

before maximum as lower limit for PS1-10bzj 
28

. 

 

The VLT/X-shooter
38

 spectrum, taken on Dec. 29, 2011 (19.8 days after the GRB, 11.8 rest-frame 

days, and 2 days prior to the SN maximum), has been reduced with the ESO X-shooter pipeline 

v2.2.0, in particular for flat-fielding, order tracing, rectification and initial wavelength calibration 

with an arc lamp. During rectification, a dispersion of 0.4Å/pixel has been used in the UVB/VIS 

arm, minimizing correlated noise but maintaining sufficient spectral resolution for resolving lines 

down to 50 km/s, i.e. a velocity dispersion of 20 km/s. Our own software is used for bad-pixel and 

cosmic-ray rejection, as well as sky-subtraction and frame shifting and adding
39

. Optimal 

extraction is applied to the resulting 2D frames, and the one-dimensional spectrum is finally flux 

calibrated separately for each arm against the GROND photometry. Spectral binning has no effect 

on the steepness of the slope (Extended Data Figure 1). The NIR arm does not contain any useful 

signal, as do the two HST grism spectra
3
 (Extended Data Figure 2). 

 

The observed spectrum is the sum of light from the GRB afterglow, the GRB host galaxy, and the 

supernova SN 2011kl. After correcting for AV
Gal

 = 0.06 mag Galactic foreground
37

 extinction, we 

corrected for the contribution of the host galaxy using a template fit (§3) on the host photometry 

(including the J-band measurement of [3]), and subtracted the afterglow based on the extrapolation 

of the g΄r΄i΄z΄ GROND light curves to the time of the X-shooter observation. After conversion to 

the rest-frame, we corrected for intrinsic reddening of E(BV)=0.040.01 mag derived from the 

GROND afterglow SED fitting (see Extended Data Figure 3 for the effect of each of these steps). 

 

2. Association of GRB afterglow, supernova, and host galaxy 
 

We detect narrow absorption lines of Mg II(2796, 2803), Mg I(2852) and Fe II(2344, 2374, 

2382, 2586, 2600) in the SN 2011kl spectrum. No change in equivalent widths and redshift is 

apparent when compared to the afterglow spectrum
3,39

 taken 0.75 days after the GRB. Moreover, 
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these equivalent widths are typical of those seen from host galaxies of bright long-duration GRBs. 

This relates the SN to the same host galaxy as GRB 111209A. 

 

No offset is measurable in GROND images between GRB afterglow and supernova (RA<0.''032, 

Decl<0.''019), which implies that the two events are co-spatial within <200 pc.  

 

3. The host galaxy 
 

During the late-epoch GROND observation the host galaxy is clearly detected in g΄r΄i΄z΄ in the 

35 range (last entry in Extended Data Table 1). We add HST F336W and Gemini u'J from [3]. 

Noting that the supernova does not contribute significantly any more during these late epochs (with 

expected AB magnitudes g'28.5, r'28.0, i'27.5, z'27.2 mag), we employ LePHARE
40 

and use 

the best-fit model (a low-mass, star-forming galaxy) as a template for the host subtraction (see 

Extended Data Figure 3 and 4). Inferences on the physical properties of the host from this fitting 

will be published elsewhere [Kann, D.A. et al. 2015, Astron. Astrophys. (in prep.)] and 

absorption/emission line information from the optical/NIR X-shooter spectra are given in [39]. We 

note though that the low metal content seen in the SN spectrum is in accord with the very low host 

galaxy metallicity (10%-40%), which is somewhat unusual for such a low-redshift object but 

commonly seen in SLSN hosts. 

 

4. Radioactivity cannot power the supernova peak 
 

Modelling the bolometric light curve according to the standard scheme of 56Ni powering
41

 and 

augmented by Co decay
42

, an ejecta mass of 3.20.5 M⊙ and a 56Ni mass of 1.00.1 M⊙ is derived 

(we used vph = 20,000 km/s, and a grey opacity of 0.070.01 cm2 g1, constant in time). The 

derived 56Ni mass is anomalously large for SNe Ib/c, including GRB-SNe
43

. Such a large 56Ni 

mass is difficult to reconcile with the very low opacity in the blue part of the spectrum. The 

continuum flux keeps rising down to 300 nm rest-frame without any sign of suppression implying 

very low metal line opacity. Also, the ejected mass of 3 M⊙ as deduced from the light curve 

width does not resonate with the large 56Ni mass. 

 

While it has been suggested that part of the 56Ni could be synthesised in the accretion disk
44

, this is 

unlikely to proceed at a rate needed in our case. Recent numerical simulations show that for a wide 

range of progenitor masses (13–40 M⊙), initial surface rotational velocities, metallicities and 

explosion energies, the required disk mass of more than 1 M⊙ (corresponding to 0.2 M⊙ 56Ni) is 

difficult to achieve
45

, for both cases of compact objects: (i) in the case of heavy fallback, leading to 

the collapse of the central object into a black hole, the explosion energy is required to be small (few 

 1048 erg), and more importantly, the disk forms only after a few months due to the large fallback 

time (~106 s). (ii) in the case of little fallback, leaving a neutron star behind, only fine-tuned 

conditions produce fallback disks at all, and these then have lifetimes of at most several hundred 

seconds. 

 

Thus, a different mechanism must power the SN light curve during the first 40 days (rest frame). 

 

5. Enhanced emission due to interaction with the circumburst medium?  
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Given the large luminosity, we considered additional emission from the interaction of the 

supernova ejecta with the circumstellar medium as an alternative possibility. In that case, one may 

expect narrow Balmer emission lines. While we detect very narrow (=35 km/s) H, H and 

[OIII] lines in emission, the Balmer fluxes are compatible with the forbidden line flux and with an 

origin from the global low (0.02 M⊙/yr) star formation rate in this low-metallicity (10%-40% 

solar) host galaxy
39

. On the other hand, if the progenitor star was heavily stripped, no circumstellar 

H may be present. Another, more serious constraint is the very blue SN spectrum, which would 

require a very low density to minimize extinction (though dust may be destroyed by the initial 

GRB and SN light). This may be at odds with the requirement that the density is high enough to 

generate the few 1043 erg s1 of radiative luminosity observed around the peak. 

 

6. Modelling 

 

We have been able to reproduce the spectrum of SN 2011kl using a radiation transport code
18,19

 

and a density profile where r7, which is typical of the outer layers of SN explosions. The 

spectra appear rather featureless but this does not mean that there is no absorption: the UV is 

significantly depressed relative to a blackbody. However, it is much less depressed than the spectra 

of GRB-SNe, indicating a lower metal content. Many metal lines are active in the UV (Fe, Co, Ti, 

Cr). The smooth appearance of the UV spectrum is the result of the blending of hundreds of lines 

caused by the large range of wavelengths over which lines are active (line blanketing). Indeed, the 

photospheric velocity (and density) determines the degree of line blending. We used here 

photospheric velocities of vph ~ 20,000 km/s (grey/black lines in Figure 3), and can see increasingly 

featureless spectra as vph increases and lines are active at higher velocities (larger blueshift), 

demonstrating the minimum velocity required to broaden unseen absorption around 400 nm 

rest-frame (CaII, CII), but at the same time explain the sharp cut-off below 280 nm rest-frame. The 

strongest lines that shape this strong blue cut-off are labelled in black (grey ’ISM’ label mark 

MgII/FeII absorption lines in the host galaxy). Most of these are blended and do not stand out as 

individual features, unlike in classical SLSNe which have vph ~ 10,000 km/s. In the optical, on the 

other hand, only few very weak absorption lines are visible in our SN spectrum. These are due to 

Ca II and C II lines. O II lines are not detected, and would require large departures from thermal 

equilibrium because of the very high ionization/excitation potential of their lower levels (20-30 

eV). This suggests the presence of X-rays in SLSNe, probably produced by shocks. Our model 

only has 0.4 M⊙  of material above the photosphere. The metal content is quite low. It is 

consistent with 1/4 of the solar metallicity, which could be the metallicity of the star whose 

explosion caused the GRB and the SN, and there is no evidence of freshly synthesised material 

mixed-in, unlike in GRB-SNe. This supports the notion that the SN light curve was not powered by 
56Ni decay but rather by a magnetar. Figure 3 shows this model with three different photospheric 

velocities overplotted on the X-shooter spectrum. 

 

The spectrum can be reproduced without invoking interaction, but the metal abundance is so low 

that it is unlikely that much 56Ni has been produced. We therefore consider magneto-rotational 

energy input as the source of luminosity. Depending on the relative strength of magnetar and 

radioactive decay energy deposition, different peak luminosities as well as rise and decay times can 

be obtained
20

. One particularly pleasant feature of the magnetar mechanism is that it does not 

necessarily suffer from strong line blanketing, thus providing a more natural explanation for the 

observed spectrum. 
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Using a simple formalism describing rotational energy loss via magnetic dipole radiation and 

relating the spin-down rate to the effective radiative diffusion time, one can infer the magnetar’s 

initial spin period P
i
 and magnetic dipole field strength from the observed luminosity and time to 

light curve peak t
peak

. One million combinations of the parameters P
i
, B, M

ej
 and E

K
 were sampled 

and ranked according to the goodness of fit relative to the data. All best solutions cluster at 

P=12.20.3 ms and have B=7.51.51014 G, required by the observed short t
peak

 (14 rest-frame 

days) and the moderate (for a magnetar) peak luminosity. The mass and energy of the ejecta are 

less well determined, as they depend on the energy injection by the magnetar, and also due to the 

unknown distribution of mass in velocity space below the photosphere. We find a rather low 

ejected mass Mej=2.4±0.7 M ⊙ , and energy E
K
=(5.53.3)1051  erg. Different photospheric 

velocities of e.g. 10,000, 15,000 and 20,000 km/s lead to different ejecta masses of 1.1, 1.7 and 2.2 

M⊙, but produce indistinguishable light curves with M
Ni

=1.00.1 M⊙. Note though that not every 

combination of Pi, Mej and EK yields similar results. The GRB energy can be reconciled with the 

maximum energy that can be extracted from a magnetar if the correction for collimation of the 

GRB jet is a factor of 1/50 or less, which is well within typical values for GRBs
22

. 

 

7. Code availability  

 

The code used in [18, 19] is available on request from mazzali@mpa-garching.mpg.de. 
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Extended Data 

 

 

 

 

Extended Data Figure 1 | Binning has no effect on spectral slope. 

Original X-shooter spectrum in the UVB (top) and VIS (bottom) arms shown in gray (0.4 Å/pix; 

prior to host and afterglow subtraction), with the re-binned (factor 20) spectrum overplotted in 

black. The binning does not change the steepness of the spectrum, in particular not at the blue end. 

 

 

Extended Data Figure 2 | Long-wavelength spectra. 

Full X-shooter spectrum near maximum light of SN 2011kl, as well as two HST grism spectra 

taken one week before and after the supernova maximum, respectively (both taken from [3]. 

Above 500 nm rest-frame, none contains any informative absorption lines (all absorption 

structures seen are from the Earth atmosphere). 

 

 

Extended Data Figure 3 | Step-by-step corrections of the supernova spectrum. 

Sequence of analysis steps for the X-shooter spectrum, from the only galactic foreground corrected 

observed spectrum (top/very light blue), over host subtraction (light blue) and afterglow+host 

subtraction (blue). The break at 500 nm observer-frame (300 nm rest-frame) and the steep slope 

towards the UV are inherent to the raw spectrum, not a result of afterglow or host subtraction. 

 

 

Extended Data Figure 4 | Observed spectral energy distribution of the host galaxy of GRB 

111209A. 

Plotted in blue are GROND g΄r΄i΄z΄ detections with 1σ errors (crosses) and GROND JHKS upper 

limits (3σ; triangles) of the host galaxy of GRB 111209A. Data taken from [3] are F336W (green), 

Gemini g΄r΄ detections (red crosses) and the J-band upper limit (red triangle). The best-fit 

LePHARE template of a low-mass, low-extinction, young star-forming galaxy is shown which is 

very typical for GRB host galaxies. 
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Extended Data Table 1 | GROND observations of the afterglow, supernova and host of GRB 

111209A.  

 

 

The t time gives the mid-time of the observation relative to the Swift trigger time. All magnitudes 

are in the AB system and not corrected for Galactic foreground extinction. Conversion to Vega 

magnitudes: g΄AB - g΄Vega =-0.062 mag, r΄AB - r΄Vega =0.178 mag, i΄AB - i΄Vega =0.410 mag, i΄AB - i΄Vega 

=0.543 mag, JAB - JVega =0.929 mag, HAB - HVega =1.394 mag, KS,AB - KS,Vega =1.859 mag. 

Corrections for Galactic extinction are A
g

'=0.066  mag, A
r
'=0.046  mag, A

i
'=0.034  mag, 

A
z

'=0.025 mag, A
J
=0.015 mag, A

H
=0.010 mag, A

K
S

=0.006 mag. 
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Extended Data Table 2 | UVOT observations of the afterglow of GRB 111209A.  

 

 

 

The t time gives the mid-time of the observation relative to the Swift trigger time, and all 

magnitudes are in the AB system and not corrected for Galactic foreground extinction. Conversion 

to Vega magnitudes: u
AB
u

Vega
=1.02  mag (as given at 

http://swift.gsfc.nasa.gov/analysis/uvot_digest/zeropts.html). The correction for Galactic 

extinction, using E
(BV)

=0.017 mag 
36

 and the Galactic extinction curve
46

 is A
u
=0.085 mag. 

 

  


