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ABSTRACT

The Euclid mission is expected to image millions of galaxies at high resolution, providing an extensive dataset with which to study
galaxy evolution. Because galaxy morphology is both a fundamental parameter and one that is hard to determine for large samples, we
investigate the application of deep learning in predicting the detailed morphologies of galaxies in Euclid using Zoobot, a convolutional
neural network pretrained with 450 000 galaxies from the Galaxy Zoo project. We adapted Zoobot for use with emulated Euclid images
generated based on Hubble Space Telescope COSMOS images and with labels provided by volunteers in the Galaxy Zoo: Hubble
project. We experimented with different numbers of galaxies and various magnitude cuts during the training process. We demonstrate
that the trained Zoobot model successfully measures detailed galaxy morphology in emulated Euclid images. It effectively predicts
whether a galaxy has features and identifies and characterises various features, such as spiral arms, clumps, bars, discs, and central
bulges. When compared to volunteer classifications, Zoobot achieves mean vote fraction deviations of less than 12% and an accuracy
of above 91% for the confident volunteer classifications across most morphology types. However, the performance varies depending on
the specific morphological class. For the global classes, such as disc or smooth galaxies, the mean deviations are less than 10%, with
only 1000 training galaxies necessary to reach this performance. On the other hand, for more detailed structures and complex tasks,
such as detecting and counting spiral arms or clumps, the deviations are slightly higher, of namely around 12% with 60 000 galaxies
used for training. In order to enhance the performance on complex morphologies, we anticipate that a larger pool of labelled galaxies is
needed, which could be obtained using crowd sourcing. We estimate that, with our model, the detailed morphology of approximately
800 million galaxies of the Euclid Wide Survey could be reliably measured and that approximately 230 million of these galaxies would
display features. Finally, our findings imply that the model can be effectively adapted to new morphological labels. We demonstrate
this adaptability by applying Zoobot to peculiar galaxies. In summary, our trained Zoobot CNN can readily predict morphological

catalogues for Euclid images.

Key words. methods: data analysis — methods: observational — techniques: image processing — galaxies: evolution —

galaxies: structure

1. Introduction

Euclid is a space-based mission of the European Space Agency
(ESA) launched in 2023. Operating in the optical and near-
infrared, its primary goal is to achieve a better understanding
of the accelerated expansion of the Universe and the nature of
dark matter (Laureijs et al. 2011), and it has a broad range of
secondary goals. The Euclid Wide Survey (Euclid Collaboration
2022b) will cover approximately 15000 deg® of the extragalac-
tic sky, corresponding to 36% of the celestial sphere. The angular
resolution of the Euclid visible imager (VIS, Cropper et al. 2016)
of 0.2” is comparable to that of the Hubble Space Telescope
(HST) Advanced Camera for Surveys (ACS), while the field of
view of 0.53 deg? is 175 times larger. Euclid is expected to image
billions of galaxies to z ~ 2 and to a depth of 24.5 mag at 100
for extended sources (galaxy sizes of ~0.3") in the VIS band
(Laureijs et al. 2011). It will therefore resolve the internal mor-
phology of an unprecedented number of galaxies, estimated at
approximately 250 million (Euclid Collaboration 2022a). Many
will display complex features, such as clumps, bars, spiral arms,
and/or bulges.

Large samples of galaxies with measured detailed morpholo-
gies are crucial to understand galaxy evolution and its impact on
galaxy structure (Masters 2019). For example, bars are believed
to funnel gas inwards from the spiral arms and may lead to the
growth of a central bulge (Sakamoto et al. 1999; Masters et al.
2010; Kruk et al. 2018). Euclid will provide an unprecedentedly
large dataset of galaxy images with resolved morphology (Euclid
Collaboration 2022a), which is essential for studies of galaxy
evolution. This includes studying the evolution of morphology
with redshift and environment, where Euclid will offer the nec-
essary statistics for analysing trends in stellar mass, colour, and
so on, thereby enabling the distinction of complex correlations.
However, accurately measuring the morphologies and structures
of galaxies will be a challenge.

Numerous methods for diverse applications have been devel-
oped to quantify galaxy morphology from imaging data. These
include visual classifications (Hubble 1926; de Vaucouleurs
1959; Lintott et al. 2008; Bait et al. 2017), non-parametric
morphologies (Conselice 2003; Lotz et al. 2004), galaxy profile
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fitting (Sérsic 1968; Peng et al. 2002), and machine learning
techniques (Huertas-Company et al. 2015; Vega-Ferrero et al.
2021). Many approaches perform measurements in an automated
or semi-automated manner, while some facilitate the decompo-
sition of galaxies into multiple constituents, such as bulges and
discs, or combine several parameters to scrutinise current mod-
els. In a recent study, Euclid Collaboration (2023) compared the
performance of five modern morphology fitting codes on simu-
lated galaxies mimicking incoming Euclid images. These galax-
ies were generated as simplified models with single-Sérsic and
double-Sérsic profiles and as neural network-generated galax-
ies with more detailed morphologies. This Euclid Morphology
Challenge was primarily designed to quantify galaxy structures
using analytic functions that describe the shape of the surface
brightness profile. However, it also highlighted the necessity for
additional efforts to fully capture the richness of the detailed
morphologies that Euclid will uncover on a larger scale.

For several decades now, expert visual classifications have
proven to be successful in measuring detailed morphology
(Hubble 1926; de Vaucouleurs 1959; Sandage 1961; van den
Bergh 1976; de Vaucouleurs et al. 1991; Baillard et al. 2011; Bait
et al. 2017). However, they do not scale well to large surveys and
reproducibility is challenging.

The Galaxy Zoo project (Lintott et al. 2008) was set up to
harness the collective efforts of thousands of volunteers to clas-
sify galaxies from the Sloan Digital Sky Survey (SDSS). With
Galaxy Zoo, the number of classified galaxies has significantly
increased, with more than 1 million galaxies classified so far.
The capability of humans to collectively recognise detailed and
faint features in galaxies is unrivalled. However, the number of
volunteers on the citizen science platform does not scale well
with the sizes of the next generation of surveys, such as those
by the Large Synoptic Survey Telescope (LSST, Ivezi¢ et al.
2019) of the Vera Rubin Observatory and by Euclid. Euclid
will image more than a billion galaxies (Laureijs et al. 2011).
It is unfeasible to classify such a large sample with citizen
science alone.

This problem can be solved with machine learning. Machine
learning has been shown many times to be a powerful tool
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for classifying galaxy morphology (Dieleman et al. 2015;
Huertas-Company et al. 2015; Dominguez Sanchez et al. 2018,
2019; Cheng et al. 2020; Vega-Ferrero et al. 2021; Walmsley
et al. 2022a). Supervised approaches using convolutional neu-
ral networks (CNNs) have proven to be effective for this task.
Walmsley et al. (2022a) showed that the Galaxy Zoo volun-
teer responses can be used to train a deep learning model,
called Zoobot (Walmsley et al. 2023a), which is able to auto-
matically predict the volunteer labels and therefore the detailed
morphologies of galaxies.

The goal of the present study is to evaluate the feasibility
of predicting detailed morphologies for emulated Euclid galaxy
images with Zoobot and to test the performance. For this, we
used emulated Euclid images based on the Cosmic Evolution
Survey (COSMOS, Scoville et al. 2007b). We trained Zoobot
and assessed its performance on these images using morphology
labels provided by volunteers in the Galaxy Zoo: Hubble (GZH,
Willett et al. 2017) citizen science project. Ultimately, the goal is
to apply Zoobot to the future Euclid galaxy images to generate
automated detailed morphology predictions.

This paper is structured as follows: In Sect. 2, the volunteer
morphology classifications from GZH and their corresponding
HST COSMOS images are introduced. We explain how these
images were converted to emulated Euclid images. The Zoobot
CNN and the process of fine-tuning is presented in Sect.3.
In Sect.4, we describe the training of Zoobot for the GZH
labels and emulated Euclid images. We also describe the dif-
ferent experiments that we conducted in this study. In Sect. 5, we
present and discuss our results. First, we show comparisons of
the model trained with different data. We then evaluate the model
predictions of the best-performing model in detail. Furthermore,
we compare the performance on emulated Euclid images and on
the original Hubble images. An example of fine-tuning Zoobot
to a new morphology class (finding peculiar galaxies) is pre-
sented in Sect. 6. Finally, we summarise our findings and provide
an outlook towards the real Euclid images in Sect. 7.

2. Data

In this study, we aim to generate automated detailed morphol-
ogy predictions on emulated Euclid images, test our pipeline,
and evaluate its performance to be able to estimate the quality of
future predictions.

To emulate the future Euclid images from existing galaxy
images, these need to have at least the same spatial resolution
and depth at approximately the same wavelength range as VIS
(Cropper et al. 2016). As we are following a supervised deep
learning approach, these existing galaxy images need to have
reliable morphology labels to train our model and evaluate our
results. All these requirements are fulfilled with the COSMOS
(Scoville et al. 2007b) galaxy images labelled by volunteers in
the GZH (Willett et al. 2017) project.

2.1. Images
2.1.1. Hubble Space Telescope COSMOS images

We used COSMOS galaxy images (Scoville et al. 2007b). For
the COSMOS survey, an area of 1.64deg? was observed with
the ACS Wide Field Channel of HST in the F814W filter with an
angular resolution of 0.09” (Scoville et al. 2007a; Koekemoer
et al. 2007). We used the publicly available mosaics in the FITS
format with a final drizzle pixel scale of 0.03”. The limiting
point source depth at 5o is 27.2 mag. Therefore, the depth and
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Fig. 1. Data pipeline scheme for the emulated Euclid VIS images
created as part of the Euclid Data Challenge 2. The green numbers cor-
respond to the numbers of the description of the pipeline given in the
text.

resolution are better than those estimated for Euclid (24.5 mag
at 100 for sources with ~0.3" extent and 0.2”, Cropper et al.
2016). The wavelength range of the Euclid VIS band (550—
900 nm) includes the F§14W band of Hubble. While ideally, data
from other HST filters, such as F606W, could be combined to
emulate the Euclid VIS observations, the extensive COSMOS
survey provides only single-band F814W images. We used the
same dataset from COSMOS that was used in GZH (Willett
et al. 2017). For the morphological classifications by the vol-
unteers, Willett et al. (2017) applied a magnitude restriction of
mygraw < 23.5, yielding a total of 84 954 galaxies.

2.1.2. Emulated Euclid COSMOS images

We used available emulated Euclid images generated from the
previously described COSMOS images that were created as part
of the Euclid Data Challenge 2, with the goal of testing the
steps of the data processing for Euclid. The area covered by
these images is 1.2° x 1.2°, which is smaller than the original
COSMOS field. Therefore, only 76 176 images from the GZH
COSMOS set were available. The images are emulated to be
Euclid VIS-like and are expected to match the properties of
Euclid data, on a reduced scale.

The original HST COSMOS images were rebinned and
smoothed to the Euclid pixel scale (0.1”, Laureijs et al. 2011),
convolved with a kernel of the difference between the HST ACS
and Euclid VIS point spread function (PSF) to emulate the reso-
lution of Euclid (0.2"") and with random Gaussian noise added in
order to match the Euclid VIS depth (24.5 mag for galaxy sizes
of ~0.3”, Cropper et al. 2016). The emulation software takes
as input a high-resolution image (HST COSMOS image in this
case) and processes it to emulate a VIS-like image, taking the
following steps (see Fig. 1):

1. First, the software generates an analytical kernel according to
the input image PSF of HST ACS and the PSF of the Euclid
VIS instrument.

2. It then convolves the input image according to the previously
generated kernel.

3. Subsequently, it performs the rebinning of the convolved
image to the required pixel scale (0.1”).
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4. Finally, Gaussian noise is added to each pixel to reproduce
the desired depth in output.

For all galaxies of our dataset, we extracted cutouts from
the available emulated Euclid greyscale FITS files with the
galaxy in the centre. The sizes of the cutouts were based on
the sizes of the galaxies, using three times the Kron radius
(3xXKRON_RADIUS_HI in Griffith et al. 2012) for each galaxy in
order to appear large enough to identify features, but not exceed-
ing the image boundaries. We chose the Kron radius as a measure
of galaxy size as it is least sensitive to the galaxy type. With this,
the influence of relatively smaller galaxy sizes at higher redshifts
on the performance of the network was taken out. The size of
the images varies between 10.5” and 38.3"”, with a median of
12.5”. As in Willett et al. (2017), we applied an arcsinh intensity
mapping to the images to avoid a saturation of galaxy centres,
while increasing the appearance of faint features. We saved the
resulting cutouts as 300 x 300 pixel images in the JPG format to
reduce the required memory. To conclude, the images have dif-
ferent pixel scales, but approximately the same relative galaxy
size compared to the background.

To measure the impact of the lower resolution and noise
of the Euclid images on the galaxy classifications, we also
created 300 x 300 pixel JPG cutouts for the original HST COS-
MOS images with an arcsinh intensity mapping. Additionally,
we created similar cutouts for the same galaxies imaged by the
ground-based Subaru telescope (Kaifu et al. 2000; Taniguchi
et al. 2007). To illustrate the effect of the emulation, we show
in Fig. 2 example galaxy images with different morphologies (a)
from the original HST COSMOS dataset, (b) from the emulated
Euclid dataset and (c) from the Subaru dataset. These examples
demonstrate that although the morphology is still identifiable, in
general, the Euclid images have a lower resolution, potentially
leading to different classifications, especially for faint galaxies.

2.2. Volunteer labels

We used the GZH volunteer classifications (Willett et al. 2017)
for the same galaxies for which the previously described emu-
lated Euclid images were created. Volunteers on the citizen
science project answered a series of questions about the mor-
phology of a set of galaxy images. GZH used COSMOS images
with ‘pseudo-colour’. The Ig4w data was used as an illumination
map and the colour information was provided from the By, r*,
and i* filters of the Subaru telescope (Griffith et al. 2012). Thus,
the galaxy images shown to the volunteers had HST’s angu-
lar resolution for the intensity, but the colour gradients were at
ground-based resolution. The size of the cutouts corresponded to
the galaxy size. Thus, the galaxies had different resolutions but
relatively the same size, similar to our emulated Euclid images.
An arcsinh intensity mapping was applied before the images
were shown as 424 x 424 pixels PNGs to the volunteers.

The series of questions, asked to the volunteers, was struc-
tured as a decision tree (Willett et al. 2017) shown in Fig A.1.
Some questions were only asked if for the previous question a
certain answer was selected. The decision tree was designed sim-
ilarly to that used in Galaxy Zoo 2 (GZ2, Willett et al. 2013)
with some differences, involving questions for clumpiness, as
expected for the high-redshift galaxies in the COSMOS dataset.
We used the published dataset from Willett et al. (2017), which
contains for every galaxy and for every classification the num-
ber of volunteers that answered the question and the respective
vote fractions for each answer. It also provides metadata, such
as photometric redshifts and magnitudes. As mentioned before,
the publicly available dataset has a restriction of myg4w < 23.5,

A274, page 4 of 26

1D 20092952

ID 20092952 ID 20092952

-

ID 20172737 '. ID 20172737

-

ID 20177553 ID 20177553
Ny - .

ID 20107313 ID 20107313 ID 20107313
(a) Original HST (b) Emulated Euclid (¢c) Subaru

Fig. 2. Examples of galaxy images (inverted greyscale) of different mor-
phological types (image IDs 20092952, 20172737, 20177553, 20107313):
(a) from the original HST COSMOS dataset, (b) from the emulated
Euclid VIS dataset, and (c) from the Subaru dataset. The images are
scaled with galaxy size using three times the Kron radius. The black
bars represent a length of 1”. The image IDs are the unique identifiers
for the galaxies of the COSMOS survey (Griffith et al. 2012).

meaning that no labels are available for fainter galaxies. We
used the GZH volunteer classifications for all available 76 176
emulated Euclid galaxy images.

3. Zoobot

The newly developed and publicly released Python package
Zoobot (Walmsley et al. 2023a) is a CNN trained for predict-
ing detailed galaxy morphology, such as bars, spiral arms, and
discs. In this section, we describe the Zoobot CNN and how we
adapted it to the emulated Euclid images with the corresponding
GZH volunteer labels.

3.1. Bayesian neural network: Zoobot

Zoobot was initially developed to automatically predict detailed
morphology for Dark Energy Camera Legacy Survey (DECaLS)
(Dey et al. 2019) DRS5 galaxy images (Walmsley et al. 2022a). It
was trained on the corresponding volunteer classifications from
the Galaxy Zoo: DECaLS (GZD) GZD-5 campaign. The 249 581
GZD-5 volunteer classifications were used for training Zoobot
on the questions in the GZD-5 decision tree. The volunteer
responses for the different questions had different uncertainties,
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depending on how many volunteers answered a question for a
specific galaxy image.

The Bayesian Zoobot CNN learns from all volunteer
responses while taking the corresponding uncertainty into
account (Walmsley et al. 2022a). Thus, all GZD-5 galaxies
could be included in the training. Zoobot was trained on all
classification tasks (all questions of the GZD-5 decision tree)
simultaneously, leading to shared representations of the galaxies
and to increased performance for all tasks. The base architecture
of Zoobot is the EfficientNet BO model (Tan & Le 2019) with
a modified final output layer (Walmsley et al. 2022a). The layer
consists of one output unit per answer of the decision tree, giving
predictions between 1 and 100 using softmax or sigmoid acti-
vation. Zoobot does not predict discrete classes, but Dirichlet-
Multinomial posteriors that can be transformed into predicted
vote fractions. This is achieved by using a Dirichlet-Multinomial
loss function for each question ¢

L, = Z f Multinomial(k4|p, N,)Dirichlet(pla)dp, (D)
q

with the total number of responses N, to the question g, k, the
ground truth number of votes for each answer, and p the prob-
abilities of a volunteer giving each answer. The model predicts
the Dirichlet parameters @ = f, to the answers measured via the
values of the output units of the final layer. Each vector has one
element per answer. The integral is analytic as Multinomial and
Dirichlet distributions are conjugates. The loss is then applied by
summing over all questions of the decision tree

InL= szq, )
q

with the assumption that answers to different questions are
independent. The loss naturally handles volunteer votes with
different uncertainties (different number of responses), as, for
example, questions with no answers do not influence the gradi-
ents in training, since dL,(k, = 0, N, = 0,@)/0a = 0. We refer
the reader to Walmsley et al. (2022a) and Walmsley et al. (2022c)
for further details.

Zoobot is therefore well suited for our goal of automatically
predicting detailed morphology for Euclid galaxy images. With
Zoobot, we can train on all available emulated Euclid galaxies
with their GZH labels, since it takes the uncertainty of the volun-
teer answers into account. We have to train only one model for all
galaxy morphology types, since Zoobot is trained on all ques-
tions simultaneously. Rather than just discrete classifications, we
generate posteriors.

3.2. Transfer learning

The trained Zoobot models can be adapted (‘fine-tuned’) to
solve a new task for galaxy images (Walmsley et al. 2023a). This
adaption of a previously trained machine learning model to a
new problem is called transfer learning (Lu et al. 2015). Instead
of retraining all model parameters, the original model architec-
ture and the corresponding parameters (weights) learned from
the previous training can be reused. Far fewer new labels for
the same performance are required using transfer learning com-
pared to training from scratch (Dominguez Sanchez et al. 2019;
Walmsley et al. 2022b). In Walmsley et al. (2022b) the adap-
tion of Zoobot to the new problem of finding ring galaxies is
described. The pretrained Zoobot models outperformed mod-
els built from scratch, especially when the number of images

involved in the training was limited. Pretraining on all GZD-5
tasks, involving the usage of shared representations, also leads
to higher accuracy for finding ring galaxies than pretraining on
only a single task.

In Walmsley et al. (2022c) the GZ-Evo dataset was intro-
duced, which is a combined dataset from all major Galaxy
Zoo campaigns. The included campaigns were Galaxy Zoo 2
(GZ2, Willett et al. 2013) trained on galaxy images from the
Sloan Digital Sky Survey (SDSS) Data Release 7, Galaxy Zoo:
CANDELS (GZC, Simmons et al. 2017) trained on galaxy
images from the Cosmic Assembly Near-infrared Deep Extra-
galactic Legacy survey (CANDELS) also involving HST images
(Grogin et al. 2011), and the previously described GZD-5
(Walmsley et al. 2022a) and GZH (Willett et al. 2017). Addi-
tionally, Galaxy Zoo labels from the Mayall z-band Legacy
Survey (MzLS) and the Beijing-Arizona Sky Survey (BASS,
Dey et al. 2019) were used, which are part of Galaxy Zoo DESI
(Walmsley et al. 2023b). Zoobot was trained on all 206 possible
morphology classifications of the different campaigns simul-
taneously, with the involved Dirichlet loss naturally handling
unknown answers from different decision trees (Walmsley et al.
2022c). Pretraining with GZ-Evo shows further improvements
for the task of finding ring galaxies compared to direct training.
With training from different campaigns, Walmsley et al. (2022c)
hypothesise that because the model was trained on all galaxy
images from different campaigns (having different redshifts and
magnitudes) and on all possible questions, the model builds
a galaxy representation of high generalization. Therefore, we
expect this model to be best suited to be adapted to our new tasks.

We thus used a version of Zoobot pretrained on a modified
GZ-Evo catalogue, specifically pretrained on all major Galaxy
Zoo campaigns with the exception of GZH in order to not influ-
ence our results when training to the GZH decision tree. In
total, 450 000 galaxy images with volunteer classifications were
involved in the pretraining. We also conducted experiments with
versions of Zoobot pretrained with different datasets (pretrained
on GZD-5 galaxies and without pretraining). The results for
these models are presented in Appendix B. We adapted the pre-
trained Zoobot model to our new problem. This involved two
new tasks simultaneously: (i) training on new images, namely the
emulated Euclid VIS images, and (ii) training on a new decision
tree.

4. Training

In this section, we describe how we used the GZH volunteer
labels to train Zoobot (Sect. 4.1). Furthermore, we describe the
experiments we conducted for the training, that is, restricting the
magnitude and number of examples used for training (Sect. 4.2).
Lastly, we present how each model was trained in more detail
(Sect. 4.3).

4.1. Preparing the datasets

Unlike the GZD-5 decision tree used in Walmsley et al. (2022a),
the GZH decision tree incorporates questions that have multiple
possible answers, although not all leading to the same sub-
sequent question (see Fig. A.1 and Willett et al. 2017). Since
Zoobot does not support this type of structure, we simply
excluded the subsequent questions associated with such cases.
The remaining questions and their corresponding answers used
in this study can be found in Table 1. Moreover, similar to
Walmsley et al. (2022a), we used the raw vote counts as we fine-
tuned previously trained Zoobot models that have already been
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Table 1. Questions and corresponding answers from GZH used for
training Zoobot.

Question Answers N frel
Smooth-or-featured Smooth, features, artifact 46.1 100.0%
Disc-edge-on Yes, no 8.1 6.1%
Has-spiral-arms Yes, no 6.5 4.9%
Bar Yes, no 7.1 6.1%
Bulge-size None, just-noticeable, obvi- 7.1 6.1%
ous, dominant
How-rounded Completely, in-between, 7.1 63.4%
cigar-shaped
Bulge-shape Rounded, boxy, none 1.6 0.4%
Spiral-winding Tight, medium, loose 3.6 4.8%
Spiral-arm-count 1,2, 3,4, 5-plus, can’t-tell 3.6 4.8%
Clumpy-appearance Yes, no 13.1 13.9%
Clump-count 1, 2, 3, 4, 5-plus, can’t-tell 5.0 1.9%
Galaxy-symmetrical ~ Yes, no 44 1.2%
Clumps-embedded Yes, no 4.4 1.2%

Notes. Additionally, we list the mean number of volunteer responses N
for every question and the fraction of relevant galaxies fi, i.e. where at
least half of the volunteers answered the question.

trained on the raw vote counts. Moreover, the used Dirichlet-
Multinomial loss (see Eq. (1)) is statistically only valid when
using raw vote counts. Assessing Zoobot’s performance when
considering votes weighted by user performance or debiased for
observational effects is beyond the scope of this research.

Additionally, we provide the average number of volunteer
responses for each question in Table 1. Furthermore, we list the
fraction f of galaxies for which the question is deemed rele-
vant. We define a galaxy to be relevant for a specific question
when at least half of the volunteers answered that question (for
example measuring the number of spiral arms is only meaningful
if the majority of volunteers classified the galaxy as spiral in the
previous question), similar to the approach taken by Walmsley
et al. (2022a). Since every volunteer responded to the initial
question of ‘smooth-or-featured’, this question has the highest
number of responses. However, with the exception of the ‘how-
rounded’ question, all subsequent questions were asked only if
the answer to the first question was ‘featured’. Consequently, the
number of responses decreases substantially as one progresses in
the decision tree, resulting in greater uncertainty. As previously
mentioned, Zoobot is able to learn from uncertain volunteer
responses.

Our dataset contains 76 176 greyscale galaxy images with
detailed morphology labels. This dataset, referred to as the ‘com-
plete set’, encompasses all available images. It has a magnitude
range of 10.5 < myg14w < 23.5 and a redshift range of 0 < z <
4.1. In order to ensure an unbiased evaluation of the model, we
divided this set into two distinct subsets: one for training and
validation, and another independent test set for evaluation pur-
poses. To accomplish this, we performed a random split of 80%
for training and validation, and the remaining 20% for the test
set. Subsequently, we further split the training and validation set
using another random 80/20 percent split. The resulting datasets
are listed in Table 2.

4.2. Experiments

The Euclid mission is anticipated to generate an unparal-
leled number of galaxy images with approximately 250 million
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Table 2. Datasets of Euclid images with GZH labels used in this study.

Dataset Type of set  Restriction Number of galaxies
Complete  Train/val - 60940 (48 752/12 188)
Complete  Test - 15236

Bright Train/val miglaw < 22.5 27882 (22306/5576)

having resolved internal morphology (Euclid Collaboration
2022a), but humans will only have limited capacity to label
them. Consequently, it is important to assess the number of
labelled galaxies required to achieve satisfactory performance
in morphology predictions (Sect.4.2.1). Additionally, we aim
to investigate the selection criteria for which galaxies to label
(Sect.4.2.2). Suppose a person has the capacity to label 1000
galaxy images. An open question is whether the automated
predictions will get better if those 1000 galaxies are selected
randomly, or if 1000 bright galaxies are used instead.

4.2.1. Restricting the training set size

Our goal is to assess the performance of Zoobot based on a lim-
ited number of galaxies used for training. Hence, we randomly
chose a specific number Ny, of galaxy images from the train-
ing and validation sets (refer to Table 2). These selected images
were then used for training. To ensure a fair comparison between
all models, we consistently evaluated the performance on the
complete test set, without excluding any images.

4.2.2. Restricting the magnitude

Typically, assessing the morphology of brighter galaxies is more
straightforward compared to fainter ones. Our goal here is to
investigate whether our automated morphology predictions have
a better performance when trained on bright galaxies or on ran-
domly selected galaxies from the complete dataset, especially
when the number of examples is limited. We therefore created,
from our complete training and validation set, a subset which we
refer to as the ‘bright set’, by applying a magnitude restriction of
mygiaw < 22.5. This resulted in a bright training and validation
set comprising 27 882 images. Similar to the complete set, we
then performed an 80/20 percent split for training and validation
purposes (see Table 2).

4.3. Training Zoobot

We used the TensorFlow (Abadi et al. 2016) implementation of
Zoobot (Walmsley et al. 2023a). We trained Zoobot on the
datasets shown in Table2 by using the fine-tuning procedure
described in the code of Walmsley et al. (2023a). For this, we
replaced the original model head with a single dense layer with
the number of neurons corresponding to the number of GZH
answers used, specifically 40 neurons for 40 answers to 13 ques-
tions (see Table 1). As in Walmsley et al. (2022c), we selected the
sigmoid activation function for the final layer to predict scores
between 1 and 100 corresponding to the Dirichlet parameters
(see Eq.(1)). The JPG images with the applied arcsinh inten-
sity mapping (see Sect. 2.1.2) were normalised to values between
0 and 1 before feeding them into the network. Additionally, we
applied similar augmentations as Walmsley et al. (2022a) to all
images during training, namely a random vertical flip of the
image with a probability of 0.5 and a rotation by a random angle.
As in the code of Walmsley et al. (2023a), the training process
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was divided into two parts: at first, we only trained the new head,
and in a second step the entire model, as soon as the validation
loss was not decreasing for more than 20 consecutive epochs.
Furthermore, we reduced the learning rate by a factor of 0.25
when the validation loss did not decrease for ten consecutive
epochs. The chosen hyperparameters were selected as they lead
to the best model performance in comparison to multiple other
tested values. We used the Adam optimizer (Kingma & Ba 2015)
for training. We trained the pretrained model with the bright and
complete training sets with different numbers of images rang-
ing between five and all the available images (see Table 2). To
evaluate how Euclid’s lower resolution and noise affect the per-
formance of our model, we conducted separate training using
the original HST COSMOS images for the same set of galax-
ies (see Sect.2). This approach allows us to analyse the impact
independently of training with a new decision tree.

5. Results: Zoobot for Euclid images

We trained Zoobot to emulated Euclid VIS images with GZH
labels. In Sect. 5.1, we compare the various models trained in this
study, which were trained with different numbers of images from
the bright or complete sets. We then evaluate the model with the
best performance on Euclid images in detail in Sect. 5.2.

5.1. Comparing models — The impact of the number
of training galaxies and magnitude restriction

Zoobot is not predicting discrete classes, but rather posteri-
ors that can be converted into vote fractions (values between 0
and 1). This is accomplished by dividing the predicted Dirichlet
parameter for a particular answer by the sum of the parameters
of all answers to the corresponding question. To evaluate the per-
formance of Zoobot, we used the predicted vote fractions and
compared them with the corresponding volunteer vote fractions
(considered to be ‘ground truth’ vote fractions). This allows for a
comprehensive assessment of Zoobot’s performance. To ensure
the inclusion of only relevant galaxies for a specific question, we
considered galaxies for which at least half of the volunteers pro-
vided an answer (see Table 1). Following the method described
in Walmsley et al. (2022a), for a given answer i to a morphol-
ogy question j, we calculated the absolute difference between
the predicted vote fraction fyq and the volunteer vote fraction
fe for each relevant galaxy in the test set. We then averaged these
differences over all relevant galaxies n; as

6i = |fored = Jfeil- 3)

To allow for easier comparison among different models,
while considering the performance on all answers, we calcu-
lated the unweighted average of all §; values. This aggregated
measure, referred to as the averaged vote fraction mean devia-
tion &, served as our primary metric for comparison, with lower
values indicating better performance. For consistency, we evalu-
ated the models using predictions on the same complete test set
consisting of 15236 images (see Table 2).

5.1.1. Overview

We show in Fig.3 the model performance (given by the aver-
aged mean vote fraction deviations d) depending on the number
of training galaxy images used, Niin, for the models trained

—— Bright
—8— Complete

Average vote fraction mean deviation §
=)
-
o
1

0.10 1

T T T T T T T
10! 102 10 104
Number of training galaxies Niyain

Fig. 3. Vote fraction mean deviation averaged over all morphology
answers ¢ as a function of the number of galaxies Ny, from the bright
and complete set used for training. To ensure a consistent comparison,
the predictions were done on the complete test set. Lower values indi-
cate better performance.

on galaxies from the bright and complete set. The figure sum-
marises our experiments with different magnitude restrictions
and number of training images.

As expected, with increasing number of training galaxies,
the average mean deviation 6 is decreasing: the more galaxy
examples (of different types) are used for training, the better the
model predictions get for all answers. Notably, no substantial dis-
crepancies are observed between training on bright galaxies or
randomly selected galaxies from the complete set. The model
trained on all available galaxy images from the complete set
yields the best performance, characterised by the lowest 6 of
approximately 9.5% (analysed in Sect. 5.2).

5.1.2. Zoobot trained on only 1000 galaxy images

Next, we compared the model performance in more detail for
the models trained on 1000 galaxies from the bright and com-
plete set. Fig.4 shows the vote fraction mean deviations ¢; for
all morphology answers i for both models. We selected 1000
galaxies as a reasonably small quantity that a single expert could
potentially label, while still achieving satisfactory performance
for most questions.

All answers reach a mean deviation below 22% indicating
that training with only 1000 galaxies already leads to high model
performance in general. For most answers, there is no substantial
difference between training on bright or complete galaxies.

In particular, for the ‘disc-edge-on’ and ‘bar’ questions, the
model shows approximately the same performance when trained
on either 1000 bright or 1000 random galaxies. Thus, the rele-
vant features that the model learns do not change qualitatively
with different magnitudes. Additionally, the ‘disc-edge-on’ task
seems to be easier to learn because the deviations §; are well
below 10%.

For the ‘clumpy-appearance’, ‘galaxy-symmetrical’ and
‘clumps-embedded’ questions, Zoobot performs slightly bet-
ter (by about 1%) when trained on random galaxies from the
complete set than when trained on bright galaxies. The bet-
ter performance for these clump-related questions can thus be
explained with the higher number of relevant examples in the
complete training set compared to the bright set, as clumpiness is
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Fig. 4. Vote fraction mean deviations §; of the model predictions and the volunteer labels for the different morphology answers i (see Eq. (3)), for

models trained on 1000 bright or random galaxies from the complete set.

more frequent among fainter galaxies. On the other hand, iden-
tifying spiral arms seems to be more effective (by about 2%)
when training on bright galaxies. This suggests that the exam-
ples included in the bright training set provide clearer and more
reliable labels to learn to identify spiral arms.

5.1.3. Number of training galaxies for different morphology
types

Figure 5 shows the dependence of the model performance
(vote fraction mean deviation & ;) on the number of training
galaxies Ny, for the different morphology questions j. Here,
the vote fraction mean deviation is provided as the average
of all answers for a particular morphology question and the
models were trained on galaxies randomly selected from the
complete set.

An increase in the number of training galaxies generally
leads to improved performance, characterised by a decrease in
the vote fraction mean deviation. This means that in general for
all morphology tasks, performance can be improved with train-
ing on more labelled examples. All questions reach an averaged
vote fraction mean deviation below 12% (highlighted in Fig.5)
when trained with all available galaxies from the complete set.
They show different dependencies on the number of training
galaxies.

Although in general more training examples increase the
quality of the predictions, there are instances where a larger num-
ber of galaxies leads to slightly worse performance. These fluctu-
ations in vote fraction mean deviation are particularly noticeable
in the low-number regime, for example for the ‘how-rounded’
question with 200 training galaxies. They can be attributed to the
model’s sensitivity to the specific galaxies randomly selected for
training. Nevertheless, these variations do not alter the overall
observable trends for the different questions.
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Fig. 5. Vote fraction mean deviations of the model predictions &; for
the different morphology questions j of the decision tree, as a function
of number of galaxies included in training Ny,i,. This is illustrated for
the model trained on galaxies from the complete dataset. All questions
reach a mean deviation of less than 12% (dashed black line) after being
trained with all available galaxies.

When comparing the various questions, the ‘disc-edge-on’
task not only has the lowest mean deviation (as discussed in
Sect. 5.2) when trained with the complete set, but it also achieves
a deviation below 10% after training with just 100 galaxies. This
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is even more impressive as only 6.1% of the galaxies are relevant
(see Table 1), although Zoobot learns from all galaxies. This
further indicates that identifying disc galaxies is easier to learn
than other tasks of the decision tree. Similarly for the ‘bulge-
size’ question, the model achieves a deviation below 12% after
training with only 100 images. Since these tasks were included
in all GZ decision trees, this outcome can be interpreted as a
demonstration of the effectiveness of fine-tuning. Furthermore,
training on only 100 random galaxies leads for the ‘smooth-or-
featured’ question to deviations below 12%. This question was
included in all GZ decision trees as the first question and was
thus answered by all volunteers, and therefore required fewer
new examples compared to other tasks.

In contrast, for the ‘has-spiral-arms’ question, 60 000 galax-
ies are required to achieve deviations below 12%. Despite the
inclusion in all GZ decision trees, a substantial number of exam-
ples are still necessary to accurately predict the corresponding
vote fractions. This observation suggests that detecting spiral
arms might pose a greater challenge for Euclid images com-
pared to the galaxies in the pretraining datasets. Additionally,
questions related to clumps in galaxies exhibit similar pat-
terns, requiring a range of 10000 to 60 000 random galaxies to
achieve a deviation below 12%. From the campaigns involved in
the pretraining of Zoobot, these clump-related questions were
exclusively included in the GZC campaign. Consequently, the
impact of this pretraining is likely less effective for these tasks.
Moreover, given that spiral arms and clumps involve finer struc-
tures, the associated tasks are inherently more complex and need
a larger number of training examples.

5.2. Analysis of the best performing model

In this section, we analyse the performance of Zoobot for emu-
lated Euclid VIS images with the lowest averaged vote fraction
mean deviation 6, and thus the best performing model, as derived
in Sect. 5.1. We show examples of Zoobot’s output, then inves-
tigate the performance with standard classification metrics after
discretizing the vote fractions (Sect. 5.2.1) and demonstrate how
our model can be used to find spiral galaxies in a given dataset
(Sect.5.2.2). Next, we analyse the predicted vote fractions
directly by looking at the mean (Sect. 5.2.3) and the histograms
(Sect.5.2.4) of the deviations from their respective volunteer
vote fractions, and by investigating their redshift and magni-
tude dependence (Sect.5.2.5). Finally, we compare the model
performance between HST and Euclid images (Sect. 5.2.6).

To verify the quality of the predictions, four examples of
Zoobot’s output on different galaxies from the complete test
set are shown in Fig. 6. The selected answer for every question
is the one with the highest predicted vote fraction, while the
asked questions follow the structure of the GZH decision tree
(see Table 1 and Fig. A.1). Figure 7 shows four galaxies from the
complete test set with the highest predicted vote fractions for five
example answers — (a) spiral, (b) completely rounded, (c) disc,
(d) bar, and (e) clumpy — in order to demonstrate the quality of
Zoobot’s predictions.

5.2.1. Discrete classifications

To get an intuitive sense of Zoobot’s performance for the differ-
ent morphology tasks, we converted the predicted vote fractions
into discrete values by binning them to the class with the high-
est predicted vote fraction. However, it is important to note that
these metrics only provide a basic indication of Zoobot’s perfor-
mance and do not fully capture its ability to predict morphology,
as the information is simplified and reduced.

ID 20186490 ID 20057088

£ ) -

— smooth-or-featured? features (91%) — smooth-or-featured? features (60%)
— clumpy-appearance? no (91%) — clumpy-appearance? no (95%)
— disc-edge-on? no (99%) — disc-edge-on? yes (97%)
— bar? no (74%) — bulge-shape? rounded (89%)
— has-spiral-arms? yes (99%)
— spiral-winding? loose (50%)
— spiral-arm-count? 2 (95%)
— bulge-size? just-noticeable (66%)
ID 20097435 ID 20145732
AR R
L
— smooth-or-featured? features (71%) — smooth-or-featured? features (89%)
— clumpy-appearance? yes (95%) — clumpy-appearance? no (74%)
— clump-count? 3 (52%) — disc-edge-on? no (98%)
— galaxy-symmetrical? no (84%) — bar? yes (76%)
— clumps-embedded? yes (83%) — has-spiral-arms? yes (96%)

— spiral-winding? loose (73%)
— spiral-arm-count? 2 (77%)
— bulge-size? just-noticeable (48%)

Fig. 6. Four examples of the predictions of Zoobot following the struc-
ture of the GZH decision tree (see Table 1 and Fig. A.1) for galaxies
(inverted greyscale, image ID given above each image) from the com-
plete test set. For every question, the answer with the highest predicted
vote fraction (denoted in the parenthesis) is selected. The black bars rep-
resent a length of 1”.

We evaluated the discretised predictions with standard clas-
sification metrics for the different classes. Accuracy A is the
fraction of correct predictions for both the positive and nega-
tive class among the total number of galaxy images Ni. It is
calculated as

_ Nrp+ NN
Ntotal

A , “

where Ntp is the number of true positives and Nyx the number
of true negatives.

Precision P is the fraction of correct classifications among
the galaxies predicted to belong to a particular class. It is
calculated as

N-
P L
Nrp + Nrp

&)

where Npp is the number of false positives.
Recall R is defined as the fraction of correct classifications
among the galaxies of a certain class and calculated as

_ Nrp
Nrp + Npx'

Q)

where Npy is the number of false negatives.
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Fig. 7. Examples of galaxies with the highest predicted vote fractions of
Zoobot for (a) spiral, (b) completely round, (c) disc, (d) barred, and (e)
clumpy galaxies from the complete test set. Above each galaxy image,

the corresponding image ID and the predicted vote fraction in percent
are given. The black bars represent a length of 1”.

The F-score combines precision and recall by taking their
harmonic mean. Thus, it is a more general measure for evaluating
model performance. It is calculated as

PR
P+R

All of these metrics have values between 0 and 1. Some clas-
sification tasks have an imbalanced number of galaxies for the
different classes. Moreover, there are some morphology tasks
with more than two answers (see Table 1). Therefore, we calcu-
lated the above metrics by treating each class as the positive class
and averaging over the results. We also provide the F-score
weighted by the number of galaxies for the different classes, F},
similar to Walmsley et al. (2022a).

The performance of the model for a particular classification
task can be summarised by a confusion matrix. The rows of
this two-dimensional matrix correspond to the predicted classes,
while the columns correspond to the ground truth classes. The
diagonal elements are the fraction of correct classifications,
while the other elements correspond to false classifications.

The resulting metrics are listed in Table 3. For five selected
morphology tasks, we show the corresponding confusion matri-
ces in Fig. 8a. We calculated the same metrics for galaxies from

Fi1=2

)
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Table 3. Classification metrics of the model on the complete test set for
all galaxies corresponding to Fig. 8a.

Question Nt A P R F, FY
Smooth-or-featured 15236 0.885 0.835 0811 0.822 0.834
Disc-edge-on 986 0982 0963 0957 0.960 0.982
Has-spiral-arms 764 0916 0584 0.725 0.614 0935
10746 0965 0.864 0936 0.896 0.966
Bar 974 0878 0.822 0.744 0.774  0.869
Bulge-size 975 0.822 0542 0563 0549 0823
How-rounded 9915 0874 0872 0.868 0.869  0.874
Bulge-shape 84 0.893 0.806 0.875 0.870 0.894
Spiral-winding 746 0709 0.683 0.672 0.677  0.709
Spiral-arm-count 745 0.678 0450 0353 0375  0.653
Clumpy-appearance 2265 0.874 0.867 0.850 0.857 0.873
Clump-count 328 0.546 0516 0413 0390  0.539
Galaxy-symmetrical 225 0.880 0.884 0.690 0.737  0.860
Clumps-embedded 226 0.850 0.791 0.819 0.803 0.853

Notes. Precision P, recall R, and F;-score are calculated using the
unweighted average of all classes. We also show the weighted F;-score
in the F} column. For ‘has-spiral-arms’, we also provide the metrics
for finding spiral galaxies in the complete test set (printed in italic),
corresponding to the confusion matrix in Fig. 9a.

Table 4. Same classification metrics as in Table 3, but for galaxies with
confident volunteer responses (i.e. one answer has a vote fraction above
0.8) corresponding to Fig. 8b.

Question Nt A P R Fi FY
Smooth-or-featured 1963 0.995 0995 0993 0994 0.995
Disc-edge-on 907 0.998 0994 0994 0994 0.998
Has-spiral-arms 666 0950 0542 0975 0564 0971
10553 0970 0.859 0952 0.899 0.97]
Bar 511 0977 0968 0907 0935 0976
Bulge-size 8 0976 0905 0991 0940 0978
How-rounded 5119 0979 0979 0977 0978  0.979
Bulge-shape 36 0917 0864 0946 0893 0921
Spiral-winding 46 0978 0933 0982 0954 0979
Spiral-arm-count 202 0941 0396 0534 0402 0943
Clumpy-appearance 1307 0970 0967 0959 0963 0.970
Clump-count 64 0.828 0.540 0.513  0.525  0.868
Galaxy-symmetrical 115 0974 0986 0.850 0.905 0.972
Clumps-embedded 85 0941 0844 0966 0.890 0.946

Notes. For ‘has-spiral-arms’, we also provide the metrics for finding
spiral galaxies in the complete test set (printed in italics), corresponding
to the confusion matrix in Fig. 9b.

the complete test set where the volunteers are confident, meaning
one answer has a vote fraction of higher than 0.8. Through this
procedure, one can analyse the model performance against con-
fident labels (Dominguez Sanchez et al. 2019; Walmsley et al.
2022a). The results are shown in Table4. The corresponding
confusion matrices for selected questions are shown in Fig. 8b.
We present all confusion matrices for the remaining tasks in
Appendix C.

For the majority of the morphology questions, the accu-
racy is higher than 97%. For all other questions the accuracy
is above 91% except for the question of the ‘clump-count’
where it is only 82.8%. The F'|-scores are all above 89% except
for the ‘has-spiral-arms’, ‘spiral-arm-count’ and ‘clump-count’
questions.

The accuracy for all galaxies, as shown in Table 3, is gener-
ally lower compared to confidently classified galaxies, ranging
from 54.6% (‘clump-count’) to 98.2% (‘disc-edge-on’). This
outcome is expected, since the ground truth labels themselves
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Fig. 8. Confusion matrices for five selected morphology questions after
binning to the class with the highest predicted vote fraction. The con-
fusion matrices for the other questions are shown in the Appendix. The
colour map corresponds to the fraction of the ground truth values for
the different classes (also denoted in the confusion matrices).

carry inherent uncertainty. Considering that volunteers may not
reach a consensus in these cases, it can be inferred that answering
morphology questions for such galaxies could be challenging.
Particularly for complex morphologies, such as the number and
winding of spiral arms, the size of the bulge and the number of
clumps, the performance of the model is lower than for other
questions that are less complex, such as determining whether
a galaxy is a disc viewed edge-on. This can be attributed to
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Fig. 9. Confusion matrices for the task of finding spiral galaxies in the
complete test set by applying the selection cuts suggested in Willett et al.
(2017).

several factors: the limited number of examples for these classes
included in the training dataset, making them less represented,
and the inherent difficulty associated with accurately identifying
these morphological features.

Furthermore, counting spiral arms and clumps are especially
difficult classification tasks, as there are in both cases six classes
that can be selected and some arms or clumps might be diffi-
cult to identify. Moreover, the distributions of the answers are
imbalanced, with classes containing only one (‘5-plus’ spiral
arms) or no examples (one clump) that contribute equally to
the averaged metrics. Thus, the F-scores for confident volun-
teer responses are substantially lower than compared to other
questions. In numerous instances, the predicted count for spi-
ral arms and clumps is off by just one number from the ground
truth count. Consequently, the discrete metrics provided do not
fully capture the capabilities of Zoobot. Instead, the predicted
vote fractions are preferable