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A B S T R A C T   

Accurate prediction of ship emissions aids to ensure maritime sustainability but encounters 
challenges, such as the absence of high-precision and high-resolution databases, complex 
nonlinear relationships, and vulnerability to emergency events. This study addresses these issues 
by developing novel solutions: a novel Spatiotemporal Trajectory Search Algorithm (STSA) based 
on Automatic Identification System (AIS) data; a rolling structure-based Seasonal-Trend decom
position based on the Loess technique (STL); a modular deep learning model based on Structured 
Components, stacked-Long short-term memory, Convolutional neural networks and Compre
hensive forecasting module (SCLCC). Based on these solutions, a case study using pre and post- 
COVID-19 AIS data demonstrates model reliability and the pandemic’s impact on ship emis
sions. Numerical experiments reveal that the STSA algorithm significantly outperforms the con
ventional identification standard in terms of accuracy of ship navigation state identification; the 
SCLCC model exhibits greater resistance against emergency events and excels in comprehensively 
capturing global information, thus yielding higher accurate prediction results. This study sheds 
light on the changing dynamics of maritime transport and its impacts on carbon emissions.   

1. Introduction 

As global maritime transport burgeons, ship emissions have become a major concern of many countries and international orga
nizations around the world (Huang et al., 2020). As one of the most important sources of greenhouse gases and air pollutants (In
ternational Maritime Organization, 2021), annual CO2 equivalent emissions from shipping have reached 10.76 megatonnes, 2.89 
percent of total global emissions (International Maritime Organization, 2020). As reported by literatures (Eyring et al., 2010; Park 
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et al., 2023), approximately 70 percent of CO2 emissions from ships occur within 400 km of land. These emissions have wide-ranging, 
multi-scale, and multi-faceted impacts on human lives and societal sustainability. Furthermore, ship emissions exhibit a distinct 
seasonal pattern, with more pronounced pollution during the summer months (Aliabadi et al., 2015). To facilitate effective time- 
diverse regulation of ship emissions and mitigate the impact of pollutants and greenhouse gases across varying time frames, there 
is an urgent need for accurate emissions calculation and effective Time Series Forecasting (TSF) within the jurisdiction. 

In the existing body of research, numerous studies have focused on assessing changes in air quality within specific harbours (Park 
et al., 2023; Sim et al., 2022). However, few research has addressed the challenge of forecasting ship emissions using TSF methods. This 
gap is primarily attributed to the absence of high-resolution ship emission databases in port areas or at sea (Alfaseeh et al., 2020; Peng 
et al., 2020). While numerous studies have formulated ship emission estimation models utilizing Automatic Identification System (AIS) 
for calculating emissions in designated sea areas or ports (Chen et al., 2021; Hussain et al., 2022; Muhammad and Long, 2020), the 
majority of these models lack precise algorithms for discerning the ship navigation states. Consequently, these models are arguably 
incapable of capturing different emissions from varying ship operations under dynamic navigational conditions, resulting in inade
quate accuracy in both measuring and projecting ship emissions. 

In addition to the reliance on high-resolution databases, unforeseen emergency events such as COVID-19 pandemic, the Russia- 
Ukraine crisis, and the Red sea crisis can lead to Concept Drift (CD) of data-streaming, affecting the accuracy of TSF results. For 
example, the emergence of COVID-19 profoundly impacted the shipping industry in January 2020 (Li et al., 2024a), fundamentally 
altering the trajectory of carbon emissions (Wang et al., 2023), as depicted in the time series of global merchant fleet carbon dioxide 
emissions in Fig. 1. This significant change reflects that CD of data-streaming (Karimian and Beigy, 2023) can potentially diminish the 
performance of multiple TSF models (Gharib et al., 2021; Hsiao et al., 2021; Mroua and Lamine, 2023). 

To address the aforementioned challenges, this study aims to develop a novel framework for ship emissions calculation. The 
framework combines Lloyd’s Ship Technical Specification Database (STSD) with AIS data to establish an updated ship information 
database. Furthermore, a novel navigation state identification algorithm, rooted in the spatiotemporal ship trajectory, is developed to 
accurately identify a ship’s navigation state, employing the five navigation states defined by the International Maritime Organization 
(IMO). In pursuit of TSF for ship emissions in a specified maritime area, this study proposes a deep learning model with superior 
predictive performance and resistance against CD of data-streaming. To illustrate the application of these methods, the study conducts 
a case study and examines the CO2 emissions from ships within China’s Bohai Bay waters during the years 2019–2020. 

The remaining sections of this paper are structured as follows. Section 2 provides a literature review on ship emissions calculation 
and TSF and outlines the specific contributions made by this study. Section 3 details the methodology employed for constructing a 
database of ship emissions, presents a problem description for the TSF task, and introduces the proposed deep learning model. Section 
4 focuses on establishing a ship emissions database and the training of the TSF model. Section 5 evaluates the predictive performance 
of the TSF model, assesses its resistance to CD, and offers an interpretability analysis of the proposed deep learning model. Section 6 
provides the conclusion and limitations. 

2. Literature review 

2.1. Carbon emission calculations 

Current research relies on two primary approaches for estimating ship emissions: the “top-down” method based on macro 
modelling and the “bottom-up” method based on micro modelling (Chen et al., 2021; Nocera et al., 2017). The “top-down” approach, 
using macro-statistics like ship fuel consumption and emission factors, provides accurate global estimates but tends to underestimate 
regional emissions due to the lack of ship specifics (Chen et al., 2021; Huang et al., 2020). Conversely, the widely used “bottom-up” 

Fig. 1. Global merchant fleet CO2 emissions from 2012 to 2022. Note: Data is from the United Nations Conference on Trade and Development 
(UNCTAD) (https://unctad.org/rmt2022). 
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approach calculates emissions based on detailed operational parameters, including engine type, power, and fuel specifics, making it 
more precise and dependable (Muhammad and Long, 2020; Murcia González, 2021). For the calculation of regional ship emissions, the 
“bottom-up” method based on micro modelling outperforms the “top-down” method based on macro modelling in both accuracy and 
temporal resolution (Fuentes García et al., 2021; Hickman et al., 2011; Yuan and Frey, 2021). 

The performance of ships’ engines, fuel consumption, and other emission indicators varies due to different navigation states 
(Muhammad and Long, 2020). Therefore, accurate identification of a ship’s navigation state is paramount for the precision of the 
“bottom-up” approach in estimating carbon emissions (Li et al., 2023). For instance, in assessing emissions from ships along the China- 
Pakistan Economic Corridor, Muhammad and Long (2020) calculated CO2 emissions based on average cruising speed, average 
maneuvering time, and berth time. Hussain et al. (2022) used ship-related data from the Pakistani port database to estimate carbon 
emissions during different operational phases. While these methods, to some extent, reflect the emissions of the study’s subject, the 
inherent coarseness of the raw data limits their accuracy in capturing real emissions, resulting in a high margin of error. 

AIS technology is crucial for accurately determining ships’ navigational states and has gained prominence in maritime research 
(Chen et al., 2021; Huang et al., 2020; Xin et al., 2024). It continuously broadcasts ship information like position, speed, and load factor 
at short intervals, offering high temporal and spatial resolution (Huang et al., 2020). Additionally, the IMO mandates AIS for specific 
ship categories, leading to the widespread availability of AIS data and the construction of global shipping datasets (Chen et al., 2021; 
Huang et al., 2020). Consequently, the “bottom-up” approach, using AIS data, has gradually become the prevailing method for esti
mating ship emissions (Li et al., 2023; Weng et al., 2020). 

The Ship Traffic Exhaust Assessment Model (STEAM), relying on AIS data, is a prominent example of the “bottom-up” approach 
(Jalkanen et al., 2009; Li et al., 2023). The STEAM model, drawing from extensive ship trajectory data obtained from AIS equipment 
and offering high spatial and temporal resolution emission measurements, has gained recognition from the IMO and numerous re
searchers (Fuentes García et al., 2021; Jalkanen et al., 2009; Li et al., 2023). Moreno-Gutiérrez et al. (2015) analysed nine methods for 
estimating carbon emissions by using AIS data to match engine power with shipping numbers in Lloyd’s database. They found that the 
STEAM model to be the most reliable method. However, due to missing information in Lloyd’s database, accurate assessment of total 
emissions within a sea area was hindered. Li et al. (2023) proposed a Random Forest-based iterative repair algorithm for missing 
Lloyd’s data and used DBSCAN-based AIS trajectory repair for missing AIS points. They estimated CO2 emissions within Domestic 
Emission Control Areas (DECA) using the repaired databases and IMO’s navigation state criteria. 

2.2. Time series forecasting 

The TSF analysis is integral to modern data-driven research (Zeng et al., 2023). TSF methods, using historical data, are widely 
applied in forecasting epidemic spread (Istaiteh et al., 2020), traffic patterns (Bogaerts et al., 2020), financial investments (Khosravi 
and Ghazani, 2023), and air pollution levels (Alfaseeh et al., 2020). A compilation of recent TSF studies is presented in Table 1. 

The evolution of TSF tasks spans three stages (Zeng et al., 2023): statistical models (Acharya and Singleton, 2022), machine 
learning (Ma et al., 2020; Zhang and Wang, 2018), and deep learning (Bogaerts et al., 2020; Kabir et al., 2023). Statistical models 
primarily use autoregressive time series data and aggregate information to predict future events (Acharya and Singleton, 2022). While 
machine learning and deep learning models vary their information extraction techniques based on the specific research area and 
dataset (Wu and Peng, 2022). Statistical models are proved easy to use and exhibit high accuracy when dealing with limited data, but 
their computational costs increase significantly, and prediction accuracy declines considerably when handling substantial datasets and 
extended forecasting horizons. In contrast, machine learning and deep learning models need separate training and test sets. In complex 
TSF tasks, machine learning and deep learning models often surpass statistical models (Kabir et al., 2023; Wu and Peng, 2022). 

In machine learning, Support Vector Machines (SVM) (Zhang and Wang, 2018) and integrated tree-based learning models (Hu and 
Xiong, 2023; Tang et al., 2022) are commonly employed for simple TSF tasks. Complex TSF tasks frequently leverage various deep 

Table 1 
The recent research on TSF tasks.  

Literature Research area Method type Technique 

Statistical 
model 

Machine 
learning 

Deep 
learning 

Acharya and Singleton 
(2022) 

Associations of air quality and weather with non- 
motorized counts 

√   ARIMA 

Ma et al. (2020) Traffic forecasting √ √  ARIMA, NN 
Zhang and Wang (2018) Electricity load forecasting  √  SVM 
Bogaerts et al. (2020) Traffic forecasting   √ CNN + LSTM 
Kabir et al. (2023) Fuel consumption forecasting   √ LSTM 
Khosravi and Ghazani 

(2023) 
Cryptocurrency market forecasting  √ √ RF, XGBoost, 

LSTM 
Hu and Xiong (2023) High-dimensional population inflow forecasting   √ Transformer 
Park et al. (2023) PM 2.5 and PM 10 forecasting   √ LSTM 
Zhu and Li (2021) Flight delay time forecasting   √ LSTM 
Alfaseeh et al. (2020) Greenhouse gas emission forecasting   √ LSTM 

Note: Autoregressive Integrated Moving Average Model (ARIMA), Neural Network (NN), Support Vector Machine (SVM), Convolutional Neural 
Networks (CNN), Long short-term memory (LSTM), Random Forest (RF), eXtreme Gradient Boosting (XGBoost). 
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learning models (Park et al., 2023; Zeng et al., 2023). Recurrent Neural Networks (RNN) represent a specialized deep learning model 
for TSF, characterized by its recurrent structure retaining essential information in time series data (Hellton et al., 2022; Servizi et al., 
2020). The Long Short-Term Memory (LSTM) model, an extension of RNN with a three-gate structure (memory gate, forgetting gate, 
and output gate), effectively addresses RNN issues like gradient vanishing and explosion while retaining valuable information 
(Khosravi and Ghazani, 2023; Park et al., 2023; Zhu and Li, 2021). For intricate time series data, several studies indicate that Con
volutional Neural Networks (CNN) perform exceptionally well in extracting complex information (Bogaerts et al., 2020; Hou et al., 
2022; Liu et al., 2022). In addition to the aforementioned deep learning models, the Transformer framework is considered one of the 
most successful sequence modelling approaches available (Hu and Xiong, 2023). It exhibits exceptional performance in Natural 
Language Processing (NLP), Computer Vision (CV), and TSF tasks (Hu and Xiong, 2023). Nevertheless, there is evidence suggesting 
that the effectiveness of Transformer in long-term time series tasks remains to be substantiated. Zeng et al. (2023) introduced a 
straightforward deep learning model, DLinear, and experimental results demonstrated that DLinear outperformed Transformer in TSF, 
all while offering significantly lower computational complexity. 

Despite the various advantages associated with different TSF models, a significant challenge emerges in their practical applications, 
referred to as CD of data-streaming (Gharib et al., 2021; Hsiao et al., 2021). CD of data-streaming represents the alteration in the 
distribution or relationship of data in a time series over time (Karimian and Beigy, 2023). When a model encounters an unknown data 
transformation, its predictive accuracy declines (Mroua and Lamine, 2023). For instance, during global emergency events like the 
COVID-19 pandemic, disruptions in global finance, population movements, and transport patterns invalidate many predictive models 
(Gharib et al., 2021; Hsiao et al., 2021; Liu et al., 2021), highlighting the need for CD-resistance TSF models in practical engineering 
applications. 

2.3. Research gaps and contributions 

Despite the fact that extensive research contributions exist in ship emissions and TSF domains, notable research gaps persist. Firstly, 
a significant gap exists in the realm of accurately identifying a ship’s navigation state, which consequently impairs the accuracy and 
resolution of models used for estimating ship emissions. Second, there is a paucity of research dedicated to the time series aspect of ship 
emissions, despite the numerous attempts to estimate ship emissions. This gap results in a certain delay in the implementation of time- 
differentiated measures by stakeholders. Finally, the practical application of TSF tasks has seen limited efforts to address the challenge 
of CD of data-streaming, rendering many models imperfect for real-world applications. In this study, the corresponding contributions 
to the above research gaps are made as follows: 

1) A novel ship navigation state identification algorithm based on temporal and spatial changes in AIS trajectories is proposed in 
this study. This algorithm demonstrates high accuracy in identifying ship navigation states, thereby enhancing the precision of ship 
emission estimation models and the resolution of the emission database. 

2) TSF is introduced to investigate ship carbon emissions, build a forecasting framework, and lay a foundation for solving the 
influence of emergency events. The result of TSF can also provide stakeholders with advanced, accurate information on emissions, 
enabling them to make well-informed decisions. 

3) A rolling structured time series decomposition module for ship emission is developed. This module effectively circumvents 
potential data leakage issues during time series decomposition and exhibits substantial resistance to CD while achieving remarkable 
accuracy in TSF tasks. 

4) An in-depth examination of the deep learning model using interpretability techniques is provided in this study. This highlights 
the model’s strong interpretability and unveils the underlying factors contributing to its resistance against CD and high prediction 
accuracy. 

Fig. 2. The research framework of this study.  
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3. Datasets and methods 

This study focuses on two main parts: establishing a ship emission database and developing a TSF model, as shown in Fig. 2. In 
Section 3.1, an algorithm for ship navigation state identification is developed to construct a ship carbon emission database. In Section 
3.2, a novel deep learning model for TSF is developed to conduct the prediction and interpretation of ship emission time series, 
particularly under the influence of CD of data-streaming. 

3.1. Carbon emission dataset construction based on navigation states identification 

Analysing ship carbon emissions in a specific sea area through TSF necessitates a dataset containing high-resolution ship carbon 
emission data points (Alfaseeh et al., 2020; Luan et al., 2023). However, existing studies (Peng et al., 2020; Weng et al., 2020) 
emphasize the absence of an accurate dataset that can provide high-resolution carbon emission reports from ships operating in a 
particular sea region. Drawing insights from related studies (Alfaseeh et al., 2020; Wu et al., 2023), leveraging reliable models to 
generate relevant emission data appears to be a viable approach for training and testing deep learning models. Therefore, this study 
introduces an improved method for estimating Emission of Ships based on Ship Navigation Activity (ESSNA), as depicted in Fig. 3. As a 
micro modelling technique, ESSNA is tailored for estimating ship emissions at specific times and scenarios. It achieves this by esti
mating individual ship emissions using ship-specific information, including navigation state, ship size, and main engine power. 
Consequently, it offers highly accurate and time-resolved calculations of ship emission data, which are well-suited for specific studies. 

Initially, the Lloyd’s Ship Technical Specification Database (STSD), which was updated in a previous study (Li et al., 2023), is linked 
with the ship identification numbers in the AIS data to enhance the fundamental ship information. Then, a new Spatiotemporal 
Trajectory Search Algorithm (STSA) is proposed to identify the ship’s navigational state, and the STEAM model (Peng et al., 2020) is 
used to calculate ship emission intensity, enabling the construction of a high-temporal-resolution Ship Carbon Emissions (SCE) 
database in the area. (Note: Specific details of the STEAM model are detailed in Appendix B). 

3.1.1. The framework of navigation states identification 
Ship emissions include main engine emissions and those from auxiliary engines or boilers, and these emissions rely on real-time 

power, with main engine power linked to the vessel’s real-time speed. However, the parameters for auxiliary engine and boiler 
power remain lacking (Peng et al., 2020). To estimate the power of auxiliary engines and boilers, the IMO recommends the utilization 
of specific parameters, such as the ship’s type, gross tonnage, and navigation state. The IMO classification standard classifies a ship’s 
navigation state into five distinct categories: berthing, anchoring, maneuvering, slow-steaming, and normal cruising (International 
Maritime Organization, 2020; Li et al., 2023; Weng et al., 2020). The standard determines ship navigation states based on ship speed 
and main engine power. However, this method has two major drawbacks: it lacks robustness, as it is vulnerable to irregular data 
fluctuations, and it struggles to accurately classify a wide range of vessel types and sizes using predefined thresholds. To address the 
aforementioned issues, this research proposes the use of STSA based on AIS to determine ship’s navigation states. The ship’s trajectory 
is represented as nt = {pn = {ln, tn}|n ∈ [1,N]}, where pn denotes the spatiotemporal coordinates, encompassing temporal and spatial 
details. N represents the number of these spatiotemporal coordinates, arranged chronologically. Each spatiotemporal coordinate 
consists of ln = (lan, lon), with lon and lan representing longitude and latitude, and tn signifying the corresponding timestamp. snt =
{pm|m ∈ [i, i + 1, ..., j − 1, j]; i⩽j, i, j ∈ [1,N]} refers to a sub-trajectory of the overall trajectory. The STSA method analyses the ship’s 
navigation state through continuous spatiotemporal sub-trajectories. Displayed in Fig. 3 and Table A1 in Appendix A, STSA classifies 
states into three groups: Mooring (berth and anchoring), Sailing (maneuvering and cruising), and Cruising (slow-steaming and normal 
cruising), based on varying motion characteristics. First, it identifies mooring sub-trajectories to differentiate between berthing and 
anchoring. Next, it discerns the sailing state from the remaining sub-trajectories to distinguish between maneuvering and cruising. 
Lastly, it differentiates slow-steaming from normal cruising within the identified cruising sub-trajectory. 

Fig. 3. The procedure of SCE dataset construction.  
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3.1.2. The sub-algorithm of mooring state identification 
Even if a ship is moored, external factors like wind, currents, or onboard equipment can induce slight positional shifts, causing 

variations in latitude and longitude data within a specific range. This study employs the ship trajectory’s temporal duration and spatial 
extent to accurately identify the mooring state of the ship. By separately examining the displacement range of a ship in both anchor and 
berth states, a clear distinction between these two states is established. Ships in the anchor state exhibit a significantly larger spatial 
migration range compared to those in the berth state. In contrast, in the berth state, the duration of spatial migration of a similar scale 
is typically much longer than that in the anchor state. Hence, a Mooring State Identification Sub-Algorithm (MSISA) is introduced in 
this study to determine whether a ship trajectory represents an anchor or berth state based on specific temporal and spatial thresholds. 
Table A2 presents the pseudo-code for the MSISA algorithm, while Eqs. (1) to (3) outline the principles for distinguishing between 
berth and anchor states. 

dis(pi, pm) = 2R ⋅ arcsin

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

sin2
(

lam − lai

2

)

+ cos(lam) ⋅ cos(lai) ⋅ sin2
(

lom − loi

2

)√

(1)  

dis(pi, pm)⩽ξdis, ∀m ∈ [i, j], ξdis = {ξa, ξb} (2)  

Δt(pi, pm) = tm − ti⩾τdis,∀m ∈ [i, j], τdis = {τa, τb} (3)  

where dis(pi, pm) represents the spatial distance between the ship’s spatiotemporal coordinates pi and pm, R is the radius of the Earth. 
This study utilises Haversine’s formula (Andreou et al., 2023) to accurately compute the ship’s drift distance based on latitude and 
longitude coordinates. ξdis denotes the spatial distance threshold for mooring state identification, whereas ξa and ξb represent the 
spatial distance thresholds for anchor and berth, respectively. Δt(pi, pm) represents the period between the spatiotemporal coordinates 
pi and pm of the ship. τdis is the threshold for identifying the mooring state, and τa, τb represent the threshold time intervals for anchor 
and berth identification, respectively. 

3.1.3. The sub-algorithm of sailing state identification 
Analysis of a ship’s motion state reveals that during maneuvering process, it undergoes more frequent steering operations. In 

contrast, when the ship is cruising, its heading typically remains stable. Consequently, the Sailing State Identification Sub-Algorithm 
(SSISA) primarily employs changes in the ship’s heading in the trajectory to identify maneuvering voyages (refer to Table A3 for the 
pseudo-code). The equations for calculating heading changes are presented in Eqs. (4) to (8): 

C(pi, pm) = (xm − xi, ym − yi, zm − zi) (4)  

xi = R × cos(loi) × cos(lai) (5)  

yi = R × cos(loi) × sin(lai) (6)  

zi = R × sin(lai) (7)  

ΔC
(

pi, pj, pm

)
= arccos

⎛

⎝
C
(

pi, pj

)
⋅ C(pi, pm)

⃒
⃒
⃒C
(

pi, pj

)⃒
⃒
⃒× |C(pi, pm)|

⎞

⎠ (8)  

where C(pi, pm) represents the heading between the ship’s spatiotemporal coordinates pi and pm; ΔC
(

pi, pj, pm

)
represents the change 

angle of heading between heading C
(

pi, pj

)
and C(pi,pm); C

(
pi, pj

)
is the initial heading, pi is the initial spatiotemporal coordinate of 

the sub-trajectory, and pj represents the first spatiotemporal coordinate where the initial heading exists. 
In this study, the endpoint (pe) of the sub-trajectory (snt) is determined as the spatiotemporal coordinate with the most significant 

change in heading angle from the initial heading, as represented in Eq. (9). If the sub-trajectory snt satisfies Eq. (10), it is classified as a 
maneuvering trajectory. 

ΔC
(

pi, pj, pe

)
⩾ΔC

(
pi, pj, pm

)
, ∀m ∈ [i, e] (9)  

ΔC
(

pi, pj, pe

)
⩾η (10)  

where η is the threshold of heading change angle. 
In Eq. (10), pe is the sub-trajectory endpoint and η is the threshold. To effectively determine the value of pe, this study introduces the 

spatiotemporal coordinate search number threshold (λ). The algorithm begins by designating the initial spatiotemporal coordinate 
with a heading difference as a temporary endpoint. It then continues searching for larger heading difference angles in subsequent 
coordinates. If a greater angle is found within λ coordinate points, the corresponding coordinate becomes the new temporary endpoint. 
However, if no larger angle is discovered and the heading difference angle satisfies Eq. (10), then the sub-trajectory snt(pi, pe) is 
classified as a maneuvering navigation state; otherwise, it is categorized as a cruising state. 
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3.1.4. The sub-algorithm of cruising state identification 
The main distinction between slow-steaming and normal cruising lies in the ship’s speed (Gan et al., 2022; Weng et al., 2020). A 

ship is identified in the slow-steaming state when its speed is 12 knots or less, as per IMO standards (International Maritime Orga
nization, 2020). Conversely, it is classified as normal cruising when exceeding this threshold (Gan et al., 2022). Considering the 
continuous nature of normal cruising, a change in sailing state isn’t triggered merely by the speed dipping below the threshold at 
specific spatiotemporal positions. Therefore, the Cruising State Identification Sub-Algorithm (CSISA) relies on the sub-trajectory’s 
average speed for identification. Sub-trajectories that meet the conditions described in Eqs. (11) and (12) are identified as normal 
cruising states, while those that fail to meet these criteria are recognized as slow-steaming states. 

v
(

pi, pj

)
=

dis
(

pi, pj

)

Δt
(

pi, pj

) (11)  

v(snt(pi, pk)) =

∑k− 1
h=i v(pi, pi+1)

k − 1
> 12 (12)  

where v
(

pi, pj

)
denotes the speed of the ship between spatiotemporal coordinates pi and pm; Δt

(
pi, pj

)
denotes time difference of the 

ship between spatiotemporal coordinates; v(snt(pi, pk)) denotes the average speed of the sub-trajectory snt(pi, pk); pk denotes the 
endpoint of the sub-trajectory. 

Eq. (12) emphasizes the significance of determining pk value as it enhances the average speed’s resilience against minimal 
abnormal values, avoiding potential misjudgments caused by sporadic anomalies. However, during the initial phase of a trajectory’s 
transition from normal cruising to slow-steaming, the average speed might misjudge. To address this, this study introduces a sequential 
threshold ϑ, which tracks speed anomalies. Specifically, when the algorithm is searching for the spatiotemporal coordinate ph and 
detects more than ϑ consecutive spatiotemporal coordinates with speeds less than or equal to 12, it will backtrack to the ϑ ship 
spatiotemporal coordinates and designate ph− ϑ as the concluding point of the sub-trajectory. The pseudocode for CSISA can be found in 
Table A4. 

3.2. Modular deep learning algorithm based on decomposition 

3.2.1. Problem statement 
Let the time series data for carbon emissions from ships in a specific sea area be denoted as X =

[
x1, x2, x3, ..., xdT

]T
∈ RdT , where xt 

represents the carbon emissions from ships at time t, and dT represents the length of the carbon emissions time series. X̂ is forecasted by 
the development of a predictive function using historical information. 

Since the raw data, denoted as X, consists of changes in carbon emission data over an extended time frame for a specific marine 
area, which cannot be directly assimilated by the model. Therefore, a sliding time window approach is employed to transform the raw 
data into a set of learnable examples. In the rolling time window setting, the encoder length (i.e., look-back window) is denoted as dLB, 
and the decoder length (i.e., forecasting horizons) is denoted as dFH. 

To unveil the shared nonlinear mapping relationship, represented as a nonlinear function, between each pair of encoder and 
decoder, Eq. (13) is given as follows: 

x̂(t+1):(t+dFH) = ℘
(
x(t− dLB+1):t

)
(13)  

where t, ∀t ∈ [dLB, dLB + 1, ..., dT − dFH], indicates the initiation of the rolling time window; x(t− dLB+1):t represents the past observed 
carbon emissions; x̂(t+1):(t+dFH) denotes the anticipated future carbon emissions; and ℘() signifies the shared nonlinear map between 

Fig. 4. The architecture of the proposed SCLCC model.  
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each encoder and decoder pair. 

3.2.2. Model structure 
In this research, a comprehensive prediction model based on Structured Components, stacked-Long short-term memory, Con

volutional neural networks and Comprehensive forecasting module (SCLCC) is proposed to predict carbon emissions in an investigated 
sea region before and after the emergency events. SCLCC is inspired by various sources, including time series decomposition (Trull 
et al., 2022; Zeng et al., 2023), Stacked-LSTM (Kabir et al., 2023; Park et al., 2023), and CNN methods (Bogaerts et al., 2020). Fig. 4 
illustrates the top-level design of SCLCC, which encompasses the following key components:  

(1) Roll-based structural Seasonal-Trend decomposition using Loess (STL) 

This study employs a structured decomposition module to enhance time series data by segregating it into trend, seasonal, and 
residual components. This enhanced data aids in improving the model’s learning process (Zeng et al., 2023). 

Time series decomposition simplifies complex patterns within the data. For instance, trend analysis facilitates long-term change 
predictions (Trull et al., 2022). Popular decomposition techniques, such as X11, X12, X13 algorithms based on ARIMA models, and the 
STL algorithm, are used for this purpose (Qian et al., 2019). Compared to other methods, the STL algorithm is capable of processing a 
wide range of time series data and exhibits robustness to outliers. It is known for its reliability and strong recognition of seasonal 
patterns (Tebong et al., 2023). Consequently, the STL algorithm is utilized in this study to decompose the time series data. 

The STL method includes an inner and an outer loop, as detailed shown in Table A5. The inner loop separates seasonal and trend 
components, while the outer loop computes robustness weights, aiding in a robust decomposition of time series data into seasonal, 
trend, and residual constituents. 

The trend component signifies long-term data pattern changes, while the seasonal component captures cyclic fluctuations. The 
residual component, mostly white noise, remains unpredictable (Qian et al., 2019). In view of the analysis of pronounced trend and 
seasonality aids in better predictions. Hence, this study focuses on trend and seasonality, disregarding the residual term. Furthermore, 
it employs a rolling decomposition based on STL during data learning to prevent data leakage. Specifically, the encoder stage in Fig. 5 
employs this approach on the look-back time series.  

(2) Stacked-LSTM-based Trend Item Learning Module 

This module aids the model in acquiring trend-related in-depth information. In this study, it focuses on extracting trend component 
time series data, simplifying the information (Qian et al., 2019). This approach effectively tackles challenges like long-term de
pendency and gradient vanishing encountered in TSF (Bogaerts et al., 2020; Kabir et al., 2023). The utilization of Stacked-LSTM 
(shown in Fig. 6) enhances the model’s capability to capture high-dimensional nonlinear data compared to a single LSTM, ach
ieved by stacking multiple LSTM layers (Li et al., 2021a). 

Fig. 5. The roll-based structural STL decomposition.  
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(3) CNN-Based Seasonal Item Learning Module 

This module focuses on understanding seasonal characteristics. CNN, known for capturing spatial dependencies, also demonstrates 
prowess in extracting intricate temporal dependencies (Hou et al., 2022; Liu et al., 2022). Comprising convolutional and pooling 
layers, among others (Bogaerts et al., 2020), CNN extracts features from time-series data, where the depth of the convolutional layer 
correlates with feature abstraction. Meanwhile, the pooling layer selects location-invariant information, broadening the perceptual 
field of view for subsequent features. In addition, it blurs detailed data, filtering out noise. 

Since substantial white noise is removed through STL decomposition in this study, employing pooling during learning could 
potentially diminish valuable seasonal information, reducing prediction accuracy at the same training cost. Refer to Table C2 in 
Appendix C for experimental results on pooling’s impact on the model. Hence, in this study, CNN without a pooling layer is used to 
extract seasonal information.  

(4) Comprehensive Forecasting Module 

Comprehensive Forecasting (CF) module is a holistic unit comprising convolutional, concatenation, and fully connected layers. Its 
primary role is to merge trend and seasonal data for the final forecast. Employing one-dimensional (1D) convolutional and concat
enation layers, it assigns distinct weights to trend and seasonal information, illustrated in Eqs. (14) to (16). Following the acquisition of 
comprehensive time series data, a fully connected feed-forward neural network is utilized to extrapolate learned insights and predict 
future carbon emissions, as depicted in Eq. (17). 

T̃rend = ̂Trend*WTrend (14)  

̃Seasonal = ̂Seasonal*WSeasonal (15)  

̃Timeseries = concat
[
̃Trend, ̃Seasonal

]
(16)  

x̂(t+1):(t+dFH) =
(

δ
(

δ
(

δ
(

̃Timeseries ⋅ WFC1 + bFC1

)
⋅ WFC2 + bFC2

)
⋯
))

⋅ WFCn + bFCn (17)  

where ̂Treand and ̂Seasonal represent the learned trend and seasonal term information respectively; ̃Timeseries denotes the integrated 
time series information; WTrend and WSeasonal indicate the weights of the convolutional layers; ∗ denotes the convolution operation; and 
concat[] is the concatenate operation; (WFC1,⋯,WFCn) denotes the weight of the fully connected layer; (bFC1,⋯, bFCn) is the bias of the 
fully connected layer; and δ() denotes the activation function. 

3.2.3. Model measurements and interpretation 
This study evaluates the model’s performance using multiple metrics: mean square error (MSE), mean absolute error (MAE), mean 

absolute percentage error (MAPE), and Adjusted R2 (Alfaseeh et al., 2020; Bogaerts et al., 2020; Kabir et al., 2023). MSE gauges the 

Fig. 6. The Stacked-LSTM architecture.  
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average of squared deviations between predicted and ground truth values but is sensitive to outliers. MAE calculates the mean of 
absolute errors and is less affected by outliers but might underestimate error size. MAPE assesses relative error by averaging the ratio 
between absolute difference and true values. Smaller values of MSE, MAE, and MAPE are preferred. Adjusted R2 measures model fit to 
time series data while accounting for the test set size; a value closer to 1 signifies a better fit (Alfaseeh et al., 2020). 

To illustrate the model’s significant interpretability, this study tends to explain the proposed model from two perspectives. Firstly, 
analysing the changes in carbon emissions data before and after data enhancement with STL technique, specifically examining the 
alterations in data correlation and the similarity of time series data using the Spearman correlation test (Han et al., 2018) and the 
Derivative Dynamic Time Warping (DDTW) algorithm (Górecki and Łuczak, 2015; Li et al., 2024b), respectively. Secondly, inter
preting the relative contributions of trend, seasonal terms, and look-back window points to the overall model, represented as ψTS,ψLB. 
The study maintains a relative contribution range between 0–100 % and primarily conducts global sensitivity experiments to evaluate 
the impact of randomly shuffling training data with trend or seasonal terms on the model’s performance (Hu and Xiong, 2023). To 
comprehensively assess the extent of this impact, the study calculates the average changes in the previously mentioned evaluation 
metrics to determine the absolute contribution, i.e., ωTS,ωLB. This value is subsequently converted into the relative contribution using 
Eq. (18). 

ψk
TS =

ωk
TS∑
ωk

TS
,ψk

LB =
ωk

TS∑
ωk

LB
(18)  

where ψk
TS represents the relative contribution of the trend or seasonal component to the model; ωk

TS is the absolute contribution of the 
trend or seasonal component to the model; ψk

LB represents the relative contribution of the kth time point in the look-back time window 
to the model; and ωk

LB denotes the absolute contribution of the kth time point in the look-back time window to the model. 

4. Experiments 

This section covers the construction and description of the SCE database and the training of the TSF model using the constructed 
SCE database. In Section 4.1, the effectiveness of the STSA algorithm in identifying ship navigation states is verified, and the created 
SCE database in Bohai Bay is detailed and described. In Section 4.2, the training process of the time series model, encompassing 
baseline model selection, hyper-parameter tuning, and model validation, is outlined. 

4.1. Carbon emission data 

The Bohai Bay, part of China’s crucial economic bay areas and situated near the North China Plain, hosts one of the nation’s three 
prominent port clusters (Wan et al., 2020). However, rapid economic growth in this region has led to significant environmental 
challenges, notably concerning ship emissions, impacting regional air quality and human health (Wan et al., 2023). This study 
collected ship AIS data in Bohai Bay’s waters from January 1, 2019, to December 31, 2020, using the ESSNA method to establish the 
SCE database. Notably, the IMO Fourth Greenhouse Gas Study (International Maritime Organization, 2020) highlights that ship carbon 
emissions encompass both CO2 and Black Carbon (BC). However, CO2 emissions significantly outweigh BC emissions, making CO2 the 
primary greenhouse gas emitted by ships (International Maritime Organization, 2021; Weng et al., 2020). Consequently, this study 
focuses on constructing a database exclusively for CO2 emissions from ships. 

4.1.1. SCE dataset construction 
When constructing the dataset using the ESSNA method, accurate identification of the ship’s navigational state is critical. To 

evaluate the proposed STSA algorithm’s effectiveness in this regard, ten ship trajectories, with a total of 213,572 points, were 
randomly selected from AIS data. Seven trajectories were used for adjusting the fundamental parameters, while three served as test 
cases. In this study, accuracy and F1-score were used as evaluation metrics (Herrema et al., 2019). 

The optimal fundamental parameters for the STSA algorithm were determined through multiple experiments, as shown in Table 2, 
and the comparative effectiveness result of the STSA algorithm and the International Maritime Organization (2020) approach using the 
optimal parameters is illustrated in Table 3. It is evident from Table 3 that the STSA algorithm outperforms the International Maritime 
Organization (2020) method in identifying the navigational state of ships. 

To further compare the effectiveness of the two methods in identifying ship navigational states, this study visualizes the results in 
each of the five scenarios (i.e., ship navigation states), as depicted in Fig. 7. In Scenario 1, Fig. 7 (a1) and (a2) show that while the ship 
is in a state of maneuvering navigation, the STSA algorithm effectively recognizes the maneuvering navigation. In contrast, Inter
national Maritime Organization (2020) incorrectly identifies most trajectories as the anchoring state, which could be due to Inter
national Maritime Organization (2020) stereotypically defining maneuvering as speeds greater than 3 knots, overlooking low-speed 

Table 2 
STSA optimum parameters.  

Parameters Value Parameters Value Parameters Value 

ξdis = (ξa,ξb) (300m,50m) η 10◦ ϑ 5 
τs = (τa, τb) (1h,12h) λ 15    
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maneuvering states. 
Scenarios 2 and 3 illustrate the ship’s departure from the berth and its anchoring, respectively. These scenarios reveal that the 

distance covered by the ship in the berthing state is significantly less than the distance covered during the anchoring state. Moreover, 
Fig. 7 b1) and b2) demonstrate that during departure from the port, the ship’s speed is lower, and it must continually adjust its heading. 
Therefore, this phase should be identified as maneuvering navigation. The International Maritime Organization (2020) erroneously 
identifies a section of the trajectory as anchoring. At the same time, from Fig. 7 c1) and c2), it is clear that the STSA algorithm 
accurately identifies the anchoring state. In contrast, the International Maritime Organization (2020) fails to identify the majority of 
the trajectory states in the anchorage area as berthing states. It is evident that the STSA algorithm can better differentiate between 
anchoring and berthing using the duration and geographical range of the ship’s trajectory, than the International Maritime Organi
zation (2020) standard, which only considers speed for distinguishing between these two states. 

Scenarios 4 and 5 depict the identification of navigational states by the two methods during the slow-steaming phase and the 
normal cruising phase, respectively. Fig. 7 d1) and d2) reveal that when the ship is in the slow-steaming phase, International Maritime 
Organization (2020) incorrectly identifies the trajectory of the cruising state as a maneuvering sailing state, whereas the STSA can 
effectively identify the cruising state. Meanwhile, since there are several consecutive trajectory points with a speed greater than 12 in 
this scenario, the STSA algorithm determines these consecutive trajectory points as normal cruising. Fig. 7 e1) and e2) show that in the 
normal cruising phase, the International Maritime Organization (2020) simply and roughly identifies some of the trajectory points 
with speeds less than or equal to 12 knots as slow-steaming, without considering that these may be a few abnormal speed points 
occurring in the normal cruising state. Furthermore, the continuity of the cruising state is not taken into account. In contrast, the STSA 
algorithm can ignore a few abnormal points and identify a continuous normal cruising state trajectory. 

Following the identification of navigational states, this study measured the carbon emissions of each ship with a time granularity of 
1 h based on the STEAM model, ultimately resulting in the creation of the SCE database. 

4.1.2. Dataset description and analysis 
To better discern variations in carbon emissions in Bohai before and after the COVID-19 outbreaks, this study used January 12, 

2020—the date of the World Health Organization’s declaration of the virus—as the dividing point. The SCE database, with hourly data 
points spanning 2019–2020, encompassed a total of 17,544 points. Fig. 8 illustrates carbon emissions from ships in Bohai and shows 
emission changes following STL decomposition. The outbreak led to a notable decline in emissions due to reduced ship activity. As 
shown in Table 4, post-outbreak emissions were lower but more variable, suggesting higher ship activity before the outbreak (Wang 
et al., 2023). For assessing CD in ship emissions, Spearman’s correlation test and the Kolmogorov-Smirnov (KS) test were conducted. 
Table 5 depicts the correlation and distribution changes before and after the epidemic. The results indicate a significant 99 % reliability 
level. The Spearman test suggests a weak temporal correlation between emissions before and after the epidemic. The KS test confirms a 
distributional difference, suggesting the epidemic-induced CD in ship emissions (Karimian and Beigy, 2023). To highlight the SCLCC 
model’s superiority, pre-epidemic emissions were used as training data (covering the period from January 1, 2019, at 00:00 to January 
12, 2020, at 23:00), the first month after the outbreak as test data (encompassing January 13, 2020, at 00:00 to February 12, 2020, at 
23:00), and the second month as validation data (spanning from February 13, 2020, at 00:00 to March 12, 2020, at 23:00). 

4.2. Model comparison experimental design 

4.2.1. Forecasting comparison 
To assess the superior effectiveness of SCLCC, this study conducts a comparative analysis of its predictive accuracy with several 

advanced TSF models. These baseline models encompass a decision tree-based machine learning model and several advanced deep 
learning models, as shown in Table 6. 

To address this limitation of XGBoost’s multi-step prediction, this study employs a recursive approach (Hu and Xiong, 2023), 
iteratively generating single-step predictions, with each prediction serving as input for the next step’s forecasting. 

4.2.2. Hyper-parameter tuning 
This study rigorously tuned all models’ hyper-parameters within a fixed training budget of 100 epochs, considering the significant 

sensitivity of deep learning models to these parameters (Bogaerts et al., 2020; Hu and Xiong, 2023). Seven look-back windows (4, 8, 12, 
18, 24, 36, and 48 h) were examined for each model, while maintaining a consistent one-hour forecasting horizon. The predictive 
capabilities across seven forecasting horizons (1, 2, 4, 6, 8, 10, and 12 h) were evaluated, with a fixed 12-hour look-back window. A 
grid search algorithm systematically explored the hyper-parameter space to determine the optimal parameters for each model. 

Fig. 9 depicts a portion of the hyper-parameter tuning process for the SCLCC model using the grid search algorithm. Different colors 
represent distinct training processes with varied hyper-parameter configurations. Solid lines represent training set errors, while dashed 
lines signify validation set errors. Details on the hyper-parameter search range and optimal configurations for different look-back 

Table 3 
Comparison of the effectiveness of navigation state identification models.  

Method Accuracy F1-score 

STSA  0.9128  0.9036 
International Maritime Organization (2020)  0.6834  0.6529  
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Fig. 7. The comparative results of ship navigation state detection in five scenarios.  
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Fig. 8. Changes in carbon emissions in the Bohai Sea before and after the outbreak of the COVID-19 pandemic. *Note: The raw data are mainly 
decomposed into Trend items and Seasonal items. 

Table 4 
Basic description of data.  

Data All Before the COVID-19 After the COVID-19 

Count 17,544 9084 8460 
Mean 0.8441 0.8812 0.8041 
Standard deviation 0.1343 0.1226 0.1348 
Maximum 1.9709 1.9709 1.4097 
Minimum 0.0186 0.0186 0.2018 
25 % 0.7584 0.8018 0.6982 
50 % 0.8572 0.8846 0.8274 
75 % 0.9307 0.9562 0.8978 
Skewness − 0.0468 0.2046 − 0.0372 
Kurtosis 1.4633 3.6327 0.3552  

Table 5 
Statistical analysis of carbon emissions data before and after the COVID-19 epidemic.  

Test Spearman  KS 
correlation coefficient P-value  KS statistics P-value 

Before-After  0.1172 2.95E-27   0.2476 1.07E-228 

Note: Both are 99% significant. 
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windows and forecasting horizons of the SCLCC model can be found in Table 7. 

4.2.3. Training, validation, and testing implement 
As presented in Section 4.2.2, this study leverages the Adam algorithm with the objective of minimizing model loss, quantified as 

MSE. All the models, including SCLCC, Stacked-LSTM, MLP, RNN, CNN, and Transformer, were developed within the Python envi
ronment using PyTorch (Hu and Xiong, 2023). Additionally, XGBoost was implemented utilizing Scikit-learn (Luo et al., 2023; Yan 
et al., 2023). 

Fig. 10 depicts the learning curve for SCLCC during training with the optimal parameters. Both the training and validation set losses 
show reduction and gradual smoothing over 1300 training steps. The minimal discrepancy between the losses of the training and 
validation sets indicates that SCLCC adeptly captures the nonlinear mapping relationship between the encoder and decoder. Learning 
curves are essential for identifying overfitting or underfitting (Park et al., 2023). The close resemblance between the training set loss 
and validation set loss curves (Fig. 10) suggests that the SCLCC model is well-fitted, avoiding overfitting or underfitting during 
training. 

Table 6 
Baseline models.  

Model Features Fitness Advantages Disadvantages References 

XGBoost Boosting framework High-dimensional 
multivariate time series data 

Highly interpretable Limited to single-step 
predictions 

(Luo et al., 2023; Yan et al., 
2023; Feng et al., 2024) 

MLP Forward-structured 
ANN 

Relatively simple time series 
tasks 

Highly non-linear 
global action 

Learning may be inadequate (Abdelaty et al., 2021; 
Damman and Steen, 2021) 

RNN Recurrent units Short-term dependent time 
series tasks 

Short-term memory Gradient disappearance or 
explosion 

(Park et al., 2023; Servizi 
et al., 2020) 

Stack-LSTM Memory gate, 
forgetting gate, and 
output gate 

High-dimensional time 
series data 

Long-term memory Long training time (Kabir et al., 2023; Li et al., 
2021; Park et al., 2023; Zhu 
and Li, 2021) 

CNN Convolutional 
operations 

Extracting intricate 
temporal dependencies from 
time series data 

Local feature 
extraction 

Pooling layer loses some 
valuable information 

(Bogaerts et al., 2020; Hou 
et al., 2022; Liu et al., 
2022) 

Transformer Self-attention Long sequence modeling Strong modeling 
capabilities and 
versatility 

Local information 
acquisition is not as strong 
as RNN and CNN 

(Hu and Xiong, 2023; Zeng 
et al., 2023) 

Note: Multilayer Perceptron (MLP). 

Fig. 9. Hyper-parameter tuning process using Grid-Search. Model = SCLCC, number of epochs = 100, batch size = 720, dFH = 1, dLB = 12. One 
epoch means completing the model parameter update using all training data. 
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5. Result analysis and discussion 

5.1. Forecasting performance 

5.1.1. Performances across models 
Due to the extensive comparative experimental data, the main text focuses on the predictive results for a 12-hour look-back window 

and a 1-hour forecasting horizon, as indicated in Table 8. Additional comparative experiment results are available in Appendix D. 
Table 8 demonstrates SCLCC’s remarkable ability to predict changes in ship carbon emissions following the epidemic outbreak. In this 

Table 7 
Best hyper-parameter configuration.  

Parameter Hidden layers size Stacked-LSTM layers size Learning rate Optimizer 

Search Range 32, 64, 128, 256, 512 2, 3, 4, 5 0.001, 0.002, 0.003  SGD, Adam, Adamax, NAdam 
Best Value 
dLB = 4 dFH = 1 256 2  0.002 Adam 
dLB = 8 dFH = 1 64 2  0.001 Adam 
dLB =

12 
dFH = 1 128 2  0.001 Adam 

dLB =

18 
dFH = 1 512 3  0.003 Adam 

dLB =

24 
dFH = 1 128 3  0.003 Adam 

dLB =

36 
dFH = 1 128 4  0.001 Adam 

dLB =

48 
dFH = 1 256 3  0.001 Adam 

dLB =

12 
dFH = 2 128 3  0.002 Adam 

dLB =

12 
dFH = 4 128 3  0.001 Adam 

dLB =

12 
dFH = 6 128 4  0.001 Adam 

dLB =

12 
dFH = 8 256 3  0.001 Adam 

dLB =

12 
dFH = 10 128 2  0.001 Adam 

dLB =

12 
dFH = 12 128 2  0.002 Adam  

Fig. 10. Learning curve using the best configuration. Model = SCLCC, number of epochs = 100, batch size = 720, dFH = 1, dLB = 12. One training 
step means completing the model parameters update using one batch of training data. 
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setting, SCLCC achieves an impressive Adjusted R2 value of 87.02 %. Additionally, a comprehensive analysis of Table 8 and the results 
in Appendix D reveals that SCLCC outperforms all the baseline models. When compared to the optimal baseline model, SCLCC achieves 
a significant 8.39 % to 110.17 % reduction in MSE, a 3.90 % to 88.24 % decrease in MAE, a 3.10 % to 40.12 % decrease in MAPE, and a 
6.00 % to 90.30 % improvement in Adjusted R2. These findings sufficiently prove that SCLCC is a robust predictor for this type of data. 

When comparing all baseline models, it is clear that CNN and Transformer models consistently exhibit the highest predictive 
accuracy. This higher accuracy stems from their ability to capture more information from time series data, facilitated by the con
volutional operation and the multi-head attention mechanism (Liu et al., 2022). In contrast, the RNN and Stacked-LSTM models, 
notwithstanding being designed for TSF, display moderate performance. The MLP model shows relatively good prediction accuracy for 
single-step predictions but faces challenges in multi-step predictions due to its limitations in capturing comprehensive time series 
information. With XGBoost, its performance excels with short-duration look-back windows and forecasting horizons but deteriorates as 

Table 8 
Model performances comparison if dLB = 12 and dHF = 1.  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 0.00299 (406.78 %) 0.0382 (104.28 %) 5.8646 (88.86 %) 0.3864 (55.60 %) 
MLP 0.00172 (191.53 %) 0.0345 (84.49 %) 5.5195 (77.75 %) 0.5172 (40.56 %) 
RNN 0.00131 (122.03 %) 0.0362 (93.58 %) 4.8061 (54.78 %) 0.6660 (23.47 %) 
Stacked-LSTM 0.00177 (200.00 %) 0.0358 (91.44 %) 5.7007 (83.59 %) 0.5421 (37.30 %) 
CNN 0.00124 (110.17 %) 0.0352 (88.24 %) 4.3510 (40.12 %) 0.7029 (19.23 %) 
Transformer 0.00147 (149.15 %) 0.0308 (64.71 %) 4.9617 (59.79 %) 0.6335 (27.20 %) 
SCLCC 0.00059 0.0187 3.1052 0.8702 
Improvement 110.17 % 88.24 % 40.12 % 19.23 % 

Note: The percentages in brackets represent changes in metrics relative to SCLCC. The cell marked with an underline indicates the best baseline 
method based on the metric in that column. “Improvement” refers to the percentage increase in performance of SCLCC compared to the best baseline 
model. 

Fig. 11. Comparison of ground truth and predicted values across models (dLB = 12 and dHF = 1).  
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these timeframes increase. This could be due to its struggle to capture complex global temporal information and its tendency to give 
excessive weight to limited time nodes. Additionally, XGBoost’s recursive generation training approach leads to error accumulation in 
multi-step outputs. 

Fig. 11 visually presents the prediction outcomes for a 12-hour look-back window and a 1-hour forecasting horizon. Overall, the 
SCLCC model aligns most closely with the ground truth. It is notable that, during the period from 2020 to 01–27 to 2020–02–03, 
deviations between predictions for ship carbon emissions and ground truth values are more noticeable, especially for XGBoost and 
CNN models. 

Moreover, to demonstrate the effectiveness of the SCLCC model across different datasets, it is applied to global maritime carbon 
emissions data. The results, presented in Table C1 and Figs. C1 and C2 in Appendix C, further highlight the model’s superiority. 

5.1.2. Performances across look-back window 
Table 9 depicts how altering the size of the look-back window impacts the model’s prediction performance. The optimal window 

size is crucial for both evaluating the model’s performance and training an effective prediction model. A short window might hinder 
the learning of critical time series information, while an excessively long window can introduce redundancy, reducing model 
efficiency. 

Across the extensive data in Appendix D and Table 8, it’s consistent that SCLCC outperforms all other models, regardless of the 
window size. This indicates SCLCC’s proficiency in extracting relevant information for future predictions, irrespective of redundant 
data volume. Specifically, Table 9 highlights that SCLCC achieves its peak predictive performance with a 12-hour look-back window. 

5.1.3. Performances across forecasting horizons 
Table 10 presents a clear negative correlation between the model’s predictive ability and the forecasting horizon, and Fig. 12 

visually depicts the SCLCC model’s predictive performance at various forecasting horizons and time points. Two significant obser
vations can be made based on the data from Table 10 and Fig. 12: 

1) There is a notable decline in model performance as the forecasting horizon increases. For instance, when the prediction horizon 
extends from 1 to 6 days, the MAPE of SCLCC increases by 50.91 %, rising from 3.1052 % to 4.6860 %. 

2) Within a constant forecasting horizon, longer time periods pose increased prediction challenges. For instance, at a forecasting 
horizon of 8, the MAPE for SCLCC surges by 100.79 %, escalating from 3.3192 % to 6.8998 %. 

These observations underscore the known difficulties in long-term predictions compared to short-term ones (Bogaerts et al., 2020), 
stemming from amplified white noise accumulation as the prediction horizon extends. This accumulation inevitably reduces the 
forecasting model’s effectiveness (Hu et al., 2021; Hu and Xiong, 2023). 

5.2. Ablation experiment 

In the realm of deep learning, ablation experiments are used to dissect a model’s performance by altering or removing specific 
components, offering insights into their individual contributions (Liu et al., 2022; Zeng et al., 2023). For these experiments to be 
informative, a model should gracefully degrade, maintaining a high level of functionality even when components are altered (Zeng 
et al., 2023). To comprehensively understand the role of each constituent within the SCLCC model, this study conducted ablation 
experiments where it removed the Stacked-LSTM component from the trend-term structure, the CNN component from the seasonal- 
term structure, and the CF structure, resulting in a model structure similar to the Dlinear model when these three components are 
simultaneously omitted, as depicted in Fig. E1 in Appendix E. The significance of the STL decomposition strategy can be found in 
Table 8 and Appendix D. Additionally, to assess the impact of residual terms with high levels of white noise on the model’s perfor
mance, this study sought to construct a model with a residual structure, as illustrated in Fig. E2 in Appendix E. The results of these 
ablation experiments are presented in Table 11 and Fig. 13. 

Results in Table 11 and Fig. 13 indicate a moderate decline in SCLCC’s performance with specific component removal or residual 
structure inclusion. Notably, omitting the CNN from the seasonal structure affects the model most, likely due to intricate information in 
seasonal terms not effectively captured by a feedforward network. Interestingly, even with all components removed, SCLCC out
performs models like the Transformer (Zeng et al., 2023). However, adding a residual structure leads to reduced performance, sug
gesting that the residual term contains substantial white noise, hindering effective learning. 

Table 9 
Comparison of different look-back windows.  

Look-back window MSE MAE MAPE (%) Adjusted R2 

4 0.00066 0.0199 3.2558 0.8700 
8 0.00065 0.0196 3.2622 0.8613 
12 0.00059 0.0187 3.1052 0.8702 
18 0.00081 0.0219 3.6414 0.7984 
24 0.00070 0.0211 3.6177 0.8662 
36 0.00063 0.0193 3.2008 0.8360 
48 0.00071 0.0208 3.3988 0.8402  
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5.3. Examining changes in predictive ability of models before and after COVID-19 

The COVID-19 pandemic exemplifies how a prolonged outbreak can significantly alter the trajectories of various industries, 
potentially impacting the performance of TSF models (Li et al., 2021; Liu et al., 2021; Mroua and Lamine, 2023). To gauge the effect of 
this outbreak on model performance, this section uses data from January 1, 2019, to November 30, 2019, for training and data from 
December 1, 2019, to December 31, 2019, for testing to assess the model’s pre-outbreak forecasting ability. Given the test data’s 
influence on metrics like MSE and MAE (Hou et al., 2022), this study focuses on comparing MAPE and Adjusted R2 before and after the 
outbreak (Alfaseeh et al., 2020). 

This section compares model performance before and after the outbreak using a 24-hour look-back window and a 1-hour fore
casting horizon, detailed in Table 12. The results in Table 12 indicate a noticeable decline in the models’ performance due to the 

Table 10 
Comparison of different forecasting horizons.  

Forecasting horizons MSE MAE MAPE (%) Adjusted R2 

1 0.00059 0.0187 3.1052 0.8702 
2 0.00078 0.0214 3.5558 0.8063 
4 0.00108 0.0255 4.2263 0.7215 
6 0.00132 0.0284 4.6860 0.6046 
8 0.00155 0.0308 5.0718 0.5141 
10 0.00185 0.0336 5.4848 0.2986 
12 0.00202 0.0353 5.6854 0.3155  

Fig. 12. The comparison results of different forecasting horizons.  

Table 11 
Ablation experiment results if dLB = 12 and dHF = 1.  

Model MSE MAE MAPE (%) Adjusted R2 

SCLCC (baseline) 0.00059 0.0187 3.1052 0.8702 
+Residual 0.00072 (− 22.03 %) 0.0206 (− 10.16 %) 3.4514 (− 11.15 %) 0.7987 (− 8.22 %) 
− Stacked-LSTM 0.00072 (− 22.03 %) 0.0211 (− 12.83 %) 3.4116 (− 9.87 %) 0.8455 (− 2.84 %) 
–CNN 0.00073 (− 23.73 %) 0.0205 (− 9.63 %) 3.4561 (− 11.30 %) 0.7942 (− 8.73 %) 
− CF 0.00079 (− 33.90 %) 0.0224 (− 19.79 %) 3.6495 (− 17.53 %) 0.8098 (− 6.94 %) 
− Stacked-LSTM and CNN 0.00073 (− 23.73 %) 0.0213 (− 13.90 %) 3.4703 (− 11.76 %) 0.8322 (− 4.37 %) 
− Stacked-LSTM, CNN and CF 0.00092 (− 55.93 %) 0.0303 (− 62.03 %) 3.9780 (− 28.11 %) 0.7615 (− 12.49 %) 

Note: Percentages in brackets are the change in metrics versus SCLCC (baseline). 
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epidemic’s impact on the shipping industry. Reduced ship activity and altered emission patterns led to decreased predictive accuracy. 
Before the outbreak, the CNN, Transformer, and SCLCC models performed similarly well. However, post-epidemic, SCLCC emerged as 
the most accurate predictor. Notably, SCLCC demonstrated the least reduction in prediction accuracy compared to others, highlighting 
its resistance to such disruptive events. 

5.4. Interpretation 

5.4.1. Changes in data relationships before and after STL decomposition 
Table 13 summarizes the impact of STL decomposition on the correlation and similarity measures within the data. The results 

indicate notable improvements in correlation strengths between trend and seasonal terms compared to the original dataset. Notably, 
the trend term has exhibited the most significant enhancement in correlation, possibly due to its simpler information content in 
contrast to the seasonal term. As shown in Table 13 and Fig. 14, the correlation between the seasonal terms in the data for December 
2019 and January 2020 is stronger than the correlation between the seasonal terms in the data for January 2019 and January 2020. 
This could be attributed to the proximity of December 2019 to January 2020. 

Fig. 13. Ablation experiment visualization results.  

Table 12 
Changes in the predictive ability of models before and after COVID-19.  

Model Before COVID-19  After COVID-19  Change 

MAPE Adjusted R2  MAPE Adjusted R2  MAPE Adjusted R2 

XGBoost 3.9801 0.8968  14.0339 0.0520  252.60 % 94.20 % 
MLP 3.7360 0.8845  6.1725 0.4078  65.22 % 53.89 % 
RNN 3.7608 0.8817  5.1921 0.6343  38.06 % 28.06 % 
Stacked-LSTM 3.9994 0.8637  5.2434 0.5166  31.10 % 40.19 % 
CNN 3.2360 0.9192  3.9797 0.7207  22.98 % 21.59 % 
Transformer 3.5142 0.9113  6.0772 0.4571  78.63 % 49.84 % 
SCLCC 3.4545 0.9039  3.6177 0.8662  4.72 % 4.17 %  

Table 13 
Change in correlation before and after decomposition.  

Data All data(before-after)  Jan. 2019-Jan. 2020  Dec. 2019-Jan. 2020 

Raw Trend Season  Raw Trend Season  Raw Trend Season 

R 0.1172 0.3179 0.1269  0.1666 0.8238 0.2974  − 0.1143 0.8238 0.8151 
P < 0.01 < 0.01 < 0.01  < 0.01 < 0.01 < 0.01  < 0.01 < 0.01 < 0.01 
DDTW 226.43 0.34 136.55  18.37 0.06 14.24  12.95 0.14 7.19 

Note: R is the correlation coefficient; P is the P-value. 
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Table 13 also demonstrates that decomposing the data using STL improves the similarity of time series data, indicated by the 
decreasing DDTW values. Reduced DDTW values signify increased similarity in the time series data (Górecki and Łuczak, 2015). 
Notably, the trend term exhibits the highest level of similarity. When comparing the carbon emission data for December 2019 and 
January 2020, the trend term shows greater similarity in the January 2019 and January 2020 data. This implies that the overall trend 
of vessel activity in these same months is more alike. Moreover, the comparison of seasonal terms between the data for December 2019 
and January 2020 indicates greater similarity compared to the data for January 2019 and January 2020. This suggests more analogous 
seasonal fluctuations in consecutive months. 

Fig. 14. Statistical distribution and correlation diagrams of carbon emissions from ships Dec. 2019-Jan.2020.  

Fig. 15. Predictions after shuffling the trend and seasonal terms, respectively (Model is SCLCC, dLB = 48 and dHF = 1).  
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5.4.2. Feature contributions 
In this section, this study assesses the contributions of the trend and seasonal terms to the model through separate experiments 

where each term’s data is independently shuffled. The results reveal that the trend term contributes significantly more to the model, 
approximately 97 %, while the seasonal term has a much smaller contribution, around 3 %. Fig. 15 provides a comprehensive visu
alization of SCLCC’s behavior with a 48-hour look-back window and a 1-hour forecasting horizon when the trend and seasonal terms 
are shuffled respectively. 

As observed in Fig. 15, shuffling the trend term results in the model’s inability to capture the trend accurately, leading to pre
dictions that deviate significantly from the actual trend. Conversely, shuffling the seasonal term affects the model’s ability to learn the 
correct seasonal fluctuations. Nonetheless, it can still capture the overall trend of carbon emission time series, resulting in predictions 
that align with the trend. The findings indicate that the model’s predictive performance is less impacted when the seasonal term is 
disturbed compared to when the trend term is shuffled. 

Furthermore, this study assesses the effectiveness of SCLCC in utilizing information from each time node within a 12-hour look- 
back window and a 1-hour forecasting horizon. For comparison, XGBoost, a machine learning technique known for its strong inter
pretability, is analysed (Hu and Xiong, 2023; Yan et al., 2023). Fig. 16 presents the contribution of each time point to the model, 
revealing differences between SCLCC and XGBoost. In the case of XGBoost, the final time node is considered the most important, 
contributing to over 70 % of the overall importance, as indicated by both the “Gain” criterion and the “Permutation” calculation. On 
the other hand, SCLCC shows that the contributions of the latter half of the time points are equal to or greater than 10 %, with no single 
time point exhibiting excessive significance. This suggests that SCLCC is more proficient at assimilating and utilizing retrospective 
information to make precise predictions than XGBoost. This ability may explain SCLCC’s superior predictive performance and resil
ience to emergency events when compared to XGBoost. In addition, an analysis of the contribution of each time point within the trend 
and seasonal terms demonstrates a more balanced distribution for each time point within the seasonal term than that of the trend term. 
Similarly, the contribution of each time point within the trend term is partially similar to the contributions of each time point in the 
overall look-back window. 

Finally, this subsection conducts a visual analysis to depict the contribution of each time point from the trend and seasonal terms 
when predicting a specific time point within a fixed forecast horizon. This study focuses on SCLCC with a 12-hour look-back window 
and a 12-hour forecasting horizon. The results are illustrated in Fig. 17. By comparing Fig. 17 a) and b), in contrast to the seasonal term, 
the trend term exerts a more evenly distributed influence on each predicted time point can be observed. The seasonal term tends to 
have a more substantial impact on the later predicted time points while showing less influence on the earlier predicted times. 

Fig. 16. Time feature contribution comparison (All importance is normalized to 0–1 with the sum equal to 1, and the model is SCLCC, dLB = 12 and 
dHF = 1). 
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Additionally, it is noticeable that prediction time points 7 and 8 are significantly affected by both the trend and seasonal terms. 

5.5. Implications 

This study holds significant implications for various stakeholders in the shipping industry and researchers in three primary areas: 
carbon emissions estimation, ship emissions TSF tasks, and the application of deep learning models to address CD:  

1) Carbon Emissions Estimation: This study addresses the issue of inaccuracies in estimating fuel consumption by auxiliary engines 
or boilers on ships. It proposes an STSA algorithm, which can help accurately identify a ship’s navigation state. This algorithm has 
several implications:  

• The shipping industry can use the ESSNA emission estimation model, which incorporates the STSA algorithm, to precisely calculate 
emission levels in specific maritime areas or globally. This can better facilitate rational decision-making regarding emissions 
control.  

• Researchers can build on the STSA algorithm and develop more precise navigation state identification algorithms or algorithms 
involving other functionalities.  

• The STSA algorithm can be utilized in emission reduction studies, such as ship speed or trim optimization, to improve the accuracy 
of objective function modelling and enhance optimization models’ effectiveness.  

2) Ship Emission TSF Tasks: Ship emissions are particularly prominent in areas close to land (Eyring et al., 2010), and their temporal 
patterns exhibit noticeable heterogeneity (Aliabadi et al., 2015). This study enables TSF in specific sea regions, which can help 
predict emissions at specific times.  

• Such stakeholders in the shipping industry, such as shipowners and administrators, can benefit from this approach by implementing 
seasonal or temporal emission control policies.  

• The framework and techniques employed for carbon emissions forecasting can be extended to predict time series data related to 
other emissions like PM, SOx, or NOx, offering advantages for various stakeholders. For instance, predicting PM emissions in a 
harbour region can provide advance notice to harbour personnel and residents, allowing them to take appropriate precautions 
based on the PM predictions (Park et al., 2023).  

3) Deep Learning Models for Addressing CD: The shipping industry is susceptible to changes driven by emerging technologies, 
evolving policies, and significant events such as the COVID-19 pandemic, the Russia-Ukraine crisis, etc. One of the most evident 
manifestations of these frequent shifts in the shipping industry is the occurrence of three distinct instances of CD in CO2 emissions 
from the global merchant fleet sector throughout the decade from 2012 to 2022. These transformative phases are visually rep
resented in Fig. 1, with red dotted lines indicating the approximate time points when these CD events occurred. As such, this study’s 
approach to handling CD bears practical significance:  

• The model developed in this study can adapt to changes in the shipping industry without requiring complete retraining, particularly 
during the early stages of CD when data availability is limited. This allows for continued reliable predictions.  

• The model can accurately forecast changes in shipping behaviors during the initial phases of new technologies or policies, 
providing a quantitative assessment of their effectiveness. This insight is valuable for decision-makers in the industry. 

In summary, this study contributes new solutions that can enhance carbon emissions estimation, empower TSF tasks for ship 
emissions, and equip stakeholders with the tools to address CD in the dynamic shipping industry. These implications are significant for 
improving the environmental and operational aspects of the industry while fostering adaptability to evolving circumstances. 

Fig. 17. Visualization of the importance of the time feature (SCLCC is trained with a lock-back window dLB = 12 (Y-axis) and forecasting horizons 
dHF = 12 (X-axis)). 
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6. Conclusions 

In this study, an enhanced ship emission calculation method, ESSNA, is newly proposed, including a new navigation state iden
tification algorithm, STSA, and a novel interpretable modular deep learning algorithm, SCLCC, for predicting future ship carbon 
emissions in specific maritime areas. The STSA algorithm within ESSNA aids to accurately identify ships’ navigational states within the 
surveyed zone, enabling precise and effective ship carbon emission calculations. SCLCC efficiently extracts significant information 
from trend and seasonal terms in time series data, demonstrating robust performance even in the face of emergency events. Its 
straightforward structure and use of data enhancement techniques ensure reliable interpretability. 

While this study presents an advanced approach for predicting ship emissions and a high-performing deep learning model, offering 
valuable insights for future ship emission reduction measures in the shipping sector, it also encounters some limitations that warrant 
further investigation. Firstly, due to data constraints, the predictions are univariate and fail to account for factors like port turnover and 
weather conditions. Secondly, the focus is solely on temporal changes in ship emissions within the study area, without developing a 
spatiotemporal predictive model to analyse the spatial and temporal variations in emissions. Furthermore, the conclusions drawn from 
the SCLCC model are based on the analysed data, and its broader applicability needs verification with additional datasets. Thirdly, 
although both newly proposed methods exhibit superior performance in experiments, they could be improved. For instance, the STSA 
algorithm requires iterative experiments to fine-tune parameter thresholds, which may vary significantly across different water areas. 
Moreover, the time-consuming nature of the STSA algorithm in searching for each ship’s trajectory poses limitations in swiftly pro
cessing large-scale maritime data. Future research could focus on leveraging advanced deep learning models to discern differences in 
various navigation states, enhancing the rapid processing of extensive data with higher accuracy. Lastly, the current SCLCC model 
primarily focuses on passively resisting CD while maintaining high accuracy. Therefore, future research could explore the development 
of an online learning SCLCC model capable of continuously learning from new data, adjusting parameters in real-time, and actively 
adapting to CD, ultimately improving prediction accuracy. 
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Appendix A. Pseudocodes  

Table A1 
The pseudocode of STSA.  

Algorithm 1: Spatiotemporal trajectory search algorithm based on AIS 

Input: Ship trajectory, nt; Mooring state space and time thresholds, ξdis = (ξa, ξb) and τdis = (τa,τb); Threshold for course change angle, η; Spatiotemporal coordinate 
search number threshold, λ；Threshold for number of speed anomalies,ϑ 

Output: Navigation state of ship sub-trajectories 
01 Begin 
02 Call mooring state identification sub-algorithm, input nt, ξa, ξb, τa and τb 
03 return at berth sub-trajectories and at anchorage sub- trajectories 

(continued on next page) 
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Table A1 (continued ) 

Algorithm 1: Spatiotemporal trajectory search algorithm based on AIS 

04 Remaining sub-trajectories are obtained,rnt 
05 Call sailing state identification sub-algorithm, input rnt, η and λ 
06 return Manoeuvring and cruising sub-trajectories 
07 Call cruising state identification sub-algorithm, input cruising sub-trajectories and ϑ 
08 return Slow-steaming and normal cruising sub-trajectories 
09 End   

Table A2 
The pseudocode of mooring state identification sub-algorithm.  

Algorithm 2: Mooring state identification sub-algorithm 

Input: Ship trajectory, nt; At berth state space and time thresholds, ξb and τb; At anchorage state space and time thresholds ξa and τa 

Output: At berth state and at anchorage state of ship sub-trajectories 
01 Begin 
02 Set the spatiotemporal coordinate of the ship with the earliest time as the starting point for the trajectory,pi←p1 

03 while i < Numberoftrajectorypoints: 
04 for m = i+1 : Numberoftrajectorypoints do 
05 Calculate the spatial distance and time span between pi and pm,dis(pi, pm) and Δt(pi,pm)

06 if dis(pi,pm) < ξb: 
07 Marking sub-trajectory snt(pi, pm) as a possible berthing state 
08 if m >= Numberoftrajectorypoints: 
09 Determine sub-trajectory snt(pi, pm) as a berthing state 
10 elif dis(pi, pm) > ξb and Δt(pi,pm) > τb: 
11 if sub-trajectory snt(pi, pm− 1) has been flagged as a possible berthing state: 
12 Determine sub-trajectory snt(pi, pm− 1) as a berthing state 
13 i←m, use spatiotemporal coordinate point pm as the new starting point 
14 break 
15 if dis(pi,pm) < ξa: 
16 Marking sub-trajectory snt(pi, pm) as a possible anchorage state 
17 if m >= Numberoftrajectorypoints: 
18 Determine sub-trajectory snt(pi, pm) an anchorage state 
19 elif dis(pi, pm) > ξa and Δt(pi,pm) > τa: 
20 if sub-trajectory snt(pi, pm− 1) has been flagged as a possible anchorage state: 
21 Determine sub-trajectory snt(pi, pm− 1) as an anchorage state 
22 i←m, use spatiotemporal coordinate point pm as the new starting point 
23 break 
24 if sub-trajectory snt(pi, pm) is not at berth or anchor: 
25 i + = 1 
26 End   

Table A3 
The pseudocode of sailing state identification sub-algorithm.  

Algorithm 3: Sailing state identification sub-algorithm 

Input: Ship trajectory, nt; Threshold for course change angle, η; Spatiotemporal coordinate search number threshold,λ 
Output: Manoeuvring state and cruising state of ship sub-trajectories 
01 Begin 
02 Set the spatiotemporal coordinate of the ship with the earliest time as the starting point for the trajectory,pi←p1 

03 while i < Numberoftrajectorypoints: 
04 Calculate initial course,C

(
pi,pj

)

05 Mark pj as the temporary endpoint,pe←pj 

06 spatiotemporal coordinate search number is 0,n←0 
07 for k = j+1 : Numberoftrajectorypoints do 
08 if ΔC

(
pi,pj,pk

)
⩾ΔC

(
pi,pj,pe

)
: 

09 Mark pk as the temporary endpoint, pe←pk 
10 n←0 
11 else: 
12 n + = 1 
13 if n⩾λ: 
14 break 
15 if ΔC

(
pi,pj ,pe

)
⩾η: 

16 Determine sub-trajectory snt(pi, pe) as a manoeuvring 
17 else: 
18 Determine sub-trajectory snt(pi, pe) as a cruising 
19 i←e + 1 
20 End  
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Table A4 
The pseudocode of cruising state identification sub-algorithm.  

Algorithm 4: Cruising state identification sub-algorithm 

Input: Ship trajectory, nt; Threshold for number of speed anomalies,ϑ 
Output: Slow-steaming state and normal cruising state of ship sub-trajectories 
01 Begin 
02 Set the spatiotemporal coordinate of the ship with the earliest time as the starting point for the trajectory,pi←p1 

03 while i < Numberoftrajectorypoints: 
04 Calculate sailing speed,v(pi,pi+1)

05 if v(pi,pi+1) > 12: 
06 number of consecutive abnormal speed is 0, n←0 
07 for j = i+2 : Numberoftrajectorypoints do 
08 if v

(
snt

(
pi,pj

))
> 12: 

09 if v
(

pj− 1,pj+1

)
⩽12: 

10 n + = 1 
11 else: 
12 n←0 
13 if n > ϑ: 
14 Determine sub-trajectory snt

(
pi, pj− ϑ

)
as a normal cruising 

15 i←j − ϑ + 1 
16 break 
17 elif n < ϑ and j = Numberoftrajectorypoints: 
18 Determine sub-trajectory snt

(
pi, pj

)
as a normal cruising 

19 i←j 
20 else: 
21 Determine sub-trajectory snt

(
pi, pj− 1

)
as a normal cruising 

22 i←j 
23 break 
24 else: 
25 i + = 1 
26 sub-trajectories that are not slow-steaming are all slow-steaming 
27 End   

Table A5 
The pseudocode of STL algorithm.  

Algorithm 5: Seasonal-trend decomposition procedure based on loess algorithm. 

Input: Time-series data, Xt. 
Output: Trend item Trendt , Seasonal item Seasonalt , and Residual term Rest . 
01 Begin 
02 Initialize the trend term Trendt and robust weight ζ to 0 and 1, respectively. 
03 if the inner or outer loop condition is not satisfied: 
04 Remove trend item retain X− Trend

t , X− Trend
t ←Xt − Trendk

t . 
05 Seasonal element Sk+1

t is obtained using Loess smoothing Xk+1
t . 

06 Get trend element Tk+1
t by using Loess and Low-pass filter smoothing Sk+1

t . 
07 Seasonal item Seasonalk+1

t is obtained by subtracting the trend element,Seasonalk+1
t ←Sk+1

t − Tk+1
t . 

08 Remove seasonal item for trend pattern X− Seasonal
t , X− Seasonal

t ←Xt − Seasonalk+1
t . 

09 Trend item Trendk+1
t is obtained using Loess smoothing X− Seasonal

t . 
10 if the inner loop condition is satisfied: 
11 if the outer loop condition is not satisfied: 
12 Back to step 04. 
13 else: 
14 Residual term Rest equals the original data minus the trend Trendt and seasonal Seasonalt terms, Rest = Xt − Trendt − Seasonalt . 
15 Return Trend item Trendt, Seasonal item Seasonalt , and Residual term Rest . 
16 else: 
17 Back to step 04. 
18 End  

Appendix B. Supplementary material on the STEAM model 

As a micro modelling approach, STEAM estimates CO2 emissions from ships based on their activities in a bottom-up manner (Gan 
et al., 2022; Weng et al., 2020). The emissions from ships in the study area within a given time frame are calculated as the sum of CO2 
emissions from all ships passing through the area during that time period. The calculation formulas are presented in Eqs. (B1) to (B4). 

ET
total =

∑(
ET

i,main + ET
i,other

)
(B1) 
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ET
i,main = efi,main × Pi,main ×

∑(
LFi,t × Ai,LF,t × ΔTi,t

)
(B2)  

LFi,t = Pi,t

/
Pi,main =

(
vi,t

/
MDSi

)3 (B3)  

ET
i,other = efi,other ×

∑(
Pi,other,t,type,state × ΔTi,t

)
(B4)  

where ET
total denotes the total amount of CO2 emissions from the ship in the water areas at time T; ET

i,main and ET
i,other denote the CO2 

emissions from the main engine and auxiliary engine or boiler of ship i at time T, respectively. efi,main and efi,other denote the basic 
emission factors of the ship’s main engine and auxiliary engine or boiler of the ship i in units of g/kWh, respectively. Pi,main denotes the 
maximum rated power of the ship’s main engine of the ship i in units of kWh. LFi,t denotes the instantaneous load factor of the main 
engine of ship i at the moment t, which is mainly expressed as the ratio of the instantaneous power of the main engine to the rated 
power, as shown in Eq. (B3). Ai,LF,t is the emission adjustment factor when the LFi,t is lower than 20 %, and the specific value can be 
referred to the Fourth Greenhouse Gas Study (International Maritime Organization, 2020). ΔTi,t denotes the time interval between two 
adjacent trajectory points of the ship i. Pi,t, vi,t and MDSi denote the ship’s instantaneous power of the main engine, instantaneous 
speed, and maximum design speed, respectively. Pi,other,t,type,state denotes the auxiliary engine or boiler power of ship i belonging to ship 
type type at the moment t when the ship is in the navigation state state, the value of these parameters is referenced in literature 
(International Maritime Organization, 2020). 

Information such as ship type, ship main engine rated power, and ship design maximum speed is obtained from the STSD (Li et al., 
2023), and the ship’s navigation state is identified using the STSA algorithm (detailed in Section 3.1). Furthermore, the CO2 emission 
factor is derived from specific fuel consumption and the fuel-based emission factor, as depicted in Eq. (B5). 

efe = SFC × effuel (B5)  

where efe represents the emission factor in Eqs. (B2) and (B4); SFC indicates the specific fuel consumption in g/kWh (International 
Maritime Organization, 2020); and effuel represents the fuel-specific emission factor based on the specific fuel in gCO2/g, the precise 
values of these parameters are referenced in (International Maritime Organization, 2021). 

Appendix C. Supplementary experiments 

To thoroughly validate the proposed SCLCC model, this study employs global merchant marine CO2 data sourced from UNCTAD for 
both model training and testing. The experimental findings are illustrated in Figs. C1 and C2, as well as Table C1. Analysis of the 
experimental results indicates the superior performance of the SCLCC model compared to alternative models when applied to this 
dataset. 

Fig. C1. The results of global CO2 emissions predictions.dLB = 6 and dHF = 1.   
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Fig. C2. Correlation between global CO2 emissions predictions and truth. dLB = 6 and dHF = 1.   

Table C1 
Comparing global CO2 projections using different models (dLB = 6 and dHF = 1).  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 647741.8513 (493704.67 %) 804.7783 (8783.06 %) 81110.3456 (7269806.39 %) − 8916.6751 (1621604.09 %) 
MLP 237.3043 (80.91 %) 12.3454 (36.27 %) 1.5363 (37.70 %) 0.0698 (87.31 %) 
RNN 208.0164 (58.58 %) 12.4516 (37.44 %) 1.5282 (36.97 %) 0.1833 (66.67 %) 
Stacked-LSTM 234.1574 (75.08 %) 12.1246 (33.83 %) 1.5014 (34.57 %) 0.2026 (63.16 %) 
CNN 208.0105 (58.58 %) 11.8972 (31.32 %) 1.4686 (31.63 %) 0.3881 (29.42 %) 
Transformer 379.4305 (189.26 %) 17.0542 (88.24 %) 2.0837 (86.76 %) − 5.0524 (1018.79 %) 
SCLCC 131.1737 9.0597 1.1157 0.5499 
Improvement 58.58 % 31.32 % 31.63 % 29.42 %  

To demonstrate the role of the pooling layer, this study compares the effects of utilizing maximum pooling, average pooling, and no 
pooling layer in the SCLCC model, as presented in Table C2. Upon reviewing Table C2, it becomes evident that the performance of the 
model without a pooling layer surpasses that of models employing a pooling layer, given the same training cost.  

Table C2 
Pool layers comparison.  

SCLCC MSE MAE MAPE (%) Adjusted R2 Time 

Max-Pool  0.00089  0.0232  3.8958  0.7588 213 ± 1.14 s 
Average-Pool  0.00083  0.0225  3.7483  0.7800 212 ± 0.329 s 
No-Pool  0.00059  0.0187  3.1052  0.8702 244 ± 0.886 s 

Note: Models are trained with a lock-back window dLB = 12, forecasting horizon dHF = 1, and epochs = 100. Time is obtained by training the model 
for ten runs, with ten loops per run. 

To comprehensively evaluate the impact of errors within ship emission estimations derived from the ESSNA model on the con
clusions, this study takes into account that the discrepancy between the STEAM model’s calculated results and actual values is within 
6 % (Wang et al., 2022). Utilizing the formula Newdata = data/X and X ∼ N(1.06,0.00001), new data is generated with a 6 % margin of 
error from the calculated ship emission data. Subsequently, this new data is employed to retrain and assess the TSF model. The 
experimental outcomes are shown in Fig. C3 and Table C3. The analysis of the experimental results indicates that the calculation error 
within ship emissions does not significantly impact the conclusions, reaffirming the superior performance of the SCLCC model 
compared to alternative models.  
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Fig. C3. The visual comparison results of new data predictions.   

Table C3 
The comparison results of new data prediction using different models.  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 0.00318 (421.31 %) 0.0486 (153.13 %) 14.2581 (277.60 %) 0.2670 (67.64 %) 
MLP 0.00132 (116.39 %) 0.0285 (48.44 %) 4.9342 (30.67 %) 0.5034 (39.00 %) 
RNN 0.00117 (108.20 %) 0.0282 (46.88 %) 4.8061 (27.28 %) 0.6660 (19.29 %) 
Stacked-LSTM 0.00124 (103.28 %) 0.0289 (50.52 %) 4.9799 (31.88 %) 0.5775 (30.02 %) 
CNN 0.00102 (67.21 %) 0.0237 (23.44 %) 4.1479 (9.84 %) 0.6504 (21.18 %) 
Transformer 0.00146 (139.34 %) 0.0312 (62.50 %) 5.3323 (41.22 %) 0.5435 (34.13 %) 
SCLCC 0.00061 0.0192 3.3776 0.8252 
Improvement 67.21 % 23.44 % 9.84 % 19.29 %  

Appendix D. Performances across models  

Table D1 
Model performances comparison if dLB = 4 and dHF = 1.  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 0.00384 (481.82 %) 0.0412 (107.04 %) 13.9459 (328.34 %) 0.2128 (75.54 %) 
MLP 0.00119 (80.30 %) 0.0266 (33.67 %) 4.3611 (33.95 %) 0.6583 (24.33 %) 
RNN 0.00137 (107.58 %) 0.0298 (49.75 %) 4.7538 (46.01 %) 0.6895 (20.75 %) 
Stacked-LSTM 0.00116 (75.76 %) 0.0277 (39.20 %) 4.5274 (39.06 %) 0.6389 (26.56 %) 
CNN 0.00139 (110.61 %) 0.0304 (52.76 %) 4.9692 (52.63 %) 0.5220 (40.00 %) 
Transformer 0.00121 (83.33 %) 0.0285 (43.22 %) 4.6130 (41.69 %) 0.6836 (21.43 %) 
SCLCC 0.00066 0.0199 3.2558 0.8700 
Improvement 75.76 % 33.67 % 33.95 % 20.75 %   

Table D2 
Model performances comparison if dLB = 8 and dHF = 1.  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 0.00366 (463.08 %) 0.0402 (105.10 %) 13.7087 (320.23 %) 0.2492 (71.07 %) 
MLP 0.00091 (40.00 %) 0.0240 (22.45 %) 3.9377 (20.71 %) 0.7632 (11.39 %) 
RNN 0.00115 (76.92 %) 0.0267 (36.22 %) 4.2804 (31.21 %) 0.7555 (12.28 %) 
Stacked-LSTM 0.00089 (36.92 %) 0.0241 (22.96 %) 3.9743 (21.83 %) 0.7295 (15.30 %) 
CNN 0.00132 (103.08 %) 0.0285 (45.41 %) 4.6400 (42.24 %) 0.6339 (26.40 %) 
Transformer 0.00075 (15.38 %) 0.0219 (11.73 %) 3.5936 (10.16 %) 0.8096 (6.00 %) 
SCLCC 0.00065 0.0196 3.2622 0.8613 
Improvement 15.38 % 11.73 % 10.16 % 6.00 %  
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Table D3 
Model performances comparison if dLB = 18 and dHF = 1.  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 0.00462 (470.37 %) 0.0433 (97.72 %) 14.0299 (285.29 %) 0.0531 (93.35 %) 
MLP 0.00140 (72.84 %) 0.0305 (39.27 %) 4.9011 (34.59 %) 0.6453 (19.18 %) 
RNN 0.00190 (134.57 %) 0.0358 (63.47 %) 5.6234 (54.43 %) 0.5807 (27.27 %) 
Stacked-LSTM 0.00177 (118.52 %) 0.0349 (59.36 %) 5.6204 (54.35 %) 0.4036 (49.45 %) 
CNN 0.00106 (30.86 %) 0.0258 (17.81 %) 4.2350 (16.30 %) 0.6918 (13.35 %) 
Transformer 0.00113 (39.51 %) 0.0274 (25.11 %) 4.5115 (23.89 %) 0.6203 (22.31 %) 
SCLCC 0.00081 0.0219 3.6414 0.7984 
Improvement 30.86 % 17.81 % 16.30 % 13.35 %   

Table D4 
Model performances comparison if dLB = 24 and dHF = 1.  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 0.00463 (561.43 %) 0.0434 (105.69 %) 14.0339 (287.92 %) 0.0520 (94.00 %) 
MLP 0.00209 (198.57 %) 0.0389 (84.36 %) 6.1725 (70.62 %) 0.4078 (52.92 %) 
RNN 0.00165 (135.71 %) 0.0328 (55.45 %) 5.1921 (43.52 %) 0.6343 (26.77 %) 
Stacked-LSTM 0.00153 (118.57 %) 0.0324 (53.55 %) 5.2434 (44.94 %) 0.5166 (40.36 %) 
CNN 0.00097 (38.57 %) 0.0240 (13.74 %) 3.9797 (10.01 %) 0.7207 (16.80 %) 
Transformer 0.00197 (181.43 %) 0.0379 (79.62 %) 6.0772 (67.99 %) 0.4571 (47.23 %) 
SCLCC 0.00070 0.0211 3.6177 0.8662 
Improvement 38.57 % 13.74 % 10.01 % 16.80 %   

Table D5 
Model performances comparison if dLB = 36 and dHF = 1.  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 0.00848 (1246.03 %) 0.0622 (222.28 %) 14.9709 (367.72 %) − 0.7372 (188.18 %) 
MLP 0.00138 (119.05 %) 0.0306 (58.55 %) 4.9445 (54.48 %) 0.6063 (27.48 %) 
RNN 0.00136 (115.87 %) 0.0292 (51.30 %) 4.6854 (46.38 %) 0.7534 (9.88 %) 
Stacked-LSTM 0.00145 (130.16 %) 0.0315 (63.21 %) 5.0986 (59.29 %) 0.5531 (33.84 %) 
CNN 0.00087 (38.10 %) 0.0226 (17.10 %) 3.7888 (18.37 %) 0.7258 (13.18 %) 
Transformer 0.00135 (114.29 %) 0.0305 (58.03 %) 4.9719 (55.33 %) 0.5930 (29.07 %) 
SCLCC 0.00063 0.0193 3.2008 0.8360 
Improvement 38.10 % 17.10 % 18.37 % 9.88 %   

Table D6 
Model performances comparison if dLB = 48 and dHF = 1.  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 0.00806 (1035.21 %) 0.0622 (199.04 %) 14.8654 (337.37 %) − 0.6520 (177.60 %) 
MLP 0.00126 (77.46 %) 0.0291 (39.90 %) 4.7123 (38.65 %) 0.6387 (23.98 %) 
RNN 0.00128 (80.28 %) 0.0285 (37.02 %) 4.5544 (34.00 %) 0.7214 (14.14 %) 
Stacked-LSTM 0.00145 (104.23 %) 0.0314 (50.96 %) 5.0823 (49.53 %) 0.5528 (34.21 %) 
CNN 0.00087 (22.54 %) 0.0226 (8.65 %) 3.7919 (11.57 %) 0.7287 (13.27 %) 
Transformer 0.00182 (156.34 %) 0.0359 (72.60 %) 5.7311 (68.62 %) 0.7469 (11.10 %) 
SCLCC 0.00071 0.0208 3.3988 0.8402 
Improvement 22.54 % 8.65 % 11.57 % 11.10 %   

Table D7 
Model performances comparison if dLB = 12 and dHF = 2.  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 0.00211 (170.51 %) 0.0293 (36.92 %) 4.7700 (34.15 %) 0.3544 (56.05 %) 
MLP 0.00189 (142.31 %) 0.0350 (63.55 %) 5.6187 (58.02 %) 0.4595 (43.01 %) 
RNN 0.00158 (102.56 %) 0.0320 (49.53 %) 5.0584 (42.26 %) 0.6555 (18.70 %) 
Stacked-LSTM 0.00163 (108.97 %) 0.0329 (53.74 %) 5.3199 (49.61 %) 0.4578 (43.22 %) 
CNN 0.00107 (37.18 %) 0.0250 (16.82 %) 4.1928 (17.91 %) 0.6557 (18.68 %) 
Transformer 0.00123 (57.69 %) 0.0279 (30.37 %) 4.5222 (27.18 %) 0.6235 (22.67 %) 
SCLCC 0.00078 0.0214 3.5558 0.8063 
Improvement 37.18 % 16.82 % 17.91 % 18.68 %  
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Table D8 
Model performances comparison if dLB = 12 and dHF = 4.  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 0.00275 (154.63 %) 0.0358 (40.39 %) 5.7736 (36.61 %) 0.2100 (70.89 %) 
MLP 0.00192 (77.78 %) 0.0350 (37.25 %) 5.5856 (32.16 %) 0.4143 (42.58 %) 
RNN 0.00248 (129.63 %) 0.0403 (58.04 %) 6.4553 (52.74 %) 0.5352 (25.82 %) 
Stacked-LSTM 0.00182 (68.52 %) 0.0344 (34.90 %) 5.5203 (30.62 %) 0.3984 (44.78 %) 
CNN 0.00149 (37.96 %) 0.0295 (15.69 %) 4.8876 (15.65 %) 0.5050 (30.01 %) 
Transformer 0.00157 (45.37 %) 0.0312 (22.35 %) 5.0486 (19.46 %) 0.4512 (37.46 %) 
SCLCC 0.00108 0.0255 4.2263 0.7215 
Improvement 37.96 % 15.69 % 15.65 % 25.82 %   

Table D9 
Model performances comparison if dLB = 12 and dHF = 6.  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 0.00339 (156.82 %) 0.0408 (43.66 %) 6.5298 (39.35 %) 0.1495 (75.27 %) 
MLP 0.00203 (53.79 %) 0.0357 (25.70 %) 5.6925 (21.48 %) 0.3389 (43.95 %) 
RNN 0.00192 (45.45 %) 0.0347 (22.18 %) 5.5134 (17.66 %) 0.4748 (21.47 %) 
Stacked-LSTM 0.00210 (59.09 %) 0.0370 (30.28 %) 5.8872 (25.63 %) 0.4128 (31.72 %) 
CNN 0.00170 (28.79 %) 0.0319 (12.32 %) 5.1736 (10.41 %) 0.4592 (24.05 %) 
Transformer 0.00194 (46.97 %) 0.0346 (21.83 %) 5.5520 (18.48 %) 0.3308 (45.29 %) 
SCLCC 0.00132 0.0284 4.6860 0.6046 
Improvement 28.79 % 12.32 % 10.41 % 24.05 %   

Table D10 
Model performances comparison if dLB = 12 and dHF = 8.  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 0.00414 (167.10 %) 0.0470 (52.60 %) 7.4749 (47.38 %) 0.0859 (83.29 %) 
MLP 0.00231 (49.03 %) 0.0382 (24.02 %) 6.0549 (19.38 %) 0.2569 (50.03 %) 
RNN 0.00221 (42.58 %) 0.0372 (20.78 %) 5.9090 (16.51 %) 0.3057 (40.54 %) 
Stacked-LSTM 0.00239 (54.19 %) 0.0395 (28.25 %) 6.2461 (23.15 %) 0.3220 (37.37 %) 
CNN 0.00168 (8.39 %) 0.0320 (3.90 %) 5.2291 (3.10 %) 0.4073 (20.77 %) 
Transformer 0.00247 (59.35 %) 0.0389 (26.30 %) 6.1700 (21.65 %) 0.1025 (80.06 %) 
SCLCC 0.00155 0.0308 5.0718 0.5141 
Improvement 8.39 % 3.90 % 3.10 % 20.77 %   

Table D11 
Model performances comparison if dLB = 12 and dHF = 10.  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 0.00641 (246.49 %) 0.0515 (53.27 %) 7.8649 (43.39 %) − 0.0468 (115.67 %) 
MLP 0.00257 (38.92 %) 0.0396 (17.86 %) 6.2400 (13.77 %) 0.0930 (68.85 %) 
RNN 0.00511 (176.22 %) 0.0625 (86.01 %) 9.4401 (72.11 %) − 0.5569 (286.50 %) 
Stacked-LSTM 0.00360 (94.59 %) 0.0493 (46.73 %) 7.5622 (37.88 %) 0.1103 (63.06 %) 
CNN 0.00242 (30.81 %) 0.0380 (13.10 %) 6.1015 (11.24 %) 0.0085 (97.15 %) 
Transformer 0.00361 (95.14 %) 0.0476 (41.67 %) 7.3866 (34.67 %) − 0.9232 (409.18 %) 
SCLCC 0.00185 0.0336 5.4848 0.2986 
Improvement 30.81 % 13.10 % 11.24 % 63.06 %   

Table D12 
Model performances comparison if dLB = 12 and dHF = 12.  

Model MSE MAE MAPE (%) Adjusted R2 

XGBoost 0.00644 (218.81 %) 0.0551 (56.09 %) 8.5125 (49.73 %) 0.0306 (90.30 %) 
MLP 0.00321 (58.91 %) 0.0462 (30.88 %) 7.2262 (27.10 %) − 0.2827 (189.60 %) 
RNN 0.00825 (308.42 %) 0.0830 (135.13 %) 12.1889 (114.39 %) − 1.8994 (702.03 %) 
Stacked-LSTM 0.00416 (105.94 %) 0.0545 (54.39 %) 8.2686 (45.44 %) − 0.0061 (101.93 %) 
CNN 0.00362 (79.21 %) 0.0491 (39.09 %) 7.6791 (35.07 %) − 0.6500 (306.02 %) 
Transformer 0.00349 (72.77 %) 0.0469 (32.86 %) 7.2769 (27.99 %) − 0.4643 (247.16 %) 
SCLCC 0.00202 0.0353 5.6854 0.3155 
Improvement 58.91 % 30.88 % 27.10 % 90.30 %  

Appendix E. Models framework 
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Fig. E1. Model infrastructure with three components removed.  

Fig. E2. Model infrastructure with Residual component.  
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