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Abstract

pyspeckit is a toolkit and library for spectroscopic analysis in Python. We describe the pyspeckit package
and highlight some of its capabilities, such as interactively fitting a model to data, akin to the historically widely-
used splot function in IRAF. pyspeckit employs the Levenberg–Marquardt optimization method via the
mpfit and lmfit implementations, and important assumptions regarding error estimation are described here.
Wrappers to use pymc and emcee as optimizers are provided. A parallelized wrapper to fit lines in spectral cubes
is included. As part of the astropy affiliated package ecosystem, pyspeckit is open source and open
development, and welcomes input and collaboration from the community.

Unified Astronomy Thesaurus concepts: Astronomy software (1855); Spectroscopy (1558)

1. Introduction and Background

Spectroscopy is an important tool for astronomy. Spectra are
represented as the number of photons, or total energy in
photons, arriving over a specified wavelength (or equivalently,
frequency or energy) range. Emission and absorption lines
caused by transitions between states in ions, atoms, and
molecules bear important information in their observed
intensity, width, and velocity centroid. These parameters are
typically measured from model fits to the data, such as
Gaussian, Lorentzian, and Voigt profiles. Historically, IRAF
(Tody 1986) provided the astronomy community with easy-to-
use tools for line fitting, but IRAF development has mostly
ceased in the last several years. The lack of an equivalent
available tool in Python prompted the creation of pyspeckit.

pyspeckit development began in 2009 with a script
called “showspec” in the agpy package hosted on Google
Code. It was created and used by a graduate student to plot and
sometimes fit profiles to spectra in python. At the time, IDL
was still more popular than python at most institutes (the first
evidence that python had overtaken IDL in popularity among
astronomers was presented in Momcheva & Tollerud 2015),
and there were no publicly available and advertised tools for
spectral plotting, fitting, and general manipulation (astro-
pysics (Tollerud 2012) was developed contemporaneously
and solved many of the same problems as pyspeckit). The
astropy package (Astropy Collaboration et al. 2013, 2018)
had its first commit in 2011, so even the basic infrastructure for
such analysis was not yet established.

pyspeckit’s graphical user interface (GUI) features were
inspired by IRAF’s splot tool, while the fitting features were

inspired in part by xspec.7 Over subsequent years,
pyspeckit grew by incorporating more sophisticated models
and improving its internal structure. The package was moved
out of agpy and into its own repository in 2011, first spending
a few years on Bitbucket in a mercurial repository, then finally
moved to GitHub in 2012, where it currently resides.8 Release
v1.0 is available on Zenodo (Ginsburg et al. 2022).
Because pyspeckit’s initial development preceded

astropy, some features were included that later became
redundant with astropy. Most notably, pyspeckit
included a limited system for spectroscopic unit conversion.
In 2015, this system was completely replaced with astropy’s
unit system. Around the same time, the Doppler conversion
tools (converting from frequency or wavelength to velocity)
that existed in pyspeckit were pushed upstream into
astropy, highlighting the mutually beneficial role of
astropy’s affiliated packaged system (Astropy Collaboration
et al. 2018). pyspeckit became an astropy affiliated
package in 2017 (an affiliated package is an astronomy-related
Python package that is not part of the astropy core package, and
is not managed by the project but is a part of the Astropy
Project community9).
In this paper we briefly outline pyspeckitʼs architecture and

highlight its key capabilities. In Section 2, we outline the structure
of the package. In Section 3, we describe the GUI system. In
Sections 4 and 5, we outline pyspeckit’s cube handling
capabilities and model library. The appendices describe parameter
error estimation for Gaussians (Appendix A) and for the ammonia
model (Appendix B). Appendix C describes a benchmarking test
of the N2H+ model against the CLASS version. Appendix D
describes a framework for local-thermodynamic-equilibrium-
based multitransition modeling. Finally, Appendix E describes
the integration of pyspeckit into ScousePy.
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7 https://heasarc.gsfc.nasa.gov/xanadu/xspec/
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2. Package Structure

The central object in pyspeckit is a Spectrum, which
has associated data (e.g., flux), error (assumed to be
symmetric, 1σ, Gaussian uncertainty), and xarr (e.g.,
wavelength, frequency, energy); the latter of which represents
the spectroscopic axis. A Spectrum object has several
attributes that are themselves classes that can be called as
functions: the plotter, the fitter specfit, and the
continuum fitter baseline.

There are several subclasses of Spectrum: Spectra is a
collection of spectra intended to be stitched together (i.e., with
nonoverlapping spectral axes, e.g., for Echelle spectra),
ObsBlock is a collection of spectra with identical spectral
axes intended to be operated on as a group, e.g., to take an
average spectrum, and Cube is a 3D spatial-spatial-spec-
tral cube.

2.1. Supported Data Formats

pyspeckitsupports a variety of open and proprietary data
formats that have been traditionally used to store spectroscopic
data products in astronomy. It is always possible to create a
Spectrum object from numpy (van der Walt et al. 2011;
Harris et al. 2020) arrays representing the wavelength, flux, and
error of the spectrum, but the supported file formats listed
below make the reading process easier.

1. ASCII: text files with wavelength, flux, and optional error
columns can be read using the astropy.io.ascii
module.

2. FITS: the Flexible Image Transport System (FITS; Wells
et al. 1981; Greisen et al. 2006; Pence et al. 2010) format
is supported in pyspeckit with astropy.io.fits.
FITS spectra are expected to have their spectral axis
defined using the WCS keywords in the FITS header.
FITS binary tables with the same wavelength, flux, and
optional error column layout as text files can also be read.

3. SDFITS: data files following the Single Dish FITS
(SDFITS; Garwood 2000) convention for radio astron-
omy data as produced by the Green Bank Telescope are
partly supported in pyspeckit.

4. HDF5: if the h5py package is installed, pyspeckit
will support read access to files containing spectra in the
HDF5 format, where the data columns can be specified
using keyword arguments.

5. CLASS: pyspeckit is capable of reading files from
some versions of the GILDAS Continuum and Line
Analysis Single-dish Software format (CLASS; Gildas
Team 2013). The CLASS reader has been tested with
data files from the Arizona Radio Observatory telescopes
(12 m and 10 m Submillimeter Telescope) and the
Atacama Pathfinder Experiment radio telescope.

2.2. Plotter

The plotter is a basic plot tool that comprises
pyspeckit’s main GUI. It is described in more detail in
the GUI section (Section 3).

2.3. Fitter

The fitting tool in pyspeckit is the Spectrum.
specfit object. This object is a class that is created for

every Spectrum object. The fitter can be used with any of the
models included in the model registry, or a custom model can
be created and registered.
To fit a profile to a spectrum, several optimizers are

available. Two implementations of the Levenberg–Marquardt
optimization method (Levenberg 1944; Marquardt 1963) are
provided, mpfit10 and lmfit (Newville et al. 2014).11,12

Wrappers of pymc (Salvatier et al. 2016)13 and emcee14 are
also available, though these tools are better for parameter error
analysis than for optimization.
Once a fit is performed, the results of the fit are accessible

through the parinfo object, which is a dictionary-like
structure containing the parameter values, errors, and other
metadata (e.g., information about whether the parameter is
fixed, tied to another parameter, or limited). Other information
about the fit, such as the χ2 value, are available as attributes of
the specfit object.
Optimal χ2

—specfit computes the “optimal” χ2, which is the
χ2 value computed only over the range where the model
contains statistically significant signal. This measurement is
intended to provide a more accurate estimate of the χ2 value by
excluding pixels that are not described by the model. By
default, the function selects all pixels where the model value is
greater (in absolute value) than the corresponding error. In
principle, this optimal χ2 may be helpful for obtaining correctly
scaled errors (see Section 2.6.1), though this claim has never
been rigorously tested.

2.4. Data Selection

An important feature of the spectral fitter is the ability to
select the region of the spectrum to be fit. This selection
process can either be done manually, using the selectre-
gion method to set one or more ranges of data to include in
the fit, or interactively using the GUI. The selected regions are
then highlighted in the plot window if one is open.

2.5. Continuum Fitting

The fitting process in pyspeckit is capable of treating line
and continuum independently or jointly. If a model includes
continuum, e.g., for the case of a four-parameter Gaussian
profile that includes an additive constant, it can be fitted
through the standard specfit fitter.
However, it is common practice to fit the continuum

independently prior to fitting lines. Such practice is necessary
when fitting absorption lines (the equivalent width is defined
relative to a normalized continuum), and practically necessary
for heterodyne radio observations where the continuum is
usually poorly measured and corrupted by instrumental effects.
Following radio convention, the pyspeckit continuum
fitting tool is called baseline. This module supports
polynomial, spline, and power-law fitting. It is common in
radio astronomy to have wide instrumental residual features in
the data that need to be fitted and removed; this process is

10 Originally implemented by Craig Markwardt Markwardt (2009; https://
pages.physics.wisc.edu/~craigm/idl/fitting.html), and ported to python by
Mark Rivers and then Sergei Koposov. The version in pyspeckit has been
updated somewhat from Koposov’s version.
11 https://lmfit.github.io/lmfit-py/, https://doi.org/10.5281/zenodo.11813
12 https://doi.org/10.5281/zenodo.11813
13 https://pymc-devs.github.io/pymc/
14 http://dfm.io/emcee/current/, Foreman-Mackey et al. (2013).
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called “baseline subtraction.” In other wavelength regimes, this
would typically be referred to as continuum fitting or
continuum subtraction. In practical algorithmic terms, fitting
a true astrophysical continuum and a residual instrumental
baseline are indistinguishable.

2.6. Error Treatment

The Spectrum objects used by pyspeckit have an
attached error array, which is meant to hold the 1σ
independent Gaussian errors on each pixel. While this error
representation may be a dramatic oversimplification of the true
errors for almost all instruments (since it ignores correlations
between pixels), it is also the most commonly used assumption
in astronomical applications.

The error array is used to determine the best-fit parameters
and their uncertainties (see Section 2.3). They can be displayed
as error bars on individual pixels or as shaded regions around
those pixels using different display modes.

A typical example is given below, where we generate a
spectrum and error array using numpy (Harris et al. 2020) and
astropy tools (Astropy Collaboration et al. 2013, 2018).

from astropy import units as u
import numpy as np
import pyspeckit

xaxis = np.linspace(−25, 25)∗u.km/u.s
sigma_width = 3.0∗u.km/u.s
data = 5∗np.exp(-xaxis∗∗2 /

(2∗sigma_width∗∗2))∗u.Jy
error = np.ones_like(data) ∗ 0.2
sp = pyspeckit.Spectrum(xarr = xaxis,

data = data,
error = error)

sp.plotter(errstyle=’fill’)

sp.plotter.savefig("example_fig_1.pdf")

2.6.1. Automatic Error Estimation

In the case where there are portions of the spectrum that have
no signal peaks, a common approach in spectroscopy is to
estimate the errors from the standard deviation of those signal-
free pixels. This approach assumes the noise is constant across
the spectrum.

If all of the peaks present in the spectrum are fitted well by
the model, the standard deviation of the residual spectrum from
the model fit will accurately represent the uniform errors. If a fit
is performed with uninitialized errors, they will initially default
to a constant value of unity. pyspeckit will then
automatically replace the errors with the standard deviation
of the residuals, so they remain constant but will have a value
that is related to the data. This means that performing a fit on
the same data (without associated errors) twice will result in the
same parameter values both times but different errors the
second time.

2.6.2. Parameter Error Estimation

Parameter errors are adopted from the mpfit or lmfit fit
results. The Levenberg–Marquardt algorithm finds a local
minimum in parameter space, and one of its returns is the

parameter covariance matrix. This covariance matrix is not
directly the covariance of the parameters, and must be rescaled
to deliver an approximate error.
The standard rescaling is to multiply the covariance by the

sum of the squared errors divided by the degree of freedom of
the fit, usually referred to as χ2/N. The number of degrees of
freedom is assumed to be equal to the number of free
parameters, e.g., for a one-dimensional Gaussian, there would
be three: the amplitude, width, and center. This approach
implicitly assumes that the model describes the data well and is
an optimal fit. It also assumes that the model is linear with all of
the parameters, at least in the region immediately surrounding
the optimal fit. These requirements are frequently not satisfied;
see Andrae et al. (2010) and Andrae (2010) for details. We
show a demonstration of this approximation process in
Appendix A for the case of a simple Gaussian line profile.

3. Graphical Design

3.1. GUI Development

Many astronomers are familiar with IRAF’s splot tool,
which is useful for fitting Gaussian profiles to spectral lines. It
uses keyboard interaction to specify the fitting region and
guesses for fitting the line profile, but for most use cases, these
parameters could only be accessed through the GUI.
The fitting GUI in pyspeckit was built to match splotʼs

functionality but with additional means of interacting with the
fitter. In splot, reproducing any given fit is challenging, since
subtle changes in the cursor position (i.e., the input guess) can
significantly change the fit result. In pyspeckit, it is possible
to record the results of fits programmatically and refit using
those same results.
The GUI was built using matplotlibʼs canvas interaction

tools. These tools are limited to the GUI capabilities that are
compatible with all platforms (e.g., Qt, Tk, Gtk) and therefore
exclude some of the more sophisticated fitting tools found in
other software (e.g., glue; Beaumont et al. 2014).15

3.2. Plotting

Plotting in pyspeckit is designed to provide a short path
to publication-quality figures. The default plotting mode uses
histogram-style line plots and labels axes with LATEX-
formatted versions of units (Figure 1).
When the plotter is active and a model is fit, the model

parameters are displayed with LATEX formatting in the plot
legend. The errors on the parameters, if available, are also
shown, and these uncertainties are used to decide on the
number of significant figures to display.

4. Models

Some of pyspeckit’s internal functions may be replaced
by the astropy specutils package in the future. How-
ever, the rich suite modeling in pyspeckit is likely to remain
useful indefinitely. This model library includes some of the
most useful general spectral model functions (e.g., Gaussian,
Lorentzian, and Voigt profiles) and a wide range of specific
model types (e.g., ammonia and formaldehyde hyperfine
models, the H2 rotational ladder, and recombination line
models). These models can be easily used within pyspeckit,

15 An example walking through typical interactive GUI usage is in the online
documentation at https://pyspeckit.readthedocs.io/en/latest/interactive.html.

3

The Astronomical Journal, 163:291 (11pp), 2022 June Ginsburg et al.

https://pyspeckit.readthedocs.io/en/latest/interactive.html


but they can also be used completely independent from it16

(Svoboda 2021). Several of the models rely on scipy
(Virtanen et al. 2020) for either special functions or multi-
dimensional interpolation.

The base Model class and fitting framework in
pyspeckit provide some generally useful features that do
not need to be reimplemented. Any model is generalized to a
multicomponent form automatically; e.g., the Gaussian model
only describes a single Gaussian spectral component, but the
fitting tools allow any number of independent Gaussians to
be fit.

Models are customizable, and examples of registering a new
or modified model in pyspeckit are included in the online
documentation.

A list of the included models, and their parent class when
relevant, is given in Table 1.

Hyperfine Line Models—in radio and millimeter spectrosc-
opy, there are many molecular line groups that are well
modeled as Gaussian profiles separated by fixed frequency
offsets. These hyperfine line groups are often unique probes of
physical parameters because these features have different,
known relative optical depths. In this case, the measured
relative amplitudes of these different features allow the optical
depth (and, in turn, the column density) to be measured from a
single spectrum. pyspeckit provides the hyperfine
model class to handle this class of molecular line transitions,
and it includes several molecular species implementations (e.g.,
HCN, N2H

+, NH3, H2CO). In this implementation, the
excitation temperature of each of the hyperfine components is
assumed to be the same, which is the most commonly used
assumption but may be violated in some cases.

5. Cubes

Spectral cubes have become important in radio astronomy,
since they are the natural data products produced by
interferometers like ALMA and the JVLA. Optical and infrared
data cubes are growing more common from integral field units
(IFUs) like MUSE on the VLT, OSIRIS on Keck, NIFS on
Gemini, and NIRSpec and MIRI on JWST.

The cube visualization tools built into pyspeckit are limited
to spectral and spatial plots. The mapplot viewer makes a 2D
image of a slice of the cube, if given a slice number, or a

projection along the spectral axis if given a function or function
name. Once active, the mapplot viewer can be used
interactively: clicking on a pixel will display that pixel’s
spectrum in a separate window; clicking and dragging will
produce a circular region whose average spectrum will be
plotted in that window. The plots shown in the separate
window correspond to a spectrum accessible as the cube’s.
spectrum object. This basic interaction allows for data
exploration, but is not efficient for fitting each spectrum of
a cube.
While many cube operations are handled well by numpy-

based packages like spectral-cube (Robitaille et al. 2016;
Ginsburg et al. 2019),17 it is sometimes desirable to fit a profile
to each spectrum in a cube. The Cube.fiteach method is a
tool for automated line fitting that includes parallelization of
the fit. Examples can be found in the online documentation.
This tool has seen significant use in custom made survey
pipelines, where the library of spectral models is particularly
useful18 (e.g., Friesen et al. 2017). It has also been incorporated
into other tools, e.g., multicube,19 SCOUSE (Henshaw et al.
2016, 2019; see Appendix E), make_cube (Youngblood et al.
2016), and pyspecnest20 (Sokolov et al. 2020).

6. Summary

pyspeckit is a versatile tool for spectroscopic analysis in
python and is one of the astropy affiliated packages.

J.E.P. acknowledges the support by the Max Planck Society.
A.G. acknowledges support from the NSF under grant AST
2008101.

Appendix A
Parameter Error Estimation for a simple 1D Gaussian

Profile

As discussed in Section 2.6.2, parameter errors are estimated
in pyspeckit by the underlying lmfit or mpfit tools
using the approximation that the reduced chi-squared is unity,
χ2/n= 1. We demonstrate here that, for a simple one-
dimensional Gaussian profile, this approximation results in an
excellent recovery of the underlying parameter errors.
In Figure 2, we show a synthetic spectrum with uniform

Gaussian random noise and perfectly-measured uncorrelated
data errors. The fitted model is a one-dimensional Gaussian
profile with free parameters amplitude, center, and width. The
fit results are given in the figure.
To produce a good error estimate under the χ2/n= 1

approximation, the error distribution must be Gaussian, the
model must be linear in all parameters, and the model must be
the correct underlying model (Andrae 2010).
Figure 3 shows the χ2 values in parameter space surround-

ing the best-fit value. Along the diagonal, we show the χ2

values for the individual parameters with all others margin-
alized over by taking the minimum χ2 value over the explored
parameter space. The vertical dashed lines show the estimated
1σ errors reported by the mpfit optimizer, while the
horizontal dashed lines show the value Δχ2= 1, which
corresponds to the 68% confidence interval for that parameter.

Table 1
Summary of Models

Model Module Name Parent Class

Hyperfine hyperfine L
Gaussian inherited_gaussfitter L
Lorentzian inherited_lorentzian L
Voigt inherited_voigtfitter L
NH3 ammonia Hyperfine
NH2D ammonia Hyperfine
N2H

+ n2hp Hyperfine
N2D

+ n2dp Hyperfine
DCO+ dcop Hyperfine
LTE Molecule lte_molecule L
H2CO (cm) formaldehyde Hyperfine
H2CO (mm) formaldehyde_mm L
Hydrogen hydrogen L

16 E.g., https://nestfit.readthedocs.io/en/latest/quickstart.html.

17 https://spectral-cube.readthedocs.io
18 https://github.com/GBTAmmoniaSurvey/GAS
19 https://github.com/vlas-sokolov/multicube
20 https://github.com/vlas-sokolov/pyspecnest
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If the χ2/n= 1 approximation is perfect, the dashed lines
should intersect with the blue curves, and in this case, they do
for all parameters.

Off of the diagonal of Figure 3, we show the two-
dimensional marginal distributions. Contours are shown at
Δχ2= 1, 2.3, 6.2, 11.8, corresponding to 39.3%, 68%, 95%,
and 99.5% confidence regions (the first value corresponds to 1σ
uncertainty when marginalized to a single parameter, while the
others correspond to 1σ, 2σ, and 3σ for two parameters,
respectively, assuming a normal distribution) . The vertical and
horizontal dashed lines show the estimates from the χ2/n= 1
approximation for a single parameter; these are expected to
intersect the innermost 1σ contour when marginalized to a
single parameter. The shift versus amplitude and shift versus

width diagrams are both well-behaved, with error contours
tracing out a symmetric distribution centered on the true
parameters marked with an “x.” However, the width versus
amplitude plot indicates that the single-parameter error bars are
partly driven by the significantly correlated uncertainty
between these parameters. This information is captured in the
covariance matrix that is used to compute the single-parameter
errors, as it has significant values in the off-diagonal parts of
the matrix.
The source code for this example can be found in the

pyspeckit github repository in examples/synthetic_
spectrum_example_witherrorestimates.py.21

Figure 2. One-dimensional Gaussian profile fit to a synthetic spectrum. The parameter values and errors are shown in the upper right. The number of significant
figures displayed in both the value and the error is automatically set to one digit more than the last significant digit in the error.

Figure 1. An example plotted spectrum showing the automated unit labeling and errors. The errors are shown with the ‘‘fill’’ style and represent symmetric
1 − σ Gaussian errors.

21 https://github.com/pyspeckit/pyspeckit/blob/master/examples/
synthetic_spectrum_example_witherrorestimates.py
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Appendix B
Parameter Error Estimation for Ammonia

In Appendix A, we showed the parameter estimation results
in the case of a modeled one-dimensional Gaussian. One of the
most commonly used models in pyspeckit is the ammonia
(NH3) hyperfine model, which has several additional emission
lines and several parameters governing those lines.

The ammonia inversion transitions are notable for having
spectrally resolved hyperfine components under typical Galac-
tic molecular gas conditions, the relative weights of which are
governed by quantum mechanics (Mangum & Shirley 2015).
The existence of these additional components often allows for
direct estimates of the optical depth of the central line, which is
optically thicker than the other components, thereby making
column density estimates from a single spectral band relatively
straightforward.

The model for these lines is more complicated than that for a
single Gaussian. The model must include a simplified version
of the radiative transfer equation and must simultaneously
produce the predicted emission of several lines. Additionally,
there are several approximations for the relative line strengths
that are convenient to use under different circumstances, so
pyspeckit implements several different variants of the NH3

model.
In this section, we show parameter estimates analogous to

those in Section A. We examine a case where the fitted lines are

in local thermodynamic equilibrium (LTE), such that the ratios
of the (J, K )= (1, 1) to (2, 2) line is governed by the rotational
temperature TR but the individual lines both have Tex= TR.
The free parameters in the ammonia model are the rotational

temperature, TR, which governs the relative populations of the
rotational states, the excitation temperature Tex, which governs
the relative populations of the two levels within a single
inversion transition, the column density, N(NH3), which
specifies the total column density of NH3 integrated over all
states (note that this parameter enters the model as 10N, i.e., we
optimize the log of the column density), the line-of-sight
velocity vLoS, the line width σv, and the ortho-to-para ratio
parameterized as the fraction of ortho-NH3Fortho. In the
examples below, we fix Fortho= 0 and treat only para-NH3

lines.
The fit results from the first case are shown in Figures 4 and

5. The fit recovers the input parameters, but reveals one of the
important caveats when using any optimization algorithm: in
some models, parameters are degenerate, and therefore using
the diagonal of the covariance matrix to estimate the variance
can result in incorrect error estimates. While the errors on most
parameters appear reasonable, there is a very large error on the
excitation temperature Tex, which is driven by the degeneracy
of Tex with Ntot. The asymmetry of the error on Tex is apparent
in Figure 5, but it is not captured by the optimizer’s reported
error results; the asymmetry occurs because Tex is in the
exponent in the model equations.

Figure 3. Error estimate figure. In all panels, the vertical dashed lines show the estimated 1σ errors from the optimizer, while the horizontal dashed lines show the
value Δχ2 = 1, which corresponds to the 68% confidence interval for that parameter. In the off-diagonal panels, contours are shown at Δχ2 = 1, 2.3, 6.2, 11.8 (black
dashed, red, blue dotted, green dashed–dotted), corresponding to 39.3%, 68%, 95%, and 99.5% confidence regions (1σ for a single parameter, then 1σ, 2σ, and 3σ for
two parameters). See Appendix A for details and interpretation.
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In such situations, it can be beneficial to measure the
parameter errors in different ways. Using the emcee and pymc
wrappers can help do this. Examples of how to use these Monte
Carlo samplers to acquire better parameter errors once an
optimization has already been performed are available in the
online documentation.22

More sophisticated examples, including fitting of a non-LTE
ammonia spectrum in which Tex< TR, are available in the
example directory of pyspeckit23

These examples also include demonstrations of how to force
the optimizer to ignore nonphysical values while still obtaining
useful constraints on the free parameters. Constrained fitting
approaches can be helpful in cases like the ammonia fit, where
high values of Tex where Tex> Trot are statistically likely given
the model, but physically disallowed; constrained fitting allows
the known physical limits to rule out bad portions of parameter
space.

Figure 4. Ammonia model profile fit to a synthetic spectrum. The parameter values and errors are shown in the upper right. The associated error estimate triangle
diagram is shown in Figure 5. The correct parameters are TR = Tex = 35, N = 15, σv = 2, and v = 0, all of which are reasonably recovered. However, note that
Tex > TR is generally nonphysical, yet the allowed parameter space for Tex includes such values. This two-panel plot was produced automatically using the
pyspeckit.wrappers.fitnh3.plot_nh3 command.

22 See http://pyspeckit.readthedocs.io/en/latest/example_pymc.html.
23 https://github.com/pyspeckit/pyspeckit/tree/master/examples, specifically
https://github.com/pyspeckit/pyspeckit/tree/master/examples/synthetic_LTE_
ammonia_spectrum_example_witherrorestimates.py and https://github.com/
pyspeckit/pyspeckit/tree/master/examples/synthetic_nLTE_ammonia_
spectrum_example_witherrorestimates.py.
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Appendix C
Comparison of N2H

+ (1− 0) Results with CLASS

One of the most frequently used line transitions for the study
of dense gas kinematics is N2H

+ (1− 0) at 93.17 GHz. The
transition displays several hyperfine components with well
determined relative frequencies and weights. The standard
approach for analyzing this line has been to use the HFS mode
within CLASS. Here we show that using the N2H

+

hyperfine model in pyspeckit, we obtain the same
results in both optically thin and thick models.
The main difference between the CLASS and pyspeckit

parameterization is that the former does not report excitation
temperature (Tex), but the area of the line profile. The reported
area is τ× Tant, where

T J T J T , C1ant ex background( ) ( ) ( )= -

Figure 5. Error estimate figure for the default NH3 model. The panels are labeled as in Figure 3. The centroid velocity panel is excluded from this plot because it is
independent of the other parameters, exhibiting no degeneracy. The most relevant panel is the ntot0 vs. tex0 panel, which plots the column N against the excitation
temperature Tex: both of these parameters govern the peak amplitude of the spectrum, so they are degenerate. The vertical and horizontal dashed lines represent the
δχ2 = 1 and ±1σ computed errors, respectively. Their intersection points also intersect the blue marginalized δχ2 curve in all of the displayed cases, indicating that the
approximation of the errors using the χ2/n = 1 assumption is excellent. However, the asymmetry seen in the blue Tex curve suggests that the approximation for that
parameter is likely to break down in some cases because the true errors are asymmetric.
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where

J T
h

k e

1

1
. C2

B
h k TB

( )
( )

( )n
=

-
n n

We derive the equivalent Tex from the reported line fit
parameters. Moreover, in the optically thin case both fits are
performed using the common assumption of τ= 0.1 as a fixed
parameter.

Tables 2 and 3 show the results of fitting an example
spectrum in both CLASS and pyspeckit. The resulting fits
differ by <1% in most parameters, with a slightly greater
discrepancy in the velocity centroid but consistent within the
reported fit uncertainties.

Appendix D
LTE Model

pyspeckit includes tools to model generic LTE emission
lines. The modeling tools include wrappers to retrieve the
appropriate molecular line parameters from the JPL (Pickett
et al. 1998) or CDMS24 (Müller et al. 2005) spectroscopy
databases via their astroquery interfaces (Ginsburg et al. 2019).

The main modeling function, LTE_molecule.genera-
te_model, operates on the combination of line parameters
(centroid, width), physical parameters (excitation temperature
Tex, total column density Ntot), and molecular line parameters
(rest frequency νrest, Einstein A value Aij, degeneracy gu, upper
state energy level EU, and the partition function Q(Tex)). It
implements the equations:

c
A N

h

k T8
exp 1 D1ij u

B

2

2
ex

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )t
pn

f
n

= -n n

where c is the speed of light, kB is Boltzmann’s constant, h is
Planck’s constant, Nu is given by

N N
g

Q

E

k T
exp D2u

u u

B
tot

ex

⎜ ⎟
⎛
⎝

⎞
⎠

( )=
-

and fν is assumed to be a Gaussian such that

1

2
exp

2
D30

2

2
⎡
⎣⎢

⎤
⎦⎥

( ) ( )f
ps

n n
s

= -
-

n
n n

where σν is the Gaussian line width (not the FWHM) in
frequency units,

c rest
vs n=n
s and σv is the Gaussian line width

in velocity units. The above is based on Equations (11) and
(29) of Mangum & Shirley (2015). The returned spectral model
is then calculated as

I J T e J T e J T
J T J T e

1
1 D4

ex BG BG

ex BG

( )[ ] ( ) ( )
[ ( ) ( )][ ] ( )

= - + -
= - -

n n
t

n
t

n

n n
t

- -

-

where TBG is the background temperature (assumed 2.73 for
the default CMB temperature). We have split the equation into
two lines to indicate that the return is explicitly background-
subtracted. Jν is the Rayleigh–Jeans equivalent brightness
temperature

J
h

k

h

k T
exp 1 . D5

B B
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⎜ ⎟
⎡
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⎛
⎝

⎞
⎠

⎤
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( )n n
=

-
-n

-

The partition function can be specified as an array, which
enables modeling lines from different species simultaneously.
To verify the accuracy of these models, we benchmarked the

pyspeckit models against both XCLASS (Möller et al.
2017) and molsim (Lee 2021). The benchmark notebook is
provided.25 We modeled the lowest 12 transitions of CO. We
obtain good agreement (<1% difference) with XCLASS at the
line peak for all transitions when using option Inter-
f_Flag̃=̃False. In the low-J transitions, we see significant
fractional differences in the line wings, but with very small
absolute values (the difference in the integral is <10−4); these
appear to come from rounding errors in the evaluation of the
Gaussian function. These small differences are very unlikely to
affect any modeling. We obtain significantly different answers
with Interf_Flag̃=̃True; in this case, XCLASS returns a
peak that is lower by the CMB temperature.
We additionally benchmarked two more complicated

molecules, CH3OH and CH3CN, and again found excellent
agreement.

Appendix E
ScousePy

ScousePy is a tool for the decomposition of data cubes
with multicomponent spectral lines, and makes use of
pyspeckit’s fitting functionality (Section 2.3). Broadly
speaking, spectral decomposition algorithms can be divided
into two classes: bottom up and top down. The former treat the
decomposition of individual spectra independently from one
another, while the latter approach uses spatial averaging to
estimate initial guesses for the decomposition of individual
spectra. ScousePy follows the latter of these two approaches.
ScousePy:

1. Breaks a data cube into subregions of user-defined size. A
spatially-averaged spectrum is extracted from each
subregion.

Table 2
Best-fit Parameters in Optically Thin Model (Three Parameters)

Parameter Input Value pyspeckit Fit CLASS Fit

Tex 9.0 3.454 ± 0.014 3.451
Vc 0.0 0.0016 0.0028 ± 0.0068
σv 0.3 0.2942 ± 0.0062 0.2930 ± 0.0060
τall 0.01 0.1 0.1
Area 0.0607 ± 0.0012

Table 3
Best-fit Parameters in Optically Thick Model (Four Parameters)

Parameter Input Value pyspeckit Fit CLASS Fit

Tex 9.0 9.19 ± 0.19 9.1833
Vc 0.0 0.00042 −0.000 ± 0.0063
σv 0.3 0.3047 ± 0.0062 0.3041 ± 0.0063
τall 9.0 8.13 ± 0.59 8.10 ± 0.59
Area 49.0 ± 2.25

24 https://spec.jpl.nasa.gov/

25 https://github.com/pyspeckit/pyspeckit-tests/blob/master/xclass-
benchmark/CO_Benchmark.ipynb
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2. Uses derivative spectroscopy to estimate the number of
components and the properties of those individual
components in each spatially-averaged spectrum. These
initial guesses are passed to pyspeckit’s specfit to
perform the fit.

3. Uses the output solution (specfit.fitter.
params) from the average spectrum as new initial
guesses for fitting the individual spectra contained within
the averaging region.

4. Displays the results in an interface that enables quality
assessment and refitting if necessary.

ScousePymakes use of pyspeckit’s specfit in two
main ways. First, noninteractively, with initial guesses supplied
to specfit via specfit.guesses. Second, ScousePy
also makes use of pyspeckit’s interactive fitting function-
ality, which uses keyboard and mouse interaction to provide
specfit.guesses.

An example of the ScousePy.ScouseFitterGUI is
shown in Figure 6. This figure shows the Gaussian decom-
position of a two-component spectrum. ScousePyprovides
initial guesses to pyspeckit’s specfitusing derivative
spectroscopy, in which:

1. The input spectrum is smoothed using astropy.
convolution.Gaussian1DKernel (see Scou-
sePy.DSpec).

2. The first to fourth order derivatives of the smoothed
spectrum are computed and used to determine the number
of components and their amplitudes, centroids, and
widths (see lollipops in the top-left panel).

These values are then supplied to specfit via specfit.
guesses. The fit is performed using lmfit, and the result is
displayed in the information panel. The buttons on the right-
hand side of the GUI can be used to enter pyspeckit’s
interactive fitter functionality via “fit (manual).”26 The relevant
fit information produced by pyspeckit (or further derived
from the quantities output by specfit) are located in a
dictionary called ScousePy.ScouseFitter.modelstore.
Further information on the pyspeckitmethodology used by
ScousePy can be found in the documentation for ScousePy.
ScouseFitter and ScousePy.Decomposer.27

ORCID iDs

Adam Ginsburg https://orcid.org/0000-0001-6431-9633
Vlas Sokolov https://orcid.org/0000-0002-5327-4289

Figure 6. Gaussian decomposition of a two-component spectrum performed by ScousePy using pyspeckit. The top-left panel shows the spectrum (black), the
same spectrum smoothed with a Gaussian 1D kernel (dotted black line) using astropy.convolution.Gaussian1DKernel, which is used for the derivative
spectroscopy (right panel), the location and amplitude of the initial guesses determined from derivative spectroscopy (black lollipops) and supplied to specfit, the
best-fitting model solution (green and magenta lines indicate individual components and the total model), the residual spectrum after subtracting the model (orange
line), and the 3σ noise level determined from ScousePy.getnoise. The top-right panel shows the first to fourth derivatives of the smoothed spectrum (dotted
black line). These derivatives are used to estimate the number of components and their amplitudes, widths, and centroids (ScousePy.DSpec). The information
panel at the bottom shows the output information from pyspeckit. This information includes the model parameters and their uncertainties and goodness-of-fit
statistics. The buttons on the right can be used to control pyspeckit either noninteractively using “fit (dspec)” or interactively using “fit (manual).”

26 Note that this example analysis has been performed using ScousePy.
ScouseFitter in its stand-alone mode, which can be used for the
decomposition of an individual spectrum or lists of spectra. The same
procedure is followed during cube fitting.
27 see https://scousepy.readthedocs.io/en/latest/.
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