
Rehemtulla, N, Miller, AA, Jegou Du Laz, T, Coughlin, MW, Fremling, C, Perley,
DA, Qin, YJ, Sollerman, J, Mahabal, AA, Laher, RR, Riddle, R, Rusholme, B and
Kulkarni, SR

 The Zwicky Transient Facility Bright Transient Survey. III. BTSbot: Automated
Identification and Follow-up of Bright Transients with Deep Learning

http://researchonline.ljmu.ac.uk/id/eprint/24472/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Rehemtulla, N, Miller, AA, Jegou Du Laz, T, Coughlin, MW, Fremling, C,
Perley, DA, Qin, YJ, Sollerman, J, Mahabal, AA, Laher, RR, Riddle, R,
Rusholme, B and Kulkarni, SR (2024) The Zwicky Transient Facility Bright
Transient Survey. III. BTSbot: Automated Identification and Follow-up of

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

The Zwicky Transient Facility Bright Transient Survey. III. BTSbot: Automated
Identification and Follow-up of Bright Transients with Deep Learning

Nabeel Rehemtulla1,2 , Adam A. Miller1,2 , Theophile Jegou Du Laz3 , Michael W. Coughlin4 , Christoffer Fremling3,5 ,
Daniel A. Perley6 , Yu-Jing Qin3 , Jesper Sollerman7 , Ashish A. Mahabal3,8 , Russ R. Laher9 , Reed Riddle5 ,

Ben Rusholme9 , and Shrinivas R. Kulkarni3
1 Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA; nabeelr@u.northwestern.edu

2 Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), 1800 Sherman Ave., Evanston, IL 60201, USA
3 Division of Physics, Mathematics, and Astronomy 249-17, California Institute of Technology, Pasadena, CA 91125, USA

4 School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
5 Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125, USA

6 Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK
7 Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden

8 Center for Data Driven Discovery, California Institute of Technology, Pasadena, CA 91125, USA
9 IPAC, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA

Received 2024 January 29; revised 2024 May 28; accepted 2024 May 31; published 2024 August 21

Abstract

The Bright Transient Survey (BTS) aims to obtain a classification spectrum for all bright (mpeak� 18.5 mag)
extragalactic transients found in the Zwicky Transient Facility (ZTF) public survey. BTS critically relies on visual
inspection (“scanning”) to select targets for spectroscopic follow-up, which, while effective, has required a
significant time investment over the past ∼5 yr of ZTF operations. We present BTSbot, a multimodal
convolutional neural network, which provides a bright transient score to individual ZTF detections using their
image data and 25 extracted features. BTSbot is able to eliminate the need for daily human scanning by
automatically identifying and requesting spectroscopic follow-up observations of new bright transient candidates.
BTSbot recovers all bright transients in our test split and performs on par with scanners in terms of identification
speed (on average, ∼1 hr quicker than scanners). We also find that BTSbot is not significantly impacted by any
data shift by comparing performance across a concealed test split and a sample of very recent BTS candidates.
BTSbot has been integrated into Fritz and Kowalski, ZTF’s first-party marshal and alert broker, and now
sends automatic spectroscopic follow-up requests for the new transients it identifies. Between 2023 December and
2024 May, BTSbot selected 609 sources in real time, 96% of which were real extragalactic transients. With
BTSbot and other automation tools, the BTS workflow has produced the first fully automatic end-to-end
discovery and classification of a transient, representing a significant reduction in the human time needed to scan.

Unified Astronomy Thesaurus concepts: Time domain astronomy (2109); Sky surveys (1464); Supernovae (1668);
Convolutional neural networks (1938)

1. Introduction

Large, wide-field surveys like the Panoramic Survey
Telescope and Rapid Response System (Pan-STARRS; Kaiser
et al. 2002), the All-Sky Automated Survey for Supernovae
(Shappee et al. 2014), the Asteroid Terrestrial Last-Alert
System (Tonry 2011; Tonry et al. 2018; Smith et al. 2020), and
the Zwicky Transient Facility (ZTF; Bellm et al. 2019a, 2019b;
Graham et al. 2019; Masci et al. 2019; Dekany et al. 2020)
have made immense contributions to time-domain astronomy
by repeatedly imaging the entire night sky. Some surveys
interface with the community through the output of an alert
stream. Alert packets comprising the stream are intended to
notify the community of the statistically significant brightening
or dimming of some source with respect to a historical
reference image. The alert stream provides a time series for a
wide range of astrophysical, and nonastrophysical, phenomena.
We are interested in the study of supernovae (SNe) using these
alert streams, although only a small fraction of alerts in the

unfiltered stream originate from genuine SNe. Thus, alert filters
are deployed to identify candidate sources of interest. It is
practically impossible to design an alert filter that rejects every
irrelevant alert and accepts all alerts related to sources of
interest. Therefore, manual candidate vetting, or “scanning,” of
the filtered alerts is required. The term scanning can refer to
different actions depending on the relevant survey and science
case, but, in general, scanning has been used extensively and
very successfully in the SN community to identify SNe for
follow-up observations and further study.
The nightly data rate of the Vera C. Rubin Observatory’s

Legacy Survey of Space and Time (LSST; Ivezić et al. 2019)
will significantly surpass our collective capacity for human
scanning. Previous and ongoing surveys employ machine
learning (ML) techniques for real/bogus classification (e.g.,
Bailey et al. 2007; Bloom et al. 2012; Brink et al. 2013;
Goldstein et al. 2015; Wright et al. 2015; Cabrera-Vives et al.
2017; Duev et al. 2019; Mahabal et al. 2019; Turpin et al.
2020; Killestein et al. 2021), and adopting ML will be near
compulsory to efficiently extract knowledge from the next
generation of surveys.
Beyond real/bogus classification, ML models have also been

applied to a variety of tasks in astronomy including
photometric transient classification (e.g., Boone 2019;

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 https://doi.org/10.3847/1538-4357/ad5666
© 2024. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-5683-2389
https://orcid.org/0000-0002-5683-2389
https://orcid.org/0000-0002-5683-2389
https://orcid.org/0000-0001-9515-478X
https://orcid.org/0000-0001-9515-478X
https://orcid.org/0000-0001-9515-478X
https://orcid.org/0009-0003-6181-4526
https://orcid.org/0009-0003-6181-4526
https://orcid.org/0009-0003-6181-4526
https://orcid.org/0000-0002-8262-2924
https://orcid.org/0000-0002-8262-2924
https://orcid.org/0000-0002-8262-2924
https://orcid.org/0000-0002-4223-103X
https://orcid.org/0000-0002-4223-103X
https://orcid.org/0000-0002-4223-103X
https://orcid.org/0000-0001-8472-1996
https://orcid.org/0000-0001-8472-1996
https://orcid.org/0000-0001-8472-1996
https://orcid.org/0000-0003-3658-6026
https://orcid.org/0000-0003-3658-6026
https://orcid.org/0000-0003-3658-6026
https://orcid.org/0000-0003-1546-6615
https://orcid.org/0000-0003-1546-6615
https://orcid.org/0000-0003-1546-6615
https://orcid.org/0000-0003-2242-0244
https://orcid.org/0000-0003-2242-0244
https://orcid.org/0000-0003-2242-0244
https://orcid.org/0000-0003-2451-5482
https://orcid.org/0000-0003-2451-5482
https://orcid.org/0000-0003-2451-5482
https://orcid.org/0000-0002-0387-370X
https://orcid.org/0000-0002-0387-370X
https://orcid.org/0000-0002-0387-370X
https://orcid.org/0000-0001-7648-4142
https://orcid.org/0000-0001-7648-4142
https://orcid.org/0000-0001-7648-4142
https://orcid.org/0000-0001-5390-8563
https://orcid.org/0000-0001-5390-8563
https://orcid.org/0000-0001-5390-8563
mailto:nabeelr@u.northwestern.edu
http://astrothesaurus.org/uat/2109
http://astrothesaurus.org/uat/1464
http://astrothesaurus.org/uat/1668
http://astrothesaurus.org/uat/1938
https://doi.org/10.3847/1538-4357/ad5666
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad5666&domain=pdf&date_stamp=2024-08-21
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad5666&domain=pdf&date_stamp=2024-08-21
http://creativecommons.org/licenses/by/4.0/

Muthukrishna et al. 2019; Villar et al. 2019, 2020; Hosseinza-
deh et al. 2020; Möller & de Boissière 2020; Qu et al. 2021;
Gagliano et al. 2023; de Soto et al. 2024), photometric redshift
estimation (e.g., Carrasco Kind & Brunner 2013; Sadeh et al.
2016; Pasquet et al. 2019), and many others. Some have also
been developed to, in part, reduce the scanning load by
encoding phenomenological or taxonomic information of a
source in their model’s output (e.g., Bailey et al. 2007; Gomez
et al. 2020, 2023; Carrasco-Davis et al. 2021; Duev & van der
Walt 2021; Stein et al. 2024).

For the most part, ML models in astronomy perform their
tasks using extracted numeric features with architectures like
random forests (Breiman 2001), or fully connected neural
networks (NNs; McCulloch & Pitts 1943; LeCun et al. 2015).
While appropriate in some cases, limiting these models to
extracted features alone ignores potentially valuable informa-
tion present in the images from which the features are
extracted. A comparatively small number of convolutional
neural networks (CNNs; Fukushima & Miyake 1982) have
been built that make use of the information embedded in
astronomical images, and they have generally had great success
(e.g., Dieleman et al. 2015; Domínguez Sánchez et al. 2018;
Lanusse et al. 2018; Duev et al. 2019; Walmsley et al. 2020).
CNNs are particularly well suited to astronomy because they
can capture properties, like galaxy morphology, which often
remain largely obscured to other image-processing techniques
(Walmsley et al. 2019). Only a very small subset of these
CNNs are multimodal, meaning they take in images and input
of another type, like extracted features or a light curve (e.g.,
Carrasco-Davis et al. 2021; Duev & van der Walt 2021; van
Roestel et al. 2021; Morgan et al. 2022, 2023; Stoppa et al.
2023). We have developed a multimodal CNN (MM-CNN) to
automate scanning for a filtered stream from ZTF.

The Bright Transient Survey (BTS; Fremling et al. 2020;
Perley et al. 2020) aims to spectroscopically classify all bright
(mpeak� 18.5 mag in g or r band) extragalactic transients10

from the ZTF public alert stream (Patterson et al. 2019). The
ZTF public survey produces >105 alert packets per night
(Mahabal et al. 2019). The majority of these are from variable
sources or are bogus alerts, those arising from nonastrophysical
phenomena. The BTS alert filter (Perley et al. 2020) removes
from consideration most bogus alerts and many alerts from
asteroids, active galactic nuclei (AGN), cataclysmic variables
(CVs), variable stars (VarStars), and alerts from sources with
m> 19.0 mag in g and r band. This filter makes use of braai

(Duev et al. 2019) and sgscore (Tachibana & Miller 2018) to
filter the stream down to ∼50 new candidate BTS sources per
night, of which ∼7 are new real bright transients. The other BTS
candidates are mostly dim (mpeak> 18.5mag) SNe or AGN, CVs,
and VarStars that were not removed by the alert filter. All nightly
BTS candidates are scanned by experts (“scanners”) who catalog
(“save”) the real bright transients and request spectroscopic
observations for classification. Scanning is performed on Fritz,11

ZTF’s first-party marshal and a SkyPortal instance (van der Walt
et al. 2019; Coughlin et al. 2023). BTS primarily executes its
follow-up observations with robotic spectrographs like the spectral
energy distribution (SED) machine (SEDM; Blagorodnova et al.
2018; Rigault et al. 2019; Kim et al. 2022), and, soon, the SED
machine Kitt Peak12 (SEDM-KP). The resulting classifications,
whether assigned automatically by SNIascore (Fremling et al.
2021) or manually by a scanner, are promptly reported to the public
via the Transient Name Server13 (TNS), as visualized in Figure 1.
The BTS catalog is available online14 and is updated in real-

time. Since its origin in 2018 May, BTS has maintained
exceptionally high spectroscopic completeness of relevant
sources (95.4%15), and BTS serves the community by rapidly
releasing their classifications to the public. As of 2023 October,
the BTS sample contains more than 8300 publicly classi-
fied SNe.
BTS enables a large amount of science, notably including

some of the largest SN population studies conducted to date
(e.g., Perley et al. 2020; Irani et al. 2022; Sharon &
Kushnir 2022; Sollerman et al. 2022; Cold & Hjorth 2023;
Rodríguez et al. 2023; Sharma et al. 2023). The survey also
provides unique discoveries (e.g., Yang et al. 2021; Goobar
et al. 2023) and is paving the way for using SNe to study large
scale structure (Tsaprazi et al. 2022).
Our new model, BTSbot, enables the automation of

scanning and spectroscopic follow-up for BTS by performing
binary classification: bright transient/not bright transient.
BTSbot produces a unit-interval bright transient score for an
input ZTF Avro16 alert packet (Masci et al. 2019; Patterson
et al. 2019) augmented with some custom metadata features. It

Figure 1. Diagram of the BTS workflow. The BTS alert filter ingests the ZTF public survey alert stream and, using upstream tools like braai and sgscore,
removes bogus alerts, dim sources, and sources that are trivially not bright transients. Selection of real bright transients from the pool of candidates is done by visual
inspection (“scanning”); in this study, we develop an ML-based alternative: BTSbot. The selected bright transients receive spectroscopic follow-up and classification,
and are promptly reported to the public.

10 Henceforth, we use “supernova” and “transient” interchangeably with
“extragalactic transient.” These are not equivalent, but it simplifies the prose.

11 https://github.com/fritz-marshal/fritz
12 https://sites.astro.caltech.edu/sedmkp/
13 https://www.wis-tns.org
14 https://sites.astro.caltech.edu/ztf/bts
15 Computed for sources passing the BTS alert filter with mpeak � 18.5 mag,
good light-curve coverage, and displaying an SN-like light curve or a galaxy
crossmatch from 2018 May to 2023 September. We adopt this value for the
BTS sample completeness henceforth. See Perley et al. (2020) for detailed
definition of sample cuts.
16 https://avro.apache.org

2

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

https://github.com/fritz-marshal/fritz
https://sites.astro.caltech.edu/sedmkp/
https://www.wis-tns.org
https://sites.astro.caltech.edu/ztf/bts
https://avro.apache.org

is trained to run only on alerts from sources with at least one
alert passing the BTS alert filter (candidate BTS sources), the
same alerts that are provided to scanners. From image cutouts
and extracted features, BTSbot must simultaneously separate
transients from variable sources and, while m> 18.5 mag,
predict whether or not the source will attain mpeak� 18.5 mag.

BTSbot is now integrated into Kowalski (Duev et al.
2019; Coughlin et al. 2023), ZTF’s first-party alert broker, and
Fritz, where BTSbot has now entered the BTS workflow.
BTSbot is able to automatically save sources to BTS catalogs
and conditionally trigger SEDM/SEDM-KP. BTSbot joins a
rich collection of ML models and automation tools central to
daily BTS operations, namely braai (Duev et al. 2019),
sgscore (Tachibana & Miller 2018), pySEDM (Rigault et al.
2019), and SNIascore (Fremling et al. 2021). Together, this
workflow has yielded the first transient to be fully automati-
cally detected, identified, spectroscopically classified, and
publicly reported: SN 2023tyk (Rehemtulla et al. 2023a). Zero
human action was involved from the first detection to the
publicly reported spectroscopic classification. Combining
complementary ML models allows for the automation of a
significant fraction of the tasks necessary to maintain BTS.
This has the side effect of freeing up time otherwise spent on
repetitive, well-understood tasks, allowing for the better
allocation of expert time and resources. We make the latest
BTSbot source code and trained model publicly available on
GitHub17 and the version described in this publication available
on Zenodo (Rehemtulla et al. 2024).

2. Training Data

The quality of an ML model’s training set is a key factor in
determining its performance. ML models, especially deep
learning models like BTSbot, are known to behave unpredic-
tably when exposed to data unlike what they were trained on
(Szegedy et al. 2013; Hendrycks & Gimpel 2016). Thus, a
model’s training set must be fully representative of the model’s
input domain. BTSbot’s domain is ZTF alert packets from
BTS candidates. These alerts come from SNe, AGN, CVs,
VarStars, novae in very nearby systems, and a small number of
other miscellaneous events including bogus alerts of many
types (e.g., those due to poor image subtractions, high-proper-
motion stars, saturated stars, etc.). We compile an extensive list
of ZTF identifiers (ZTF-IDs) for sources that fall into these
categories by drawing from a number of repositories. With
these selections, we fully represent the wide variety of
astrophysical phenomena BTSbot is exposed to in production.

An internal version of the BTS Sample Explorer is the most
significant contributor to our initial list of ZTF-IDs. This
internal BTS Sample Explorer operates identically to the
public-facing version presented in Appendix F of Perley et al.
(2020), but it adds information from internal ZTF catalogs. One
of these catalogs is assembled by scanning an alert filter nearly
identical to the BTS alert filter but altered to include sources
with 19<mpeak [mag]< 19.8. Although these are not strictly
BTS candidates, we allow them into the training set to increase
the number of faint alerts.

We draw from these catalogs with three queries. The first
query, “trues” for short, selects bright (mpeak� 18.5 mag)
spectroscopically confirmed extragalactic transients that pass
the purity cut (i.e., have a galaxy crossmatch or an SN-like light

curve; see Section 2.4 of Perley et al. 2020 for details). These
bright confirmed transients make up the entire positive/true
class of our training set. The second query, “vars” for short,
selects any source classified as an AGN, CV, or quasar (QSO)
in any of the internal BTS catalogs. These sources are all
considered nontransients or are not extragalactic and thus are
part of the negative/false class regardless of their peak
magnitude. The third query, “dims” for short, selects any
source that passes the purity cut with pre- and post-peak light-
curve coverage (see Section 2.3 of Perley et al. 2020 for
coverage definitions) and mpeak> 18.5 mag. This is designed to
broadly select dim SNe, which, because of their peak
magnitudes, are part of the negative class. The dims query is
dominated by SNe but also includes a small number of other
sources, e.g., tidal disruption events, CVs, asteroids, VarStars,
etc. The requirement of pre- and post-peak light-curve coverage
is added to avoid selecting bright SNe with poor photometric
coverage near peak, which could then appear as having dimmer
peak magnitudes. Because peak magnitudes presented on the
BTS sample explorer are computed from public data alone,
there is a small population of sources that, due to alerts from
partnership data, have mpeak� 18.5 mag but appear in dims.
These are all removed entirely from the training set because
many of them are unclassified.18 By definition, neither vars nor
dims overlap with trues, but the imperfect nature of the
selections done for vars and dims creates some overlap between
the two. Sources in the overlap are removed from dims and
kept only in vars.
Any source present on the BTS Sample Explorer was once

marked as a bright transient by a human scanner. While we do
build a sizeable list of non-BTS sources saved by the human
scanners, there is a missing population of BTS candidates that
are never saved, “rejects” for short. Our compilation of rejects
is limited to sources with alerts that pass the BTS alert filter
between 2021 January 1 and 2023 January 1 UTC.19 Many
candidates from before 2021 January 1 encountered earlier
versions of the BTS alert filter, which was last improved in late
2020; many candidates from after 2023 January 1 were still
evolving at the time the sources were queried and thus have
potentially uncertain types. By not saving them, scanners
implicitly mark these sources as non-BTS sources and thus part
of our negative class. This assumption is reasonable given
BTS’s very high photometric completeness. An extremely
small fraction of the sources in the rejects list may be bright
transients and inject a small amount of label noise into our
training set, but we find that this effect, if present at all, is small
enough to be ignored.
There is an additional population of BTS candidates, which

we do not include in our training set: “junk” for short. These
are sources that frequently pass the BTS alert filter but are
marked as junk by scanners because they are clearly not bright
transients. They tend to be very long-lived sources, like AGN
or VarStars, but also include many high-proper-motion stars
and bogus sources. They are removed from the training set for
two reasons: (i) experiments that included junk sources
consistently yielded worse performance than equivalent models
that excluded them; and (ii) in practice, sources cataloged as
junk are typically automatically rejected and not presented to
scanners. Although scanners only inconsistently tag sources as

17 https://github.com/nabeelre/BTSbot

18 These were identified after the test split was revealed, so, to preserve the
same splits, they are removed after train/validation/test splitting is performed.
19 All dates and times here are in UTC unless otherwise specified.

3

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

https://github.com/nabeelre/BTSbot

junk, removing these sources is effectively a stage of
prefiltering similar to how the BTS alert filter removes alerts
trivially irrelevant to BTS. Some sources selected by our other
queries, like AGN in vars, are also cataloged in junk; these
sources remain in the other query and are not removed with
other junk sources. This configuration allows for some
confidently identified variable sources to be included in the
training set, while rejecting other nuisance sources.

Once we have a list of ZTF-IDs and their corresponding
labels, we query Kowalski to retrieve all alert packets from
each source. BTS only uses data from the ZTF public survey,
but we include ZTF partnership data to increase the size of our
training set. We arrange the science, reference, and difference
image cutouts of each alert packet to form a 63× 63× 3
image, or a triplet. Image cutouts are individually normalized
with Euclidean normalization20; pixels in masked regions are
uniformly given values of 0; cutouts smaller than 63× 63 (due
to being near the edge of a CCD) are padded to 63× 63 with
pixels of a value of 10−9. This image preprocessing is identical
to braaiʼs (Duev et al. 2019). Very rarely (∼0.4% of alerts),
queried cutouts will have pixels with values of −3.4× 1038

(the minimum value for a float32 object). In order to remain
consistent with the image processing in braai, we do not
mask these pixels. Instead, we consider these cutouts corrupted,
and alerts with any corrupted cutouts are removed. The
distribution of alerts and sources in the training set at this stage
is shown in Table 1 under the initial queries header.

We then augment the alert packets with custom metadata
features that are not already present in the ZTF Avro alert
packets: days_to_peak, days_since_peak, age,
peakmag_so_far, maxmag_so_far, and nnondet. The
feature days_to_peak encodes the number of days from the

first alert to the alert with the brightest magnitude thus far for
the source in question. Closely related is days_since_peak,
which represents the number of days from the current alert to
the alert with the brightest magnitude. The sum of these
quantities is the age. The features peakmag_so_far and
maxmag_so_far encode the brightest and dimmest magni-
tude of all alert packets from this source thus far; peakmag_-
so_far is particularly crucial for correctly classifying late-
time alerts of SNe because BTSbot would otherwise have
almost no information on the brightness history of the source.
These features are shown over an example light curve in
Figure 2. They clearly do not recover the light curve perfectly,
but they are adopted because of their simplicity and effective-
ness across a very large variety of light curves. We find that
giving BTSbot high-level information on the source’s current
phase and the rough shape of its light curve with these features
yields a significant boost in performance. Many methods exist
to more faithfully represent SNe light curves, but many are not
conditioned to model light curves of the other sources in
BTSbot’s domain, e.g., AGN, VarStars, and others. Notably,
these features are defined for all sources with as few as one
detection or detections in only one photometric passband. One
could extract more information from the light curve by
decoupling these features to passband-dependent equivalents.
This would, however, create instances of alerts having missing
features, requiring the adoption of some placeholder value like
−999. We discuss our reasons for not including features that
would require such placeholder values later in this section.
Lastly, the feature nnondet is an estimation of the number of
nondetections at the source’s location. This feature was used in
the Automatic Learning for the Rapid Classification of Events
(ALeRCE) real-time stamp classifier (Carrasco-Davis et al.
2021) and was found to have high importance for distinguish-
ing alerts between their five classes; we find that including it
similarly boosts BTSbot’s performance.

Table 1
Training Set Size before/after Cleaning Cuts

Name of Query Number of Sources Number of Alerts

Initial Queries

truesa 5212 308,934
varsb 1127 150,017
dimsc 8979 249,087
rejectsd 4417 407,357
Total 19,735 1,115,395

Cleaned Training Set

truesa 5206 264,317
varsb 1126 109,934
dimsc 8824 223,934
rejectsd 4402 241,478
Total 19,558 839,663

Notes. Alerts are removed from the training set if they (i) have a corrupted
image cutout, (ii) come from a source with an ambiguous label, (iii) are missing
Pan-STARRS1 crossmatch information, (iv) are an i-band observation, (v)
have a negative difference image, or (vi) come from a source with a transient
present in the reference image.
a Spectroscopically confirmed bright (mpeak � 18.5 mag) extragalactic tran-
sients.
b Sources classified as AGN, CVs, VarStars, or QSOs.
c Dim (mpeak > 18.5 mag) sources with transient-like light curves.
d Sources not marked as bright extragalactic transients by BTS scanners.

Figure 2. Custom metadata feature definitions depicted for the light curve of
ZTF20acjlkpe. Teal (g band) and red (r band) circles indicate detections.
days_to_peak (purple), days_since_peak (green), age (navy), peak-
mag_so_far (upper dashed gray), and maxmag_so_far (lower dashed
gray) are presented for the latest detection shown. Together, these features
make simplified information of the light-curve phase and shape available to
BTSbot (shown as the orange line, which assumes that maxmag_so_far
corresponds to the first detection).

20 Also called L2 normalization.

4

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

All of these features are computed for each alert packet from
its perspective, i.e., only using information already available at
the time the alert packet was created, including alerts from
before each source passed the BTS alert filter. Additionally,
some alerts were created before the latest version of braai
went into production and thus have a deep real-bogus score
(drb) from an outdated version of braai or no drb at all. We
rerun all alert packets through the d6_m9 version of braai
and replace all drb scores with these new scores.

Next, we clean our training set with a series of cuts. First, we
remove alerts from i-band observations and alerts with negative
difference images. The i-band alerts are removed primarily
because BTS draws from the ZTF public survey, which only
takes observations in g and r band. Negative difference images
are identified using the isdiffpos flag included in the ZTF
alert packets. Alerts with negative difference images are
removed because they frequently represent instances of SNe
or other transients visible in the reference image: a configura-
tion different than what is typical for an alert. As an extra
precaution, we compile a list of sources with SNe present in the
reference images and remove them from the training set.
Additionally, some sources fit into neither or both of our
classes and are correspondingly removed from our training set.
For example, ZTF18abdiasx appears to be a bright SN
projected on top of an AGN, and thus fits in both of our
classes, so it is removed from the training set. Some of the
metadata features we choose to include reference the Pan-
STARRS1 catalog (PS1; Kaiser et al. 2002): sgscore{1,2}
and distpsnr{1,2}. When there are no PS1 sources within
30″ of a given ZTF alert, these features are set to −999 by the
upstream ZTF pipeline. We run experiments including/
excluding examples with −999 in any of these fields and find
that BTSbot tends to perform better when not fed examples
with such values. It is for this reason that we remove all alerts
with −999 in any of these fields and choose to omit other
features that would require similar placeholder values, e.g.,
passband-dependent light-curve features.

Table 1 shows the counts of sources and alerts at this stage
under the cleaned training set header. Each of the four queries
loses some alerts in the cleaning process; however, the rejects
query loses more than 150,000 alerts. These 150,000 alerts are
almost entirely negative difference image alerts, which come
from sources like binary stars, AGN, and high-proper-motion
stars.

We employ standard practices for splitting the full training
set into train, validation, and test splits. We randomly assign
sources to these splits with probabilities of 81%, 9%, and 10%
respectively.21 This splitting is done on sources rather than
alerts to prevent any source from having alerts in multiple
splits, which would produce a validation and test bias that
overestimates the true performance of the model.

Figure 3 illustrates that, as expected, the typical number of
alerts per source is variable over the four different queries.
Some AGN in vars have >103 alerts, while some SNe have as
few as two alerts. We correct this imbalance by defining a
hyperparameter Nmax: the maximum number of alerts per
source allowed in the training set. Sources with more than Nmax

alerts will have some alerts removed, and those with Nmax or
fewer alerts will remain untouched.

We apply Nmax alert thinning to sources based on which
query they originate from and which split they are present in.
For sources in the trues, dims, and rejects queries (many of
which are galactic or extragalactic transients), we want
BTSbot to learn and identify their properties at all phases of
their evolution, so we take a simple uniform random selection
of Nmax alerts to preserve and discard all others. The remaining
alerts are roughly uniformly distributed over the rise, peak, and
fade of these transients.22 For sources in the vars query, we
keep only the most recent Nmax alerts. Metadata of long-lived
sources look systematically different in the present than they
did years ago. For example, AGN were typically first detected
near the beginning of ZTF and have been repeatedly detected
since. New incoming alerts from these AGN, those that
BTSbotwill encounter in production, will typically have very
large age and ndethist (approximately, number of previous
detections), but those nearer to when they were first detected
will have much smaller age and ndethist. By selecting the
latest Nmax alerts, we capture those that are most representative
of today’s BTS candidates, and we avoid a data shift that would
dramatically worsen BTSbot’s performance in production.
Early versions of BTSbot used random Nmax thinning on vars
sources and yielded markedly worse performance. We find the
optimal value to be N 100max = (see Section 3.1 for
optimization details).

Figure 3. Gaussian kernel density estimations showing the number of alerts per
source for each query comprising our cleaned training set. Top: positive class
examples. Bottom: negative class examples. Sources with many alerts are
thinned down to N 100max = alerts per source. This prevents long-lived sources
like AGN (in vars) and bright SNe (in trues) from being overrepresented in
training.

21 90% of the training data is seen by the model during development, and the
remaining 10% is concealed until hyperparameters are finalized.

22 Observational coverage of transients is typically greater near peak, so this
simple random selection will slightly favor removing alerts near peak. We do
not expect significantly different results if we attempted to correct for this.

5

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

The CVs in vars are transients like the sources in trues and
dims, and we want to capture alerts from all stages of their
evolution, rather than just late-time. The selection of the latest
N 100max = alerts from vars sources does not significantly
impact our coverage of CV evolution because most CVs are
very rapidly evolving and have fewer than N 100max = alerts,
so they typically receive no thinning at all.

Sources from all queries in the train split get Nmax alert
thinning to avoid the overrepresentation problem. In the
validation and test splits, however, only sources from the vars
query get alert thinning. The other sources are left unthinned
because (i) overrepresentation is not an issue, and (ii) we need
all alerts from these sources to most accurately measure
completeness and purity of the BTSbot predictions. We keep
alert thinning in place for the vars sources in the validation and
test splits because the very old alerts from these long-lived
AGN are unlike what appears in present-day scanning.

Figure 4 shows the number of sources and alerts in each
split, and the query that they originated from after all cuts and
thinning are applied. Our two classes are moderately
imbalanced: ∼35% BTS alerts to ∼65% not-BTS alerts. We
discuss techniques for mitigating the effects of class imbalance
in Section 3. In total, our production training set comprises
608,943 total alerts from 19,558 total sources totaling >60 GB.
Despite BTSbot’s relatively narrow domain, this is signifi-
cantly more alerts than other models with similar architectures,
such as the ALeRCE stamp classifier (∼52,000; Carrasco-
Davis et al. 2021) and the Alert-Classifying Artificial
Intelligence (ACAI) models (∼200,000; Duev & van der
Walt 2021).

3. BTSbot Scope, Architecture, and Training

Our MM-CNN, BTSbot, automates source identification for
BTS by assigning each ZTF alert packet a bright transient
score. Figure 5 shows how input is fed into BTSbot and how
information is combined to produce the output score; BTSbot
contains three main components. (1) The convolutional branch
processes the science, reference, and difference cutouts as a
three-channel image through an architecture similar to what
Simonyan & Zisserman (2014) propose. (2) The metadata
branch processes the 25 extracted features (see Table 4)
through a batch normalization layer and two dense layers. (3)
The combined section concatenates the output of the two

branches and passes it through two more dense layers, the
second of which produces the prediction using a softmax
activation function. The output is a unit-interval score where
higher scores represent increased confidence that the source in
the input alert packet is, or will become, a bright extragalactic
transient. The parameters for each layer are shown in Table 2.
Other than the final layer, activation functions are all the
rectified linear unit (Nair & Hinton 2010), and all convolutional
layers have the symmetric unit stride and same padding.
The choice of an MM-CNN is motivated by the fact that the

images and the extracted features provide complementary
information for performing our task. For example, the extracted
feature distpsnr1 represents the angular distance to the PS1
cataloged source nearest to this ZTF source, and sgscore1
represents the star–galaxy score (Tachibana & Miller 2018) of
this PS1 source. While new transients are not present in PS1,
the host galaxies of SNe often are. Thus, alerts from SNe tend
to have moderate distpsnr1 and small sgscore1 values,
indicating a galaxy projected nearby to the source. Most AGN
and some CVs that pass the BTS alert filter are cataloged in
PS1 and thus have distpsnr1 very near to zero. The images
also provide important information following a similar
heuristic. Bright SNe tend to be associated with prominent
(bright with large angular size) off-center extended sources,
their host galaxies; faint SNe tend to have less prominent host
galaxies because they tend to be farther away; AGN will appear
as exactly centered extended sources; CVs will often appear
surrounded by many bright point sources because they tend to
occur near the galactic plane around many other stars.
Carrasco-Davis et al. (2021) give more detailed descriptions
of how AGN, SNe, and VarStars can be distinguished using
ZTF image cutouts and metadata. An MM-CNN is able to pool
information from all input types and consider them together
when making a prediction. We also experiment with unimodal
alternatives to BTSbot in Appendix C.
Given the scope and architecture of BTSbot, we encounter

a number of challenges. First, we are requiring BTSbot to
learn multiple complex separations. BTSbot must learn to
separate SNe from other sources without using redshift
information because it is not always known a priori. It must
also learn to identify bright SNe with limited time series
information irrespective of the SN’s current phase. Early in its
rise or late in its fade, a bright SN can appear very similar to a

Figure 4. Bar charts showing the distribution of sources and alerts from four queries into train/validation/test (81%/9%/10%) splits. Certain sources have an upper
limit set on their number of alerts; excess alerts are removed. Our training set is imbalanced favoring not-BTS sources ∼3:1 and favoring the not-BTS alerts ∼2:1.

6

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

near-peak dim SN. Additionally, BTSbot does not have
explicit information stating the BTS threshold is 18.5 mag.
Rather, it must learn the position of this threshold drawn
through the continuous distribution of SNe peak magnitudes.
Lastly, BTSbot does not have direct access to full light-curve
information, i.e., information on every previous individual
detection. Instead, it has access to the basic custom metadata
features we compute from the full light curve. We omit full

light-curve information, in part, because there is no established
method in the literature for representing partial light curves of
the wide variety our model encounters in a way that is fit for
input into an NN. There has been a great deal of work to
accomplish this for SNe alone (e.g., Villar et al. 2020), but
these methods are not applicable to all the types of sources that
BTSbot encounters. This choice supports the possibility of
tuning BTSbot to identify extragalactic transients very
rapidly, potentially on their first detection, which Section 5.3
explores.

3.1. Training and Hyperparameter Optimization

BTSbot is implemented with TensorFlow (Abadi et al.
2016) and the Keras application programming interface
(API).23 We adopt the Adam optimizer (Kingma & Ba 2014)
and the binary cross-entropy loss function. In addition to
thinning a source’s alerts by Nmax (see Section 2), we make use
of a number of training techniques to mitigate overfitting. We
employ data augmentation, which executes random rotations of
0°, 90°, 180°, and 270° and random horizontal and vertical
flipping on the image cutouts. These also help ensure that
BTSbot is invariant to these transformations. We weight
contributions to the loss function by the inverse of the relative
size of the input alert’s class (i.e., misclassifications of BTS
alerts contribute more loss than that of not-BTS alerts). This
size is computed by the count of alerts per class in the train
split, but we also experiment with computing these weights
based on the number of sources per class. The learning rate α
decreases after 20 epochs without improved validation loss,
and training terminates after 75 epochs without an improved
validation loss.
We utilize the Weights and Biases platform24 to perform

multiple extensive Bayesian hyperparameter sweeps. A Baye-
sian hyperparameter sweep guides searching through a large

Figure 5. Diagram of our multimodal convolutional neural network, BTSbot, performing bright extragalactic transient/not bright extragalactic transient binary
classification on ZTF alert packets. Image input is processed through the convolutional branch and then flattened to a 1D vector and concatenated with the output of
dense layers in the metadata branch. After another dense layer, a single-neuron layer produces the final prediction: a unit-interval bright transient score.

Table 2
BTSbot Layer Configurations

Layer Type Layer Parameters Hyperparameter Search Range

Convolutional Branch

2D conv. 32 filters, 5 × 5 kernel 8–128 filtersa

2D conv. 32 filters, 5 × 5 kernel [3, 5, 7] kernel sizea

Max pool 2 × 2 kernel L
Dropout 0.50 0.1–0.8
2D conv. 64 filters, 5 × 5 kernel 8–128 filtersa

2D conv. 64 filters, 5 × 5 kernel [3, 5, 7] kernel sizea

Max pool 4 × 4 kernel L
Dropout 0.55 0.1–0.8

Metadata Branch

Batch norm. L L
Dense 128 units 32–256 units
Dropout 0.25 0.1–0.8
Dense 128 units 32–256 units

Combined Section

Dense 8 units 8–128 units
Dropout 0.20 0.1–0.8
Dense 1 unit L

Notes. Images and metadata are passed through their respective branches, and
the output of either is concatenated and sent to the combined branch. Dropout
and batch normalization (batch norm.) layers are included to regularize.
a All 2D convolutional (conv.) layers have the same search range for filter
counts and kernel size.

23 https://keras.io
24 https://wandb.ai/site/

7

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

https://keras.io
https://wandb.ai/site/

grid of hyperparameters intelligently by leveraging correlations
between previous hyperparameter inputs and the corresponding
trained model’s performance in a specified metric. This is
expected to be more efficient than traditional grid search
sweeps because, for example, the Bayesian sweep can learn to
avoid certain regions of the hyperparameter space that
frequently yield poor performing models. We find the optimal
configuration of hyperparameters for BTSbot layers (see
Table 2), other numeric values (see Table 3), and the selection
of metadata features (see Table 4). Tables 2 and 3 also include
the range of values searched over for each hyperparameter in
our sweeps. The search over which alert packet metadata
features to provide to BTSbot included many other features
that we found to not improve performance: sgscore3,

distpsnr3, fid, maggaia, neargaia, magdiff,
magap, sigmaap, magapbig, sigmaapbig, magnr,
ssnrms, dsnrms, seeratio, nneg, magzpsci,
jdstarthist, and classtar.

4. BTSbot Performance and Comparison to Human
Scanners

4.1. Performance on the Test Split

To characterize BTSbot’s generalizable performance, we
present performance metrics on test split data. We train 20 trials
of BTSbot with identical optimal hyperparameters and
different random initializations of the model’s learnable
parameters. The trial that yields the best test split performance
is chosen as the production model. Performance metrics are
reported for the chosen production model and the median of the
metric for the 20 trials with uncertainties representing the
metric’s 1σ bounds.
The final BTSbot models yield a test accuracy of

94.1%± 0.28 and 94.9% for the production model. The upper
panel of Figure 6 shows BTSbot’s receiver operating

Table 3
BTSbot Hyperparameters

Parameter Name Optimized Value Hyperparameter Search Range

Batch size 64 8–64
Adam β1 0.99 0.81–0.999
Adam β2 0.99 0.9–0.9999
Learning rate (α) 10−4 10−2

–5 × 10−6

α decrease factor 0.4 0.25–0.75

mina 5 × 10−10 10−10
–10−5

Nmax 100 1–∞

Figure 6. ROC curve (top) and confusion matrix (bottom) of the BTSbot
production model and 19 other trials with different initializations. Top: the
production BTSbot model (orange curve) and 19 other trials (gray curves)
yield very similar ROC curves and ROCAUCs, indicating that BTSbot’s
excellent performance is robust to different initializations. Bottom: The
production model’s confusion matrix makes clear that BTSbot has greater TN
rate (upper left quadrant) than TP rate (lower right quadrant). We find that
models that trade off TP rate in favor of TN rate tend to improve in other key
performance metrics.

Table 4
BTSbot Metadata Features

Feature Name Definition (unit)

Alert Packet Metadata

sgscore{1,2} Star/galaxy score of nearest two PS1 sources
distpsnr{1,2} Distance to nearest two PS1 sources [arcsec]
fwhm Full width half max [pixels]
magpsf Magnitude of PSF-fit photometry [mag]
sigmapsf 1σ uncertainty in magpsf [mag]
chipsf Reduced χ2 of PSF-fit
ra R.A. of source [deg]
dec Decl. of source [deg]
diffmaglim 5σ magnitude detection threshold [mag]
ndethist Number of previous detections of source
nmtchps No. of PS1 crossmatches within 30″
drb Deep learning-based real/bogus score
ncovhist No. of times source on a field and read channel
chinr χ parameter of nearest source in reference
sharpnr Sharp parameter of nearest source in reference
scorr Peak-pixel S/N in detection image
sky Local sky background estimate [data number]

Custom Metadata

days_since_peak Time since brightest alert [days]
days_to_peak Time from first to brightest alert [days]
age days_since_peak + days_to_peak
peakmag_so_far Source’s minimum magpsf thus far [mag]
maxmag_so_far Source’s maximum magpsf thus far [mag]
nnondeta ncovhist - ndethist

Notes. The 25 metadata features passed into BTSbot’s metadata branch. Full
definitions of alert packet features can be found at https://zwickytransientfacility.
github.io/ztf-avro-alert/schema.html. Acronyms: point-spread function (PSF),
signal-to-noise ratio (S/N).
a Adopted from Carrasco-Davis et al. (2021).

8

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html
https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html

characteristic (ROC) curves. ROC curves visualize the balance
of true positives (TPs) and false positives (FPs) at various
classification thresholds, and the area under the ROC curve
(ROCAUC) is frequently used as a summary statistic for the
performance of a classifier. A perfect classifier’s ROC curve
has ROCAUC equal to unity while ROCAUC= 0.5 corre-
sponds to random guessing. The final BTSbot models yield
ROCAUC= 0.984± 0.001 and ROCAUC= 0.985 for the
production model. The results of the production model and
the 19 other trials are extremely similar, indicating stability in
BTSbot’s performance over different initializations. The
lower panel of Figure 6 shows the production model’s
confusion matrix. A binary classifier’s confusion matrix
visualizes the frequencies of the four classification outcomes:
true negative (TN), FP, false negative (FN), and TP. The
production model shows higher accuracy on not-BTS alerts
(TN rate) than on BTS alerts (TP rate). We could attempt to
train BTSbot to better balance the TP and TN rates, for
example by adjusting the class weights, but we find that models
that favor TN rate perform better overall.

While we fare excellently in traditional ML performance
metrics, they are not necessarily representative of BTSbot’s
real-world performance. Because BTSbot produces scores on
alert packets (alert-based classification) but sources must be
chosen for follow-up (source-based classification), we must
define a mapping from a sequence of alert predictions to a
source prediction. We call these mappings “policies,” which we
define to be analogous to the criteria BTS scanners use when
deciding whether or not to save a source and request a spectrum
of it. By simulating our policies on BTS candidates, we can
compute performance metrics that realistically represent how
BTSbot performs as a scanner. Further, we can compare the
resulting figures against human scanners to contextualize
BTSbot’s performance.

We define two policies that closely emulate their human
scanning analogs: bts_p1 and bts_p2. The policy bts_p1
requires that a source have at least two alerts with high (�0.5)
bright transient score and magpsf� 19 mag before being
saved and having an SEDM trigger sent at priority 1. The
policy bts_p2 requires that a source meet bts_p1 as well as
having at least one alert with magpsf� 18.5 mag before a
trigger being sent with priority 2. Priority is a parameter of the
requests sent to SEDM, where larger values indicate the request
is more urgent. Higher priority requests are typically fulfilled
before lower priority requests, although other factors, e.g.,
observability, are also taken into account. Most follow-up
requests sent by BTS scanners are with priority 1 or 2, and
priorities 2 and greater are typically reserved for sources that
have already attained mpeak� 18.5 mag.

We quantify the performance of these policies with
completeness, purity, Δtsave, and Δttrigger. Completeness (or
“recall”) is the fraction of bright transients that are correctly
classified by the policy: TP/(TP+ FN). The completeness of
bts_p1 and bts_p2 are identical, so we report a single value
for both policies. Purity (or “precision”) is the fraction of
predicted bright transients that are actually bright transients:
TP/(TP+ FP). Δtsave/trigger, is the difference between the
Julian date (JD) at which BTSbot saved and triggered on a
source with the JD that scanners did the same. The JDs for
scanners are queried from Fritz for all sources in the trues set
(see Section 2). Sources that were saved before 2021 January 1
are removed from this analysis because many of them were

scanned using the GROWTH Marshal (Kasliwal et al. 2019), so
the save and trigger JDs available on Fritz are unreliable. For
saving, we use the JD at which a scanner added a source to the
BTS catalog on Fritz. For triggering, we only consider
sources that had an SEDM integral field unit (IFU) request sent
before their first spectrum was uploaded to Fritz. The JD used
for comparison is the JD at which the first IFU follow-up request
was created. This restriction is applied because the time at which
scanners decided to trigger is not available for the other facilities
BTS uses for classification. BTSbot’s JD for saving and
triggering on a source is the JD associated with the alert that first
made the source satisfy bts_p1. The BTSbot JDs correspond
to either policy, but we select bts_p1 as it makes for a more
direct comparison to scanners.
When computing completeness and purity for these policies,

we make two additional minor cuts. First, 70 sources in the test
split also appear in junk (see Section 2). This catalog is a list of
sources that are unambiguously not bright transients, which
frequently pass the BTS alert filter. When scanning, they are
typically hidden and not considered for saving or triggering;
they are excluded from completeness and purity calculations.
We also identify 59 sources that have only a single alert
remaining after the cleaning cuts (see Section 2). These sources
will never pass either policy, so they are also excluded from
completeness and purity calculations.
We use estimates of the scanners’ completeness, purity, and

speed as benchmarks against which to judge BTSbot’s
performance. We compute a lower-limit on the scanners’
saving completeness of bright transients from values presented
in Table 1 and Section 3 of Perley et al. (2020), which give
99.6% completeness. It is not straightforward to compute the
BTS scanners’ purity for saving or triggering on bright
transients. Scanners will often intentionally act on transients
that they know will not attain mpeak � 18.5 mag,25 so
straightforward estimates of the scanners’ bright transient
purity would underestimate their ability to select only bright
transients. Instead, we estimate their saving and triggering
purity for selecting any extragalactic transient and rejecting
other sources. We limit this analysis to saves and triggers
performed between 2460175.5< JD< 2460216.5 (see
Section 4.2 for explanation of JD bounds). During this time,
266 sources were saved by scanners to the primary internal
BTS catalog, only four of which were not extragalactic
transients: 98.5% scanner saving purity. Similarly, scanners
sent SEDM IFU for 327 unique sources of which 11 were
nonextragalactic transients: 96.7% scanner triggering purity.
Further, scanners saving and triggering on transients with
mpeak> 18.5 mag complicates Δtsave/trigger estimates. Scanners
will save and trigger on transients slightly faster than otherwise
because they need not wait for a transient to unambiguously
demonstrate that it will soon have mpeak� 18.5 mag. In
addition, BTS scanners are occasionally aided in identifying
bright transients by TNS reports from scanners working with
other surveys or other ZTF alert brokers. For these reasons,
Δtsave/trigger comparisons will not be perfectly direct, but we
still adopt them as a basic benchmark for BTSbot’s speed.
The left panel of Figure 7 shows BTSbot’s completeness

and purity under our policies as a function of peak magnitude.
The completeness curve is exactly 100% in all peak magnitude
bins, giving perfect overall completeness. This compares well

25 These sources, while not “bright” transients, are still of interest to BTS and
the individuals within BTS.

9

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

to the BTS scanners’ saving completeness: 99.6%. Very high
completeness is essential for maintaining the quality of the BTS
sample and ensuring that BTSbot does not inject any
significant selection biases into the BTS sample. The purity
curve is >90% in all peak magnitude bins. Most bins have <10
FPs, so the variations between bins is likely due to small
number statistics. The overall purity for bts_p2 is 93.0%, and
the overall purity for bts_p1 is 84.6%. The bts_p1 purity is
not aligned with the purity curve because bts_p1 also
considers a large number of sources with mpeak> 18.5.26

Contamination from dim (mpeak> 18.5) transients is the reason
why the bts_p1 purity is much less than the bts_p2 purity;
they make up 53 of the 54 FPs unique to bts_p1. These 53
transients have median mpeak of 18.57 mag, and many received
spectroscopic follow-up requests by BTS. They are still of
interest to members of BTS, so they represent a reasonable use
of follow-up resources. BTSbot’s purity falls slightly (∼2%–

6%) short of the scanners’ (98.5% saving, 95.6% triggering).
Likely at the cost of completeness or speed, alternative policies
could be designed to more conservatively allocate spectro-
scopic resources, increasing BTSbot’s purity to compare
favorably with scanners. BTSbot’s behavior is dependent on
braai and sgscore because they contribute to determining
what sources pass the BTS alert filter: the only sources that
BTSbot trains and triggers on.

The right panel of Figure 7 shows histograms comparing the
time at which BTSbot and the human scanners saved or
triggered on a source. Negative values indicate that
BTSbotwas faster, and positive values indicate that the
scanners were faster. Both histograms peak sharply at 0 days,
suggesting that scanners and BTSbot act on new transients at
the same time. The median of Δtsave and Δttrigger are –0.0381
and –0.0147 days respectively; BTSbot acts marginally
quicker than scanners. Much of this performance is likely
due to BTSbot’s decisions being made immediately as new
alerts filter through the ZTF and BTS pipelines, although BTS

does benefit from consistent real-time scanning thanks to
members in European time zones.
The tails of this distribution include six (11) sources that are

saved by BTSbot a week or more before (after) scanners did.
Nuclear and hostless SNe make up most of the cases where
BTSbot was faster. This suggests BTSbot is less hesitant to
claim these challenging sources to be bright transients. Most of
the cases where BTSbot is slower than scanners are slowly
evolving SNe with a history of detections down to ∼20 mag.
These suggest that scanners can better use the evolution prior to
reaching 19 mag to identify transients, and BTSbot needs
brighter detections to identify sources. Late identifications of
these sorts are unlikely an issue because BTSbot still
consistently identifies these sources before or near peak.
Sources with poor light-curve coverage, especially around 19
mag, cause large Δtsave and Δttrigger and appear in either of
these groups. Overall, BTSbot fares very well in time to save
and trigger when compared to scanners.

4.1.1. Analysis of Misclassifications in the Test Split

Tracking and categorizing misclassifications is a key part of
the development of ML models. Misclassifications are
particularly important to understand in the case of BTSbot
because mistakes could introduce biases into the BTS sample
and waste valuable spectroscopic resources.
On test split data, bts_p1 selects 92 FPs and zero FNs. The

majority of the FPs (53/92) are real dim transients. These are
sources outside of BTSbot’s positive class but are still of
interest to BTS, so they are acceptable FPs. Nearly all of the
remaining FPs are CVs, AGN, or QSOs and are shared with
bts_p2. The center panel of Figure 8 presents an instance of a
typical bts_p1 FP. Alerts are classified as not belonging to a
bright transient until the source nears the 18.5 mag threshold, at
which point a small number of high-scoring alerts cause the
source to pass bts_p1. The right panel shows an FP CV
misclassified by both bts_p1 and bts_p2. It shows high-
and low-scoring alerts interspersed with each other, although
some other CV FPs begin receiving exclusively low scores

Figure 7. Completeness and purity of BTSbot actions (left) and speed comparison with human scanners (right) for sources in our test split. Left: The completeness
curve (dashed–dotted navy) is 100% in all bins. BTSbot’s perfect completeness is conducive to BTS’s science efforts, which require a highly complete, unbiased
sample. The small variations in the purity curve (solid orange) are due to small number statistics. The overall purity of bts_p1 and bts_p2 are 84.6% and 93.0%
respectively. bts_p1 has extra contamination from SNe with mpeak slightly greater than 18.5 mag, sources that are acceptable targets for spectroscopic observation.
Right: Histograms comparing BTSbot’s speed in saving (blue) and triggering (red) with that of scanners. Both distributions peak very near to zero indicating that
BTSbot acts as quickly as human scanners on new bright transients.

26 Completeness and purity are not shown for mpeak > 18.5 because they are
undefined and uniformly zero respectively.

10

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

once the CV has faded well beyond peak. The completeness is
perfect for bts_p1 and bts_p2, so they have zero FNs.

Overall, the non-SN misclassifications are dominated by a
relatively small number of CVs, AGN, and QSOs. Improved
policies may be able to improve the rejection of these frequent
FPs by, e.g., better leveraging existing information in external
catalogs. The majority of the total misclassifications (dim SNe
selected by bts_p1) are not problematic for BTS and
represent an appropriate allocation of spectroscopic time.

4.2. Performance on Very Recent BTS Candidates

Performance diagnostics computed on test split data tend to
be robust and representative of real-world performance, but, in
some cases, can have associated biases. Our test split includes
many alerts that are years old, and a subtle data shift (caused
by, e.g., maintenance to the camera or the optics) may have
occurred since then. To characterize BTSbot’s present-day
performance, we conduct an additional analysis using alerts
from very recent BTS candidates.

We perform this analysis in two parts: (i) we present alert-
based performance metrics on alerts that recently passed the
BTS alert filter and our cleaning cuts (see Section 2); (ii) we
also present policy-based performance metrics on sources that
recently passed bts_p1 or recently peaked. The date
boundaries for these analyses are determined by the final date
our training data was queried (2023 August 19) and the date
BTSbot went into production (2023 September 29):
2460175.5< JD< 2460216.5. This cut on JD minimizes the
bias in this analysis from transient alerts that BTSbot trained
on and instances where BTSbot’s actions, which are visible to
scanners, influenced scanners’ decisions. Some very long-lived
sources, like certain AGN, do have alerts in our training data
and in this cleaned present-day sample. We do not remove
these sources because they are encountered by BTSbot in
production, and thus should be accounted for in this analysis.

We begin this analysis by applying the cleaning cuts
described in Section 2 on the public alerts that passed the
BTS filter with 2460175.5< JD< 2460216.5. After cuts, this

sample totals 4031 alerts from 251 bright transients and 15,159
alerts from 1652 non-bright transients. Figure 9 shows that the
production BTSbot model yields 96.2% accuracy and
ROCAUC= 0.988 on the present-day sample. TP rate and
TN rate are 91.9% and 97.4%, respectively. The resulting
performance is very similar to the metrics computed from test
split data in Section 4.1 and shown in Figure 7. Here, we
observe marginally higher performance across all alert-based
metrics than in the test split results. These variations are most
likely due to the relatively small size of the present-day sample
and are not indicative of a data shift affecting BTSbot’s
performance.
As in Section 4.1, any source in junk or having only one alert

after cleaning is removed when computing policy completeness
and purity. In Section 2, the vars query received alert thinning
down to N 100max = alerts per source. We emulate this by
thinning sources classified on Fritz or manually identified as
an AGN, CV, or QSO down to their latest N 100max = alerts.
We run all public alerts passing our Section 2 cleaning cuts
from all sources through both policies and select only the
sources that satisfy bts_p1 or reach their peak magnitude
between 2460175.5< JD< 2460216.5. This representatively
simulates the actions BTSbotwould have taken during this
time period should it have been fully operational.
Similar to Figure 7, Figure 10 shows the completeness,

purity, and speed comparison of the production BTSbotmodel
on the present-day BTS sample. Both the completeness and
purity curve, shown in the left panel, are at or near 100% in
most peak magnitude bins. The overall completeness is 98.7%.
This remains near perfect and supports BTSbot’s ability to
scan without imposing significant selection biases into the BTS
sample. Variations in either curve are due to small number
statistics; there are 0–3 FPs and FNs in each bin shown. The
overall bts_p1 purity is 81.0%, and the overall bts_p2
purity is 92.0%. Similar to the test split results, the sources
selected by bts_p1 but not bts_p2 are dominated by SNe
with mpeak slightly dimmer than 18.5 mag (19/22 sources):
unproblematic FPs because they are typically triggered on by

Figure 8. Light curves of three sources depicting typical evolution of BTSbot scores. Teal (g band) and red (r band) points indicate detections, and filled and open
circles represent alerts that received score �0.5 and <0.5 respectively. Left: TPs may have low-scoring alerts while still dim, but scores increase once they near the
18.5 mag threshold (dotted gray line). After fading well below the peak magnitude, scores remain high, in part, due to information provided by custom metadata
features. Center: almost all bts_p1 FPs are dim (mpeak > 18.5 mag) transients whose alerts receive high scores when near the BTS threshold. Right: many bts_p2
FPs are CVs, which could be better rejected by increasing the score threshold to 0.8.

11

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

BTS. The completeness and purity estimates of the present-day
sample are very similar to their test split analogs, �±4%
difference in all three metrics, further suggesting that no data
shift has affected BTSbot’s performance.

The right panel of Figure 10 compares BTSbot’s speed to
act with that of the human scanners on our present-day sample.
The medians of Δtsave and Δttrigger are larger than their test
split counterparts: 0.0525 and 1.01 days respectively. We
attribute this increase to two main factors. (i)We have excluded
ZTF partnership data from the present-day sample, but scanners
typically view data from both the ZTF public and partnership
observations when scanning. This frequently provides them
with additional detections for BTS candidates, which BTSbot
is blinded from, aiding in more quickly identifying bright
transients. (ii) The present-day sample is very small, so the
median is volatile to changes. There are just 65 sources with
Δtsave values in the present-day sample, while there were >250
sources for the test split. The shapes of the Δt distributions,
however, are consistent between the present-day and test split
analysis. Together, these suggest that the differences observed
are not due to a data shift but rather to differences in the sample
characteristics and in how the experiments were conducted.

With a sample of BTS candidates contiguous in time, we can
now easily compute the median number of saves and triggers
performed by BTSbot per night. Over the 41 nights in the
present-day sample, 184 sources satisfied bts_p1. This is a
median of ∼4.5 sources per night, which would have been
saved and sent to SEDM.

4.2.1. Analysis of Misclassifications in the Present-day Sample

Analogously to Section 4.1.1, we investigate the types of
sources that BTSbotmisclassifies in the present-day sample.
Our policies select 35 FPs and two FNs. Similarly to the test

split results, the majority of FPs (19/35) are real dim transients.
The other FPs are again dominated by CVs and AGN but do
include other sources like asteroids. One of the FNs
(ZTF23aaxtplp) has an extremely bright host galaxy and is
projected very near to its nucleus. The other FN (ZTF23a-
beuope) shows two bright stars overlapping the host galaxy and
projected very near to the SN. It is not certain that these
properties caused these sources to receive low scores, but they
are clearly very uncommon. Section 5.1 and Appendix B
describe how, in production, BTSbot and humans scan in
parallel to allow for significant automation while preventing
bright transients of these sorts from being missed.
As is the case for the test split, the majority of the

misclassifications in the present-day sample, dim SNe, have
little negative consequence for BTS.

5. Discussion

5.1. BTSbot Real-time Operations

As of 2023 October, BTSbot has been fully integrated into
ZTF and BTS operations,27 allowing BTSbot to autono-
mously send spectroscopic triggers for new SNe. In production,
BTSbot and humans scan the real-time public alert stream
separately, allowing both parties a chance to save any source
passing the BTS alert filter irrespective of the other party’s
actions. Technical details of BTSbot’s integration and this
parallel scanning are presented in Appendix B.
Between 2023 December 1 and 2024 May 1, BTSbot saved

609 sources to an internal BTS catalog, and 96.1% of these
were confirmed as extragalactic transients. SN 2023tyk
(ZTF23abhvlji) is a Type Ia SN that was identified and
triggered on by BTSbot. The data collected by SEDM were
then reduced by pySEDM (Rigault et al. 2019), the spectrum
was classified as belonging to a Type Ia SN by SNIascore
(Fremling et al. 2021), and the classification was automatically
reported to TNS. As detailed by Rehemtulla et al. (2023a),
SN 2023tyk is the first transient to be fully automatically
detected, identified, spectroscopically classified, and publicly
reported. As of 2024 May, dozens more Type Ia SNe have been
both triggered on by BTSbot and spectroscopically classified
by SNIascore.
Operating BTSbot and SNIascore alongside each other

allows for the full-automation of a significant amount of day-
to-day tasks in BTS. About 70% of bright transients found by
BTS are Type Ia SNe (Fremling et al. 2020), nearly all of

Figure 9. Same as Figure 6 for a sample of alerts from very recent BTS
candidates. The results of the ROC (present-day, thick green; test split, narrow
orange), the ROCAUC, and the confusion matrix are all very similar to their
test split analogs. All metrics are marginally improved for the present-day
sample but not significantly so. These suggest that no data shift has occurred
that significantly decreases BTSbot’s performance.

27 An older version of BTSbot (v1.0) was running in production during 2023
October and November. The production model presented here (v1.0.1;
Rehemtulla et al. 2024), deployed in 2023 December, corrects for the sources
with mpeak � 18.5 in the dims query (see Section 2). Both versions of the model
yield nearly identical performance, but v1.0.1 is accompanied by a policy that
prioritizes purity slightly more.

12

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

which we expect to be identified by BTSbot and 80%–90% of
which will be classified and reported to TNS by SNIascore.
If no human scanning took place, this BTS workflow could
fully automatically handle more than half of the bright
transients in consideration by BTS. In practice, there are
additional tasks that remain to be automated or made more
efficient. Namely, scanning also involves the retrieval of host
galaxy redshifts from the NASA Extragalactic Database (NED)
and classifications from TNS. We expect that much of these
processes can be automated, and planning for doing so is
underway. While a comprehensive transition to automated
scanning for BTS is not the target, these tools mitigate the
dependence of BTS operations on the natural fluctuations of
scanners’ lives. Further, a reallocation of some human effort
invested in BTS is possible when many tasks are automated.
BTS experts are able to spend more time, e.g., analyzing bulk
properties of SN samples or searching for rare or very young
events.

5.2. Comparison with Similar Models

The ALeRCE28 (Förster et al. 2021) real-time stamp
classifier (Carrasco-Davis et al. 2021) and the ACAI (Duev
& van der Walt 2021) framework are other image- and
extracted feature-based MM-CNNs that perform classification
on ZTF alert packets. BTSbot is very similar to these models
in architecture (indeed, some aspects of BTSbot are inspired
by them), but they are quite different in application.

The real-time stamp classifier predicts which one of five
high-level classes (SN, AGN, VarStar, asteroid, bogus) the
source in a ZTF alert belongs to. This is done, primarily, with
the goal of automatic and rapid identification of SNe. To this
end, the stamp classifier is trained exclusively on the first alert
packet from a given source. While rapid identification of SNe is
an interest of ours (see Section 5.3), we instead train BTSbot
to function on any alert packet from relevant ZTF sources. This
grants BTSbot the extra utility of being able to identify SNe at
any phase of their evolution, albeit with the additional
complications associated with doing so.

The ACAI framework, a union of five independent binary
classifiers, predicts which of five phenomenological features
(hosted, orphan, nuclear, variable star, bogus) characterizes the
source in a ZTF alert packet. These models are trained on any
alert from any ZTF source and thus learn a much broader
domain than BTSbot. Narrowing the input domain of our
model reduces its broader utility relative to ACAI but unlocks
greater performance for our particular task.
Unlike BTSbot, neither the stamp classifier nor ACAI learn

class definitions that are sensitive to the source’s brightness.
BTSbot must learn to select just a subset of extragalactic
transients, those with mpeak� 18.5 mag, and reject other
extragalactic transients and all other sources. While BTSbot
performs binary classification, effectively grouping non-bright
transient classes, the stamp classifier performs five-class
classification, and the ACAI models perform five binary-
classifications. This requires these other models, the stamp
classifier in particular, to learn more discriminatory information
between its five classes. This is not necessary for BTSbot
because our primary interest is automating BTS scanning, for
which only bright transients are relevant. Thus, we can justify
combining non-bright transients into a single class, simplifying
BTSbot’s task.

5.3. An Adaptation of BTSbot: Automatic, Very Rapid
Follow-up

The development of BTSbot and the design of our policies
prioritized completeness of bright transients over other metrics
like purity and speed. After operating in production for a few
months, a different set of policies was implemented, which are
focused on increasing purity to operate BTSbot with minimal
intervention. These priorities are directed by the needs of BTS,
but applications of a BTSbot-like model to other science
efforts could prefer to prioritize other metrics.
BTSbot’s architecture is particularly well suited for the

automated identification of very young transients. At early
times (i.e., the night of the first detection), the source’s light
curve is uninformative because it is comprised of a very small
number of data points. Instead, much of the information
available on the new transient is embedded in associated

Figure 10. Same as Figure 7 for a sample of very recent BTS candidates. Left: The completeness (dashed–dotted navy) and purity (solid orange) curves are perfect in
most bins. The overall purity of bts_p1 and bts_p2 are 81.0% and 92.0% respectively. Contamination unique to bts_p1 is almost entirely real SNe with mpeak

slightly greater than 18.5, acceptable false positives. The relatively low purity in two bins is due to small number statistics. Right: Both distributions still peak very
near to zero. Likely due to differences in the cuts creating the input samples, Δtsave (0.0525 days) and Δttrigger (1.01 days) are larger than test split equivalents.

28 https://alerce.online/

13

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

https://alerce.online/

images. In this regime, one would expect that an image-based
model, like BTSbot, would have better access to constraining
information than a purely light-curve based model.

We take SN 2023ixf as an example illustrative of the
additional discovery potential of a model like BTSbot.
SN 2023ixf was a Type II SN in Messier 101. Owing to its
proximity, it provided a unique laboratory to study pre-SN
mass-loss events of red supergiants, allowed the assembly of a
comprehensive time-dependent description of the event, and
much more (e.g., Bostroem et al. 2023; Hiramatsu et al. 2023;
Jacobson-Galán et al. 2023; Qin et al. 2023; Zimmerman et al.
2024). SN 2023ixf was reported to TNS by Koichi Itagaki at
21:42 UTC on 2023 May 19 (Itagaki 2023). The earliest
published spectrum was collected less than an hour later by
Perley et al. (2023). About 14 hr before the first TNS report,
SN 2023ixf was detected by ZTF, and, just minutes later, this
alert packet was assigned a bright transient score of 0.840 by an
early version of BTSbot.29 A variant of BTSbot could be
trained to isolate such sources. With an alert filter and policy
suited for the search of young transients, this could have
allowed for a more rapid identification and spectroscopic
follow-up of SN 2023ixf. About half the observing night was
remaining for SEDM at the time the first detection would have
passed the autotriggering filters, enough time to obtain a
spectrum if triggered at high enough priority. If the spectrum is
collected near the end of observing that night at Palomar
Observatory (∼12:00 UTC), this represents a ∼10 hr speed-up
over the otherwise earliest spectrum obtained. In this example,
BTSbot and the associated integration tools presented here
allow the probing of early, rapidly evolving explosion physics
typically unavailable to traditional triggering methods.

There are a number of challenges related to this adaptation of
BTSbot. Namely, the BTS alert filter and the bts_p1 and
bts_p2 policies presented here would likely be inappropriate
or suboptimal following this new definition of the model’s
priorities. A thorough exploration of how to best assemble a
training set for this goal would also be required.

The automatic spectroscopic follow-up of infant SNe in ZTF
data has been successfully implemented before in AMPEL
(Nordin et al. 2019). The target selection was driven by
SNGuess (Miranda et al. 2022), a decision tree-based ML
system for identifying SNe. Their automated triggering was
designed to observe nearby infant SNe, which was successfully
done for a number of sources.

BTSbot’s source code and the production BTSbotmodel are
publicly available on GitHub,30 and the public training data are
made available on Zenodo at doi:10.5281/zenodo.10839691
(Rehemtulla 2024). This repository includes all codes neces-
sary for assembling BTSbot’s training set, training the model,
creating figures visualizing validation or test split performance,
and more. It is written specifically with adaptability and
flexibility in mind. Additional functionalities, e.g., training
models with alternative architectures (see Appendix C), are
embedded in the scripts with minimal added complexity and no
repeated code. This is done to facilitate ease in recycling the
BTSbot code-base for other applications. One could, for
example, quickly explore solving a problem with a simple fully
connected NN and later advance to an MM-CNN with
powerful features like data augmentation and Weights and

Biases hyperparameter sweeps integration already built-in. A
workflow of this sort is promising given the rapid training times
and near-BTSbot performance demonstrated by the NN in
Appendix C. We encourage the use of this resource by the
community.

6. Summary

We have presented BTSbot, a new MM-CNN to automate
scanning for the ZTF BTS. BTSbot uses ZTF image cutouts
and metadata to produce a bright transient score for an
individual ZTF alert packet. It achieves ∼95% accuracy on
input alerts and identified 100% of bright transients in our test
split with 93% purity. The performance compares very closely
to that of human scanners in terms of completeness, purity, and
speed to act on new transients. BTSbot only falls slightly short
of scanners in terms of the purity of the bright transient sample
it produces: 93% versus ∼97%. We also perform an additional
analysis with very recent BTS candidates to demonstrate that
BTSbot is not impacted by a significant data shift.
BTSbot has been fully integrated into Kowalski and

Fritz, ZTF’s first-party alert broker and marshal, and now
automatically sends spectroscopic follow-up requests for the
new bright transients it identifies. BTSbot joins a family of
automation tools in the BTS workflow (braai, sgscore,
pySEDM, and SNIascore), which aid in running BTS
efficiently. These models, coordinated by Fritz and
Kowalski, have enabled the first fully automatic detection,
identification, spectroscopic classification, and public reporting
of a transient: SN 2023tyk. This milestone represents a boost in
efficiency for BTS and an image of what time-domain
astronomy could look like during the Rubin era. It also hints
toward the discovery potential of adapting similar technology
to other areas of time-domain astronomy.

Acknowledgments

We thank the anonymous reviewer for the thoughtful and
constructive comments, which contributed to this manuscript.
A great number of people have contributed to BTS and BTS

scanning over the years. We thank the following people who
have saved 10 or more sources to internal BTS catalogs on
Fritz as of 2023 October: Ivan Altunin, Raphael Baer-Way,
Pallas A. Beddow, Ofek Bengiat, Joshua S. Bloom, Aleksandra
Bochenek, Emma Born, Kate Bostow, Victoria Mei Brendel,
Rachel Bruch, Vidhi Chander, Matthew Chu, Elma Chuang,
Aishwarya Dahiwale, Asia deGraw, Dmitry Duev, Kingsley
Ehrich, Eli Gendreau-Distler, Nachiket Girish, Xander Hall,
K-Ryan Hinds, Ido Irani, Cooper Jacobus, Connor Jennings,
Joel Johansson, Snehaa Ganesh Kumar, Michael May, William
Meynardie, Shaunak Modak, Kishore Patra, Neil Pichay,
Sophia Risin, Yashvi Sharma, Gabrielle Stewart, Nora Linn
Strotjohann, James Sunseri, Edgar Vidal, Jacob Wise, Abel
Yagubyan, Yoomee Zeng, and Erez A. Zimmerman.
We also thank Jakob Nordin for discussions relating to

AMPEL.
Some spectra used for classifying sources in the training set

were collected with the MMT Observatory. MMT Observatory
and Zwicky Transient Facility access was supported by
Northwestern University and the Center for Interdisciplinary
Exploration and Research in Astrophysics (CIERA).
The material contained in this document is based upon work

supported by a National Aeronautics and Space Administration

29 The early version of BTSbot referenced here (v0.3) is presented in
Rehemtulla et al. (2023b).
30 https://github.com/nabeelre/BTSbot

14

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

https://doi.org/10.5281/zenodo.10839691
https://github.com/nabeelre/BTSbot

(NASA) grant or cooperative agreement. Any opinions,
findings, conclusions, or recommendations expressed in this
material are those of the author and do not necessarily reflect
the views of NASA. This work was supported through a NASA
grant awarded to the Illinois/NASA Space Grant Consortium.

This research was supported in part through the computa-
tional resources and staff contributions provided for the Quest
high performance computing facility at Northwestern Uni-
versity, which is jointly supported by the Office of the Provost,
the Office for Research, and Northwestern University Informa-
tion Technology.

Based on observations obtained with the Samuel Oschin
Telescope 48 inch and the 60 inch Telescope at the Palomar
Observatory as part of the Zwicky Transient Facility project.
ZTF is supported by the National Science Foundation under
grants No. AST-1440341 and AST-2034437 and a collabora-
tion including current partners Caltech, IPAC, the Oskar Klein
Center at Stockholm University, the University of Maryland,
University of California, Berkeley, the University of Wisconsin
at Milwaukee, University of Warwick, Ruhr University,
Cornell University, Northwestern University, and Drexel
University. Operations are conducted by COO, IPAC, and UW.

SED Machine is based upon work supported by the National
Science Foundation under grant No. 1106171.

The Gordon and Betty Moore Foundation, through both the
Data-Driven Investigator Program and a dedicated grant,
provided critical funding for SkyPortal.

N.R. and A.A.M. are partially supported by LBNL
subcontract No. 7707915.

M.W.C. acknowledges support from the National Science
Foundation with grant Nos. PHY-2308862 and PHY-2117997.

S.R.K. thanks the Heising-Simons Foundation for support-
ing his research.

Facilities: PO:1.2 m, PO:1.5 m
Software: Astropy (Astropy Collaboration et al. 2013,

2018, 2022), corner (Foreman-Mackey 2016), Jupyter (Kluyver
et al. 2016), Keras (https://keras.io), Matplotlib (Hunter 2007),
NumPy (Harris et al. 2020), pandas (McKinney 2010; The
pandas development team 2024), penquins (Duev et al. 2021),
scikit-learn (Pedregosa et al. 2011), SciPy (Virtanen et al.
2020), SkyPortal (van der Walt et al. 2019; Coughlin et al.
2023), Tensorflow (Abadi et al. 2016), tqdm (da Costa-
Luis 2019), and the Weights and Biases platform (https://
wandb.ai/site/).

Appendix A
Accuracy and Loss Evolution during Training

Figure 11 shows how the accuracy and loss evolve during
the training of the final BTSbotmodels, including the
production model. Differences in how the Nmax alert thinning
is applied between train and validation (see Section 2) and the
use of class weights during training can explain much of the
difference between their respective loss curves. Thus, the train
loss being significantly lower than validation loss cannot be
interpreted as overfitting. There does appear to be overfitting in
the production model (bold curves) past epoch ∼30, evidenced
by the validation loss beginning to increase while the train loss
continues to decrease. We avoid this by selecting the model
that produced the minimum validation loss during training,
rather than the model from the final epoch of training.
Figure 11 marks the epochs where the learning rate decreased
due to a plateau in the validation loss as vertical gray lines. The

learning rate decreases three times, spanning from α= 10−4 to
α= 6× 10−6. We also observe that the selected production
model is not the model that produced the least validation loss or
had the greatest validation accuracy. The production model is
selected by considering the best performance in policy-based
metrics, those most relevant to how BTSbot is used.
Training this production model took ∼32 hr on an Intel Xeon

6230 CPU, and an inference on a single alert packet takes less
than a hundredth of a second on a laptop CPU.

Appendix B
Integration of BTSbot into ZTF and the BTS Workflow

BTSbot has been deployed into ZTF’s first-party alert
broker, Kowalski, to enable running in real-time on incoming
alert packets from IPAC’s alert-producing and brokering
system. Kowalski performs three distinct operations on
every incoming alert packet. First, it separates the alert packet
from its prv_candidates field (a 30 day history of
detections and nondetections) to concatenate it to the full list
of prv_candidates from all previous alerts with the
same objectId. This forms a full light curve for a given
ZTF object. The product of this concatenation is then used
to compute the custom metadata features BTSbot takes as
input (see Section 2 for a list and respective definitions).
Kowalski then crossmatches every alert with a large number
of catalogs such as NED,31 the Census of the Local Universe

Figure 11. Accuracy (top) and loss (bottom) for the final BTSbot models
(production model, bold curve; other trials, narrow curves) of the train (blue)
and validation (green) splits during training as a function of epoch. Gray
vertical lines indicate epochs at which the learning rate decreased. The
discrepancies in these metrics between the train and validation splits cannot be
interpreted as overfitting alone because they are partially due to differences in
alert thinning and class weighting.

31 https://ned.ipac.caltech.edu/

15

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

https://keras.io
https://wandb.ai/site/
https://wandb.ai/site/
https://ned.ipac.caltech.edu/
https://ned.ipac.caltech.edu/
https://ned.ipac.caltech.edu/

(Cook et al. 2019), Milliquas (Flesch 2019), and others.
Information from these crossmatches is made available to
scanners and automated processes. Lastly, Kowalski runs
several ML models: braai, the five ACAI classifiers (Duev &
van der Walt 2021), and BTSbot. The outputs of all models
are injected into the alert packet along with their corresponding
version numbers allowing alert filters to use this information
when identifying candidate transients. The enriched alert
packets are then stored in a nonrelational database (Mon-
goDB32), allowing users to design custom, potentially com-
plex, filters as pure database queries for maximum flexibility.
These filters, including the BTS alert filter, run on every alert.

If an alert passes a filter, it will be sent as a candidate to
Fritz, a SkyPortal instance that serves as the ZTF
collaboration’s Marshal. Two additional layers of filtering are
applied to allow the automated saving and triggering of any
instrument for which SkyPortal has a corresponding API. The
first filtering layer assesses if the candidate should be saved,
and the second assesses whether an instrument should be
triggered for follow-up. Autotriggering is only run on sources
that have passed the autosaving filter. In the case of BTSbot,
two autosaving and autotriggering filters are implemented, one
for each of the policies bts_p1 and bts_p2.

Additional features are implemented in SkyPortal to
minimize redundant triggers and erroneous saves. Some
science teams direct their scanners to maintain lists of sources
that frequently pass their alert filter but are not of interest, e.g.,
the junk set maintained by BTS scanners (see Section 2). These
can optionally be used to prevent any automatic action on the
source. A new, automatic follow-up request is prevented if
there is a source within 0.5” that already has (i) a spectrum, (ii)
a classification, (iii) a pending follow-up request for the same
instrument, or (iv) been cataloged by BTS in junk. These
criteria have been tuned over months of sending
BTSbot triggers in real-time to minimize the number of FP
triggers. Instruments like SEDM, which can conduct both
spectroscopic and photometric observations, get additional
rules to define whether the new trigger is redundant with an
existing trigger. The payload used for triggering an instrument,
which contains the triggering instructions like the priority for
SEDM, is set in advance alongside the Kowalski auto-
triggering filter, but the priority assigned to a target can be
dynamically increased as new alerts are posted. In particular, a
source triggered on after passing bts_p1 can have its payload
updated to priority 2 if it passes bts_p2 before the trigger is
completed.

When autosaving or autotriggering actions are taken,
comments recording these actions are posted to the relevant
source page on Fritz. Beyond bookkeeping, this is crucial
to facilitate scanners working alongside BTSbot by
displaying BTSbot’s actions in the same interface where
manual scanning is performed. Seamless integration with the
tools that scanners already rely on enables joint working that
is more efficient and more reliable than either separately. This
also allows scanners to modify the triggers sent by BTSbot,
for example, increasing the trigger’s priority or adding
photometry to the request. These features make real,
automated triggers safer and more dependable, thus making
the automated aspects of BTS require less monitoring. The
results from the SEDM observations and associated data

products are uploaded back to Fritz for visualization and,
typically, classification.

Appendix C
Comparison with Unimodal Architectures

An exploration of simpler, alternative architectures and a
characterization of their performance is necessary to justify
BTSbot’s chosen multimodal architecture. We present alert-
and policy-based performance metrics produced by two
unimodal model architectures: a unimodal convolutional neural
network (UM-CNN) and a fully connected NN. These
networks perform an inference using only images and only
metadata respectively. The training data, image preprocessing,
and feature extraction are, where relevant, performed identi-
cally for all three architectures. The ordering and types of
layers of the unimodal architectures are identical to those of the
multimodal architecture with the other branch entirely
removed. The hyperparameters of the layers, the Adam
optimizer, and the value of Nmax are searched over in a
Bayesian hyperparameter sweep similarly to the sweeps
executed for the MM-CNN.
Table 5 shows the optimal layer hyperparameters for either

architecture. Compared to the MM-CNN’s convolutional
branch, the UM-CNN has smaller convolutional kernels and a
much larger dense layer following the flattening. The UM-
CNN’s first two convolutional layers have more filters than
the final two convolutional layers, whereas the pattern is
reversed for the MM-CNN. We also find that the optimized
UM-CNN has a batchsize= 32, and Adam exponential decay
rate parameters β1= β2= 0.999. Compared to the MM-
CNN’s metadata branch, the optimized NN has half as many
neurons in the first two dense layers but 8 times as many in
the third layer. We also find that the NN performs best with a
batchsize= 128, Adam parameters β1= β2= 0.999, and
N 30max = . The hyperparameter values that are not explicitly

Table 5
Architectures of Unimodal BTSbot Alternatives

Unimodal Convolutional Neural
Network Fully Connected Neural Network

Layer Type Layer Parameters Layer Type
Layer

Parameters

2D convolution 64 filters, 3 × 3
kernel

Batch
normalization

L

2D convolution 64 filters, 3 × 3
kernel

Dense 64 units

Max pooling 2 × 2 kernel Dropout 0.40
Dropout 0.45 Dense 64 units
2D convolution 16 filters, 3 × 3

kernel
Dense 64 units

2D convolution 16 filters, 3 × 3
kernel

Dropout 0.70

Max pooling 4 × 4 kernel Dense 1 unit
Dropout 0.65 ...
Flattening L ...
Dense 128 units ...
Dropout 0.45 ...
Dense 1 unit ...

Note. Layer parameters of alternative BTSbot architectures: unimodal
convolutional neural network (left two columns) and fully connected neural
network (right two columns). Optimal hyperparameters are determined by large
hyperparameter sweeps.32 https://www.mongodb.com

16

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

https://www.mongodb.com

mentioned can be assumed to be identical to that of the
MM-CNN.

Table 6 compares test split performance metrics from each of
the three architectures. The NN slightly outperforms the MM-
CNN in the alert-based metrics while the UM-CNN falls well
short of the others. The UM-CNN presented here uses the full-
size image cutouts, but Appendix D shows that slightly
increased performance can be realized through the reduction of
the input image’s size. In policy-based metrics, the MM-CNN’s
marginal advantage in completeness over the NN is due to
having just a single fewer FN. The MM-CNN demonstrates a
larger advantage in purity, however. Its advantage is ∼0.5%–

2% over the others in bts_p2 purity; even small boosts in
purity are valuable when applied over the large samples and
baselines in consideration by BTS. Each model performs very
similarly in the speed metrics, although the NN and the UM-
CNN marginally outperform the others in Δttrigger and Δtsave
respectively.

Each architecture outperforms the others in some metrics,
but the MM-CNN delivers the best overall performance. It
delivers the highest completeness and purity while sacrificing
well less than an hour in Δtsave/trigger.

Despite having worse purity than the MM-CNN, there is
still valuable utility in the NN because we find that it trains
∼60 times faster than the MM-CNN. This discrepancy in
training time is partially due to the NN adopting N 30max =
instead of N 100max = as the MM-CNN does, and could be
also decreased by training the MM-CNN on a GPU. These
factors aside, the NN would very likely remain many factors
quicker to train, and it is thus better suited for experimenting
with adapting BTSbot to alternative use cases. In develop-
ing adaptations of BTSbot, being able to very quickly
design and execute experiments will be key. Excluding
images may also lend advantages in the ease of transferring
BTSbot adaptations to other surveys, for example, LSST or
the upcoming La Silla Schmidt Southern Survey (LS433).
Although effort has been made to develop survey-agnostic
CNNs (e.g., Cabrera-Vives et al. 2023), BTSbot is not
designed or expected to perform consistently on image
data from other surveys. Instead, one could more easily
design an NN that exclusively uses survey-agnostic
features, increasing its potential impact by allowing it to be
applied more widely.

Appendix D
Convolutional Neural Networks with Cropped Image

Cutouts

The properties of the image cutouts produced by large wide-
field surveys are critical to a number of the survey’s functions.
While the pixel scale, typically measured in arcseconds (″) per
pixel, is a fixed property of the telescope’s optics, many
choices can be made in software that determine the nature of
the cutouts sent to alert brokers. One must choose the angular
and pixel size of the cutouts in light of the pixel scale and
whether or not to decrease the resolution by binning the pixels.
A tension arises because scanners generally prefer having more
information, i.e., cutouts with higher resolution and greater
angular size, but the surveys producing and disseminating the
alerts prefer minimal network bandwidth costs, i.e., lower
resolution and smaller angular size. Smaller cutouts with less
information may compromise the performance of these key ML
models, however, possibly reducing the scientific potential of
the entire survey. Only a small number of studies developing
CNNs for large wide-field surveys comment on performance
over a range of cutout sizes (e.g., Carrasco-Davis et al. 2021;
Killestein et al. 2021; Reyes-Jainaga et al. 2023). It remains to
be seen, then, what the minimum cutout size is to maintain
acceptable performance with current CNNs. Adding further
complexity, CNNs performing different tasks will be impacted
differently by reduced cutout sizes, and MM-CNNs may be
more resilient to reduced cutout sizes due to the availability of
metadata information. Multiscale cutouts, where resolution
progressively decreases moving away from the cutout center,
are a compelling alternative because they dramatically increase
the available field of view without an increase to the data
volume of the cutouts (Reyes-Jainaga et al. 2023). Further
study of (MM-)CNN performance over a range of cutout sizes
is necessary to better characterize their correlation.
To explore this important issue, we train multiple UM-CNN

versions of BTSbot to identify which cutout size produces the
most accurate model. We create new training sets from
BTSbot’s original training set by keeping only the innermost
Npix× Npix pixels of each cutout and renormalizing them
individually. We train ∼30–60 trials of BTSbotwith a given
value of Npix (3, 5, 7, 13, 21, 35, or 49) in Bayesian
hyperparameter sweeps similar to Section 3.1 and Appendix C.
These trials are unlikely sufficient to yield optimal hyperpara-
meters, but they do give a representative view of the
performance for each value of Npix. For models with

Table 6
Performance Metrics of Unimodal BTSbot Alternatives

Architecture Type Alert-based Metrics Policy-based Metrics

Accuracy ROCAUC Completeness bts_p1 Purity bts_p2 Purity Δtsave Δttrigger
(%) (%) (%) (%) (days) (days)

NN 95.5 0.988 99.8 82.8 91.2 −0.0400 −0.0200
UM-CNN 82.4 0.902 94.3 69.5 92.5 −0.0485 −0.0174
MM-CNN 94.9 0.985 100.0 84.6 93.0 –0.0381 –0.0147

Note. Comparison of performance metrics on test split data across three different model architectures: a fully connected neural network (NN), a unimodal
convolutional neural network (UM-CNN), and a multimodal convolutional neural network (MM-CNN). Each network is the highest performing in at least one metric.
The UM-CNN is less complete than the MM-CNN, and both the NN and the UM-CNN fall short of the MM-CNN in purity. Overall, the MM-CNN is the best
performing architecture.

33 https://sites.northwestern.edu/ls4/

17

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

https://sites.northwestern.edu/ls4/

Npix� 13, we remove the pooling layers entirely to maintain
the image’s size through the hidden layers.

Figure 12 presents the highest performing models judged by
accuracy on the test set. We find that the Npix= 49 UM-CNN
yields the best performance, and that both the Npix= 49 and
Npix= 35 UM-CNNs marginally outperform the UM-CNN
with uncropped cutouts (Npix= 63). It is not unambiguously
clear what the reason for this is from this simple experiment
alone; however, these results suggest that information 0. 5~ ¢
away from the source in question tends to be irrelevant or noisy
when performing our task. We notably do not observe the same
trend for the MM-CNN, where the Npix= 63 model is the
highest performing. Carrasco-Davis et al. (2021) find that the
ALeRCE stamp classifier (an MM-CNN), performs best with
Npix= 21 cutouts. Together, this indicates that more work is
necessary to better understand the optimal cutout size for
upcoming surveys.

The Npix= 35 model roughly matches the Npix= 63 model
in accuracy but has 352/632≈ 30% the number of pixels. In
this case, shrinking cutouts dramatically quickens BTSbot’s
training without compromising performance. Shrinking cutouts
survey-wide is an option to reduce a survey’s network
bandwidth costs significantly as image cutouts typically
comprise a large fraction of the bytes in an alert packet.
Although 35× 35 cutouts are appropriate for BTSbot, such
small cutouts may reduce scanners’ ability to distinguish
sources of different types. Experiments of this sort are most
relevant to the alert stream design of upcoming surveys like
LSST and LS4. LSST’s planned alert packet cutout size is at
least 30× 30 pixels (Graham et al. 2024) at a pixel scale of
0 2 pixel−1 (Ivezić et al. 2019), thus spanning 6″ on a side.
The Npix= 5 and Npix= 7 models are nearest to this in terms of
the field of view; however, ZTF’s much larger pixel scale
(1″ pixel−1) makes this an unreasonable comparison. Further
study is required to assess how small cutouts can be without
compromising, e.g., real/bogus performance at LSST-like
resolutions. LS4 will have a pixel scale very similar to that
of ZTF, but, at the time of writing, the alert packet cutout size is
undetermined (R. Knop 2024, private communications). These
results provide the preliminary guidance that LS4 cutouts

should be no smaller than 21× 21 in order to maintain the
performance of BTSbot-like UM-CNN models.

ORCID iDs

Nabeel Rehemtulla https://orcid.org/0000-0002-5683-2389
Adam A. Miller https://orcid.org/0000-0001-9515-478X
Theophile Jegou Du Laz https://orcid.org/0009-0003-
6181-4526
Michael W. Coughlin https://orcid.org/0000-0002-8262-2924
Christoffer Fremling https://orcid.org/0000-0002-4223-103X
Daniel A. Perley https://orcid.org/0000-0001-8472-1996
Yu-Jing Qin https://orcid.org/0000-0003-3658-6026
Jesper Sollerman https://orcid.org/0000-0003-1546-6615
Ashish A. Mahabal https://orcid.org/0000-0003-2242-0244
Russ R. Laher https://orcid.org/0000-0003-2451-5482
Reed Riddle https://orcid.org/0000-0002-0387-370X
Ben Rusholme https://orcid.org/0000-0001-7648-4142
Shrinivas R. Kulkarni https://orcid.org/0000-0001-5390-8563

References

Abadi, M., Agarwal, A., Barham, P., et al. 2016, arXiv:1603.04467
Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., et al. 2022, ApJ,

935, 167
Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ,

156, 123
Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A,

558, A33
Bailey, S., Aragon, C., Romano, R., et al. 2007, ApJ, 665, 1246
Bellm, E. C., Kulkarni, S. R., Barlow, T., et al. 2019a, PASP, 131, 068003
Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019b, PASP, 131, 018002
Blagorodnova, N., Neill, J. D., Walters, R., et al. 2018, PASP, 130, 035003
Bloom, J. S., Richards, J. W., Nugent, P. E., et al. 2012, PASP, 124, 1175
Boone, K. 2019, AJ, 158, 257
Bostroem, K. A., Pearson, J., Shrestha, M., et al. 2023, ApJL, 956, L5
Breiman, L. 2001, Mach. Learn., 45, 5
Brink, H., Richards, J. W., Poznanski, D., et al. 2013, MNRAS, 435, 1047
Cabrera-Vives, G., Bolivar, C., Förster, F., et al. 2023, Machine Learning for

Astrophysics, 40th Int. Conf. on Machine Learning, 5
Cabrera-Vives, G., Reyes, I., Förster, F., Estévez, P. A., & Maureira, J.-C.

2017, ApJ, 836, 97
Carrasco-Davis, R., Reyes, E., Valenzuela, C., et al. 2021, AJ, 162, 231
Carrasco Kind, M., & Brunner, R. J. 2013, MNRAS, 432, 1483
Cold, C., & Hjorth, J. 2023, A&A, 670, A48
Cook, D. O., Kasliwal, M. M., Sistine, A. V., et al. 2019, ApJ, 880, 7
Coughlin, M. W., Bloom, J. S., Nir, G., et al. 2023, ApJS, 267, 17
da Costa-Luis, C. 2019, JOSS, 4, 1277
de Soto, K. M., Villar, A., Berger, E., et al. 2024, arXiv:2403.07975
Dekany, R., Smith, R. M., Riddle, R., et al. 2020, PASP, 132, 038001
Dieleman, S., Willett, K. W., & Dambre, J. 2015, MNRAS, 450, 1441
Domínguez Sánchez, H., Huertas-Company, M., Bernardi, M., Tuccillo, D., &

Fischer, J. L. 2018, MNRAS, 476, 3661
Duev, D., Shin, K. M., & Singer, L. 2021, dmitryduev/penquins: a python

client for dmitryduev/kowalski, v2.1.2, Zenodo, doi:10.5281/zenodo.
5651471

Duev, D. A., Mahabal, A., Masci, F. J., et al. 2019, MNRAS, 489, 3582
Duev, D. A., & van der Walt, S. J. 2021, arXiv:2111.12142
Flesch, E. W. 2019, OJAp, 6, 49
Foreman-Mackey, D. 2016, JOSS, 1, 24
Förster, F., Cabrera-Vives, G., Castillo-Navarrete, E., et al. 2021, AJ, 161, 242
Fremling, C., Hall, X. J., Coughlin, M. W., et al. 2021, ApJL, 917, L2
Fremling, C., Miller, A. A., Sharma, Y., et al. 2020, ApJ, 895, 32
Fukushima, K., & Miyake, S. 1982, PatRe, 15, 455
Gagliano, A., Contardo, G., Foreman Mackey, D., Malz, A. I., & Aleo, P. D.

2023, ApJ, 954, 20
Goldstein, D. A., D’Andrea, C. B., Fischer, J. A., et al. 2015, AJ, 150, 82
Gomez, S., Berger, E., Blanchard, P. K., et al. 2020, ApJ, 904, 74
Gomez, S., Villar, V. A., Berger, E., et al. 2023, ApJ, 949, 113
Goobar, A., Johansson, J., Schulze, S., et al. 2023, NatAs, 7, 1137
Graham, M. J., Kulkarni, S. R., Bellm, E. C., et al. 2019, PASP, 131, 078001

Figure 12. Test set accuracy of BTSbot UM-CNNs as a function of input
image cutout size. Very small cutouts (3 × 3 to 13 × 13 pixels) clearly
underperform relative to models with larger cutouts (35 × 35 to
63 × 63 pixels). The highest performing model is notably not that which uses
the full-size images but rather the model that uses 49 × 49 pixel cutouts.
Cropping cutouts could allow for the significant decrease of a survey’s data rate
and possibly network bandwidth costs, in this case, with no decrease in the
performance of ML-based transient detection tools.

18

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

https://orcid.org/0000-0002-5683-2389
https://orcid.org/0000-0002-5683-2389
https://orcid.org/0000-0002-5683-2389
https://orcid.org/0000-0002-5683-2389
https://orcid.org/0000-0002-5683-2389
https://orcid.org/0000-0002-5683-2389
https://orcid.org/0000-0002-5683-2389
https://orcid.org/0000-0002-5683-2389
https://orcid.org/0000-0001-9515-478X
https://orcid.org/0000-0001-9515-478X
https://orcid.org/0000-0001-9515-478X
https://orcid.org/0000-0001-9515-478X
https://orcid.org/0000-0001-9515-478X
https://orcid.org/0000-0001-9515-478X
https://orcid.org/0000-0001-9515-478X
https://orcid.org/0000-0001-9515-478X
https://orcid.org/0009-0003-6181-4526
https://orcid.org/0009-0003-6181-4526
https://orcid.org/0009-0003-6181-4526
https://orcid.org/0009-0003-6181-4526
https://orcid.org/0009-0003-6181-4526
https://orcid.org/0009-0003-6181-4526
https://orcid.org/0009-0003-6181-4526
https://orcid.org/0009-0003-6181-4526
https://orcid.org/0009-0003-6181-4526
https://orcid.org/0000-0002-8262-2924
https://orcid.org/0000-0002-8262-2924
https://orcid.org/0000-0002-8262-2924
https://orcid.org/0000-0002-8262-2924
https://orcid.org/0000-0002-8262-2924
https://orcid.org/0000-0002-8262-2924
https://orcid.org/0000-0002-8262-2924
https://orcid.org/0000-0002-8262-2924
https://orcid.org/0000-0002-4223-103X
https://orcid.org/0000-0002-4223-103X
https://orcid.org/0000-0002-4223-103X
https://orcid.org/0000-0002-4223-103X
https://orcid.org/0000-0002-4223-103X
https://orcid.org/0000-0002-4223-103X
https://orcid.org/0000-0002-4223-103X
https://orcid.org/0000-0002-4223-103X
https://orcid.org/0000-0001-8472-1996
https://orcid.org/0000-0001-8472-1996
https://orcid.org/0000-0001-8472-1996
https://orcid.org/0000-0001-8472-1996
https://orcid.org/0000-0001-8472-1996
https://orcid.org/0000-0001-8472-1996
https://orcid.org/0000-0001-8472-1996
https://orcid.org/0000-0001-8472-1996
https://orcid.org/0000-0003-3658-6026
https://orcid.org/0000-0003-3658-6026
https://orcid.org/0000-0003-3658-6026
https://orcid.org/0000-0003-3658-6026
https://orcid.org/0000-0003-3658-6026
https://orcid.org/0000-0003-3658-6026
https://orcid.org/0000-0003-3658-6026
https://orcid.org/0000-0003-3658-6026
https://orcid.org/0000-0003-1546-6615
https://orcid.org/0000-0003-1546-6615
https://orcid.org/0000-0003-1546-6615
https://orcid.org/0000-0003-1546-6615
https://orcid.org/0000-0003-1546-6615
https://orcid.org/0000-0003-1546-6615
https://orcid.org/0000-0003-1546-6615
https://orcid.org/0000-0003-1546-6615
https://orcid.org/0000-0003-2242-0244
https://orcid.org/0000-0003-2242-0244
https://orcid.org/0000-0003-2242-0244
https://orcid.org/0000-0003-2242-0244
https://orcid.org/0000-0003-2242-0244
https://orcid.org/0000-0003-2242-0244
https://orcid.org/0000-0003-2242-0244
https://orcid.org/0000-0003-2242-0244
https://orcid.org/0000-0003-2451-5482
https://orcid.org/0000-0003-2451-5482
https://orcid.org/0000-0003-2451-5482
https://orcid.org/0000-0003-2451-5482
https://orcid.org/0000-0003-2451-5482
https://orcid.org/0000-0003-2451-5482
https://orcid.org/0000-0003-2451-5482
https://orcid.org/0000-0003-2451-5482
https://orcid.org/0000-0002-0387-370X
https://orcid.org/0000-0002-0387-370X
https://orcid.org/0000-0002-0387-370X
https://orcid.org/0000-0002-0387-370X
https://orcid.org/0000-0002-0387-370X
https://orcid.org/0000-0002-0387-370X
https://orcid.org/0000-0002-0387-370X
https://orcid.org/0000-0002-0387-370X
https://orcid.org/0000-0001-7648-4142
https://orcid.org/0000-0001-7648-4142
https://orcid.org/0000-0001-7648-4142
https://orcid.org/0000-0001-7648-4142
https://orcid.org/0000-0001-7648-4142
https://orcid.org/0000-0001-7648-4142
https://orcid.org/0000-0001-7648-4142
https://orcid.org/0000-0001-7648-4142
https://orcid.org/0000-0001-5390-8563
https://orcid.org/0000-0001-5390-8563
https://orcid.org/0000-0001-5390-8563
https://orcid.org/0000-0001-5390-8563
https://orcid.org/0000-0001-5390-8563
https://orcid.org/0000-0001-5390-8563
https://orcid.org/0000-0001-5390-8563
https://orcid.org/0000-0001-5390-8563
http://arXiv.org/abs/1603.04467
https://doi.org/10.3847/1538-4357/ac7c74
https://ui.adsabs.harvard.edu/abs/2022ApJ...935..167A/abstract
https://ui.adsabs.harvard.edu/abs/2022ApJ...935..167A/abstract
https://doi.org/10.3847/1538-3881/aabc4f
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A/abstract
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A/abstract
https://doi.org/10.1051/0004-6361/201322068
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://doi.org/10.1086/519832
https://ui.adsabs.harvard.edu/abs/2007ApJ...665.1246B/abstract
https://doi.org/10.1088/1538-3873/ab0c2a
https://ui.adsabs.harvard.edu/abs/2019PASP..131f8003B/abstract
https://doi.org/10.1088/1538-3873/aaecbe
https://ui.adsabs.harvard.edu/abs/2019PASP..131a8002B/abstract
https://doi.org/10.1088/1538-3873/aaa53f
https://ui.adsabs.harvard.edu/abs/2018PASP..130c5003B/abstract
https://doi.org/10.1086/668468
https://ui.adsabs.harvard.edu/abs/2012PASP..124.1175B/abstract
https://doi.org/10.3847/1538-3881/ab5182
https://ui.adsabs.harvard.edu/abs/2019AJ....158..257B/abstract
https://doi.org/10.3847/2041-8213/acf9a4
https://ui.adsabs.harvard.edu/abs/2023ApJ...956L...5B/abstract
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1093/mnras/stt1306
https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.1047B/abstract
https://ui.adsabs.harvard.edu/abs/2023mla..confE...5C/abstract
https://doi.org/10.3847/1538-4357/836/1/97
https://ui.adsabs.harvard.edu/abs/2017ApJ...836...97C/abstract
https://doi.org/10.3847/1538-3881/ac0ef1
https://ui.adsabs.harvard.edu/abs/2021AJ....162..231C/abstract
https://doi.org/10.1093/mnras/stt574
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432.1483C/abstract
https://doi.org/10.1051/0004-6361/202244867
https://ui.adsabs.harvard.edu/abs/2023A&A...670A..48C/abstract
https://doi.org/10.3847/1538-4357/ab2131
https://ui.adsabs.harvard.edu/abs/2019ApJ...880....7C/abstract
https://doi.org/10.3847/1538-4365/acdee1
https://doi.org/10.21105/joss.01277
https://ui.adsabs.harvard.edu/abs/2019JOSS....4.1277D/abstract
http://arxiv.org/abs/2403.07975
https://doi.org/10.1088/1538-3873/ab4ca2
https://ui.adsabs.harvard.edu/abs/2020PASP..132c8001D/abstract
https://doi.org/10.1093/mnras/stv632
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.1441D/abstract
https://doi.org/10.1093/mnras/sty338
https://ui.adsabs.harvard.edu/abs/2018MNRAS.476.3661D/abstract
http://doi.org/10.5281/zenodo.5651471
http://doi.org/10.5281/zenodo.5651471
https://doi.org/10.1093/mnras/stz2357
https://ui.adsabs.harvard.edu/abs/2019MNRAS.489.3582D/abstract
http://arxiv.org/abs/2111.12142
https://doi.org/10.21105/astro.2308.01505
https://ui.adsabs.harvard.edu/abs/2023OJAp....6E..49F/abstract
https://doi.org/10.21105/joss.00024
https://ui.adsabs.harvard.edu/abs/2016JOSS....1...24F/abstract
https://doi.org/10.3847/1538-3881/abe9bc
https://ui.adsabs.harvard.edu/abs/2021AJ....161..242F/abstract
https://doi.org/10.3847/2041-8213/ac116f
https://ui.adsabs.harvard.edu/abs/2021ApJ...917L...2F/abstract
https://doi.org/10.3847/1538-4357/ab8943
https://ui.adsabs.harvard.edu/abs/2020ApJ...895...32F/abstract
https://doi.org/10.1016/0031-3203(82)90024-3
https://ui.adsabs.harvard.edu/abs/1982PatRe..15..455F/abstract
https://doi.org/10.3847/1538-4357/ace326
https://doi.org/10.1088/0004-6256/150/3/82
https://ui.adsabs.harvard.edu/abs/2015AJ....150...82G/abstract
https://doi.org/10.3847/1538-4357/abbf49
https://ui.adsabs.harvard.edu/abs/2020ApJ...904...74G/abstract
https://doi.org/10.3847/1538-4357/acc535
https://ui.adsabs.harvard.edu/abs/2023ApJ...949..113G/abstract
https://doi.org/10.1038/s41550-023-02034-5
https://ui.adsabs.harvard.edu/abs/2023NatAs...7.1137G/abstract
https://doi.org/10.1088/1538-3873/ab006c
https://ui.adsabs.harvard.edu/abs/2019PASP..131g8001G/abstract

Graham, M. L., Bellm, E., Guy, L., et al. 2024, LSST Alerts: Key Numbers
DMTN-102, Vera C. Rubin Observatory, https://dmtn-102.lsst.io/

Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Natur, 585, 357
Hendrycks, D., & Gimpel, K. 2016, arXiv:1610.02136
Hiramatsu, D., Tsuna, D., Berger, E., et al. 2023, ApJL, 955, L8
Hosseinzadeh, G., Dauphin, F., Villar, V. A., et al. 2020, ApJ, 905, 93
Hunter, J. D. 2007, CSE, 9, 90
Irani, I., Prentice, S. J., Schulze, S., et al. 2022, ApJ, 927, 10
Itagaki, K. 2023, TNSTR, 2023-1158
Jacobson-Galán, W. V., Dessart, L., Margutti, R., et al. 2023, ApJL, 954, L42
Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111
Kaiser, N., Aussel, H., Burke, B. E., et al. 2002, Proc. SPIE, 4836, 154
Kasliwal, M. M., Cannella, C., Bagdasaryan, A., et al. 2019, PASP, 131,

038003
Killestein, T. L., Lyman, J., Steeghs, D., et al. 2021, MNRAS, 503, 4838
Kim, Y. L., Rigault, M., Neill, J. D., et al. 2022, PASP, 134, 024505
Kingma, D. P., & Ba, J. 2014, arXiv:1412.6980
Kluyver, T., Ragan-Kelley, B., Pérez, F., et al. 2016, in Positioning and Power

in Academic Publishing: Players, Agents and Agendas, ed. F. Loizides &
B. Schmidt (Amsterdam: IOS Press), 87

Lanusse, F., Ma, Q., Li, N., et al. 2018, MNRAS, 473, 3895
LeCun, Y., Bengio, Y., & Hinton, G. 2015, Natur, 521, 436
Mahabal, A., Rebbapragada, U., Walters, R., et al. 2019, PASP, 131, 038002
Masci, F. J., Laher, R. R., Rusholme, B., et al. 2019, PASP, 131, 018003
McCulloch, W. S., & Pitts, W. 1943, Bull. Math. Biophys., 5, 115
McKinney, W. 2010, Proc. 9th Python in Science Conf., ed. S. van der Walt &

J. Millman, 56
Miranda, N., Freytag, J. C., Nordin, J., et al. 2022, A&A, 665, A99
Möller, A., & de Boissière, T. 2020, MNRAS, 491, 4277
Morgan, R., Nord, B., Bechtol, K., et al. 2022, ApJ, 927, 109
Morgan, R., Nord, B., Bechtol, K., et al. 2023, ApJ, 943, 19
Muthukrishna, D., Narayan, G., Mandel, K. S., Biswas, R., & Hložek, R. 2019,

PASP, 131, 118002
Nair, V., & Hinton, G. E. 2010, Proc. 27th Int. Conf. on Machine Learning

(Madison, WI: Omnipress), 807, https://www.cs.toronto.edu/~fritz/absps/
reluICML.pdf

Nordin, J., Brinnel, V., van Santen, J., et al. 2019, A&A, 631, A147
The pandas development team 2024, pandas-dev/pandas: Pandas, Zenodo,

doi:10.5281/zenodo.3509134
Pasquet, J., Bertin, E., Treyer, M., Arnouts, S., & Fouchez, D. 2019, A&A,

621, A26
Patterson, M. T., Bellm, E. C., Rusholme, B., et al. 2019, PASP, 131, 018001

Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, JMLR, 12, 2825
Perley, D. A., Fremling, C., Sollerman, J., et al. 2020, ApJ, 904, 35
Perley, D. A., Gal-Yam, A., Irani, I., & Zimmerman, E. 2023, TNSAN, 119, 1
Qin, Y.-J., Zhang, K., Bloom, J., et al. 2023, arXiv:2309.10022
Qu, H., Sako, M., Möller, A., & Doux, C. 2021, AJ, 162, 67
Rehemtulla, N. 2024, BTSbot v10 training set, v10, Zenodo, doi:10.5281/

zenodo.10839691
Rehemtulla, N., Miller, A., du Laz, T., et al. 2024, nabeelre/BTSbot:

Publication Version, v1.0.1, Zenodo, doi:10.5281/zenodo.10839685
Rehemtulla, N., Miller, A., Fremling, C., et al. 2023a, TNSAN, 265, 1
Rehemtulla, N., Miller, A. A., Coughlin, M. W., & Jegou du Laz, T. 2023b,

arXiv:2307.07618
Reyes-Jainaga, I., Förster, F., Muñoz Arancibia, A. M., et al. 2023, ApJL,

952, L43
Rigault, M., Neill, J. D., Blagorodnova, N., et al. 2019, A&A, 627, A115
Rodríguez, Ó., Maoz, D., & Nakar, E. 2023, ApJ, 955, 71
Sadeh, I., Abdalla, F. B., & Lahav, O. 2016, PASP, 128, 104502
Shappee, B. J., Prieto, J. L., Grupe, D., et al. 2014, ApJ, 788, 48
Sharma, Y., Sollerman, J., Fremling, C., et al. 2023, ApJ, 948, 52
Sharon, A., & Kushnir, D. 2022, MNRAS, 509, 5275
Simonyan, K., & Zisserman, A. 2014, arXiv:1409.1556
Smith, K. W., Smartt, S. J., Young, D. R., et al. 2020, PASP, 132, 085002
Sollerman, J., Yang, S., Perley, D., et al. 2022, A&A, 657, A64
Stein, R., Mahabal, A., Reusch, S., et al. 2024, ApJL, 965, 10
Stoppa, F., Bhattacharyya, S., Ruiz de Austri, R., et al. 2023, A&A, 680, 16
Szegedy, C., Zaremba, W., Sutskever, I., et al. 2013, arXiv:1312.6199
Tachibana, Y., & Miller, A. A. 2018, PASP, 130, 128001
Tonry, J. L. 2011, PASP, 123, 58
Tonry, J. L., Denneau, L., Heinze, A. N., et al. 2018, PASP, 130, 064505
Tsaprazi, E., Jasche, J., Goobar, A., et al. 2022, MNRAS, 510, 366
Turpin, D., Ganet, M., Antier, S., et al. 2020, MNRAS, 497, 2641
van der Walt, S. J., Crellin-Quick, A., & Bloom, J. S. 2019, JOSS, 4, 1247
van Roestel, J., Duev, D. A., Mahabal, A. A., et al. 2021, AJ, 161, 267
Villar, V. A., Berger, E., Miller, G., et al. 2019, ApJ, 884, 83
Villar, V. A., Hosseinzadeh, G., Berger, E., et al. 2020, ApJ, 905, 94
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, NatMe, 17, 261
Walmsley, M., Ferguson, A. M. N., Mann, R. G., & Lintott, C. J. 2019,

MNRAS, 483, 2968
Walmsley, M., Smith, L., Lintott, C., et al. 2020, MNRAS, 491, 1554
Wright, D. E., Smartt, S. J., Smith, K. W., et al. 2015, MNRAS, 449, 451
Yang, S., Sollerman, J., Strotjohann, N. L., et al. 2021, A&A, 655, A90
Zimmerman, E. A., Irani, I., Chen, P., et al. 2024, Natur, 627, 759

19

The Astrophysical Journal, 972:7 (19pp), 2024 September 1 Rehemtulla et al.

https://dmtn-102.lsst.io/
https://doi.org/10.1038/s41586-020-2649-2
https://ui.adsabs.harvard.edu/abs/2020Natur.585..357H/abstract
http://arxiv.org/abs/1610.02136
https://doi.org/10.3847/2041-8213/acf299
https://ui.adsabs.harvard.edu/abs/2023ApJ...955L...8H/abstract
https://doi.org/10.3847/1538-4357/abc42b
https://ui.adsabs.harvard.edu/abs/2020ApJ...905...93H/abstract
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
https://doi.org/10.3847/1538-4357/ac4709
https://ui.adsabs.harvard.edu/abs/2022ApJ...927...10I/abstract
https://ui.adsabs.harvard.edu/abs/2023TNSTR1158....1I/abstract
https://doi.org/10.3847/2041-8213/acf2ec
https://ui.adsabs.harvard.edu/abs/2023ApJ...954L..42J/abstract
https://doi.org/10.3847/1538-4357/ab042c
https://ui.adsabs.harvard.edu/abs/2019ApJ...873..111I/abstract
https://doi.org/10.1117/12.457365
https://ui.adsabs.harvard.edu/abs/2002SPIE.4836..154K/abstract
https://doi.org/10.1088/1538-3873/aafbc2
https://ui.adsabs.harvard.edu/abs/2019PASP..131c8003K/abstract
https://ui.adsabs.harvard.edu/abs/2019PASP..131c8003K/abstract
https://doi.org/10.1093/mnras/stab633
https://ui.adsabs.harvard.edu/abs/2021MNRAS.503.4838K/abstract
https://doi.org/10.1088/1538-3873/ac50a0
https://ui.adsabs.harvard.edu/abs/2022PASP..134b4505K/abstract
http://arxiv.org/abs/1412.6980
https://ui.adsabs.harvard.edu/abs/2016ppap.book...87K/abstract
https://doi.org/10.1093/mnras/stx1665
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473.3895L/abstract
https://doi.org/10.1038/nature14539
https://ui.adsabs.harvard.edu/abs/2015Natur.521..436L/abstract
https://doi.org/10.1088/1538-3873/aaf3fa
https://ui.adsabs.harvard.edu/abs/2019PASP..131c8002M/abstract
https://doi.org/10.1088/1538-3873/aae8ac
https://ui.adsabs.harvard.edu/abs/2019PASP..131a8003M/abstract
https://doi.org/10.1007/bf02478259
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1051/0004-6361/202243668
https://ui.adsabs.harvard.edu/abs/2022A&A...665A..99M/abstract
https://doi.org/10.1093/mnras/stz3312
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.4277M/abstract
https://doi.org/10.3847/1538-4357/ac5178
https://ui.adsabs.harvard.edu/abs/2022ApJ...927..109M/abstract
https://doi.org/10.3847/1538-4357/ac721b
https://ui.adsabs.harvard.edu/abs/2023ApJ...943...19M/abstract
https://doi.org/10.1088/1538-3873/ab1609
https://ui.adsabs.harvard.edu/abs/2019PASP..131k8002M/abstract
https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
https://doi.org/10.1051/0004-6361/201935634
https://ui.adsabs.harvard.edu/abs/2019A&A...631A.147N/abstract
http://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1051/0004-6361/201833617
https://ui.adsabs.harvard.edu/abs/2019A&A...621A..26P/abstract
https://ui.adsabs.harvard.edu/abs/2019A&A...621A..26P/abstract
https://doi.org/10.1088/1538-3873/aae904
https://ui.adsabs.harvard.edu/abs/2019PASP..131a8001P/abstract
https://ui.adsabs.harvard.edu/abs/2011JMLR...12.2825P/abstract
https://doi.org/10.3847/1538-4357/abbd98
https://ui.adsabs.harvard.edu/abs/2020ApJ...904...35P/abstract
https://ui.adsabs.harvard.edu/abs/2023TNSAN.119....1P/abstract
http://arxiv.org/abs/2309.10022
https://doi.org/10.3847/1538-3881/ac0824
https://ui.adsabs.harvard.edu/abs/2021AJ....162...67Q/abstract
http://doi.org/10.5281/zenodo.10839691
http://doi.org/10.5281/zenodo.10839691
http://doi.org/10.5281/zenodo.10839685
https://ui.adsabs.harvard.edu/abs/2023TNSAN.265....1R/abstract
http://arxiv.org/abs/2307.07618
https://doi.org/10.3847/2041-8213/ace77e
https://ui.adsabs.harvard.edu/abs/2023ApJ...952L..43R/abstract
https://ui.adsabs.harvard.edu/abs/2023ApJ...952L..43R/abstract
https://doi.org/10.1051/0004-6361/201935344
https://ui.adsabs.harvard.edu/abs/2019A&A...627A.115R/abstract
https://doi.org/10.3847/1538-4357/ace2bd
https://ui.adsabs.harvard.edu/abs/2023ApJ...955...71R/abstract
https://doi.org/10.1088/1538-3873/128/968/104502
https://ui.adsabs.harvard.edu/abs/2016PASP..128j4502S/abstract
https://doi.org/10.1088/0004-637X/788/1/48
https://ui.adsabs.harvard.edu/abs/2014ApJ...788...48S/abstract
https://doi.org/10.3847/1538-4357/acbc16
https://ui.adsabs.harvard.edu/abs/2023ApJ...948...52S/abstract
https://doi.org/10.1093/mnras/stab3380
https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.5275S/abstract
http://arxiv.org/abs/1409.1556
https://doi.org/10.1088/1538-3873/ab936e
https://ui.adsabs.harvard.edu/abs/2020PASP..132h5002S/abstract
https://doi.org/10.1051/0004-6361/202142049
https://ui.adsabs.harvard.edu/abs/2022A&A...657A..64S/abstract
https://doi.org/10.3847/2041-8213/ad3337
https://ui.adsabs.harvard.edu/abs/2024ApJ...965L..14S/abstract
https://doi.org/10.1051/0004-6361/202347576
https://ui.adsabs.harvard.edu/abs/2023A&A...680A.109S/abstract
http://arxiv.org/abs/1312.6199
https://doi.org/10.1088/1538-3873/aae3d9
https://ui.adsabs.harvard.edu/abs/2018PASP..130l8001T/abstract
https://doi.org/10.1086/657997
https://ui.adsabs.harvard.edu/abs/2011PASP..123...58T/abstract
https://doi.org/10.1088/1538-3873/aabadf
https://ui.adsabs.harvard.edu/abs/2018PASP..130f4505T/abstract
https://doi.org/10.1093/mnras/stab3525
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510..366T/abstract
https://doi.org/10.1093/mnras/staa2046
https://ui.adsabs.harvard.edu/abs/2020MNRAS.497.2641T/abstract
https://doi.org/10.21105/joss.01247
https://ui.adsabs.harvard.edu/abs/2019JOSS....4.1247V/abstract
https://doi.org/10.3847/1538-3881/abe853
https://ui.adsabs.harvard.edu/abs/2021AJ....161..267V/abstract
https://doi.org/10.3847/1538-4357/ab418c
https://ui.adsabs.harvard.edu/abs/2019ApJ...884...83V/abstract
https://doi.org/10.3847/1538-4357/abc6fd
https://ui.adsabs.harvard.edu/abs/2020ApJ...905...94V/abstract
https://doi.org/10.1038/s41592-019-0686-2
https://ui.adsabs.harvard.edu/abs/2020NatMe..17..261V/abstract
https://doi.org/10.1093/mnras/sty3232
https://ui.adsabs.harvard.edu/abs/2019MNRAS.483.2968W/abstract
https://doi.org/10.1093/mnras/stz2816
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.1554W/abstract
https://doi.org/10.1093/mnras/stv292
https://ui.adsabs.harvard.edu/abs/2015MNRAS.449..451W/abstract
https://doi.org/10.1051/0004-6361/202141244
https://ui.adsabs.harvard.edu/abs/2021A&A...655A..90Y/abstract
https://doi.org/10.1038/s41586-024-07116-6
https://ui.adsabs.harvard.edu/abs/2024Natur.627..759Z/abstract

	1. Introduction
	2. Training Data
	3. BTSbot Scope, Architecture, and Training
	3.1. Training and Hyperparameter Optimization

	4. BTSbot Performance and Comparison to Human Scanners
	4.1. Performance on the Test Split
	4.1.1. Analysis of Misclassifications in the Test Split

	4.2. Performance on Very Recent BTS Candidates
	4.2.1. Analysis of Misclassifications in the Present-day Sample

	5. Discussion
	5.1. BTSbot Real-time Operations
	5.2. Comparison with Similar Models
	5.3. An Adaptation of BTSbot: Automatic, Very Rapid Follow-up

	6. Summary
	Appendix AAccuracy and Loss Evolution during Training
	Appendix BIntegration of BTSbot into ZTF and the BTS Workflow
	Appendix CComparison with Unimodal Architectures
	Appendix DConvolutional Neural Networks with Cropped Image Cutouts
	References

