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Abstract

The release of calcium ions into the cytoplasm of a cell through inositol-1,4,5

trisphosphate receptors plays a vital role in various physiological processes

within the human body. Examples include the secretion of saliva in salivary

glands and insulin in pancreatic beta-cells, the contraction of heart muscles

and the firing of neurons. Calcium is essential for these functions to occur

properly. A dysregulated calcium signalling system has been linked to a

large variety of human diseases, such as neurological diseases, heart disease,

diabetes and abnormal salivary gland function. Mathematical models of

the calcium signalling system can provide interesting insights into inositol-

1,4,5 trisphosphate receptor and calcium dynamics. For example, we can

ask: how does mutation affect the frequency of calcium events and how does

the behaviour of the inositol-1,4,5 trisphosphate receptor differ between cell

types?

In this thesis, we develop a calcium puff model based on integrodifferen-

tial equations. Our model is parameterised using stationary single channel
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and calcium puff data from HEK-3KO cells, obtained through collaboration

with the Yule Lab, Rochester. In Chapter 2, analysis of stationary single

channel and calcium puff data is conducted. We compare the results from

three calcium puff data sets and parameterise three statistical distributions

using interpuff interval data. The statistical distributions are evaluated qual-

itatively and quantitatively, concluding with the best fit. In Chapter 3, we

introduce a calcium puff model based on integrodifferential equations. Our

model expands current calcium puff models by enabling investigation of the

memory of an inositol-1,4,5 trisphosphate receptor and the impact of differing

lengths on calcium dynamics. In Chapter 4, we parameterise our mathemat-

ical model using experimental data from healthy and mutated inositol-1,4,5

trisphosphate receptors, initially presented in Chapter 2.

Using our mathematical model, one can directly relate the integral terms

to the delayed response of the inositol-1,4,5 trisphosphate receptor, observed

in patch clamp experiments. Furthermore, our novel mathematical models,

parameterised with experimental data, offer a deeper insight into the pro-

longed effects of alterations to the inositol-1,4,5 trisphosphate receptor on

the calcium signalling system. This extends our understanding beyond the

time frames achievable in experimental conditions.
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1
Background

1.1 Motivation

The calcium (Ca2+) signalling system contributes to physiological changes in

both excitable and non-excitable cells (Fearnley et al., 2011; Bootman, 2012;

Brini et al., 2014; Garcia and Boehning, 2017; Han et al., 2017; Glaser et al.,

2019). This includes being a signal for life and death in the heart, playing

a crucial role in healthy neuronal activity, and being a driver for insulin

secretion in pancreatic beta-cells and salivary secretion in salivary glands.

However, the Ca2+ signalling system is not infallible (Tveito and Lines, 2016;

Terry et al., 2020; Fan et al., 2022a,b). An abnormal Ca2+ signalling system

has been linked to hypertrophy and congestive heart failure, neurological

diseases, such as Alzheimer’s and Huntington’s disease, as well as inhibiting

saliva secretion (Berridge, 1997; Han et al., 2017; Glaser et al., 2019; Terry

et al., 2020; Fan et al., 2022a,b). Therefore, it is important to understand

Ca2+ and ion channel dynamics further, and this can be achieved by using

data-driven mathematical modelling. Bringing together experimental data

and mathematical models gives the advantage of linking together parameter

changes with mutations that cause physiological changes within ion channels.
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1.2 Biological background

To build a mathematical model that is a good representation of a cellular pro-

cess, an understanding of the underlying dynamics of the cell is required. The

literature provides useful insights into understanding ion channels, specifi-

cally inositol-1,4,5 trisphosphate receptors (IP3R), and the drivers behind

the Ca2+ signalling processes. This section explains the key biological pro-

cesses that contribute to the formation of our mathematical model.

1.2.1 Ion Channels

Ion channels are important membrane proteins encoded by over 400 genes

in the human genome (Capener et al., 2002; Imbrici et al., 2016). Existing

in every cellular membrane, they change their conformations allowing ions

specific to the channel type to move through their pore (Keener and Sneyd,

2009; Islam, 2020). This change of ion channel state is known as a gat-

ing process and, depending on the ion channel stimulant, can be triggered by

membrane potential, the binding/unbinding of ligands or other agents (Resta

and Becchetti, 2012). The movement of ions through the cell can trigger dif-

ferent vital processes to take place within the human body. Voltage-gated

ion channels play a crucial role in the electrical signalling of excitable cells,

such as those involved in muscle contraction and the firing of neurons. They

are triggered by changes in transmembrane voltage (Capener et al., 2002;

Bezprozvanny, 2009). Ligand-gated ion channels are stimulated by an effec-

tor ligand and triggered by further changes in ligand concentration. These

changes are essential for the signalling of non-excitable cells, such as the

gating of fluid secretion within the salivary gland and activation of embryo
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fertilization (Rückl et al., 2015; Han et al., 2017; Swann, 2023).

Scientists have been able to gain a better understanding of ion chan-

nels through experiments. In the early 1950s, Hodgkin and Huxley (1952)

shared the first complete description of using electrophysiology experiments

to measure the flow of electrical current through the surface of a giant nerve

fibre (Hill and Stephens, 2021). Following this, Neher and Sakmann (1976)

recorded the first opening and closing of an individual ion channel using the

patch clamp experiment. This process involves using a glass electrode with

a micro-pipette to make a seal on the surface of a cell and recording the

membrane potential and/or current flowing through the channel (Neher and

Sakmann, 1976; Hill and Stephens, 2021). The channel stochastically jumps

between a nonzero current, showing the channel is open, and a zero current,

indicating the channel is closed (Rahman and Taylor, 2009). Some ion chan-

nels, such as ryanodine-sensitive calcium channels (RyR) (Liu et al., 1989;

Ding and Kasai, 1996) and voltage-gated sodium channels (Magistretti and

Alonso, 2006), have been shown to express multiple levels of conductance at

a fixed voltage level (Pollard et al., 1994). Pollard et al. (1994) state it is not

uncommon to find at least 5 or 6 conductance levels in channel systems. By

using an electrophysical technique, such as the patch clamp experiment, it is

possible to study the functions and dysfunctions of cells (Hill and Stephens,

2021).

The structure of the inositol trisphosphate receptor

IP3Rs are among the largest known ion channels. Approximately 90% of the

channel is located in the cytosol while the remaining stalk embedded in intra-
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cellular Ca2+ stores, called the endoplasmic reticulum (ER) or sarcoplasmic

reticulum (SR) (Fan et al., 2015; Paknejad and Hite, 2018; Prole and Taylor,

2019). Fig 1.1 depicts the IP3R in both the ER and SR (Rüdiger, 2013). The

SR is the intracellular Ca2+ store in myocyte cells, while the ER is present in

most eukaryotic cells (Taylor and Laude, 2002; Bootman, 2012; Baker et al.,

2023). Mammals have three subtypes of IP3R (IP3R1, IP3R2, IP3R3) which

have their characteristic features encoded by separate genes and differ in

their sensitivity to IP3, phosphorylation and regulation to Ca2+ and ATP

(Ivanova et al., 2014; Kerkhofs et al., 2018; Fan et al., 2022a). IP3R1 are

highly expressed in neurons, IP3R2 in cardiomyocytes and IP3R3 in rapidly

proliferating cells (Ivanova et al., 2014; Kerkhofs et al., 2018). Each IP3R is

formed of four subunits, which can be identical or different (Kerkhofs et al.,

2018; Siekmann et al., 2019; Fan et al., 2022a).

Figure 1.1: Representation of the endoplasmic reticulum (ER) and sarcoplasmic
reticulum (SR) adapted from Rüdiger (2013). Created with BioRender.com

The 3-dimensional structure of the complete IP3R and RyR channel pro-

teins are complex, however, the use of single particle cryogenic electron mi-
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Figure 1.2: Schematic diagram of the domain structure of IP3Rs. Adapted from
Fan et al. (2022a); Baker et al. (2023)

croscopy (cryo-EM) has enabled structural characterisation of IP3R (Fan

et al., 2022a; Baker et al., 2023). A schematic diagram of the IP3R structure

is illustrated in Fig 1.2. The IP3R consists of two β-trefoil domains (βTF1-2),

three armadillo solenoid folds (ARM1-3), a helical domain (HD), an interven-

ing lateral domain (ILD), a transmembrane domain (TMD), a linker domain

(LD) and a C-terminal helical domain (CTD) (Fan et al., 2022a; Baker et al.,

2023). Ca2+ binding sites have been found in the ligand-binding domains,

which consist of βTF1-2 and ARM1, in the Ca2+ sensor region in ARM3 and

in the luminal vestibule of the TMD (Fan et al., 2022b). A single IP3 binding

site exists at the N-terminus of each IP3R subunit (Fan et al., 2022b).

Ca2+ signalling and inositol trisphosphate receptors

IP3R are ligand-gated ion channels, activated by Ca2+ ions and IP3 (Fan

et al., 2022a). IP3R can exist as a single entity or form clusters (Thurley

et al., 2011; Siekmann et al., 2012; Garcia and Boehning, 2017). The bind-

ing of IP3 to subunits of the IP3R open the channel, releasing Ca2+ ions into

the cytoplasm (Taylor and Laude, 2002; Thurley et al., 2012; Rückl et al.,

2015; Han et al., 2017). The elevation in the Ca2+ concentration enhances

the open probability of the IP3R leading to a future release in Ca2+ ions
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(Rüdiger and Shuai, 2019; Siekmann et al., 2019; Islam, 2020). Once the

Ca2+ concentration becomes high, the open probability decreases and IP3R

is inhibited (Taylor and Laude, 2002). The release of Ca2+ ions from a cluster

of IP3Rs can be described in a hierarchical manner (Cao et al., 2013). When

a single IP3R opens, it causes a small increase in the cytoplasmic Ca2+ con-

centration, which is known as a Ca2+ blip (Parker and Yao, 1996; Swillens

et al., 1999). The release of Ca2+ ions from a Ca2+ blip stimulates neigh-

bouring IP3-liganded IP3Rs, increasing their open probability and releasing

further Ca2+ ions into the cytoplasm (Parker and Yao, 1996; Swillens et al.,

1999; Foskett et al., 2007; Rüdiger and Shuai, 2019; Siekmann et al., 2019;

Islam, 2020). The Ca2+ released from a cluster of IP3Rs is called a Ca2+ puff.

The occurrence of Ca2+ puffs can trigger a wave of Ca2+ across the entire

cell (Dickinson et al., 2012; Cao et al., 2013). Oscillatory Ca2+ can be ob-

served through the fluctuations in the Ca2+ concentration and are controlled

by Ca2+ fluxes (Berridge, 1990; Perc et al., 2008). A high concentration of

Ca2+ inhibits the IP3R channel and decreases its open probability (Foskett

et al., 2007; Skupin and Falcke, 2010; Rüdiger and Shuai, 2019; Siekmann

et al., 2019). Intracellular oscillations and waves are important cellular sig-

nals, and Ca2+ puffs are believed to play a vital role in generating Ca2+ waves

that travel across the cell (Bootman et al., 1997; Marchant and Parker, 2001;

Rückl et al., 2015; Cao et al., 2017). Fig 1.3 presents a visual representation

of Ca2+ blips, puffs and waves.

Wagner and Yule (2012) used nuclear patch-clamp experiments to mea-

sure the activity of single IP3R channels in DT40-3KO cells. They found that

the channel exhibited two distinct levels of activity, demonstrated by an av-
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Ca2+ blip

Ca2+ puff

Ca2+ wave

Figure 1.3: Representation of a Ca2+ blip, puff and wave adapted from Rüdiger
(2013). Created with BioRender.com
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erage open probability close to zero for low activity and an open probability

for approximately 0.7 for high activity (Siekmann et al., 2014).

Ca2+ puffs are depicted by a large spike in the Ca2+ concentration fol-

lowed by a slower decay (Marchant and Taylor, 1998). This quick release of

Ca2+ is caused by ligands binding to the IP3R and rapidly changing its con-

firmation (Marchant and Taylor, 1998; Thrower et al., 2000; Foskett et al.,

2007). To understand this dynamic within a single IP3R , Mak et al. (2007)

used nuclear patch-clamp techniques and investigated the response of in-

dividual IP3R channels to rapid fluctuations in ligand concentration. This

method contrasts more common patch-clamp experiments in which the ligand

concentration is kept constant. By switching between high and low ligand

concentrations, Mak et al. (2007) examined the kinetics of channel activa-

tion and deactivation. Their study revealed IP3Rs exhibit a delay (latency)

before responding to changes in ligand concentration with the longest mean

latency being for IP3R recovery from Ca2+ inhibition. This latency has been

shown to be responsible for the refractory behaviour of Ca2+ release sites,

in vivo (Ilyin and Parker, 1994; Mak et al., 2007). Following a Ca2+ puff,

the IP3R cannot respond to ligand stimulation for several seconds (Ilyin and

Parker, 1994).

1.2.2 Calcium dysregulation and the effect on the hu-

man body

The Ca2+ signalling system plays a crucial role in various processes within

the human body. When this complex system gets dysregulated in some way,

it can negatively affect a person’s health. Several human diseases have been
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associated with an abnormal Ca2+ signalling system, including Alzheimer’s

Disease, Huntington’s Disease, cancers, heart failure, diabetes, and changes

to neurodevelopment (Etcheberrigaray et al., 1998; Berridge, 2003; Pchit-

skaya et al., 2018; Tong et al., 2018; Islam, 2020; Grady and Morgan, 2021;

Klocke et al., 2023). This section focuses on studies that have linked human

diseases with abnormal Ca2+ signalling systems.

Alzheimer’s and Huntington’s Disease

Precise control of the Ca2+ signalling system within specific compartments is

crucial for healthy neuronal function (Pchitskaya et al., 2018; Calvo-Rodriguez

and Bacskai, 2021), including energy production, survival, learning, memory,

and cell death (Calvo-Rodriguez and Bacskai, 2021). Change to Ca2+ signals

has the potential to have harmful effects (Pchitskaya et al., 2018). Dysregu-

lation of the Ca2+ signalling system has been linked to various neurodegen-

erative diseases, such as Alzheimer’s Disease (AD) and Huntington’s Disease

(HD) (Khachaturian, 1987; Bezprozvanny, 2009).

In the early 1980s, a hypothesis was proposed linking Ca2+ and the ageing

process (Khachaturian, 1987). The theory suggested that changes in the reg-

ulation of cytosol Ca2+ concentrations could account for age-related neuronal

changes (Khachaturian, 1987). Although this idea was initially considered

speculative (Khachaturian, 1987), there have since been further studies that

support the hypothesis and link Ca2+ signalling and AD (Bezprozvanny,

2009). Studies on the neurons of young and old rodents suggest that the

Ca2+ signalling mechanisms undergo age-dependent changes (Bezprozvanny,

2009). A wide range of literature supports the hypothesis that Ca2+ home-



10 Background

ostasis dysregulation is the cause of AD (Khachaturian, 1989; Bezprozvanny

and Mattson, 2008; Briggs et al., 2017; Pchitskaya et al., 2018; Glaser et al.,

2019). These studies show Ca2+ levels in the ER are high in AD and age-

ing neurons (Glaser et al., 2019). A review by Tong et al. (2018) suggests

Ca2+ dysregulation, due to presenilin mutation, occurs before the formation

of extracellular beta-amyloid (Aβ) plaques and neurofibrillary tangles in AD

brains. The accumulation of Aβ plaques and neurofibrillary tangles are hall-

marks associated with AD (Tiraboschi et al., 2004; Tong et al., 2018).

Familial AD is a form of AD caused by a gene mutation that typically

emerges in individuals aged between 35-65 years who have a family history

of AD (Wu et al., 2012; Cauwenberghe et al., 2016; Mehra and Kepp, 2021).

In a clinical study conducted by Etcheberrigaray et al. (1998), it was found

that a large proportion of individuals who have a relative with AD showed al-

terations in IP3-mediated Ca2+ responses before exhibiting symptoms them-

selves. Bezprozvanny (2009) state Familial AD mutants in presenilins result

in abnormal Ca2+ signalling.

HD is a genetic disorder, caused by a single mutation, that affects mood,

cognition and movement (Bezprozvanny, 2009; Raymond, 2017). Dysregula-

tion of the Ca2+ signalling system has been suggested to play an important

role in HD (Raymond, 2017). Mutant Huntington proteins (mHtt) can bind

to proteins and disbalance signalling pathways, such as IP3R (Glaser et al.,

2019). This causes IP3R to have an increased affinity for IP3 and enhances

Ca2+ levels during the response to metabotropic glutamate receptor 1 and 5

receptors, a receptor type that activates many signalling pathways (Ribeiro,

2010; Glaser et al., 2019). Furthermore, Glaser et al. (2019) state that mHtt
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has been linked to causing an increase of Ca2+ through RyR activation. Ex-

perimental results from mouse models have shown enhanced IP3R activity in

HD (Bezprozvanny, 2009; Glaser et al., 2019).

Cancer

Ca2+ signalling is not limited to healthy cells but is also present in tumour

cells (Panda et al., 2022). In cancer cells, the Ca2+ signalling pathway can

become overactive, inhibited, or adjusted to support the survival of the cell

(Pratt et al., 2020). The remodelling of Ca2+ signalling has been suggested

to contribute to cancer cell immortality, cell apoptosis resistance and re-

duced Ca2+ mediated cell death (Bruce and James, 2020). Breast cancer

and prostate cancer are examples of cancers that have been linked to Ca2+

(Pratt et al., 2020; Bruce and James, 2020; Grady and Morgan, 2021; Panda

et al., 2022). Defective Ca2+ channels, alterations in Ca2+ transport and

signalling lead to tumour initiation, metastasis and progression (Grady and

Morgan, 2021; Daba et al., 2023).

While there is evidence that Ca2+ channels are altered in different types of

cancer, Bruce and James (2020) note it is difficult to determine if the change

in signalling is a cause or consequence of cancer. Studies have suggested that

targeting the Ca2+ channels in cancer cells could be used as a therapy for

cancer (Bruce and James, 2020; Panda et al., 2022; Kang et al., 2023). Often

these treatments are not enough to be used as a complete treatment for cancer

and additional therapies are required, for example chemotherapy (Kang et al.,

2023). Whilst the idea of targeting the Ca2+ signalling system to treat cancer

is hopeful, due to Ca2+ channels existing in non-cancerous and cancerous
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cells, treatments could have a negative impact on the healthy cells (Bruce

and James, 2020; Panda et al., 2022). Therefore, it is important that specific

Ca2+ channels that are only expressed in cancer cells are identified (Panda

et al., 2022). For example, the regulation of Orai1, a plasma membrane

channel, by the Secretory Pathway Ca2+ATPase (SPCA2) is unique to breast

cancer cells (Feng et al., 2010; Panda et al., 2022).

Cardiac disease

Ca2+ ions play an important role in the functioning of the heart. They regu-

late pacemaker activity, ventricular cell contraction and cardiac remodelling

(Berridge, 2003; Garcia and Boehning, 2017). Cardiac remodelling is the

phenotypic change that occurs during cardiac hypertrophy and congestive

heart failure, in which persistent stress causes the heart to grow and leads

to an irreversible state. Signalling pathways, including Ca2+ signalling, con-

trol this cardiac remodelling (Berridge, 2003). The increased expression and

function of IP3R during cardiac hypertrophy is thought to be the cause of

this remodelling (Garcia and Boehning, 2017). Moreover, the increased ex-

pression of IP3R has also been linked to dilated cardiomyopathy (Garcia and

Boehning, 2017).

Salivary glands

According to Teos et al. (2015), the release of intracellular Ca2+ through

IP3R in acinar cells is the most crucial step in regulating fluid secretion by

neurotransmitters. Without Ca2+ , saliva secretion becomes inhibited (Dou-

glas and Rubin, 1961; Han et al., 2017), which can lead to oral health issues
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and affect other body tissues such as the skin, heart and gastrointestinal

system (Teos et al., 2015; Ambudkar, 2018).

Sjögren’s Syndrome, a chronic autoimmune disease, and radiation treat-

ment for head and neck cancers can cause irreversible damage to salivary

glands (Teos et al., 2015; Han et al., 2017; Ambudkar, 2018). In a study

conducted by Teos et al. (2015), a comparison was made between the acinar

cell function of healthy volunteers and individuals with Sjögren’s Syndrome.

The results showed significant differences in Ca2+ signalling between the two

groups. Sjögren’s Syndrome patients’ acini exhibited a decrease in IP3R and

a reduction in carbachol-stimulated intracellular Ca2+ release, in contrast to

healthy volunteers.

Whilst radiotherapy is the main treatment for head and neck cancers, it

can cause significant acute and long-term side effects on other tissues (Am-

budkar, 2018). A study by Leslie and Dische (1991) investigated the effect

radiotherapy had on patients in remission who were treated for a malignancy

confined to one side of their head nine months after treatment. Using the

side of the head without malignancy as a control, Leslie and Dische (1991)

compared the saliva produced by the parotid glands. Their results demon-

strated that parotid glands that had been impacted by the radiotherapy had

a significant fall in saliva pH and flow. Results by Ambudkar (2018) show the

impact of radiotherapy on salivary glands is caused by a reduction in STIM1

(an ER-Ca2+ binding protein) and store-operated Ca2+ entry. Furthermore,

rodent models demonstrate the Ca2+ signalling system is immediately dysreg-

ulated in response to radiation with elevated intracellular Ca2+ levels being

reported (Jasmer et al., 2020).
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Mutations of the inositol trisphosphate receptor in experimental

studies

Studies have shown the Ca2+ signalling system plays a crucial role in the

human body, and its dysregulation can have adverse effects. Mutations have

been identified in all four functional domains of the IP3R, which can interfere

with various aspects of its biology, including IP3 binding, ion permeation,

and stability (Terry et al., 2020). Various experimental studies have been

conducted to investigate the impact of different mutations on the IP3R.

In their study, Terry et al. (2020) investigated three different mutations

in three specific domains of the IP3R to determine their effect on channel

activity. They found that all three mutations lead to a decrease in channel

activity. The Arg-269 (R269) residue is important for binding in the IP3R.

Terry et al. (2020) substituted this residue with a point mutation (R269W)

which is known to cause spinocerebellar ataxia in patients. They then ex-

amined the effect it had on IP3 binding in the chicken lymphocyte cell line,

DT40-3KO cells. Results showed cells with the R269W mutation resulted

in reduced IP3-binding activity and did not release measurable Ca2+ signals

when stimulated by trypsin.

The second residue that was mutated was Asn-602 (N602) which intro-

duced a negatively charged residue (N602D). The N602D mutation is associ-

ated with a diagnosis of ataxic cerebral palsy without cerebral atrophy. This

mutation did not alter IP3 binding in DT40-3KO cells and stimulation of

trypsin did not produce measurable Ca2+ release.

Finally, Terry et al. (2020) investigated the G2498S mutation in IP3R2,

which they stated is expected to disrupt the channel pore. This mutation
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has been linked with hypohidrosis. Similar to the N602D mutation, the

G24985 mutation did not alter IP3 binding; however, it resulted in the ab-

sence of Ca2+ release. When all the mutations were applied in human em-

bryonic kidney-3KO (HEK-3KO) cells, activity was higher for the R269W

and N602D mutations in comparison to the DT40-3KO cells. However, the

G24985 mutation did not support Ca2+ release.

In a study by Arige et al. (2022), the 2002 glutamic acid residue was sub-

stituted with aspartic acid (E2002D), alanine (E2002A) or glutanine (E2002Q)

in HEK-3KO cells to investigate the effect changes to the side chain charge

has on the IP3R activity. The results showed that Ca2+ signals were signif-

icantly reduced in cells with the aspartic acid mutation and not detected in

those with alanine and glutamine mutations. Arige et al. (2022) concluded

that the negative charge of glutamic acid side chain residue is important for

IP3R activity. Although the structure of the IP3R did not change significantly

from the mutations, analysis of single channel activity showed significant dif-

ferences in the open probabilities of mutated IP3R compared to wild-type

IP3R. For example, the maximum open probability of E2002D-type 1 IPR

was 45% compared to a maximum open probability of 70% of the wild-type

1 IPR.

Tambeaux et al. (2023) replaced the D2594 residue in HEK-293 cell lines

with lysine (D2594K) and alanine (D2594A). These substitutions resulted

in enhanced IP3 ligand sensitivity and a reduction of IP3R function. The

D2594K mutation, which involves replacing a negatively charged residue with

a positively charged one at the channel’s pore cytosolic exit, affected the

gating behaviour of the ion channel. When investigating the effect on mutant
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mice, male mice showed pathological changes, such as loss of fertility.

1.3 Modelling background

Mathematical models of the Ca2+ signalling system are often complex, requir-

ing both the stochastic behaviour of the IP3R and the deterministic behaviour

of the Ca2+ puffs to be accounted for. Markov models are commonly used to

simulate the random openings and closings of the IP3R whilst ordinary dif-

ferential equations (ODEs) are used to describe the release of Ca2+ into the

cytoplasm. Due to our research focusing on the change in Ca2+ concentration

over time, an ODE model is appropriate. However, if spatial dynamics were

also being taken into consideration, partial differential equations would be

more suitable. In this section, we describe the process of building a model of

the Ca2+ signalling system.

1.3.1 Markov processes

Markov models are often written as a chemical reaction scheme, with a set

of states, depicted by Sn = S1, . . . , Sn in Figure 1.4, connected by non-

negative transition rates (Siekmann et al., 2011; Tveito and Lines, 2016).

The transition rates give the probability of changing state in a small-time

interval, ∆t, and can be constant or depend on voltages or concentrations

(Tveito and Lines, 2016). The model’s state determines the state transitions

independent of past events.



1.3 Modelling background 17

Figure 1.4: Example of Markov models. Sn represents the state of model and
transition rates are shown by the parameters q
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Modelling ion channels using Markov models

Siekmann et al. (2012) describe the aggregated continuous-time Markov model

to be the most natural method for modelling the stochastic behaviour of a

single ion channel. The states of the Markov model represent the open (O)

and closed (C) states of the channel and the rates qco and qoc describe how

quickly the channel opens or closes, respectively. If the channel is currently

in the closed state, the probability of the channel going to an open state is

qco ∆t. Similarly, the probability of going from an open to a closed state is

given by qoc∆t (Tveito and Lines, 2016).

Mathematically, these probabilities can be written as:

qoc∆t = P [S(t+∆t) = C|S(t) = O] (1.1)

qco∆t = P [S(t+∆t) = O|S(t) = C] (1.2)

Using Markov models, the open and closed probability of the ion channel

at time t+∆t can be calculated, if the state at the current time, t, is known

(Siekmann et al., 2016; Tveito and Lines, 2016). Within this thesis, we

refer to the open probability as Po and the closed probability as Pc. We

assume that only one transition takes place within the time frame [t, t+∆t].

The probability of the channel being open at time t + ∆t is equal to the

probability of the channel being open at time t, P (S(t) = O) and not closing

within the time frame ∆t, P (not (O → C during ∆t)) plus the probability

of the channel being closed at time t, P (S(t) = C) and being in the open

state at time t + ∆t, P (C → O during ∆t). Similarly, the probability of

the channel being closed at time t + ∆t is equal to the probability of the



1.3 Modelling background 19

channel being closed at time t, P (S(t) = C) and not opening within the

time frame ∆t, P (not(C → O during ∆t) plus the probability of the channel

being open at time t, P (S(t) = O) and being in the closed state at time

t+∆t, P (O → C during ∆t).

The probabilities of the channel being in the open or closed state at time

t+∆t can be written as:

Po(t+∆t) = P [S(t) = C and (C → O during ∆t)]

+P [S(t) = O and not (O → C during ∆t)]
(1.3)

Pc(t+∆t) = P [S(t) = O and (O → C during ∆t)]

+P [S(t) = O and not (C → O during ∆t)]
(1.4)

Furthermore, Eq 1.3-1.4 can be written as:

Po(t+∆t) = Pc(t) · P (S(t+∆t) = O|S(t) = C)

+Po(t) · P (S(t+∆t) = O|S(t) = O)
(1.5)

Pc(t+∆t) = Po(t) · P (S(t+∆t) = C|S(t) = O)

+Pc(t) · P (S(t+∆t) = C|S(t) = C)
(1.6)

By introducing Eq 1.1-1.2 we get:

Po(t+∆t) = Pc(t)qco∆t+ Po(t)(1− qoc∆t) (1.7)

Pc(t+∆t) = Po(t)qoc∆t+ Pc(t)(1− qco∆t) (1.8)

Expanding the right-hand-side, gathering like terms and dividing through
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by ∆t gives:

Po(t+∆t)− Po(t)

∆t
= Pc(t)qco − Po(t)qoc (1.9)

Pc(t+∆t)− Pc(t)

∆t
= Po(t)qoc − Pc(t)qco (1.10)

By introducing the limit ∆t → 0, thus considering ∆t to be so small

that only one transition takes place within the time frame [t, t+∆t], we can

calculate the derivative of Po(t) and Pc(t)(Tveito and Lines, 2016).

dPo(t)

dt
= Pc(t)qco − Po(t)qoc (1.11)

dPc(t)

dt
= Po(t)qoc − Pc(t)qco (1.12)

Here, we have shown the development of a two-state Markov model. Using

the same process Markov models of any number of states can be created. The

time-dependent probability distribution p(t) would thus require a vector of

probabilities and a matrix of transition rates, Q, known as the infinitesimal

generator (Colquhoun and Hawkes, 1981; Siekmann et al., 2019). The general

equation is shown in Eq 1.13. The Siekmann model (Siekmann et al., 2012)

and Ullah model (Ullah et al., 2012a), shown in Fig 1.5, are examples of IP3R

Markov models with more states.

dp(t)

dt
= p(t)Q, p(0) = p0 (1.13)
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Figure 1.5: Siekmann model (Siekmann et al., 2012) and Ullah model (Ullah
et al., 2012a)

1.3.2 Modelling of calcium dynamics

Mathematical models of the IP3R help to understand Ca2+ dynamics (Colquhoun

and Hawkes, 1981; Keizer and Young, 1994; Li and Rinzel, 1994; Swillens

et al., 1994; Sneyd et al., 2004; Siekmann et al., 2012; Ullah et al., 2012a;

Cao et al., 2013; Rüdiger, 2013; Cao et al., 2014; Dupont et al., 2016; Dupont

and Sneyd, 2017; Han et al., 2017; Siekmann et al., 2019). Model develop-

ment has improved greatly since Colquhoun and Hawkes (1977) first used

a Markov model to describe the stochastic behaviour of single ion channels.

Over the past decade, it has become evident that incorporating data into

models, whilst challenging, leads to more accurate simulations (Siekmann

et al., 2019).

Siekmann et al. (2019) claim the main challenge of modelling data-driven

ion channels is defining a structure of Markov models that allows the inte-
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gration of various sources of experimental data. Two models that account

for all sources of data currently available are the Siekmann model and the

Ullah model, presented in Fig 1.5 (Mak et al., 2007; Wagner and Yule, 2012;

Siekmann et al., 2012; Ullah et al., 2012a; Cao et al., 2013; Siekmann et al.,

2019).

Siekmann Model

A continuous–time Markov model by Siekmann et al. (2012) was created to

accurately represent the kinetics of type I and II IP3R depending on concen-

trations of IP3, ATP and intracellular Ca2+. The model was fitted directly

to time-series data from a study conducted by Wagner and Yule (2012). The

Siekmann model takes into consideration extended periods of inactivity alter-

nating with intervals of bursting activity, known as mode changes. Transition

rates connected aggregated states representing high and low IP3R activity.

Alongside the stationary single channel data by Wagner and Yule (2012),

Cao et al. (2013) incorporated non-stationary single channel data by Mak

et al. (2007) into the Siekmann model. This was achieved by introducing

four gating variables into the model that are similar to the Hodgkin-Huxley

equations. The gating variables were qualitatively fit to the Mak et al. (2007)

latency data. By using both stationary and non-stationary data, Cao et al.

(2013) succeeded in creating a model that can simultaneously reproduce the

correct IP3R and Ca2+ puff statistics (Mak et al., 2007; Siekmann et al.,

2012; Wagner and Yule, 2012; Cao et al., 2013). Further developments of the

model have since been made, such as creating a two-state model by using

quasi-steady-state approximation and ignoring low dwell times, simulating
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the dynamics in HSY cells and understanding the dependencies of certain

parameters on the interpuff interval (the waiting time between subsequent

puffs) (Cao et al., 2014; Han et al., 2017; Cao et al., 2017).

Cao et al. (2014) demonstrate the six-state Cao et al. model (Siekmann

et al., 2012; Cao et al., 2013) can be reduced to a two-state model by us-

ing quasi-steady-state approximation and ignoring low dwell times. Quan-

titatively similar Ca2+ puff statistics are produced by the simplified model,

demonstrating that the intramodal structure is not key in producing the de-

sired IP3R and Ca2+ dynamics. Cao et al. (2014) also investigated if Ca2+

oscillations, which are caused by the stochastic behaviour of IP3R , can be

modelled deterministically. They converted their simplified two-state model

into a deterministic model that consists of a system of four ODEs. The

stochastic and deterministic models were used to simulate Ca2+ oscillations

in airway smooth muscle cells. Their results show that a deterministic model

can produce the same process of spike termination as a stochastic model.

Sneyd et al. (2017) used the methods by Siekmann et al. (2012); Cao

et al. (2013, 2014) to construct a simplified three-state Markov model from

the original six-state Siekmann model to simulate Ca2+ oscillations. Like Cao

et al. (2014), Sneyd et al. (2017) treated the Ca2+ oscillations as determinis-

tic. The model consists of two closed states and one open state and predicts

the rate at which IP3R activation responds to changes in Ca2+, which is a

crucial parameter for controlling periods of oscillations. The rates between

the closed and open states are constant, whereas the rates between the closed

states are Ca2+ and IP3 dependent and were fit using data from DT40-3KO

and airway smooth muscle cells.
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Ullah Model

Ullah et al. (2012a) used a continuous-time Markov-chain model with nine

closed states and three open states to simulate IP3R. The model states are

distinguished by how many particles of each ligand are bound to the channel.

For example, O13
I denotes an open state that is in the intermediate mode

with one Ca2+ and three IP3 bound. Ullah et al. (2012a) incorporate the

same steady-state, modal gating and latency data as Cao et al. (2013) into

their model (Mak et al., 2007; Wagner and Yule, 2012). Their model gives

concrete predictions regarding the single-channel response to rapid changes

in the cytosolic ligand concentration of Ca2+ and IP3.

Modelling calcium fluxes within the endoplasmic reticulum

Within this thesis, we focus on the regulation of Ca2+ ions by IP3R. A

schematic diagram of Ca2+ fluxes in a non-excitable cell is presented in Fig

1.6 (Siekmann et al., 2019; Rüdiger and Shuai, 2019). The binding of IP3 to

an activating site of an IP3R opens the channel, releasing Ca2+ ions from the

ER into the cytoplasm, described by the flux JIPR. The increase in cytoplas-

mic Ca2+ enhances the probability of IP3R opening, resulting in further Ca2+

release. This process is known as calcium-induced calcium release (CICR).

As the concentration of calcium ions inside the cell increases, the IP3 recep-

tor is inhibited, and calcium ions are transported back into the endoplasmic

reticulum via the SERCA pump, JSERCA. Channels regulate the influx (Jin)

and efflux (Jpm) of Ca2+ to and from the extracellular space (Han et al.,

2017; Siekmann et al., 2019; Rüdiger and Shuai, 2019).
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Figure 1.6: Schematic diagram of Ca2+ fluxes in a non-excitable cell adapted from
Siekmann et al. (2019); Rüdiger and Shuai (2019). Created using BioRender.com

.
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Calcium puff statistics

Stochastic Ca2+ traces, gathered from experimental data or mathematical

simulations, are often analysed by taking into consideration three key statis-

tics: the interpuff interval (IPI), the puff amplitude and the puff duration.

IPIs are defined as being the time between the peak amplitude of Ca2+ puffs.

We determine the start of a Ca2+ puff as being when the Ca2+ concentration

is 20% of the peak amplitude. Similarly, the end of the puff is calculated

as the time after the peak where the Ca2+ concentration is 20% of the peak

amplitude. This allows us to compare our results directly to the experimen-

tal data which details the time for a Ca2+ puff to rise and fall to 20%, 50%

and 100% of the peak amplitude (Ellefsen et al., 2014, 2019). See Chapter

2, Section 2.2 for further details. The difference in the end and start times

determines the duration of the Ca2+ puff. An example of these metrics is

shown in Fig 1.7. By presenting these statistics as probability distributions

we can understand the underlying Ca2+ dynamics further.

1.4 Thesis overview and contributions

The work in this thesis details the beginning-to-end result of mathematically

modelling the Ca2+ signalling system. The thesis begins by providing an

in-depth statistical analysis of stationary single channel and Ca2+ puff data

from different IP3R . Next, we develop a novel mathematical framework for

simulating Ca2+ puffs using a hybrid stochastic system with integrodifferen-

tial equations. Finally, this thesis ends with two new parameterised hybrid

stochastic systems.
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Figure 1.7: Example of Ca2+ trace and puff statistics gathered from trace.

In Chapter 2 we analyse the experimental data used throughout this

thesis. The thesis uses experimental data from two IP3R data sets. The

first consists of unpublished Ca2+ puff data from exo 76 wild-type 1 IPR

obtained through collaboration with the Yule Lab, Rochester. The second

includes single-channel patch-clamp and Ca2+ puff data from wild-type 1

IPR and wild-type 1 IPR that has been substituted with aspartic acid at

the 2002 glutamic acid residue (E2002D-type 1 IPR) (Arige et al., 2022).

Data sets from all three IP3R are analysed to provide insight into IPI, Ca2+

puff amplitude and Ca2+ puff durations. Using the IPI data, we param-

eterise three statistical distributions and compare the results qualitatively

and quantitatively.

Our next step following the analysis of the experimental data is to build

our hybrid stochastic system which is detailed in Chapter 3. We base our

hybrid stochastic system on an existing model; this allows us to compare our
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new model with the Cao et al., model (Siekmann et al., 2012; Cao et al.,

2013). The benefit of our model using integrodifferential equations is that it

allows us to directly relate the latency in the IP3R responding to step changes

in ligand concentrations, as demonstrated by Mak et al. (2007). This gives

us the advantage of analysing how different length delays affect the Ca2+

dynamics.

Finally, in Chapter 4, we parameterise our mathematical model using the

experimental data from wild-type 1 IPR and E2002D-type 1 IPR. We com-

pare the summary statistics and distributions of Ca2+ puffs in our simulated

model results to the experimental data.

In this thesis, we contribute the following:

• Analyse stationary single channel and Ca2+ puff data We anal-

yse single-channel patch-clamp data from wild-type 1 IPR and E2002D-

type 1 IPR (Arige et al., 2022). Ca2+ puff data from exo 76 wild-type

1 IPR, wild-type 1 IPR and E2002D-type 1 IPR is analysed and key

statistical metrics are gathered (interpuff interval, Ca2+ puff amplitude

and Ca2+ puff duration). We parameterise three statistical distribu-

tions using the IPIdata. Information criteria are calculated and con-

clude which statistical distribution best models the IPI distributions.

Our analysis demonstrates that with the given experimental data, a

refractory period may be present within the different IP3R . Mathe-

matical modelling of the Ca2+ signalling system using the experimental

data can help to uncover this hypothesis further. See Chapter 2.

• Derive a hybrid stochastic system based on integrodifferential

equations to simulate Ca2+ puffs We build a hybrid stochastic sys-
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tem that uses integrodifferential equations to account for the delayed

response in the IP3R opening following a step change in Ca2+ con-

centration. We demonstrate our model is mathematically equivalent

to hybrid stochastic equations in the literature, however, ours has the

advantage of being able to directly relate gating variable behaviour to

IP3R dynamics. See Chapter 3

• Derive two hybrid stochastic systems that can account for a

wild type and mutated IP3RUsing our hybrid stochastic system, we

parameterise our model to be able to simulate Ca2+ puffs that have the

same properties as the experimental data. We relate the mathematical

differences within our two models to the biological mutation of the

IP3R. See Chapter 4.
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2
Analysis of stationary single channel and Ca2+

puff data

2.1 Background

Dynamics of the Ca2+ signalling system can be understood in more depth

through analysing Ca2+ puff statistics. Interpuff intervals (IPIs), Ca2+ puff

amplitude and Ca2+ puff duration are commonly presented using histograms,

which can provide insight into the IP3R behaviour. For example, an Expo-

nential IPI distribution suggests a fast recovery from Ca2+ inhibition (Siek-

mann et al., 2019). Amplitude distributions can estimate the number of IP3R

in a cluster or the number of IP3R open during a Ca2+ puff (Dickinson et al.,

2012; Dobramysl et al., 2016). Statistical distributions, parameterised using

the Ca2+ puff data, are used to firstly understand the distribution of the data

and secondly for ease of comparison between data sets. Within this chapter,

we conduct a comprehensive literature review of statistical distributions used

to describe IPI, Ca2+ puff amplitude and Ca2+ puff duration distributions.

We analyse Ca2+ puff statistics from three different IP3R data sets and, using

the IPI data, parameterise the three commonly used statistical distributions

for describing IPI distributions. We conclude which statistical distribution

approximates the IPI data best by comparing their fit, calculating informa-
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tion criteria and conducting the Kolmogorov-Smirnov goodness of fit test.

We discuss which model scores the best AIC, BIC and WAIC values and the

test statistics for each IPI distribution.

Statistical distributions parameterise Ca2+ puff statis-

tics

Interpuff interval distribution

IPIs are defined as the time between successive Ca2+ puffs (Cao et al., 2017).

The stochastic behaviour of IP3R means IPI distributions can differ across

cell and puff sites (Thurley et al., 2011). Therefore, one statistical distri-

bution may be suitable for one data set, but be extremely unreasonable for

another.

In 1995, Yao et al. (1995) analysed Ca2+ puffs in Xenopus laevis oocytes.

They proposed that IPIs are defined by two factors. Firstly, in the initial few

seconds following a puff the site may be refractory, therefore the probability

of observing a second puff increases up to ∼ 9s. Secondly, the probability of

observing a second puff decreases exponentially as the time following a puff

increases. Yao et al. (1995) fit an Exponential distribution to IPIs longer than

10s. IPIs smaller than 8s declined progressively. Although an Exponential

distribution fits well to longer IPIs, by choosing to use this distribution, Yao

et al. (1995) are not able to accurately represent the shorter IPIs shown

within their data.

Using the same data as Yao et al. (1995), Fraiman et al. (2006) analysed

the sequences of Ca2+ puffs from Xenopus laevis oocytes. Fraiman et al.

(2006) describe the IPI distribution as resembling a log-normal or Gamma
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distribution. By considering non-Exponential distributions, Fraiman et al.

(2006) account for the entire IPI distribution.

Thurley et al. (2011) demonstrate that there is variability in IPI distri-

butions from SH-SY5Y and HEK 293 cells. Alongside the commonly used

Exponential distribution, Thurley et al. (2011) introduce a new distribution,

known as the Time-Dependent distribution, that accounts for the period of

recovery following a Ca2+ puff. This occurrence, known as the refractory

period, is characterised by the rebound from global negative feedback that

occurs during the puff (Thurley and Falcke, 2011). The Time-Dependent dis-

tribution is an adapted version of the Exponential distribution and includes

an additional parameter (ξ) to represent the recovery from Ca2+ inhibition.

This Time-Dependent distribution is as follows:

Pt = λ
(
1− e−ξt

)
e[−λt+λ(1−e−ξt)/ξ] (2.1)

Thurley et al. (2011) fit both the Exponential and Time-Dependent distri-

butions to different puff sites of the same cell type, emphasising the variability

of IPIs. Puff sites that recover quickly from inhibition fit well to the Expo-

nential distribution. In contrast, those that took longer to recover, i.e. the

distribution has an ascending slope, fit best to the Time-Dependent distribu-

tion. If ξ >> λ Eq 2.1 is reduced to the Exponential distribution. Using Ca2+

puffs simulated using their mathematical model, Cao et al. (2013) parame-

terised the Time-Dependent distribution and demonstrated that changes to

the gating of the IP3R affects the IPI distribution. A spatial multi-scale

model by Dobramysl et al. (2016) was used to analyse Ca2+ puff statistics.

Their model coupled the diffusion of ions with the stochastic dynamics of
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IP3Rs. When analysing their Ca2+ puff statistics, Dobramysl et al. (2016)

only included IPIs greater than 0.25s apart, stating that IPIs less than 0.25s

were caused by random channel re-openings. They fit their IPI distribution

to a Gamma distribution.

Although the Exponential distribution has traditionally been used to de-

scribe the distribution of IPIs, it does not always capture the entire be-

haviour of the data. Distributions such as the Gamma distribution or Time-

Dependent can describe the IPIs where the recovery from inhibition is slower.

Amplitude distribution

Amplitude distributions can be a key indicator of how many IP3R exist in a

cluster or the estimated mean number of IP3R open during a Ca2+ puff (Do-

bramysl et al., 2016). Ca2+ puff amplitude distributions are often described

as being asymmetric and few studies have fit statistical distributions to the

Ca2+ puff amplitude data. However, statistical metrics, such as mean Ca2+

puff amplitude and maximum Ca2+ puff amplitude, can provide insight into

IP3R cluster dynamics.

Studies by Fraiman et al. (2006); Smith et al. (2009) describe the am-

plitude distributions as being asymmetric, with a higher frequency of low

amplitudes. Dickinson et al. (2012) show amplitude distributions can be

used to estimate the number of IP3R that have contributed to a Ca2+ puff

in SH-SU5Y cells. The amplitude distribution was formed of 7 Gaussian

distributions, each representing the size of the channel cluster. When com-

paring amplitude distributions from mathematical simulations of Ca2+ puffs,

Siekmann et al. (2019) fit the data to Gaussian distributions.
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Although it is uncommon for statistical distributions to be fit to the

Ca2+ puff amplitude distributions, here we have demonstrated the advantage

of analysing this metric. Previous studies have used statistical metrics to

estimate the IP3R cluster size and the average number of IP3R opening during

a Ca2+ puff. While this provides valuable information on the structure of the

IP3R cluster, it also helps mathematicians in modelling the Ca2+ signalling

system.

Duration distribution

The distribution of Ca2+ puff durations are rarely fit to statistical distribu-

tions. Literature of experimental data provides key statistics, without pro-

viding a visual description of puff durations. More commonly, mathematical

modelling literature describes the puff duration’s distributions.

Ullah et al. (2007) built a mathematical model that defines the critical

determinants of Ca2+ signalling differentiation using Oocyte maturation. The

study compared simulations from the Oocyte under three different conditions;

the duration distributions were skewed to the right, however, no statistical

distribution was fit to the data. Similarly, in a review by Siekmann et al.

(2019) duration distributions are asymmetrical.

Thurley et al. (2012) state the Ca2+ puff duration distribution can be

represented using the following statistical distribution:

d(t) = NΓe−Γt(1− e−Γt)N−1 (2.2)

where parameters include the duration of the puff (t), the number of chan-

nels open at the puff peak (N) and the average closing rate of the channels
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(Γ).

Whilst duration distributions are a key metric when understanding the

Ca2+ puff dynamics, fitting the distribution statistically is not common prac-

tice. Analysis of histogram appearance and statistical metrics can provide

interesting insights into how IP3R dynamics change within and across differ-

ent cell types.

The aims of this chapter are:

2.1.1 Chapter Aims

• Analyse Ca2+ puff statistics from human IP3R1

Ca2+ puff statistics will be collected from experimental data, accessed

through collaboration with Professor David Yule (Professor of Phar-

macology and Physiology, University of Rochester). Data from exo

76 wild-type 1 IPR, wild-type IPR 1 and E2002D-type IPR 1 will be

analysed and Ca2+ puff statistics compared (Arige et al., 2022).

• Parameterise IPI distributions

IPI distributions are often described using the Exponential, Gamma or

Time-Dependent distributions. We will parameterise the Exponential,

Gamma and Time-Dependent distributions using IPI data from the

three IP3R and compare our results.

• Calculate information criterion to determine statistically the

strongest statistical distribution to represent the IPI distri-

butions

Akaike information criterion, Bayesian information criterion andWatan-

abe Akaike information criterion will be calculated for each statistical
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distribution. Comparison of values will help determine which statistical

distribution best describes all variations of IPI distribution.

• Investigate the statistical significance between the IPI distri-

butions and statistical distributions

The Kolmogorov-Smirnov goodness of fit test will be conducted to com-

pare each IPI distribution with the Exponential, Gamma and Time-

Dependent distributions. The results from the statistical tests will be

discussed and used to identify which statistical distribution best repre-

sents the IPI distributions.

2.2 Methods

2.2.1 Experimental data

Patch clamp testing

Patch clamp tests are used to analyse the current passing through an ion

channel when ligand conditions are constant. A current of ∼ 0pA indicates

a closed channel, whereas a current of ∼ −40pA indicates an open channel.

Through performing these tests, one can learn how the channel responds

under different conditions and use results, such as the open probability and

dwell time distributions (see Chapter 4) to parameterise a mathematical

model that simulated similar behaviour.

Arige et al. (2022) investigated the effects of substitutions of the E2002

site on the fundamental Ca2+ signal’s mediated by IP3R. Stably over-expressed

wild type hIP3R were substituted at the 2002 glutamic acid residue with as-
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partic acid. The number of puffs per cell, puff sites per cell and percentage

of cells in which Ca2+ signals globalized were reduced in E2002D-type 1 IPR

compared to wild-type 1 IPR. Through collaboration with the Yule lab, we

have access to the data sets from both the wild-type 1 IPR and E2002D-type

1 IPR. Fig 2.1 and 2.2 present the patch clamp results by Arige et al. (2022)

for wild-type 1 IPR and E2002D-type 1 IPR, respectively. Within these ex-

periments ATP and IP3 were kept constant at 5mm and 10µm, respectively.

We calculate the open probabilities for the wild-type 1 IPR and E2002D-

type 1 IPR by using a threshold value of 50% of the maximum open current

(−40pA) (Wagner and Yule, 2012). Values less than -20pA indicated the

channel was open, while those above indicated the channel was closed. The

open probability is calculated by summing the time the channel spends in

the open state and dividing this result by the total number of transitions.

Dwell times were computed from the wild-type and E2002D type 1 IPR

single channel data. These values show how long the IP3R spends in the open

or closed state conformation. Transition rates were calculated by taking the

inverse of the average dwell time for each Ca2+ concentration.

Ca2+ puff data

To detect changes in Ca2+ concentrations within stable hIP3R1, cells must

go through a process of being washed with imaging buffer and incubated.

Stable hIP3R1 cells are firstly cultured on glass coverslips before being washed

with imaging buffer. After going through different incubation periods, the

coverslip is mounted in a chamber and imaged. Cells are illuminated using a

laser to excite the fluorescent dye and the emitted dye is collected. Details of
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Figure 2.1: Patch clamp data from wild-type 1 IPR (Arige et al., 2022). IP3

concentration was kept constant at 10µm. The Ca2+ concentration is indicated
above each plot.



40 Analysis of stationary single channel and Ca2+ puff data

Figure 2.2: Patch clamp data from E2002D-type 1 IPR (Arige et al., 2022). IP3

concentration was kept constant at 10µm. The Ca2+ concentration is indicated
above each plot.
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the experimental conditions of the exo 76 wild-type 1 IPR, wild-type 1 IPR

and E2002D-type 1 IPR can be found in Emrich et al. (2021); Arige et al.

(2022). Examples of the images captured by Arige et al. (2022) are presented

in Fig 2.3-2.4. In Fig 2.3, at 10s one can see two small bright areas in the

frame. Over the frames, the Ca2+ concentration across the cell increases,

shown by the spread of bright areas. In Fig 2.4 a singular bright area can be

seen at 50s.

Figure 2.3: Frames from a Ca2+ puff experiment by Arige et al. (2022) from
wild-type 1 IPR. Bright areas within the figure show a high concentration of
Ca2+.. Permission to reproduce this image has been granted by Professor David Yule,

University of Rochester, and Professor Irina Seryshevam, The University of Texas

Health Science Center. https://creativecommons.org/licenses/by-nc-nd/4.

0/

Fluorescence Ca2+ image stacks are converted into time series data us-

ing the Python-based platform, FLIKA (Ellefsen et al., 2014, 2019). This

process was completed by Emrich et al. (2021); Arige et al. (2022) prior to

our statistical analysis and further details can be found there. First, the

raw movie is spatially and temporally filtered. Within FLIKA, the user can

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 2.4: Frames from a Ca2+ puff experiment by Arige et al. (2022) from
E2002D-type 1 IPR. Bright areas within the figure show a high concentration
of Ca2+. Permission to reproduce this image has been granted by Professor David

Yule, University of Rochester, and Professor Irina Seryshevam, The University of Texas

Health Science Center. https://creativecommons.org/licenses/by-nc-nd/4.

0/

choose the filter best suited for their analysis (Ellefsen et al., 2014, 2019),

Emrich et al. (2021); Arige et al. (2022) opted for the Gaussian filter. Next,

the movie is thresholded using a user-defined threshold, chosen as 1.0 by

Emrich et al. (2021); Arige et al. (2022). Pixels in the image stack above the

threshold are marked as being part of a Ca2+ event. The pixels about the

threshold are grouped into clusters using a clustering algorithm (Rodriguez

and Laio, 2014; Ellefsen et al., 2019) which enables FLIKA to analyse the

temporal evolution of each puff. Statistics, such as the peak amplitude, rise

and fall times are saved in an Excel file (Ellefsen et al., 2019). Fig 2.5 shows

an example of the Excel output from the FLIKA analysis.

In this chapter, we analyse two Ca2+ puff data sets. The first data set,

named exo 76 wild-type 1 IPR in this thesis, is from unpublished data gained

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 2.5: Example of the Excel output from FLIKA analysis. Units of metrics
are in the number of frames. Definitions of the metrics can be found in Ellefsen
et al. (2014).

through collaboration with the Yule Lab, Rochester. For this data set, we

convert the frame rate into seconds at a ratio of 166 frames per second as

detailed in Emrich et al. (2021). The aim of using the exo 76 wild-type 1

IPR data set is to compare wild-type Ca2+ puff statistics and investigate

variability amongst data sets.

The second Ca2+ puff data set has been previously published by Arige

et al. (2022). This data set includes Ca2+ puff data from wild-type 1 IPR

and wild-type 1 IPR that have been substituted at the 2002 glutamic acid

residue with aspartic acid (E2002D-type 1 IPR). The frame rate to seconds

ratio is converted as 50 frames per second and further experimental details

can be found in Arige et al. (2022).

IPIs are calculated by finding the time between the termination of the

first Ca2+ puff to the onset of the next Ca2+ puff. We define the termination

of a Ca2+ puff as the time the Ca2+ concentration is 20% of the peak puff

amplitude after the Ca2+ peak. Similarly, the onset of a Ca2+ puff is the time

at which the Ca2+ concentration is 20% of the peak puff amplitude before the
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Ca2+ peak. Thus, the Ca2+ puff durations are calculated as the difference

between the termination and onset of a Ca2+ puff.

2.2.2 Probability Distributions

We parameterise the Exponential, Gamma and Time-Dependent distribu-

tions using IPI data. Maximum likelihood estimates (MLE) are used to esti-

mate parameters of models (Myung, 2003; Brooks-Bartlett, 2018). Through

using MLE the parameter values of a chosen probability distribution that best

represent the observed data can be found (Myung, 2003). MLE is used within

a variety of statistical tests such as the chi-square test, Bayesian method and

model selection criteria such as AIC and BIC (Myung, 2003). It is cal-

culated by first, finding the likelihood function, that is the product of the

density terms of the chosen statistical distribution. Second, the natural log

of the likelihood function is taken. Finally, the log-likelihood is differentiated

and set equal to zero giving the value at which the likelihood is maximised

(Stephens, 2004).

The statistical distributions are as follows:

Exponential Distribution

PIPI = λe−λt (2.3)

λ represents the rate parameter.

Gamma Distribution

PIPI =
βα

Γ (α)
xα−1e−βt (2.4)
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α and β represent the shape and rate parameters, respectively.

Time-Dependent

PIPI = λ
(
1− e−ξt

)
e[−λt+λ(1−e−ξt)/ξ] (2.5)

λ and ξ represent the rate and refractory period parameters, respectively.

2.2.3 Information criteria for model selection

Information criterion is used to provide a statistical indication as to which

probability distribution fits the data best. We calculate the Akaike infor-

mation criteria (AIC), Bayesian information criteria (BIC) and Watanabe

Akaike information criteria (WAIC) and compare the results across the dif-

ferent distributions and for different experimental data sets.

Akaike Information Criteria

AIC is calculated by taking the log predictive density, also referred to as

the log-likelihood, and subtracting a penalty factor, k, which represents the

number of estimated parameters and is used to correct for overfitting. The

calculation is scaled by -2 (Gelman et al., 2013).

AIC = −2logp

(
y|θ̂mle

)
+ 2k (2.6)

For small sample sizes, where n
k
< 40, an adjusted version of AIC is used

that includes a second-order bias correction (Burnham and Anderson, 2004):

AICs = −2logp

(
y|θ̂mle

)
+ 2k +

2k(k + 1)

n− k − 1
(2.7)
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Bayesian Information Criterion

BIC is calculated by taking the log-likelihood and adding a penalty fac-

tor which takes into consideration the sample size of the observed data, n

(Schwarz, 1978; Gelman et al., 2013).

BIC = −2logp (y|θ) + kln(n) (2.8)

Watanabe-Akaike Information Criterion

To calculate WAIC, the entire posterior distribution, p(θ|y), is used. This

is calculated by combining the likelihood p(y|θ) and the prior density, p(θ)

and summaries all current knowledge about θ (Lee, 2014; Annis et al., 2017).

That is:

p(θ|y) = p(θ)p(y|θ)∫
p(θ)p(y|θ)dθ

(2.9)

Bayes Theorem can be written as:

p(θ|y) ∝ p(y|θ) · p(θ) (Lee, 2014) (2.10)

The posterior distribution can be calculated using numerical methods, or

for more complex models, by using a Markov chain Monte Carlo (MCMC)

algorithm. Within our analysis, we opt to use MCMC within the Stan (Stan-

Development-Team., 2019; Stan-Development-Team, 2020). See Section 2.2.5

for more details on using Stan within R.

WAIC is calculated by taking the log pointwise predictive density (lppd)

and adjusting for overfitting (Watanabe, 2010; Gelman et al., 2013).

The lppd is computed by, firstly, calculating the predictive density. This
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involves drawing S samples from the posterior distribution and calculating

the predictive density for each sample, p(yi|θS). The predictive densities are

then averaged. Next, the log of the approximated average predictive density

is calculated and summed over the number of data points, n. The lppd is an

overestimate of the expected lppd for future data, therefore it can be used

as an estimate for future data (Gelman et al., 2014; Vehtari et al., 2017).

lppd =
n∑

i=1

log

(
1

S

S∑
S=1

p
(
yi|θS

))
(2.11)

pWAIC2 is used to adjust for overfitting and can be interpreted as an

approximation to the number of ‘unconstrained’ parameters in the model

(Gelman et al., 2013). pWAIC2 is calculated by taking the variance of the log-

likelihood for each observation and summing over the number of observations.

PWAIC2 =
n∑

i=1

varpost (logp (yi|θ)) (2.12)

WAIC is scaled by -2 to make it comparable with other information cri-

terion (Gelman et al., 2013).

WAIC = −2lppd+ 2pWAIC (2.13)

To calculate WAIC, a prior distribution needs to be chosen for each of the

unknown parameters. Formally, the prior is used to encode relevant informa-

tion to the problem being analysed, however, it is often used as a means of

stabilising inferences in complex, high-dimensional problems (Vehtari et al.,

2017). When all parameters are believed to be equally as likely and exist

within a finite interval, uniform, or flat distributions are sometimes chosen
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(Annis et al., 2017). This results in the prior having little effect on the poste-

rior (Vehtari et al., 2017). Within this analysis, the Exponential distribution

is chosen as a prior and is represented by Eq 2.14, where r is the rate param-

eter of the prior. By setting r to be very small, the Exponential distribution

decays slowly making it appear like a non-informative uniform distribution

for a small λ. Whilst λ can span [0,∞], P (λ) penalises very fast λ values.

P (λ) = re−rλ (2.14)

2.2.4 Kolmogorov-Smirnov goodness of fit test

The Kolmogorov-Smirnov goodness of fit test investigates the statistical dif-

ference between observed data and a chosen statistical distribution (Kanji,

2006). To use this test, data must be continuous (Panik, 2005). Within this

thesis, we use the Kolmogorov-Smirnov test to compare the IPI distributions,

calculated from each of our experimental data sets, with the Exponential,

Gamma and Time-Dependent distributions. We let X1, X2, ...Xn be the IPI

data from the Ca2+ puff statistics, gathered from the exo 76 wild-type 1 IPR,

wild-type 1 IPR and E2002D-type 1 IPR experimental data and Fn(x) be

the empirical cumulative distribution function (CDF) from each IPI data set

(Kvam et al., 2023).

The hypothesis test is:

H0 : F (x) = F0(x)

H1 : F (x) ̸= F0(x)
(2.15)
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Where F0(x) represents the CDF from either the Exponential, Gamma, or

Time-Dependent distribution. We use a significance level, α, of 0.05. The

Kolmogorov-Smirnov test statistic, D, is calculated as the maximum vertical

difference between the empirical CDF, Fn(x), and the theoretical CDF, F0(x)

(Panik, 2005).

Dn = max|Fn(xi)− F0(xi)| (2.16)

If Dn is large, it suggests the theoretical CDF is not a good representation of

the empirical CDF. We plot the empirical and theoretical CDF against each

other to allow us to compare the distributions visually (Kvam et al., 2023).

Alongside performing the Kolmogorov-Smirnov test statistic, we calculate

the p-value. If p < α, we reject H0.

2.2.5 Numerical methods

We calculate the IPI, Ca2+ puff amplitude and Ca2+ puff duration using

MATLAB. Statistical analysis of the Ca2+ puff statistics including parame-

terisation and information criterion was calculated using R. WAIC was calcu-

lated using the rstan package by Vehtari et al. (2017) (Annis et al., 2017; Ve-

htari et al., 2017; Stan-Development-Team., 2019; Stan-Development-Team,

2020).The Exponential and Gamma distributions are built into the Stan

application, however, for the Time-Dependent distribution a user-defined

distribution was built. This involved defining the log-likelihood of the Time-

Dependent distribution within Stan. Once completed, the distribution can

be called like a built-in distribution (Annis et al., 2017; Vehtari et al., 2017;

Stan-Development-Team., 2019; Stan-Development-Team, 2020). We used a

warmup step of 1000, an interation step of 2000 and 4 chains when running
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our MCMC algorithm. All figures were created in MATLAB.

2.3 Results

2.3.1 Stationary single channel data analysis

In Fig 2.6 we present the open probabilities for the wild-type and E2002D-

type 1 IPR. A clear distinction between the wild-type and E2002D-type 1

IPR open probabilities is that the substitution of the 2002 glutamic acid

residue with aspartic acid causes a less active IP3R evidenced by the smaller

open probabilities. Although this substitution reduces the open probability

of the IP3R , the open probability curve retains its bell-shaped curve.

A Ca2+ concentration of 10nM and 100µm does not activate the IP3R,

however when the Ca2+ concentration is at 200nM or 1µm the channel is very

active. In comparison to results from the wild-type 1 IPR, the E2002D-type

1 IPR is less active. Transition rates and Po values are given in Table 2.1.

The higher transition rates observed in the wild-type 1 IPR, in comparison

to those in the mutated channel, indicate that the wild-type channel is more

active.

Table 2.1: Transition rates and Po for the wild-type 1 IPR and E2002D-type 1
IPR

Ca2+ (nm) Wild-type 1 IPR E2002D-type 1 IPR
qoc∞(s−1) qco∞(s−1) Po qoc∞ qco∞ Po

10 - - 0 - - 0
50 2.009 0.3933 0.1627 0.8527 0.1313 0.1305
200 0.9749 4.4678 0.8208 1.0773 1.0655 0.4948
1000 1.7389 5.6471 0.7645 1.0155 0.9006 0.4638
3000 1.5654 0.6536 0.2937 1.0903 0.3319 0.2259

100 000 - - 0 - - 0
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Figure 2.6: Pooled open probabilities from wild-type 1 IPR and E2002D-type 1
IPR (Arige et al., 2022).
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In Fig 2.7 we compare the open state dwell time distributions for differing

Ca2+ concentrations for the wild-type 1 IPR and E2002D-type 1 IPR. Due to

the IP3R being consistently closed when the Ca2+ concentration was 10nm

and 100µm, there are no open state dwell times. A clear difference between

the distributions is that the wild-type 1 IPR is much more active, evidenced

by the significantly higher count of open events. The time spent in the open

state for the wild-type 1 IPR is often much shorter than the E2002D-type 1

IPR.

Fig 2.8 shows the close state dwell time distributions for the wild-type 1

IPR and E2002D-type 1 IPR. Both IP3R exhibit short and long dwell times.

The E2002D-type 1 IPR spends more time in the closed state. Comparison

of the open and close state dwell time distributions demonstrates, firstly the

wild-type 1 IPR is more active than the E2002D-type 1 IPR shown by the

higher frequency of events. Secondly, the E2002D-type 1 IPR spends a longer

time in a closed state.

2.3.2 Statistical analysis of Ca2+ puffs

This section details the results of statistical analysis conducted on two data

sets. Firstly, we analyse Ca2+ puffs from unpublished data gained through

collaboration with the Yule Lab, Rochester. Secondly, we analyse Ca2+ puff

data from Arige et al. (2022). This includes Ca2+ puff data from wild-type

1 IPR and wild-type 1 IPR that have been substituted at the 2002 glutamic

acid residue with aspartic acid (E2002D-type 1 IPR). Results from wild-type

1 IPR and E2002D-type 1 IPR will be used in Chapter 4 of this thesis.
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Figure 2.7: Open state dwell times for different Ca2+ concentrations for the
wild-type 1 IPR and E2002D-type 1 IPR. The open state dwell time distributions
have been log-transformed.
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Figure 2.8: Close state dwell times for different Ca2+ concentrations for the wild-
type 1 IPR and E2002D-type 1 IPR. The closed state dwell time distributions
have been log-transformed.
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Exo 76 wild-type IPR In Fig 2.9, we compare the Ca2+ puff statis-

tics distributions from exo 76 wild-type IPR. Each row in Fig 2.9 contains

Ca2+ puff statistic data from different experimental groups produced by exo

wild-type 1 IPR. All IPI distributions are skewed to the right with a higher

frequency of short IPIs. Although the data is derived from the same IP3R

, the distributions exhibit variability. Some IPIs have a higher frequency of

shorter durations, which gives rise to an Exponential distribution. On the

other hand, some IPI distributions have an ascending slope before decaying.

All amplitude distributions are skewed to the right, peaking at a lower Ca2+

concentration. Qualitatively, the puff duration distributions appear to be

right-skewed. All distributions have a long tail, with the maximum duration

across all data sets being 0.33s.

In Table 2.2 we present the summary statistics for each experimental

group. The mean and median values for each group are similar. The range

of IPIs is very large, suggesting that the IP3R have times of high and low

activity. The minimum Ca2+ puff amplitude is 72.97nm, whereas the largest

is 2467.19nm. The median and mean values for each experimental group are

similar.

In Fig 2.10, we compare the spread and density of the Ca2+ puff statis-

tics using violin plots. We present data from each experimental group and

pooled results. Whilst all amplitude and duration distributions appear to

be uni-modal, showing a high density of low values, only two of the IPI dis-

tributions follow this shape. One of the experimental groups in the study

has a distribution with a higher density of larger IPI when compared to the

other groups. However, it is important to note that this group has fewer data
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Figure 2.9: Ca2+ puff statistics for different experimental groups from exo 76
wild-type 1 IPR. The plots show the Exponential distribution as a solid black
line, the Gamma distribution as a dot-dashed blue line, and the Time-Dependent
distribution as a red-dashed line.
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Table 2.2: Exo 76 wild-type 1 IPR Ca2+ puff summary statistics

Exo 76 wild-type 1 IPR summary statistics
Interpuff interval (s)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 0.06 1.53 3.78 4.07 5.33 13.03
2 0.12 1.67 3.44 3.64 4.52 15.81
3 0.19 1.52 3.19 4.31 6.64 12.83
4 0.10 1.41 2.72 4.21 5.80 22.64

Ca2+ puff amplitude (nm)
Min. 1st Qu. Median Mean 3rd Qu. Max.

1 190.79 324.63 552.32 764.57 1065.82 2467.19
2 161.25 247.20 380.31 473.90 586.30 1373.05
3 102.30 267.58 403.68 508.76 646.41 1341.89
4 72.97 196.80 296.05 344.35 414.92 1378.47

Ca2+ puff duration (s)
Min. 1st Qu. Median Mean 3rd Qu. Max.

1 0.01 0.07 0.09 0.10 0.11 0.33
2 0.02 0.04 0.05 0.06 0.07 0.17
3 0.01 0.04 0.07 0.07 0.09 0.21
4 0.01 0.04 0.05 0.06 0.07 0.15
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points which may have caused the difference in distribution shape. Despite

this difference, the mean and median values are similar for each group.

We parameterise the Exponential, Gamma and Time-Dependent distri-

butions using the IPI data. Parameter results are presented in Table 2.3 and

the statistical distributions are shown in Fig 2.9. Thurley et al. (2011); Cao

et al. (2013) explain that the Time-Dependent distribution can be reduced to

an Exponential distribution when ξ >> λ. All ξ estimates for our data are

greater than the λ estimates. Estimated α parameters for the Gamma distri-

bution are greater than 1 and β parameters are less than 0.5. This suggests

the IPI distributions show refractoriness - α > 1, therefore the probability

of having smaller IPIs is lower. All λ estimates for the Exponential distribu-

tions range between 0.0232 and 0.275, emphasising the average IPI is similar

across each data set. The Time-Dependent and Gamma distributions qual-

itatively follow a similar shape for three of the IPI distributions. A gradual

rise can be seen in three of the IPI distributions which the Exponential dis-

tribution cannot model. This is due to the Exponential distribution having

a faster rate caused by the higher frequency of short IPIs leading to the dis-

tribution underestimating longer IPIs. The Gamma distribution appears to

model the shape of these distributions better. We pooled the IPI data for all

four data sets and estimated the parameters for the Exponential, Gamma and

Time-Dependent distributions. The pooled experimental data and statistical

distributions are presented in Fig A.1.

To statistically determine which statistical distribution is the best rep-

resentation of IPI distributions, we calculate AIC, BIC and WAIC values

and compare them for each data set. The information criterion results are
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Table 2.3: Parameter estimates using MLE for interpuff interval distributions
from exo 76 wild-type 1 IPR

Data set Exponential Gamma Time-Dependent
λ α β λ ξ

1 0.2457 1.3048 0.3206 0.2475 33.2900
2 0.2747 1.7914 0.4921 0.4197 0.6144
3 0.2320 1.3290 0.3084 0.2454 4.1489
4 0.2378 1.2271 0.2918 0.2538 3.6404

Pooled 0.2435 1.3347 0.3249 0.2597 3.7766

presented in Table 2.4. The lowest value indicates the best-fitting statistical

distribution. Our first observation from comparing each information crite-

rion is that they are very similar for each data set and model. For the first

data set, the smallest AIC value is for the Gamma distribution, however,

the smallest BIC is for the Exponential distribution and the smallest WAIC

value is for the Time-Dependent distribution. This suggests the three sta-

tistical distributions can model the IPI data equally well. When comparing

results for the second data set, AIC, BIC and WAIC are all lowest for the

Gamma distribution. The third data set had the lowest AIC value for the

Time-Dependent distribution, BIC value for the Exponential distribution and

WAIC value for the Gamma distribution. AIC and WAIC values were lowest

for the Time-Dependent distribution for the fourth data set, however, WAIC

was lowest for the Exponential distribution. We calculated the AIC, BIC and

WAIC values for the pooled experimental data; all three information criteria

had the smallest values for the Gamma distribution.

Fig 2.11 presents the empirical CDF from IPI samples from the exo 76

wild-type IPR compared with model CDF. The Exponential CDF has the

worst fit to the empirical CDF for all IPI data sets. The Gamma and Time-
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Table 2.4: Information criteria for exo 76 wild-type 1 IPR

Exponential Gamma Time-Dependent
AIC BIC WAIC AIC BIC WAIC AIC BIC WAIC

1 247.18 249.11 246.69 247.12 250.98 247.29 248.75 252.61 246.68
2 185.36 187.06 184.97 180.51 183.89 181.70 180.79 184.17 184.91
3 287.47 289.53 287.17 286.80 290.92 286.53 286.75 290.87 287.16
4 430.82 433.30 430.82 430.65 435.61 431.04 429.27 434.22 430.72

Pooled 1145.59 1149.06 1145.27 1136.37 1143.31 1136.29 1139.65 1146.58 1145.18

Dependent CDF are more comparable to the empirical CDF. Table 2.5 shows

the p-value and test statistic calculated from conducting the Kolmogorov-

Smirnov test. Across all IPI data sets, including the pooled IPI data, we

reject H0 for the Exponential CDF at the 5% level of significance. There is

not enough evidence to reject H0 at the 5% significance level for the Gamma

and Time-Dependent distribution. A comparison of the empirical CDF for

the pooled IPI data and each model CDF is shown in Fig A.2.

Table 2.5: Kolmogorov-Smirnov Test: p-value and test statistics for exo wild-
type 1 IPR IPI distributions

Exponential Gamma Time-Dependent

1
P-value 4.8374e-32 0.5643 0.2005

Test statistic 0.8296 0.1072 0.1469

2
P-value 2.5610e-28 0.8804 0.8902

Test statistic 0.8770 0.0891 0.0879

3
P-value 3.4843e-37 0.7468 0.7247

Test statistic 0.8401 0.0864 0.0882

4
P-value 9.4509e-61 0.2458 0.4359

Test statistic 0.8772 0.1072 0.0909

Pooled
P-value 9.8075e-152 0.9984 0.4890

Test statistic 0.8575 0.0244 0.0535
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Figure 2.11: Comparison of the Exponential, Gamma and Time-Dependent cu-
mulative density function with the empirical cumulative density function of the
IPI sample from the exo 76 wild-type 1 IPR IPI data
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Ca2+ puff data from Arige et al. (2022)

Wild-type 1 IPR In Fig 2.12-2.13 we present the Ca2+ puff statistics from

10 experimental data sets. Each IPI distribution is parameterised with the

Exponential, Gamma and Time-Dependent distributions. All IPI distribu-

tions are skewed to the right and have a high frequency of short IPIs. Most

IPI distributions range between 0 and 6s, except for two data sets which in-

clude longer IPIs. Pooled IPI data, presented in Fig A.1, shows an increase

in IPI density prior to an exponential decay. The amplitude distributions are

all right-skewed, evidencing at a high frequency of smaller Ca2+ puff events.

Whilst the maximum Ca2+ puff amplitude for most data sets is ≈3000nm,

one data set includes extremely high Ca2+ puff amplitudes with a maximum

of 10 668.57nm. Many of the duration distributions are right-skewed with

a peak close to 0.1s. The largest Ca2+ puff duration is 0.48s. Summary

statistics can be found in Table 2.3.2.

Fig 2.14 presents violin plots of the Ca2+ statistics for each wild-type 1

IPR experimental group and the pooled data. As shown in Fig 2.12-2.13, the

spread of the IPI data in each experimental group is very similar. All IPI,

Ca2+ puff amplitude and Ca2+ puff duration distributions are uni-modal.

IPI distributions have a high frequency of small IPIs with comparable mean

and median values. Similarly, the amplitude distributions all have a high

frequency of short amplitudes. It is difficult to determine whether there

is a correlation between data sets with long IPIs and amplitudes as this is

only observed in one data set. A study by Fraiman et al. (2006) showed a

strong correlation between Ca2+ puff size and IPI duration in Xenopus laevis

Oocytes. However, this was only observed in conditional distributions.
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Figure 2.12: Ca2+ puff statistics for wild-type 1 IPR. Data sets 1-5. The plots
show the Exponential distribution as a solid black line, the Gamma distribution
as a dot-dashed blue line, and the Time-Dependent distribution as a red-dashed
line.
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Figure 2.13: Ca2+ puff statistics for wild-type 1 IPR. Data sets 6-10. The plots
show the Exponential distribution as a solid black line, the Gamma distribution
as a dot-dashed blue line, and the Time-Dependent distribution as a red-dashed
line.
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Table 2.6: Wild-type 1 IPR Ca2+ puff summary statistics

Exo 76 wild-type 1 IPR summary statistics
Interpuff interval (s)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 0.02 0.36 0.76 1.12 1.61 5.02
2 0.02 0.28 0.46 1.13 1.67 4.58
3 0.02 0.28 0.59 1.19 1.90 5.96
4 0.02 0.42 1.04 1.15 1.62 4.02
5 0.02 0.31 0.56 1.27 1.62 10.06
6 0.02 0.28 0.4 0.88 1.50 4.86
7 0.02 0.28 0.44 1.62 1.28 9.80
8 0.02 0.37 1.58 1.85 2.42 7.42
9 0.02 0.56 1.37 2.16 3.44 7.92
10 0.02 0.30 0.55 0.87 1.04 4.52

Ca2+ puff amplitude (nm)
Min. 1st Qu. Median Mean 3rd Qu. Max.

1 84.85 236.87 507.15 648.78 829.52 2227.16
2 36.46 128.06 267.17 816.97 1109.99 6020.77
3 37.33 186.82 468.55 850.60 1151.57 3680.11
4 49.77 132.31 288.32 510.53 748.78 1970.19
5 64.98 165.07 613.81 1223.65 1085.34 10668.57
6 33.06 104.15 228.84 456.60 549.36 2107.56
7 58.77 120.47 312.87 779.80 1056.13 2932.99
8 14.77 124.41 257.46 430.40 432.73 2489.80
9 61.68 189.04 923.71 1068.24 1740.99 2834.78
10 43.95 164.96 308.15 604.01 691.46 2656.14

Ca2+ puff duration (s)
Min. 1st Qu. Median Mean 3rd Qu. Max.

1 0.04 0.06 0.08 0.08 0.1 0.18
2 0.04 0.06 0.08 0.09 0.12 0.26
3 0.04 0.06 0.08 0.08 0.1 0.16
4 0.02 0.06 0.08 0.08 0.1 0.2
5 0.04 0.06 0.08 0.1 0.12 0.26
6 0.04 0.06 0.08 0.09 0.11 0.22
7 0.04 0.06 0.08 0.09 0.12 0.18
8 0.04 0.06 0.08 0.09 0.1 0.18
9 0.04 0.06 0.08 0.09 0.1 0.22
10 0.04 0.06 0.1 0.1 0.12 0.48
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We parameterised the Exponential, Gamma and Time-Dependent distri-

butions using IPI data from wild-type 1 IPR. Parameter results are presented

in Table 2.3.2. All ξ values are much greater than λ for the Time-Dependent

distribution, which results in a distribution that is similar to the Exponential

distribution. Three of the Gamma distributions have α and β values greater

than 1. This creates a distribution that suggests a refractory period. The

remaining Gamma distributions have α values close to 1, creating the ap-

pearance of an Exponential distribution. The Exponential distribution can

account for the steep decay present in the IPI distributions. We pooled the

experimental data from each group and estimated the parameters for each

statistical distribution. The large ξ parameter, again, emphasises the pooled

data forms an Exponential distribution. The pooled data and statistical

distributions are presented in Fig A.1.

Table 2.7: Parameter estimates for interpuff interval distributions from wild-type
1 IPR

Exponential Gamma Time-Dependent
λ α β λ ξ

1 0.8899 1.1427 1.0168 0.8948 159.9999
2 0.8865 0.9366 0.8302 0.8946 97.2116
3 0.8420 0.8587 0.7231 0.8453 221.911
4 0.8665 1.2502 1.0834 0.8702 193.6261
5 0.7869 0.7443 0.5857 0.7900 192.1179
6 1.1327 0.8349 0.9457 1.1388 211.9104
7 0.6177 0.6352 0.3924 0.6195 222.4789
8 0.5411 0.8124 0.4396 0.5422 268.045
9 0.4635 0.8534 0.3956 0.4645 234.1589
10 1.1494 1.2475 1.4339 1.2925 9.7665

Pooled 0.8015 0.8749 0.7013 0.8049 196.4999

Table 2.8 presents the AIC, BIC and WAIC values for each statistical
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distribution. All values are very similar. Most information criteria are the

smallest for the Exponential distribution. The Gamma and Time-Dependent

distribution have the lowest information criteria for 9 of the results, inclu-

sively. Our results suggest there is no refractory period following a Ca2+

puff from wild-type 1 IPR. This is evidenced by the Exponential distribution

fitting the IPI distributions the best.

We calculated the AIC, BIC and WAIC values for each statistical dis-

tribution parameterised using the pooled experimental data. Interestingly,

only the BIC value was smallest for the Exponential distribution, with the

AIC and WAIC values being smallest for the Gamma distribution.

We conducted a Kolmogorov Smirnov test for each wild-type 1 IPR IPI

data set to determine at the 95% confidence level if the data comes from an

Exponential, Gamma, or Time-Dependent distribution. Our p-values and

test statistics are presented in Table 2.3.2. At the 5% significance level, we

fail to rejectH0 for all three distributions for seven data sets. H0 is rejected at

the 5% significance level for the Exponential distribution for three data sets

(data set 6,8 and 9). The Gamma distribution has the smallest test statistic

for seven IPI data sets. We perform the Kolmogorov Smirnov test for the

pooled wild-type 1 IPR IPI data. We reject H0 at the 5% significance level

for all statistical distributions. In Fig 2.15 - 2.16, we present the empirical

CDF and model CDFs for each wild-type 1 IPR IPI data set. Results for the

pooled data can be seen in Fig A.3.

E2002D-type 1 IPR Fig 2.17 presents histograms of Ca2+ puffs from

pooled E2002D-type 1 IPR experimental data. Due to the low frequency of

Ca2+ events, we are unable to compare the distributions of each experimental
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Figure 2.15: Comparison of Exponential, Gamma and Time-Dependent cumula-
tive density function with the empirical cumulative distribution function of the
IPI sample from the wild-type 1 IPR IPI data (data sets 1 - 5).
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Figure 2.16: Comparison of Exponential, Gamma and Time-Dependent cumula-
tive density function with the empirical cumulative distribution function of the
IPI sample from the wild-type 1 IPR IPI data (data sets 6 - 10).
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Table 2.8: Information criteria for wild-type 1 IPR

Exponential Gamma Time-Dependent

AIC BIC WAIC AIC BIC WAIC AIC BIC WAIC

1 111.81 113.74 111.41 112.89 116.68 113.43 113.05 116.83 111.43

2 102.84 104.65 103 104.71 108.32 104.62 104.37 107.98 103.12

3 100.44 102.18 100.78 101.77 105.24 101.88 102.20 105.67 100.78

4 86.60 88.21 86.33 87.52 90.75 87.99 88.36 91.58 86.31

5 103.65 105.36 105.14 103 106.42 104.09 105.4 108.82 105.08

6 63.28 64.83 63.63 64.48 67.59 64.74 64.99 68.10 63.66

7 58.31 59.25 60.55 57.18 59.07 58.16 60.23 62.11 60.53

8 82.71 83.92 82.74 83.94 86.38 84.20 84.62 87.06 82.80

9 79.83 80.92 79.92 81.45 83.63 81.67 81.76 83.94 79.88

10 60.53 62.06 60.96 61.56 64.61 62.63 60.64 63.69 60.89

Pooled 854.39 858.25 854.75 852.13 859.83 852.27 854.26 861.97 854.44

group. Despite the infrequent events, Fig 2.17 demonstrates that Ca2+ puffs

occur within a close time frame when triggered. This is evident through the

high frequency of shorter IPIs. The amplitude and duration distributions

are skewed to the right with a higher frequency of short amplitudes and

durations. Summary statistics of the Ca2+ puffs are presented in Table 2.10.

In Fig 2.18 we present violin plots of the Ca2+ puff statistics. The low

frequency of Ca2+ puff events is evident in these plots. As shown in Fig 2.17,

the IPI distribution has a higher density for shorter IPIs, amplitudes and

durations.

We parameterise the Exponential, Gamma and Time-Dependent distribu-

tions using the pooled IPI data. Parameter results are shown in Table 2.11.

Both the Gamma and Time-Dependent distributions appear to follow an Ex-

ponential distribution. A low α and β value as shown in Fig 2.17 emphasises

the high frequency of smaller IPIs. Furthermore, a high ξ value indicates the

Time-Dependent distribution can be reduced to the Exponential distribution

(Thurley et al., 2011).
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Table 2.9: Kolmogorov-Smirnov Test: p-value and test statistics for wild-type 1
IPR IPI distributions

Exponential Gamma Time-Dependent

1
P-value 0.0631 0.5812 0.3568

Test statistic 0.1841 0.1079 0.1291

2
P-value 0.2550 0.1647 0.0957

Test statistic 0.1475 0.1628 0.1799

3
P-value 0.1993 0.5190 0.3327

Test statistic 0.1636 0.1235 0.1438

4
P-value 0.0607 0.8805 0.6425

Test statistic 0.2124 0.0925 0.1176

5
P-value 0.3862 0.3137 0.0800

Test statistic 0.1374 0.1462 0.1938

6
P-value 0.0243 0.4307 0.1811

Test statistic 0.2453 0.1431 0.1804

7
P-value 0.1963 0.3956 0.0659

Test statistic 0.2383 0.1977 0.2899

8
P-value 2.6842e-06 0.6382 0.8193

Test statistic 0.4997 0.1426 0.1208

9
P-value 8.2354e-06 0.9255 0.9090

Test statistic 0.5090 0.1102 0.1136

10
P-value 0.1723 0.6915 0.7453

Test statistic 0.1849 0.1176 0.1120

Pooled
P-value 4.1802e-06 0.0115 1.5955e-14

Test statistic 0.1363 0.0856 0.1158

Table 2.10: E2002D-type 1 IPR Ca2+ puff summary statistics

E2002D-type 1 IPR summary statistics
Interpuff interval (s)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.20 0.41 1.80 1.93 3.24 5.44

Ca2+ puff amplitude (nm)
Min. 1st Qu. Median Mean 3rd Qu. Max.
61.69 248.99 624.42 655.58 987.55 1908.57

Ca2+ puff duration (s)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.04 0.045 0.06 0.07 0.08 0.16



74 Analysis of stationary single channel and Ca2+ puff data

0 2 4 6

IPI (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
en

si
ty

0 500 1000 1500 2000

Amplitude (nM)

0

0.2

0.4

0.6

0.8

1

1.2

D
en

si
ty

10-3

0.05 0.1 0.15

Duration (s)

0

2

4

6

8

10

12

14

16

D
en

si
ty

Figure 2.17: Ca2+ puff statistics from E2002D-type 1 IPR
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Table 2.11: Parameter estimates for the pooled interpuff interval distribution
from E2002D-type 1 IPR

Exponential Gamma Time-Dependent
λ α β λ ξ

Pooled 0.5194 0.8924 0.4637 0.5207 220.2454

Table 2.12: Information Criterion for E2002D-type 1 IPR

Exponential Gamma Time-Dependent
AIC BIC WAIC AIC BIC WAIC AIC BIC WAIC

Pooled Data 78.13 79.27 77.96 79.93 82.20 80.10 80.05 82.32 78.13

In Table 2.12 we compare the AIC, BIC and WAIC results for our three

parameterised statistical distributions. Unanimously, the smallest informa-

tion criteria value is for the Exponential distribution.

We conducted a Kolmogorov Smirnov test to determine at the 95% con-

fidence level if the pooled E2002D-type 1 IPR IPI data comes from an Ex-

ponential, Gamma, or Time-Dependent distribution. Our p-values are pre-

sented in Table 2.13. At the 5% significance level, we reject H0 for the Expo-

nential distribution and fail to rejectH0 for the Gamma and Time-Dependent

distribution. In Fig 2.19, we present the empirical CDF and compare our

results with model CDFs. Our results show that the difference between the

empirical CDF and the Exponential CDF is the largest. This is confirmed

by the Kolmogorov Smirnov test statistic, presented in Table 2.13.
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Table 2.13: Kolmogorov-Smirnov Test: p-value and test statistic for the pooled
E2002D-type 1 IPR IPI distribution.

Exponential Gamma Time-Dependent
P-value 2.3270e−05 0.2713 0.1492

Test statistic 0.4436 0.1862 0.2129
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Figure 2.19: Comparison of Exponential, Gamma and Time-Dependent cumu-
lative density function with the empirical cumulative distribution function from
the pooled E2002D-type 1 IPR IPI data.
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2.4 Chapter discussion

Experimental Ca2+ puff statistics help to provide an in-depth understanding

of Ca2+ and IP3R dynamics. Using statistical distributions to model the IPI

distribution provides the advantage of being able to compare results from

different experimental data groups and understand how changes to the IP3R

effect Ca2+ dynamics (Cao et al., 2013, 2017). In this chapter, we used

the Exponential, Gamma and Time-Dependent distributions to explore the

question: do IPIs from exo 76 wild-type 1 IPR, wild-type 1 IPR and E2002D-

type 1 IPR (Arige et al., 2022) exhibit refractoriness? The investigation into

this question informs us of the behaviour of IP3Rs and how they respond to

change in Ca2+ concentrations. Our results demonstrate a refractory period

is evident in the exo 76 wild-type 1 IPR data sets. This is demonstrated

by the peak of the IPI distribution not being close to 0, as seen within an

Exponential distribution, demonstrating the IP3R recovers slowly from Ca2+

inhibition (Cao et al., 2013). IPI distributions calculated from the wild-

type 1 IPR Ca2+ puff statistics are exponentially distributed. This indicated

a fast recovery from Ca2+ inhibition. However, there are indications of a

refractory period in the pooled wild-type 1 IPR data set. This suggests that,

with our current data set size, we are at the limit of determining if this is

truly the case. In Chapter 3 and 4, we develop a mathematical model that

is parameterised using wild-type 1 IPR and E2002D-type 1 IPR data. Our

model will allow us to observe the behaviour of IPIs over longer simulation

periods than those achievable through experimentation
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2.4.1 Single channel data

We compared the single channel data from wild-type 1 IPR and wild-type

1 IPR that have had a substitution at the 2002 glutamic acid residue to

aspartic acid (E2002D-type 1 IPR)(Arige et al., 2022). We did not have

access to stationary single channel data from exo 76 wild-type 1 IPR which

are also discussed within this chapter.

Substitution at the 2002 glutamic acid residue to aspartic acid causes the

open probability of the IP3R, shown in Fig 2.6, to reduce to ∼ 0.45 from 0.7

(Arige et al., 2022). The time spent in a closed state increases due to this

substitution, therefore impacting the frequency of Ca2+ puffs.

2.4.2 Comparison of Ca2+ puff statistics

Within this chapter, we compared the Ca2+ statistics from exo 76 wild-type

1 IPR, wild-type 1 IPR and E2002D-type 1 IPR experimental data. Ca2+

puff data is extremely informative, providing us with an insight into how

healthy IP3Rs work within different cells and how changes to these IP3R

affect the Ca2+ signalling system. The exo 76 wild-type 1 IPR produces IPIs

that are slightly longer in comparison to wild-type 1 IPR and E2002D-type

1 IPR IPIs. Amplitude and duration results are similar to those produced

by wild-type 1 IPR.

Comparison of Ca2+ puffs from wild-type 1 IPR and E2002D-type 1 IPR,

presented in Fig 2.12-2.13 and Fig 2.17, demonstrate that the substitution

at the 2002 glutamic acid residue to aspartic acid causes the channel to be

less active. Data from E2002D-type 1 IPR had to be pooled to ensure a

meaningful statistical analysis could be conducted. Whilst the number of
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Ca2+ puffs is extremely reduced, this does not appear to affect the IPI time,

i.e when a Ca2+ puff occurs, the time until the next Ca2+ puff is similar to

the wild-type 1 IPR data.

Ca2+ puff amplitude distributions from both wild-type 1 IPR and pooled

E2002D-type 1 IPR were right-skewed, evidencing that most Ca2+ puffs occur

from a small number of IP3R opening. The average puff amplitude for the

pooled E2002D-type 1 IPR data is similar to the wild-type 1 IPR data.

However, the maximum amplitude is much smaller than that of the wild-

type 1 IPR cell. This suggests that the substitution of the 2002 glutamic

acid residue to aspartic acid may affect the number of IP3R opening during

a Ca2+ puff. Statistics for the wild-type 1 IPR and pooled E2002D-type 1

IPR durations are similar, suggesting that puff durations are not affected by

the substitution at the 2002 glutamic acid residue.

2.4.3 Probability distributions to model IPI distribu-

tions

We parameterised the Exponential, Gamma and Time-Dependent distribu-

tions using IPI data from the three IP3R. Whilst all IPI distributions for the

wild-type 1 IPR and E2002D-type 1 IPR data appear to be exponentially

distributed, some distributions from the exo 76 wild-type IPR data have a

lower frequency of short IPIs (see Fig 2.9). Therefore, their distributions

are akin to a Gamma or Time-Dependent distribution. Thurley and Falcke

(2011); Cao et al. (2013) state this shaped IPI distribution demonstrates the

IP3R is subject to refractoriness. Within our study, the Exponential distri-

bution is not able to describe the true shape of the exo 76 wild-type 1 IPR
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IPI distributions. We estimated both the λ and ξ parameters of the Time-

Dependent distribution. In contrast, Thurley et al. (2011); Cao et al. (2017)

found good fits to experimental data from human neuroblastoma SH-SY5Y

and human embryonic kidney cells when λ was fixed as the reciprocal of the

mean IPI and ξ was estimated using a non-linear fitting. We find the estimate

of λ is similar for both the Exponential and Time-Dependent distribution.

The ξ estimates are greater than the λ estimate for all experimental groups.

Thurley et al. (2011) state the Time-Dependent distribution can therefore

be reduced to an Exponential distribution. However, whilst ξ >> λ for

all of our Time-Dependent distributions, if we reduced it to the Exponential

distribution we would not describe the gradual rise seen in some of the distri-

butions. Wild-type 1 IPR and E2002D-type 1 IPR IPI distributions evidence

a fast recovery rate from Ca2+ inhibition. IPI distributions with a refractory

period have been shown in the analysis of Yao et al. (1995); Fraiman et al.

(2006); Thurley et al. (2011); Cao et al. (2013). Comparison of each statisti-

cal distribution for the exo 76 wild-type 1 IPR IPI data in Fig 2.9 shows the

Exponential distribution does not capture the shorter events that evidence a

refractory period. The Gamma and Time-Dependent distributions estimate

this data better. The Exponential distribution fits the wild-type 1 IPR and

E2002D-type 1 IPR IPI distributions well, see Fig 2.12-2.13 and Fig 2.17.

2.4.4 Statistically comparing distributions using infor-

mation criteria

Information criteria were used to compare the fit of statistical distributions

to the IPI data sets. The Exponential distribution has the largest AIC and
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WAIC values for all exo 76 wild-type 1 IPR data sets, suggesting this distri-

bution is the worst-fitting model. Three of the lowest BIC values were for

the Exponential distribution. However, this could be due to BIC favouring

simpler models i.e. where there are fewer parameters. The Gamma distri-

bution has the lowest AIC and WAIC value for two of four data sets and

qualitatively fits the IPI distributions well. Similarly, the Time-Dependent

distribution has the lowest AIC and WAIC values for the remaining two data

sets. The majority of the smallest information criterion for the wild-type 1

IPR and E2002D-type 1 IPR data were for the Exponential distribution. A

difficulty found in our analysis is that different minima were obtained for

the information criteria when applied to various distributions. This suggests

there is not a distinct statistical distribution to represent the IPI distribu-

tions. A cause for this may be due to the limited data set sizes. To overcome

this issue, we calculated the AIC, BIC and WAIC values for the pooled data.

For the pooled exo 76 wild-type 1 IPR IPI data, all information criteria were

the smallest for the Gamma distribution. BIC was the smallest for the Ex-

ponential distribution for the pooled wild-type 1 IPR IPI data and AIC and

WAIC smallest for the Gamma distribution. If we were to choose a distri-

bution as standard across all data sets, the Exponential distribution would

not be suitable because it cannot describe the refractory period often seen

in some of the IPI distributions. The benefit of using the Time-Dependent

distribution is being able to directly relate the parameters of the distribu-

tion to dynamics of the IP3R. When considering the interpretation of the

Gamma parameters in relation to the IPI dynamics, an α value close to 1

implies fast recovery from Ca2+ inhibition - the distribution transitions to the
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Exponential distribution. An α value greater than 1 indicates the presence

of a refractory phase.

2.4.5 Using the Kolmogorov-Smirnov goodness of fit

test to compare IPI distributions with model prob-

ability distributions

We used the Kolmogorov-Smirnov goodness of fit test to compare the IPI dis-

tributions from the exo 76 wild-type 1 IPR, wild-type 1 IPR and E2002D-type

1 IPR IPI distributions with the Exponential, Gamma and Time-Dependent

distributions. We rejected the null hypothesis at the 5% level of significance

for the Exponential distribution for all exo 76 wild-type 1 IPR IPI distribu-

tions, three wild-type 1 IPR IPI distributions and the pooled E2002D-type

1 IPR IPI distribution. This emphasises the Exponential distribution may

not produce accurate predictions of the IP3R behaviour. With the exception

of the pooled wild-type 1 IPR IPI distribution, we do not reject the null

hypothesis for any IPI data sets for the Gamma and Time-Dependent distri-

butions. Our results demonstrate most IPI distributions present within this

chapter come from the Gamma or Time-Dependent distribution. Whilst this

is the first time, to our knowledge, such statistical tests have been applied to

IPI distributions, it is not the first time for Ca2+ modelling. Tilūnaitė et al.

(2017) used the Kolmogorov-Smirnov test to determine which probability

distribution most accurately describes inter-spike intervals from HEK293T

cells. In contrast to our analysis, Tilūnaitė et al. (2017) plotted the empirical

and model CDF against each other - an identical distribution is shown by

the plot exhibiting a straight line. Their results demonstrated the inhomo-
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geneous Gamma distribution plotted against their empirical CDF produced

the closest linear fit. They suggest the shape parameter within the inho-

mogeneous Gamma distribution allows for more flexibility. This is evident

within our results for the Gamma and Time-Dependent distributions; α and

ξ enable the statistical distributions to fit IPI distributions with fast and

slow rates. Taking into consideration the qualitative and quantitative analy-

sis conducted within the chapter, we conclude that the Gamma distribution

best represents the IPI distributions in each data set.

The wild-type 1 IPR and E2002D-type 1 IPR data analysed within this

chapter was obtained from experimentalists who are the first to substitute

the 2002 glutamic acid residue with aspartic acid (Arige et al., 2022). Math-

ematical models of the Ca2+ signalling system parameterised using the data

presented in this chapter may be able to help us understand what biological

changes within the IP3R cause the different dynamics. For example, the anal-

ysis of the single channel data will later be used to parameterise a Markov

model. Comparison of the open probability curves generated by the model

and the parameter estimates will allow us to understand which mechanisms

within the IP3R are influenced by the change in the amino acid chain. Addi-

tionally, mathematical models constructed from experimental data have the

benefit of displaying IP3R and Ca2+ dynamics over a longer duration than

can be observed under experimental conditions. By analysing the experimen-

tal data statistically, we can compare key Ca2+ puff metrics with our model

results to ensure agreement.

This chapter aimed to firstly, analyse stationary single channel and Ca2+

puff data from exo 76 wild-type 1 IPR, wild-type 1 IPR and E2002D-type
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1 IPR. Secondly, we compared the fitting of three statistical distributions

to IPI data both qualitatively and quantitatively. Our results, like those by

Yao et al. (1995); Fraiman et al. (2006); Thurley et al. (2011); Cao et al.

(2013), demonstrate there is often large variability within Ca2+ puff statis-

tics from the same IP3R type. Whilst some IPI distributions were exponen-

tially distributed, showing fast recovery from Ca2+ inhibition, others were

non-exponentially distributed, evidencing a refractory period. Thurley et al.

(2012), who found variability within their analysis of IPIs from HEK-293 and

SH-SY5Y cells, note that heterogeneity does not impact Ca2+ signals from

transmitting information. Therefore, by comparing multiple data sets from

the same IP3R we can gain a broader overview of the IP3R dynamics and

pooling the data enables us to understand the workings of the IP3R on a

larger scale.



3
Mathematical modelling of Ca2+ puffs

3.1 Background

Nobel prize winners in physiology and medicine, Hodgkin and Huxley, pro-

duced a series of papers, concluding with Hodgkin and Huxley (1952), de-

scribing mathematical models for the flow of electrical current through the

surface membrane of giant nerve fibre of the squid giant axon (Hodgkin and

Huxley, 1952; Brady, 1972; Rameh et al., 2020). Their model comprises of

four ordinary differential equations (ODEs), one to describe the flow of elec-

trical current and the remaining to describe the ionic conductance of various

ions, namely sodium and potassium. The methods described by Hodgkin and

Huxley (1952) have helped to develop models of the behaviour of different

ion channel dynamics (Li and Rinzel, 1994; Dangerfield et al., 2012; Dupont

et al., 2016; Bressloff and Maclaurin, 2018). A perhaps controversial re-

view by Meunier and Segev (2002) questions how useful the Hodgkin-Huxley

model is in comparison to other methods. They state researchers rarely use

the Hodgkin-Huxley equations on their own, instead opting for Hodgkin-

Huxley-like equations. However, Meunier and Segev (2002) conclude the

Hodgkin - Huxley equations have helped advance many applications. The

methodology by Hodgkin and Huxley has helped support the development
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of models that simulate the opening and closing of the IP3R and thus, the

Ca2+ signalling system (Ullah et al., 2012a; Cao et al., 2013). Cao et al.

(2013) used the Hodgkin-Huxley-like equations to integrate data by Mak

et al. (2007) into the Siekmann model (Siekmann et al., 2012) and succeeded

in simulating realistic puff and dwell time distributions. The introduction of

Hodgkin-Huxley-like equations into the Siekmann model increases the num-

ber of ODES to forty. This high number of ODEs is due to the model

simulating a cluster of ten ion channels, where for each ion channel there are

four gating variables.

Attempts have been made to condense the four ODEs by Hodgkin and

Huxley (1952) into integrodifferential equations and a single delay differen-

tial equation (Brady, 1972; Rameh et al., 2020). Brady (1972) shows a single

integrodifferential equation can produce the same solution as the ODEs used

to calculate the gating variables in the Hodgkin-Huxley model. Although,

Brady (1972) state that their method does not simplify the model, it could

be advantageous when dealing with a model with a high number of differen-

tial equations, such as the model by Cao et al. (2013). Rameh et al. (2020)

proposed models based on a single delayed differential equation (DDE) that

can produce action potentials similar to those from the original Hodgkin-

Huxley and FitzHugh-Nagumo models. Like Brady (1972), Rameh et al.

(2020) firstly write a system of ODEs as a single integrodifferential equation.

They then turn their integrodifferential equation into a DDE. Their inte-

grodifferential equation was an exact match to the FitzHugh-Nagumo model,

however, their DDE produced some differences such as a shorter hyperpo-

larization. Qualitatively, their DDE and integrodifferential models produced
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similar results to the original Hodgkin-Huxley model.

3.1.1 Time delays within experimental data

Biological phenomena often have time delays, for example, the stages of the

life cycle, the time between the start of a cell infection and the production of a

new virus to the dynamics of several interacting species and the intracellular

Ca2+ release by IP3R is no different (Cushing, 1977; Rihan, 2021).

Payne et al. (1990) compared the effect three temperatures (8◦C, 14◦C

and 20◦C) and injections of IP3 and Ca2+ into limulus ventral photoreceptors

have on the concentration of intracellular Ca2+ ions. Their results show the

elevation of Ca2+ before an injection of IP3 temporarily inhibits the ability of

IP3R to release Ca2+ and the recovery from this inhibition is slowed by a lower

temperature. Payne et al. (1990) suggest that feedback inhibition plays a role

in producing the intracellular concentration of Ca2+ ions. This demonstrates

the possibility of a link between the binding of IP3 to an inhibitory site and

the delay in the channel releasing Ca2+ and opening.

Carter and Ogden (1992) investigated the intracellular Ca2+ ion channel

release by IP3 in vascular endothelial cells using the patch-clamp method.

Through their experiment, they found the delay in Ca2+ fluorescence response

was changed under different concentrations of IP3. For low concentrations of

IP3, the delay averaged at 300 ms, whereas for high concentrations of IP3,

the delay time was much shorter (>20ms). These results were noted to be

consistent with a direct binding and gating action of IP3 on the Ca2+ channel

of the cellular store and suggested there is a direct coupling between IP3

binding and an increase in the open probability of the Ca2+ release channels.
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Using a new patch clamp configuration, Mak et al. (2007) analysed the

kinetic responses of single IP3R channels in native ER membrane when ligand

concentrations were abruptly changed. Mak et al. (2007) define the activation

and deactivation latency as:

“Activation latency is the duration between the solution switch time and

the first observed channel opening event in response to the solution switch.

Deactivation latency is the duration between solution switch time and the

last observed channel closing.”

Therefore, we can define latency as the time it takes for the channel to

first open or first close. When keeping the Ca2+ concentration constant,

Mak et al. (2007) saw large latency when IP3 was switched from 0 to 10 µm

and 0 to 100µm. They note that this suggests IP3 binding and subsequent

conformational changes required for the channel opening both contribute to

the total activation latency. Furthermore, Mak et al. (2007) analysed the la-

tency when the IP3 concentration was constant and there was a step change

in Ca2+ concentration. They saw a latency an order of magnitude higher

than that of the IP3 activation latency when the Ca2+ concentration was

increased from <0.01µm to 2µm. A short latency was seen when the Ca2+

concentration jumped from 2µm to 300µm. This again, showed Ca2+ bind-

ing and subsequent conformation changes contribute to the Ca2+ activation

latency. The activation and deactivation latency distributions often showed

a deficit in small latencies. Cao et al. (2013); Ullah et al. (2012a); Bicknell

and Goodhill (2016) compare their latency distributions from their Markov

models to the experimental data by Mak et al. (2007).

In this chapter, we build a hybrid stochastic system based on integrodif-
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ferential equations that produce Ca2+ puffs comparable with those simulated

by more complex Ca2+ signalling models (Siekmann et al., 2012; Cao et al.,

2013, 2014). The introduction of integral terms within the transition rates

of our Markov model gives the advantage of being able to directly relate

the latent behaviour of the IP3R to parameters within our model. Further-

more, using a finite integral enables us to investigate how the Ca2+ signalling

dynamics change depending on how much “knowledge” of past Ca2+ concen-

trations the IP3R has.

The aims of this chapter are:

3.1.2 Chapter Aims

• Adapt the Siekmann model to create a hybrid stochastic sys-

tem with integral terms

ODEs modelling the gating variables in the Siekmann model (Siekmann

et al., 2012; Cao et al., 2013) are replaced with integral terms. Quasi-

steady state approximation is used to reduce the number of states from

six to two. See Methods 3.2.1.

• Compare puff statistics for each hybrid stochastic model

For each adaptation of the Siekmann model, we simulate Ca2+ puffs

using a cluster of ten IP3R and produce the subsequent IPI, puff am-

plitude and puff duration distributions. The IPI distributions are pa-

rameterised using the Time-Dependent distribution and compared to

the results by Cao et al. (2013). Through this, we demonstrate a two-

state model with integrodifferential equations produces results that are

similar to more complex models. See Results 3.3.
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• Analyse the effect changing the delay length and basal level

of λh42 have on the model

Analysis of how changes to the length of the delay within our model

affect the Ca2+ dynamics provides information on how Ca2+ ions and

the IP3R interact. By changing this parameter, we can determine how

much “knowledge” of past Ca2+ concentrations are required by the

IP3R for it to produce the required Ca2+ puffs. Changes to the basal

level of λh42 change how quickly the IP3R responds to changes in Ca2+

concentrations. We vary this parameter to demonstrate our model

produces results that are similar to previous studies (Cao et al., 2013).

See Results 3.3.2

3.2 Methods

3.2.1 Hybrid Stochastic Systems

Hybrid stochastic systems, also known as piece-wise deterministic Markov

processes, involve the coupling of Markov models to a deterministic differ-

ential equation. This method can be used to simulate the behaviour of the

Ca2+ signalling system. The stochastic behaviour of the IP3R can be mod-

elled using a Markov model, where the states of the Markov model represent

the open and closed state of the channel. The next active state is dependent

only on the current active state and the tendency of the channel changing

states is indicated by the speed of the transition rates (Tveito and Lines,

2016; Siekmann et al., 2019).
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The six-state IP3R model

The Siekmann model, presented in Fig 1.5, is a six-state Markov model with

two modes. The first mode consists of four states (three closed and one open)

and the second mode of two states (one closed and one open). These modes

describe the open probability of the ion channel. When the channel is in

the four-state mode, known as the active mode, it has an open probability

of ≈ 0.7, whereas when the channel is in the two-state mode, known as the

inactive mode, it has an open probability of ≈ 0. All the transition rates

between the states are constant with the exception of q24 and q42 which are

both Ca2+ and IP3 dependent.

The differential equations describing the transitions between states can

be represented in matrix form. The matrix of the transition rates and vector

of the states is known as the Q matrix. The Q matrix for the six-state

Siekmann model is presented in Eq 3.1.



dC1

dt

dC2

dt

dC3

dt

dC4

dt

dO5

dt

dO6

dt


=



−q12 q12 0 0 0 0

q21 −(q21 + q23 + q24 + q26) q23 q24 0 q26

0 q32 −q32 0 0 0

0 q42 0 −(q42 + q45) q45 0

0 0 0 q54 −q54 0

0 q62 0 0 0 −q62





C1

C2

C3

C4

O5

O6


(3.1)

The rates q24 and q42 are calculated using two Ca2+-dependent gating

variables each, m24, m42, h24, h42 as shown in Eq 3.2 and Eq 3.3. The

parameters a24, a42, V24 and V42 are constant.
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q24 = a24 + V24(1−m24h24) (3.2)

q42 = a42 + V42m42h42 (3.3)

By replacing m24, m42, h24, h42 with the Ca2+ dependency m24∞, m42∞,

h24∞, h42∞ are defined as:

m24∞ =
cn24

cn24 + kn24
24

(3.4)

h24∞ =
k
n−24

−24

cn−24 + k
n−24

−24

(3.5)

m42∞ =
cn42

cn42 + kn42
42

(3.6)

h42∞ =
k
n−42

−42

cn−42 + k
n−42

−42

(3.7)

The steady state rates q24∞ and q42∞ fit the Ca2+-dependency of the

gating variables inferred by Siekmann et al. (2012) from the data by Wagner

and Yule (2012). q24∞ and q42∞ are defined as:
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q24∞ = a24 + V24(1−m24∞h24∞) (3.8)

q42∞ = a42 + V42m42∞h42∞ (3.9)

The Cao et al. model Cao et al. (2013) observed that the modelQ(c) (Eq

3.1) with Ca2+-dependent rates q24 and q42, Eq 3.8 and Eq 3.9, parameterised

by Eq 3.4-3.7 failed to produce realistic puffs. They introduced a delayed

response to changes in the Ca2+ concentration by representing m24, m42, h24,

h42 as Hodgkin-Huxley-like gating variables (Hodgkin and Huxley, 1952).

The gating variables m24, m42, h24 and h42 are assumed to obey the

ordinary differential equation (ODE):

dG

dt
= λG(G∞ −G) (G = m24,m42, h24, h42) (3.10)

Where G=m24, m42, h24 and h42, G∞ = m24∞, m42∞, h24∞, h42∞. In

the Siekmann model (Siekmann et al., 2012) the gating variables, G, were

set immediately to their steady state, G∞, when there was a change in Ca2+

concentration. Rather than instantaneously attaining G∞, when modelling

G as gating variables Cao et al. (2013) introduce the rate λG which represents

how quickly G approaches G∞ from its current value.

The rates at which m24, h24 and m42 reach their equilibrium are constant

(Cao et al., 2013). However, h42 gating variable has a more complex dynamic

and its rate was modelled heuristically by Cao et al. (2013) as:

λh42 = ah42 +
Vh42c

7

c7 + 207
(3.11)
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Where ah42 and Vh42 are constants. When the Ca2+ concentration is low,

the rate λh42 will be low. Similarly, when the Ca2+ concentration is high, λh42

will be high. The parameters of the gating variable equations were chosen so

that the resulting model showed a delayed response consistent with the data

by Mak et al. (2007).

Introducing integral terms into the Cao et al. model We aim to

adapt the delayed response in the Cao et al. model to create a model that

detects changes in the Ca2+ concentration c(t) over a period of time. There-

fore, rather than “sensing” c(t) at the current time t, the IP3R “observes”

the Ca2+ concentrations over a time interval It = [t − τ, t] that reaches a

certain length of time in the past.

We introduce an integral over the Ca2+ concentration c(t) over the time

interval I(t):

c̄(t) =
1

τ

∫ t

t−τ

f(c(s))ds (3.12)

with f : R+ → R+ and τ > 0. For τ = 0 we set c̄(t) = c(t). Choosing

f = id i.e. c̄(t) = 1
τ

∫ t

τ−t
c(s)ds. Eq 3.12 is a temporal average of c(t) over

the interval I(t). For general positive f , Eq 3.12 can be interpreted as a

weighted temporal average of c(t) over I(t).

Models such as the Siekmann et al. (2012) model are formulated as Ca2+-

dependent infinitesimal generators Q(c); by allowing for time-dependent c(t)

we obtain the time-dependent infinitesimal generator Q(c(t)). To account for

the delayed response to changes in Ca2+ concentrations (Mak et al., 2007)

we replace the substitution of the current Ca2+ concentration c(t) at time t

into Q(c), see Eq 3.1, with the weighted temporal average c̄(t) defined by Eq
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3.12. The time-dependent infinitesimal generator of our new model isQ(c̄(t)).

Moreover, because for τ = 0, we have Q(c̄(t)) = Q(c(t)), using the temporal

average c̄(t) defined by Eq 3.12 is a natural extension of defining the time-

dependent infinitesimal generator using the current Ca2+ concentration c(t).

This shows that for a given infinitesimal generator which has been parametrised

using data obtained at constant Ca2+ concentrations such as Wagner and

Yule (2012), a model that appropriately responds to changes in Ca2+ con-

centration can be found by determining the time τ and the function f to

obtain c̄(t) Eq 3.12. Rather than searching for suitable functions f , we take

advantage of the fact that our new model can be shown to be mathematically

equivalent to the model by Cao et al. (2013) if we choose τ = ∞. Following

an approach demonstrated by Brady (1972) for the Hodgkin-Huxley model,

it is possible to represent the gating variables used by Cao et al. (2013) as

integrals by explicitly solving the four linear differential equations for the

gating variables. Thus, by incorporating these integrals into the infinitesi-

mal generator Q(c) we obtain a system of integrodifferential equations with

infinitesimal generator Q(c̄(t)) which is equivalent to the model by Cao et al.

(2013) if we choose τ = ∞.

The Brady model We now introduce the integrodifferential equations

by Brady (1972) into our model. Brady (1972) transforms Eq 3.13 into Eq

3.14. The advantage of using this approach is that it allows us to create a

model equivalent to the one presented by Cao et al. (2013), enabling direct

comparison of results. An in-depth proof of the theory can be found in Brady

(1970, 1972).
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dJ

dt
= (αJ ◦ f)(1− J)− (βJ ◦ f)J (3.13)

ΦJ(t, f) = J(0)exp

[
−
∫ t

0

(αJ ◦ f + βJ ◦ f)(x)dx
]
− exp

[
−
∫ t

0

(αJ ◦ f + βJ ◦ f)(x)dx
]

∫ t

0

(−αJ ◦ f)(s)× exp

[∫ s

0

(αJ ◦ c+ βJ ◦ f)(x)dx
]
ds

(3.14)

where J and f represent the gating variables within the Hodgkin-Huxley

model and functions with the domain [0,∞) that are analytical on (0,∞],

respectively.

If we write Eq 3.10 in the form of Eq 3.13 we get the following equation:

dG

dt
= (αG ◦ c)(1−G)− (βG ◦ c)G (3.15)

where G represents the gating variables, m24, h24,m42, h42 and c repre-

sents the Ca2+ concentration. The initial values are: t0=0, c(t0)=0.1 µm,

G(t0)=
αG(0)

αG(0)+βG(0)
.

To derive α and β we begin by expanding the right hand side (RHS) of

Eq 3.10:

dG

dt
= λGG∞ − λGG (3.16)

Next, we add and subtract λGG∞ from the RHS of Eq 3.16:

dG

dt
= λGG∞ − λGG− λGG∞G+ λGG∞G (3.17)
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Factorising Eq 3.17 gives:

dG

dt
= λGG∞(1−G)− (λG − λGG∞)G (3.18)

αG and βG are thus:

αG = λGG∞ (3.19)

βG = λG − λGG∞ (3.20)

Substituting Eq 3.19 and 3.20 into Eq 3.14 gives:

ΦG(t, c) = G(0)exp

[
−
∫ t

0

(αG ◦ c+ βG ◦ c)(x)dx
]
− exp

[
−
∫ t

0

(αG ◦ c+ βG ◦ c)(x)dx
]

∫ t

0

(−αG ◦ c)(s)× exp

[∫ s

0

(αG ◦ c+ βG ◦ c)(x)dx
]
ds

(3.21)

The addition of αG and βG reduces to λG, therefore, Eq 3.21 can be

simplified to:

ΦG(t, c) = G(0)exp

[
−
∫ t

0

(λG ◦ c)(x)dx
]
− exp

[
−
∫ t

0

(λG ◦ c)(x)dx
]

∫ t

0

(−αG ◦ c)(s)× exp

[∫ s

0

(λG ◦ c)(x)dx
]
ds

(3.22)

We aim to build a model that exhibits a delayed response to changes in

the Ca2+ concentration, as observed by Mak et al. (2007), which is essential
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for producing realistic Ca2+ puffs. We interpret the integrals in Eq 3.22

as the IP3R averaging over past Ca2+ concentrations. The transformation

to integrodifferential equations introduces an infinite delay i.e. the integrals

replacing the gating variables extend over the time interval (−∞, t]. This not

only makes the numerical solution of the model equations computationally

infeasible but implies that the IP3R has an “infinite” memory which appears

unrealistic. For this reason, we consider integrals with finite delays, τ (see

Eq 3.23). τ can be interpreted as how far into the past the ion channel’s

memory spans.

ΦG(t, c) = G(0)exp

[
−
∫ t

t−τ

(λG ◦ c)(x)dx
]
− exp

[
−
∫ t

t−τ

(λG ◦ c)(x)dx
]

∫ t

t−τ

(−αG ◦ c)(s)× exp

[∫ s

s−τ

(λG ◦ c)(x)dx
]
ds

(3.23)

In our model, we replace the ODEs in the Siekmann model (Eq 3.10) with

the integrodifferential equation described in Eq 3.23. Parameters, detailed in

Table 3.1, can be substituted into Eq 3.19 to calculate the correct αG value

for each gating variable. λG and αG are substituted into Eq 3.22.

The reduced six-state IP3R model

Quasi-steady-state approximation replaces the ODEs for fast variables and

therefore reduces the number of equations in the system down so only a

system for slow variables exists (Vejchodský et al., 2014). Cao et al. (2013);

Sneyd et al. (2017) state the rate at which the gating variables m24, h24 and

m42 reach equilibrium is so quick, that they can be set equal to their steady
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Table 3.1: Model parameters. IP3-dependent parameters are evaluated at a
concentration of 0.1 µm as indicated by subscripts. Full model details are given
in Cao et al. (2013).

Symbol Description Value Units

Gating kinetics

a24 Basal level of q24 29.85p=01µm s−1

V24 Gating-dependent part of q24 312.85p=01µm s−1

a42 Basal level of q42 0.05p=01µm s−1

V42 Gating-dependent part of q42 100 s−1

λh24 Rate of approach to steady state of h24 40 s−1

n−24 Hill coefficient for Ca2+ dependency of h24∞ 0.04p=01µm
k−24 Half-saturation constant for Ca2+ dependency of h24∞ 97.00p=01µm

h24∞ Steady state of h24
k
n−24

−24

cn−24 + k
n−24

−24

ah42 Basal level of λh42 (tuning parameter) 0.5 s−1

Vh42 Ca2+-dependent part of λh42 100 s−1

Kh42 Half-saturation constant for Ca2+-dependency of λh42 20 µm

λh42 Rate of approach to steady state of h42 ah42 +
Vh42c

7

c7 +K7
h42

s−1

n−42 Hill coefficient for Ca2+ dependency of h42∞ 3.23p=01µm

k−42 Half-saturation constant for Ca2+ dependency of h42∞ 0.17p=01µm

h42∞ Steady state of h42
k
n−42

−42

cn−42 + k
n−42

−42

λm24 Rate of approach to steady state of m24 100 s−1

n24 Hill coefficient for Ca2+ dependency of m24∞ 6.31p=01µm
k24 Half-saturation constant for Ca2+ dependency of m24∞ 0.549p=01µm

m24∞ Steady state of m24
cn24

cn24 + kn24
24

λm42 Rate of approach to steady state of m42 100 s−1

n42 Hill coefficient for Ca2+ dependency of m42∞ 11.16p=01µm
k42 Half-saturation constant for Ca2+ dependency of m42∞ 0.40p=01µm

m42∞ Steady state of m42
cn42

cn42 + kn42
42

Ca2+ balance

ch Elevated Ca2+ in vicinity of open IP3R channel 120 µm
B Total buffer concentration 20 µm
kon Binding of fluo4 buffer to Ca2+ 150 µms−1

koff Unbinding of fluo4 buffer from Ca2+ 300 s−1

Jr Flux of Ca2+ through single channel 200 µms−1

Jleak Ca2+ influx from cluster environment 33 µms−1

Vd Rate of cytoplasmic Ca2+ removal from the cluster 4000 µm s−1

Kd Half-saturation constant for cytoplasmic Ca2+ removal 12 µm
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state.

That is:

m24 = m24∞, h24 = h24∞, m42 = m42∞ (3.24)

Therefore the reduced model consists of six ODEs and an integral term,

modelling the h42 gating variable.

The reduced two-state IP3R model

Reduction of the six-state IP3R model simplifies the model, whilst keeping

the desired Ca2+ dynamics (Cao et al., 2014).

We reduce our six-state model further by using the following steps, pre-

viously demonstrated by Cao et al. (2014):

• Set the rates q21, q23, q26 and q45 to zero. States C1, C3 and O5 have

been shown to be rarely visited by the IP3R or have a short dwell time.

• States C2 and O6 are combined to create a partially open state with

an open probability of q26
(q26+q62)

• Due to the combining of states C2 and O6, the rate q24 is re-scaled by

q62
(q62+q26)

.

The reduced two-state Siekmann model, presented in Fig 3.1, ignores the

structure of the active and inactive modes seen within the six-state Siekmann

model and only the inter-modal transitions have an effect on the IP3R be-

haviour (Cao et al., 2013). Constant parameters for rates q24 and q42 remain

the same as those in Eq 3.2 and 3.3.
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Figure 3.1: The structure of the two-state Siekmann Model (Cao et al., 2013).
The active mode consists of the joint states C2 and O6; the inactive mode consists
of the closed state C4.

3.2.2 Latency distributions

The time it takes for the IP3R to first open or close following a step change

in ligand concentration, as demonstrated by the experiments conducted by

Mak et al. (2007), can be simulated mathematically using our single channel

models. We replicate the experimental conditions of Mak et al. (2007) by set-

ting the IP3 concentration to 10µm and using the same Ca2+ concentrations

(10nm, 2µm, 300µm) to conduct the rapid changes in ligand concentration.

We assume the past Ca2+ concentration of length τs is constant at the initial

Ca2+ concentration used within the experiments. We run 1000 iterations

for each model and compare our latency distributions to the results by Mak

et al. (2007).
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3.2.3 Deterministic calcium dynamics

Using the same system of ODEs as in Cao et al. (2013), we develop a model

that accounts for various fluxes that influence the Ca2+ concentration, c, in

the cytosol as well as the Ca2+ dye, bfluo4.

dc

dt
= JincreaseNo + Jleak − Jdecrease − kon(Bfluo4 − bfluo4)c+ koffbfluo4

(3.25)

dbfluo4
dt

= kon(Bfluo4 − bfluo4)c− koffbfluo4 (3.26)

Ca2+ fluxes can be modelled deterministically using ODEs if we assume

the cell is spatially homogeneous (Dupont et al., 2016; Rahmani et al., 2024).

Whilst this is a simplification of the true cellular behaviour, we can still gain

insight into the Ca2+ signalling system (Dupont et al., 2016). Eq 3.25 and Eq

3.26 describe the Ca2+ concentration and the Ca2+ dye, respectively. The

Ca2+ flux is described through the parameters Jincrease, Jleak and Jdecrease.

Jincrease represents the Ca2+ flux through an open IP3R; No is the number

of open IP3R in a cluster. The leakage of Ca2+ from the ER is described

using Jleak. Jdecrease represents the Ca2+ flux that returns to the ER (Cao

et al., 2013; Siekmann et al., 2019). Eq 3.26 represents the Ca2+ dye bound

to Ca2+ that is detected using a light microscope within experiments (Cao

et al., 2013). The changes in the Ca2+ signalling can be visualised through

the changes in the fluorescence light correlating with changes in Ca2+ sig-

nalling (Pratt et al., 2020). This process is described in Eq 3.25 - 3.26 using

parameters Bfluo4 and bfluo4, which represent the total dye buffer concentra-
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tion and the Ca2+-bound dye buffer concentration, respectively (Siekmann

et al., 2019). For the two-state model, all parameters remain the same as

those for the six-state model except for Jincrease which is replaced with Jincrease

· q26
(q62+q26)

(Cao et al., 2014). Parameter values are detailed in Table 3.1.

3.2.4 Calcium puff statistics

Ca2+ puffs are often characterised by taking into consideration three key

statistics: the IPI, the puff amplitude and the puff duration. IPIs are defined

as being the time between the peak amplitude of Ca2+ puffs. We determine

the start of a Ca2+ puff as being when the Ca2+ concentration is 20% of the

peak amplitude. Similarly, the end of the puff is calculated the time after

the peak where the Ca2+ concentration is 20% of the peak amplitude. The

difference in the end and start times determines the duration of the Ca2+

puff.

We fit our simulated IPI distributions to the Time-Dependent distribution

(Thurley et al., 2011), introduced in Chapter 2, by calculating the suitable

parameters for it. To recall, the Time-Dependent distribution is:

PIPI = λ(1− exp (−ξt)) exp (−λt+ λ(1− exp (−ξt))/ξ) (3.27)

where λ is the puff rate and ξ is the recovery rate. We estimated the

mean IPI from the data and set λ as the reciprocal of this value, as previ-

ously demonstrated by Cao et al. (2017). When fitting the Time-Dependent

distribution to our IPI distributions in Chapter 2, we also estimated λ. Here,

to ensure an accurate comparison with the results of Cao et al. (2013, 2017),
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we use their methodology. ξ is optimised using the lsqcurvefit function in

MATLAB. Furthermore, we evaluate the difference between λ being the re-

ciprocal of the mean to if it was optimised using methods outlined in Chapter

2.

3.2.5 Numerical methods

We solve Eq 3.25 - 3.26 using the fourth-order Runge-Kutta method whereas

the dynamics of the Markov models representing the IP3R channels are sim-

ulated with a Gillespie algorithm. Due to the rates q24 and q42 being Ca2+

dependent, they are time-dependent. For this reason, the original Gillespie

algorithm cannot be used. Adaptive timing, as detailed in Alfonsi et al.

(2005); Cao et al. (2013); Rüdiger (2013), is used to make the algorithm

more run-time-efficient. A maximum time step size of 10-4 s is used for the

six and two-state models. Integrals in Eq 3.23 are calculated using the Rie-

mann Sum, using a larger time step (10-2 s). As evidenced in Fig 3.12, the

increased time-step strongly increases computational efficiency whilst not sig-

nificantly decreasing the approximation accuracy of the integral. IP3 is set

to 0.1 µm for all simulations. We assume Ca2+ concentrations prior to time

t0 are constant and low at 0.1µm. τ and ah42 are set to 3s and 0.5s-1, respec-

tively, unless stated otherwise. All results were gathered using MATLAB

(MathWorks, Natick, MA).
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3.3 Results

3.3.1 Replacing the ODEs calculating the gating vari-

ables in the Siekmann model with integral terms

produces equivalent results to Cao et al. (2013)

An example of a Ca2+ trace simulated from our six-state hybrid stochas-

tic model with integrodifferential equations can be seen in Fig 3.2A. The

trace, qualitatively, is similar to Ca2+ traces produced by the model of Cao

et al. (2013). To make a more quantitative comparison between the Siek-

mann model and our model, Ca2+ puff statistics were derived. The fitting

of simulated IPI distributions to the Time-Dependent distributions produces

parameter values (λ = 0.2486s−1, ξ = 0.6267s−1) that are similar to those

described by Cao et al. (2013) (λ = 0.2463s−1, ξ = 0.8s−1). If λ is opti-

mised alongside ξ, parameter values are 1.1546s−1 and 0.1255s−1. Replacing

the ODEs modelling the gating variables in the Siekmann model (Siekmann

et al., 2012; Cao et al., 2013) with integral terms, appears to cause an in-

creased delay in the IP3R reopening following a Ca2+ puff. The average IPI

are indistinguishable.

Latency distributions In Fig 3.3 we present the latency distributions

produced by our six-state model. The peak maximum activation latency for

a step change in Ca2+ concentration from 10nm to 2µm is shorter (∼ 0.02

s) in comparison to when there is a step change in Ca2+ concentration from

300µm to 2µm (∼ 0.08 s). Additionally, the maximum activation latency for

a step change in Ca2+ from 300µm to 2µm is larger (0.42 s). The deactivation
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Figure 3.2: Ca2+ puff traces produced by hybrid stochastic systems that simulate
the gating variables using integrodifferential equations. A: six-state model with
four gating variables. B: six-state model with one gating variable. C: two-state
model with one gating variable.
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Figure 3.3: Simulated latency distributions, using the six-state IP3R model,
for step changes in Ca2+ concentrations as indicated in the subfigure titles.
IP3=10µm

latency distributions are qualitatively similar with maximum peaks ≈0.08s.

3.3.2 Using quasi-steady-state approximation reduces

the model whilst maintaining the correct puff dy-

namics

The reduced six-state model

Quasi-steady-state approximation was used to reduce the number of gating

variables in the six-state model, described in Section 3.3.1. The m24, h24
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and m42 gating variables are set to their steady state resulting in a six-state

model with one integral, calculating the h42 gating variable. We refer to

this simplified model as the “reduced six-state model”. An example of a

Ca2+ trace produced by the reduced six-state model can be seen in Fig 3.2B.

A clear qualitative difference between the six-state model and the reduced

six-state model Ca2+ traces is the frequency of Ca2+ puffs. Fig 3.2B shows

a Ca2+ trace that has larger IPIs and Ca2+ puffs with higher amplitudes.

The change in frequency of Ca2+ puffs is confirmed through comparison of

parameter estimations of the Time-Dependent distribution. A smaller λ

value of 0.0986s−1 shows the average IPI is greater than the six-state model,

whilst a lower ξ value of 0.1723s−1 indicates at a slower puff recovery time. λ

and ξ optimised together produces values of 0.1055s−1 and 0.9888s−1. In Fig

3.4 we compare IPI, puff amplitude and puff duration distributions for the

six state models. The IPI distribution for the reduced six-state model shows

IPIs that are longer than those of the six-state model. Ca2+ puff amplitudes

are higher, however the duration of puffs is shorter.

Latency distributions Fig 3.5 shows the activation and deactivation la-

tency distributions produced using our reduced six-state model. All four

distributions qualitatively follow a similar shape. The first time to open

following a step change in Ca2+ concentration from 10nm to 2µm is quicker

(maximum peak at 0.01s) in comparison to a step change in Ca2+ from 300µm

to 2µm (maximum peak at 0.2s). However, there is greater variability in the

activation latency distribution for a step change in Ca2+ from 10nm to 2µm.

The peak maximum deactivation latency is similar for both step changes in

Ca2+ concentration from 2µm to 10nm and 2µm to 300µm with peak maxi-
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Figure 3.4: Comparison of average Ca2+ puff statistics across all three models.
Bars depict the mean of each statistic ± standard error. The six-state model is
shown as a solid black line, the reduced six-state model as a blue dashed line
and the reduced two-state model as a dot-dashed red line. Simplifying the six-
state model using quasi-steady-state approximation leads to a decrease in the
frequency of Ca2+ puff events. The increase in puff amplitude for these models
implies that due to quasi-steady-state approximation a higher number of channels
open at the same time, however, the channel requires a longer time to recover
from the high Ca2+ concentration and reopen.
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Figure 3.5: Simulated latency distributions, using the reduced six-state IP3R
model, for step changes in Ca2+ concentrations as indicated in the subfigure
titles. IP3=10µm

mum values of 0.07 and 0.06s, respectively.

The reduced two-state model

The reduced six-state model can be simplified further by using quasi-steady-

state approximation and ignoring low dwell times (Cao et al., 2014). Fig 3.2C

shows a Ca2+ trace produced by the reduced two-state model. The reduced

two-state model produces Ca2+ traces that are similar to those produced by

more complex six-state models. There are fewer basal level fluctuations in

Fig 3.2C due to the reduced two-state model not having a fast-lived open
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state (the equivalent to state five in the six-state model). We fit the Time-

Dependent distribution to the IPIs from the reduced two-state model and

estimate parameters of λ = 0.13s−1 and ξ = 0.3099s−1. Ca2+ puffs are more

frequent and recover quicker when compared to the reduced six-state model.

λ and ξ optimised together produces values of 0.4973s−1 and 0.0764s−1. In

Fig 3.4 we see the IPI distribution for the reduced two-state model is similar

to the reduced six-state model. Ca2+ puff amplitudes are much higher in

comparison to the six-state models, however, puff durations are similar.

A comparison of the puff statistics and averages demonstrates that the re-

duced two-state model can produce Ca2+ dynamics that are a good reflection

of more complex models.

Latency distributions In Fig 3.6 we compare the activation and deacti-

vation latency distributions using our reduced two-state model. All distri-

butions are qualitatively similar in shape. The maximum peak activation

latencies are 0.01s and 0.19s for the step change in Ca2+ concentration from

10nm to 2µm and 300µm to 2µm, respectively. The maximum peak deacti-

vation latencies are similar for both step changes in Ca2+ concentration (∼

0.05s).

The effect of τ on Ca2+ dynamics The length of τ can be interpreted

as how far into the past the IP3Rs memory spans. We consider if the IP3R

require “knowledge” of past Ca2+ concentrations to function, or is “knowl-

edge” of only the present Ca2+ concentrations sufficient. We found 0.1s is

the threshold value, where anything smaller than this value is detrimental

to the Ca2+ dynamics. Fig 3.7 shows that when τ is set to 0.1s or smaller,
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Figure 3.6: Simulated latency distributions, using the reduced two-state IP3R
model, for step changes in Ca2+ concentrations as indicated in the subfigure
titles. IP3=10µm
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Ca2+ puffs are not produced and the IP3R stays in a high activity mode. As

we increase τ beyond 0.1s, Ca2+ puffs are produced. However, when τ =0.2s

the Ca2+ puffs do not follow the desired shape i.e. a sharp increase in Ca2+

concentration with a gradual decent as IP3R close. Our results show that

increasing τ to 3s produces Ca2+puffs of the correct shape. By choosing the

length of τ , the correct Ca2+ and h42 dynamics are simulated, whilst keeping

our computational time as low as possible.

h42 dynamics within a simplified model The h42 gating variable has a

complex dynamic within the Ca2+ signalling models (Cao et al., 2013). Fig

3.8 shows the effect reducing the six-state model to a two-state model has on

the h42 dynamics. Fewer fluctuations in the basal level Ca2+ concentration

cause Eq 3.23 to go to equilibrium if the Ca2+ concentration has remained

constant for the time length, τ . This behaviour is only seen within the

reduced two-state model due to the reduction in basal level fluctuations. In

the six-state model, the fast-lived open state, (state five), causes there to be

a high frequency of single-channel openings, therefore the h42 gating variable

never reaches its steady state.

In Fig 3.9 we compare the h42 dynamics of the reduced two-state model

when τ is 3s and 15s. With a longer length delay, a jump to steady state is

less likely to occur due to the average time between Ca2+ puffs being shorter

than τ . However, computational time increases. Whilst there is a difference

between the qualitative behaviour of h42, this does not affect the Ca2+ and

IP3R dynamics.
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Figure 3.7: Comparison of Ca2+ dynamics for τ =0.05s,τ =0.1s,τ =0.2s, τ =1s,
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Figure 3.8: Comparison of h42 dynamic for all three models. A: six-state model.
B: reduced six-state model. C: reduced two-state model.
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Figure 3.9: Averaged h42 gating variable for the two-state model increases quickly
to equilibrium if the Ca2+ concentration has remained constant for the length
of τ . The black full line is the Ca2+ concentration, and the blue dashed line is
the averaged h42 gating variable. The two-state model does not have a fast-
lived open state, therefore small fluctuations in the basal Ca2+ concentration
are limited. Due to this redundancy in a small number of channels open, the
Ca2+ concentration remains low and constant for longer periods. The integral
equation for h42 goes to equilibrium if the IP3R is under these conditions for τs.
Therefore, this causes the jump to the h42 steady state. If τ is set to a longer
length, the sudden increase to equilibrium is not seen. A: τ = 3s. B: τ = 15s
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Figure 3.10: Comparison of IPI distributions parameterized using the Time-
Dependent distribution for different ah42 values. A: 0.1 s−1. B: 0.5 s−1. C:
1 s−1. D: 2 s−1. E: 5 s−1.

Dependence of IPI on ah42 Fig 3.10 shows increasing the recovery rate of

an IP3R from Ca2+ inhibition, ah42 , causes the IPI distributions to become ex-

ponentially distributed. We fit the IPI distributions to the Time-Dependent

distribution. The average IPI is used for the λ value and an appropriate ξ

value is used to fit the distribution well. Average IPIs are similar for each

distribution, however as ah42 increases, the recovery rate from Ca2+ inhibition

also increases.
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Figure 3.11: Comparison of Ca2+ puff and h42 traces for different ah42 values.
Ca2+ traces are shown in black and the averaged h42 gating variable in blue.

In Fig 3.11 we compare the effect increasing ah42 has on the average h42

gating variable. As ah42 increases, the rate h42 reaches a threshold value rises.

This is shown by the gradual increase in h42 following a Ca2+ puff when ah42

is 0.1s−1 compared to the steep increase in h42 when ah42 is set to 5s-1.

Time step used to calculate the h42 integral term. The computational

time for simulating the integral calculating h42 can be expensive if the length

of τ is long. We have shown that if τ is too short, the Ca2+ dynamics fail while



3.3 Results 119

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0

5000

C
a2+

 (
nM

)

0

0.5

1

h 42

A

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0

5000

C
a2+

 (
nM

)

0

0.5

1

h 42

B

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0

5000

C
a2+

 (
nM

)

0

0.5

1

h 42

C

Figure 3.12: Comparison of Ca2+ puffs and average h42 simulations for different
integral time-steps. A: time-step of 10−3s. B: 5× 10−3s. C: 10−2s

a longer τ produces the desired Ca2+ puffs and h42 dynamics. Computational

time can be reduced, whilst the Ca2+ and h42 dynamics are maintained if the

time-step used to calculate Eq 3.23 is increased.

Fig 3.12 compares the Ca2+ trace and average h42 value for time-steps of

10−3s, 5× 10−3s and 10−2s. Increasing the time step of the integral improves

computational time and retains the required puff dynamics. If the time-

step is made too large, the approximation of the integral would become

increasingly more inaccurate and the fundamental properties of the Ca2+

signalling system would be lost.
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3.4 Chapter discussion

Mathematical models simulating the Ca2+ signalling system are often com-

plex and require a large number of parameters and equations. This chapter

aimed to build a model for the IP3R that accounts for the delayed response of

the channel to changes in Ca2+ concentrations observed by Mak et al. (2007).

Our model is based on the hypothesis that, rather than only responding to the

current Ca2+ concentration, the IP3R depends on the average of Ca2+ con-

centrations reaching τ units of time in the past. Starting with the Siekmann

model, which is incapable of generating realistic puffs if coupled directly to

the time-dependent Ca2+ concentration (Cao et al., 2013), we demonstrated

that we can enable the model to produce puffs by replacing the dependency

on the current Ca2+ concentration with the average Ca2+ concentration. This

is dependent on the length of the time interval, τ , used for calculating the

average Ca2+ concentration being sufficiently long. When τ was set to a

small value of 0.1s the model failed to generate Ca2+ puffs, whereas setting

τ = 3s is sufficient for enabling the model to produce puffs for the parameters

chosen in Table 3.1. Using the reduced two-state model we showed that the

same h42 dynamics that are present in the six-state model can be simulated

when τ = 15s. However, the Ca2+ puffs simulated by this model were similar

to those produced when τ = 3s.

Our six-state model successfully produced results that were comparable

with those published by Cao et al. (2013). This result was expected for an

infinite delay because the integrodifferential method by Brady (1972) and

the Hodgkin-Huxley-like equations by Cao et al. (2013) are mathematically

equivalent. However, we showed that the results remain similar if the length
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of τ is not infinite, but sufficiently long. We then investigated how much

the delay could be reduced so that the model would still produce realistic

puffs. We chose to use a one-factor-at-a-time approach, focusing only on the

parameter τ . This enabled us to accurately compare our model results with

those of Cao et al. (2013), as we incorporated the remaining parameters from

their study into our own model. Next, we simplified our model by using a

quasi-steady-state approximation to reduce the number of gating variables

from four to one. This approach has been used previously, for example, see

Cao et al. (2014); Dupont et al. (2016) and is made possible due to the rate

the gating variables m24, h24 and m42 reach equilibrium being so quick. The

reduction in our model led to longer IPIs, higher puff amplitudes and shorter

puff duration’s.

Finally, we followed the steps described by Cao et al. (2014); Siekmann

et al. (2019) to simplify our model further, reducing it to a two-state model.

Our results were comparable with both the reduced six-state model and the

results produced by Cao et al. (2014); Siekmann et al. (2019). Such results

included longer IPIs and higher puff amplitudes. Siekmann et al. (2019) state

that it is not the intramodal structure of the Markov model that determines

the behaviour of the ion channel, but the time-dependence of the intramode

transitions. This is true for the six and two-state models by Siekmann et al.

(2012); Cao et al. (2013, 2014) and is also true for our models. We show

that the behaviour and puff statistics between the six and two-state models

based on integrodifferential equations are similar. However, one may argue

the six-state models are a better representation of the activity within the cell

because they simulate the frequent small fluctuations in Ca2+ concentration,
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which we do not see in the reduced two-state model.

Whilst our models show promising results when compared to those by Cao

et al. (2013), it is interesting to note their choice of parameterisation method

for the Time-Dependent distribution (Cao et al., 2017). As described within

Section 3.2, Thurley et al. (2011); Cao et al. (2017) set λ as the reciprocal

of the mean IPI. In this chapter, we adopted this method to conduct a fair

comparison between results. We found our estimate of λ, optimised using

the lsqcurvefit function in MATLAB differed from the reciprocal of the mean

IPI, specifically for the six-state and reduced two-state models. Thurley et al.

(2011) state setting λ to be the reciprocal of the mean IPI enabled them to

obtain excellent fits to their experimental data. Whilst this is also the case

in our study, our results suggest that by not estimating λ some information

about the true nature of the distribution may be lost.

We calculated activation and deactivation latencies for each model using

the same step changed in Ca2+ concentration as in the experiments by Mak

et al. (2007). Our results were obtained by running the experimental sim-

ulation 1000 times. Like the results by Cao et al. (2013), our simulations

failed to capture the multi-modal distribution observed in the experimental

outcomes (Mak et al., 2007). A key difference between our results from the

six-state model and those by Mak et al. (2007) is that the mean activation

latency for a switch in Ca2+ concentration from 10nm to 2µm is longer within

our model. The maximum peaks in the deactivation latency distributions are

similar to those in the results by Mak et al. (2007). Unlike the model results

by Bicknell and Goodhill (2016), our reduced six-state and two-state mod-

els produced latency distributions that have a similar peak probability and
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variation to the experimental data.

Previously, Cao et al. (2013) have investigated how the recovery rate

from Ca2+ inhibition (known as the parameter ah42) influences the Ca
2+ puff

statistics. Their results demonstrated that increasing ah42 leads to the IPI

distribution becoming exponentially distributed. This demonstrates that ah42

and thus the h42 gating variable are key contributors to the refractory period

often seen in IPI distributions. In this thesis, we used our reduced two-state

model and varied ah42 between 0.1s-1 and 5s-1. Our results, presented in Fig

3.10, were similar to those reported by Cao et al. (2013). We compared

the effect increasing ah42 has on the average h42 gating variable in Fig 3.11.

We observed that the refractory period is influenced by h42. More specifi-

cally, we found that increasing the ah42 value causes h42 to reach a threshold

value quicker. This leads to Ca2+ puffs being triggered sooner and a higher

occurrence of Ca2+ puffs.

Our IP3R model is based on the assumption that ion channels require

information of past Ca2+ concentrations. The idea that ion channels have

“memory” of past ligand concentrations is still somewhat uncommon, for

example, Villalba-Galea and Chiem (2020) state that the activity of the

ligand-gated receptor depends only on the current Ca2+ concentration of the

agonist ligand. Interestingly, this statement is made in an article in which

Villalba-Galea and Chiem (2020) review evidence of memory in voltage-gated

ion channels. However, the experiments by Mak et al. (2007) demonstrate

the dynamics of the IP3R not only depend on the current concentration of

its ligands, Ca2+ and IP3, but also on the concentrations of Ca2+ and IP3

that the channel is exposed to in the past.
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We consider two possible explanations for the memory effect found in the

data by Mak et al. (2007) and represented in the architecture of our model of

the IP3R. Firstly, the memory of the IP3R might have emerged due to phys-

iological necessity– the IP3R is only capable of responding appropriately to

variations in Ca2+ concentrations if the channel “observes” Ca2+ over the

recent past. This view is supported by the dynamics of h42, see Fig. 3.9.

As long as no major increase in the Ca2+ concentration occurs, the gating

variables h42 of all IP3R s in the cluster continuously increase which makes

the cluster of IP3Rs increasingly excitable—once h42 has increased above a

certain level, a small increase in the Ca2+ concentration causes a large pro-

portion of channels to open and release Ca2+, triggering a puff. In response,

the gate h42 nearly instantaneously decreases to a value close to zero but

starts to gradually increase again after the puff terminates and the Ca2+

concentration has returned to the resting level.

A second explanation for the memory effect is based on the biophysical

basis of “sensing” the Ca2+ concentration in the channel’s environment. Berg

and Purcell (1977) suggest the cell infers the ligand concentration by, firstly,

monitoring the time the ligand binds and unbinds to the receptor and sec-

ondly, by estimating the average occupancy over time, T (ten Wolde et al.,

2016). When applying this to an IP3R we suggest that rather than being

able to directly “measure” the Ca2+ concentration, the IP3R has to infer the

ligand concentration in its environment from the interactions of the ligand

with its binding sites. Thus, rather than responding to the current Ca2+

concentration, it is more reasonable to assume a model where the channel

kinetics depends on an average Ca2+ concentration which can be related to
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the average time that Ca2+ has been bound to the various binding sites of

the channel for a time interval τ . Berg and Purcell (1977); ten Wolde et al.

(2016) state time integration has to be performed by the signalling network

downstream of the receptor proteins. This occurs when the receptor changes

conformation to an active form upon sensing the specific ligands (Klipp and

Liebermeister, 2006).

This chapter aimed to firstly, build a hybrid stochastic model based on

integrodifferential equations. By comparing Ca2+ puff statistics and gating

variable dynamics, we have shown our model is mathematically equivalent

to the Siekmann model (Siekmann et al., 2012; Cao et al., 2013, 2014). Our

model produces qualitatively and quantitatively similar results to more com-

plex models (Cao et al., 2013, 2014). Secondly, we investigated the effect of

changing the length of the delay, τ , has on the Ca2+ puff dynamics. Our

model demonstrates the IP3R requires “knowledge” of past ligand concen-

trations to produce Ca2+ puffs. This result is in agreement with the experi-

mental results by Mak et al. (2007).
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4
Parameterisation of mathematical model

4.1 Background

In Chapter 2 we analysed stationary single-channel data from wild-type 1

IPR and E2002D-type 1 IPR and Ca2+ puff data from exo 76 wild-type 1

IPR, wild-type 1 IPR and E2002D-type 1 IPR. We reviewed the different sta-

tistical distributions used to describe Ca2+ puff statistics and parameterised

the three most commonly used statistical distributions used for describing

the IPI distribution. By comparing qualitative and quantitative results, we

concluded, statistically, that the Gamma distribution best describes the IPI

distributions. In Chapter 3 we presented a Ca2+ puff model based on inte-

grodifferential equations. Whilst our model is mathematically equivalent to

previous Ca2+ puff models (Cao et al., 2013), it has the advantage of enabling

us to investigate the effect changing the length of the delay in the IP3R recog-

nising a change in Ca2+ concentration has on Ca2+ puff dynamics. In this

chapter, we bring together Chapters 2 - 3 and present two Ca2+ puff models

that have been parameterised using the experimental data by Arige et al.

(2022). We use the stationary single-channel data to parameterise our single

IP3R model, build an IP3R cluster model to simulate Ca2+ puff traces and

compare our results with the Ca2+ puff results from Arige et al. (2022). This
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chapter aims to firstly, parameterise our model to simulate Ca2+ traces that

are an accurate representation of the experimental data. Secondly, we aim

to provide insight into the underlying Ca2+ signalling system by comparing

model results for a wild-type 1 IPR and a wild-type 1 IPR in which the 2002

glutamic acid residue has been substituted with aspartate.

4.1.1 Parameterising IP3R models using experimental

data

Stationary single-channel data

Siekmann et al. (2019) state that incorporating ligand-dependent open prob-

abilities, stationary single-channel data, modal gating and latency data into

mathematical IP3Rmodels leads to a more accurate biological representation;

models not parameterised through fitting experimental data are unable to re-

produce the statistical properties of IP3R kinetics (Siekmann et al., 2012).

Furthermore, studies have shown that models need to be built specific to

the dynamics of the IP3R, and simply fitting experimental data to any IP3R

model does not always yield the desired results (Sneyd et al., 2004; Hituri and

Linne, 2013). Sneyd et al. (2004) parameterised three IP3R models using the

same stationary single-channel data. When comparing their results, Sneyd

et al. (2004) found parameters for two models were not well defined by the

data - steady-state curves were shaped differently to the experimental data

and step increases in Ca2+ were too quick (Siekmann et al., 2019). A simi-

lar result was present in a model simulation by Gin et al. (2009), who used

a four-state IP3R model based on stationary single-channel measurements.

Their model could not simulate the long recovery latency time described by
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Mak et al. (2007). Siekmann et al. (2012) incorporated stationary single-

channel data by Wagner and Yule (2012) into their six-state Markov model.

Whilst their model was able to accurately describe switching between fast

and slow activity of the IP3R, it could not be used to produce Ca2+ puffs.

Relying solely on stationary single-channel data has proven to be insuf-

ficient in providing an accurate depiction of the IP3R dynamics. The intro-

duction of kinetic single-channel data by Mak et al. (2007) into IP3R models

improved results, producing both accurate IP3R dynamics and Ca2+ puffs

(Cao et al., 2013). Ullah et al. (2012a) use stationary single-channel data

from Sf9 insect cells and latency data from Mak et al. (2007) to model IP3R

behaviour. Similarly, the incorporation of kinetic single-channel data by Mak

et al. (2007) enabled Cao et al. (2013) to improve the Siekmann model (Siek-

mann et al., 2012) to account for the latency in the IP3R opening. Hituri

and Linne (2013) state the development of new IP3R models require both

stationary and kinetic experimental data. Results by Ullah et al. (2012a);

Cao et al. (2013) show this is the case.

Ca2+ puff data

Whilst single-channel data strengthens IP3R models, insight into how key

parameters affect the Ca2+ dynamics is important to successfully simulate

Ca2+ puffs. Prior studies have analysed how the occurrence of Ca2+ puffs

changes depending on factors such as IP3 concentration, IP3R cluster size,

resting Ca2+ concentration and the recovery rate from Ca2+ inhibition (Shuai

et al., 2006; Dickinson et al., 2012; Ullah et al., 2012b; Qi et al., 2014; Rückl

et al., 2015; Cao et al., 2017).
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Shuai et al. (2006) investigated the effect of changing the number of open

channels, the diameter of the cluster, Ca2+ current and properties of fluo-

rescent dye on the Ca2+ blips and puffs simulated using their deterministic

spatial model. They spaced their IP3R on a square plane of length, L. Their

research aimed to model experimental data of Xenopus Oocytes. By varying

both the number of open channels during a puff and L, the width of the

square plane, Shuai et al. (2006) attempted to match their simulated results

to the experimental data. They found that when the number of open IP3R

was 25 and L was 520nm their simulations matched the experimental data.

Shuai et al. (2006) study focuses on the number of open ion channels during

a Ca2+ puff and not the total number in a cluster, therefore the number of

IP3R in a cluster could be much larger.

Similarly, Dickinson et al. (2012) investigated how ion channel cluster

size affects Ca2+ puff kinetics when modelling Ca2+ puffs using experimental

data from SH-SY5Y cells. The ion channel cluster size was estimated using

the largest Ca2+ puff. The number of channels open during a Ca2+ puff is

calculated by dividing the peak fluorescence amplitude by that of a single

Ca2+ blip. Dickinson et al. (2012) note this approach to estimating the cluster

size may cause inaccuracies, such as the largest Ca2+ puff being missed due

to the sample size. The mean IPI and reciprocal of the cluster size are shown

to follow a linearly increasing relationship.

Using a four-state single channel model, Ullah et al. (2012b) investigated

the dynamics of Ca2+ blips and puffs. Like Dickinson et al. (2012), Ullah et al.

(2012b) assume that the maximum amplitude observed at a given puff site

represents the number of IP3R in a cluster. Ullah et al. (2012b) state their
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model suggests Ca2+ puffs terminate because of self-inhibition. Increasing

the mean transition time from an open state to an inactive state reduces

the probability of the IP3R becoming inhibited and thus delays Ca2+ puff

termination.

Qi et al. (2014) used a modified De-Young Keizer model to study how the

IP3 concentration, IP3R cluster size and resting Ca2+ concentration affect

the Ca2+ blip and puff frequency. When the IP3 concentration was small

(0.01µm) their model simulated a higher frequency of Ca2+ blips compared

to the number of Ca2+ puffs. This result was unanimous for all IP3R cluster

sizes. However, for a larger IP3 concentration (2 µm) and a large cluster size,

the puff frequency increased more than the blip frequency. The cause for

this is that more channels can bind to IP3 when the concentration is higher,

therefore more channels are subsequently able to open. For the second part

of their study, Qi et al. (2014) kept the IP3 concentration constant and

analysed the effect increasing the resting Ca2+ concentration has on Ca2+

blip and puff frequency. As the resting Ca2+ concentration increases, the

frequency of blips and puffs increases due to there being more Ca2+ able to

bind to the activating sites of the IP3R. Rückl et al. (2015) found a similar

result when investigating how different IP3 concentrations affect Ca2+ puff

dynamics using their hybrid stochastic system. Their results showed that

as the IP3 concentration increased, the Ca2+ puff amplitudes and durations

increased.

Similarly, Cao et al. (2017) studied how changing the IP3 concentration

affects Ca2+ puff statistics, focusing specifically on the IPI and amplitude

distributions. They also explored changes to the basal level of an inhibitory
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gating variable. Their study found a high IP3 concentration and low basal

level simulated Ca2+ puff traces with a lower amplitude compared to sim-

ulations when the IP3 concentration was low and basal level was high. In

Chapter 3 of this thesis, we showed the IP3R does not produce Ca2+ puffs

when the length of the delay, τ , is short and the basal level of the inhibitory

gating variable effects the frequency of Ca2+ puffs.

Prior studies have shown single channel models successfully produce the

correct IP3R dynamics when parameterised using stationary and kinetic ex-

perimental data (Ullah et al., 2012a; Cao et al., 2013, 2014). In this chapter,

we parameterise our hybrid stochastic system using stationary single-channel

and Ca2+ puff data by Arige et al. (2022). This research has the aim of pro-

viding a mathematical insight into the complexity of the Ca2+ signalling

system. Abnormal IP3R have been shown to have devastating consequences

on individuals, therefore by understanding the change in mechanisms that

may cause these mutations mathematically, one may be able to gain better

insight into the biological interactions.

4.1.2 Chapter Aims

• Build two two-state Markov models based on patch clamp

data from wild-type 1 IPR and E2002D-type 1 IPR

Using stationary single channel data (Arige et al., 2022), we build a two-

state IP3R model for wild type and mutated IP3R. Average open and

closed dwell times and open probabilities are used to parameterise the

rates of the two-state models. Latency distributions will be compared

to the results by Mak et al. (2007).
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• Build an IP3R cluster model that produces comparable re-

sults to the experimental data

Using the single-channel models, we build an IP3R cluster model. To

ensure agreement between model simulations and the experimental

data presented in Chapter 2, we compare Ca2+ puff statistics.

• Compare differences between the wild-type 1 IPR and E2002D-

type 1 IPR models

We discuss how the parameter changes to the wild type IP3R model

lead to a model that simulates Ca2+ dynamics similar to those produced

by E2002D-type 1 IPR.

4.2 Methods

4.2.1 Mathematical model

IP3R model

We use a two-state Markov model, shown in Fig 4.1, to simulate the single

channel and Ca2+ dynamics. Transition rates are Ca2+ / IP3 dependent and

include a delay term, τ . Our model does not account for mode changes in

the IP3R activity. The rate parameters qoc(c̄(t)) and qco(c̄(t)), shown in Eq

4.1-4.2, are calculated using two gating variables each, moc, hoc, mco, hco, and

parameterised using stationary single-channel data.



134 Parameterisation of mathematical model

Figure 4.1: Two-state Markov model

qoc(c̄(t)) = aoc + Voc(1−mochoc) (4.1)

qco(c̄(t)) = aco + Vcomcohco (4.2)

The parameters aoc, aco, Voc and Vco are constant. The rates moc, hoc and

mco are assumed to reach equilibrium immediately.

That is:

moc = moc∞ =
cnoc

cnoc + knoc
oc

(4.3)

hco = hoc∞ =
k
n−oc

−oc

cn−oc + k
n−oc

−oc

(4.4)
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mco = mco∞ =
cnco

cnco + knco
co

(4.5)

hco follows a different dynamic to the other gating variables and reaches

equilibrium on a slower timescale (Cao et al., 2013). Chapter 3 showed hco

can be written as an integral term, which is interpreted as an average over

past Ca2+ concentrations of length τ . This integral term is described in Eq

4.6 (Hodgkin and Huxley, 1952; Brady, 1970; Cao et al., 2013; Hawker et al.,

2024).

Φhco(t, c) = hco∞ exp

[
−
∫ t

t−τ

(λhco ◦ c)(x)dx
]
− exp

[
−
∫ t

t−τ

(λhco ◦ c)(x)dx
]

∫ t

t−τ

(−αhco ◦ c)(s) exp

[∫ s

s−τ

(λhco ◦ c)(x)dx
]
ds

(4.6)

Where c represents the Ca2+ concentration.

The initial values are: t0 = 0, c(t0) = 0.1 µm. hco∞, hco at equilibrium,

and λhco , the rate at which equilibrium is reached, are calculated as follows:

hco∞ =
k
n−co

−co

cn−co + k
n−co

−co

(4.7)

λhco = ahco +
Vhcoc

7

c7 + 207
(4.8)

Where ahco and Vhco are constants.
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αhco is calculated as follows:

αhco = λhcohco∞ (4.9)

Steady state transition rates for qoc(c̄(t)) and qco(c̄(t)) are thus:

qoc∞ = aoc + Voc(1−moc∞hoc∞) (4.10)

qco∞ = aco + Vcomco∞hco∞ (4.11)

qoc∞ and qco∞ are parameterised using stationary single-channel data by

Arige et al. (2022). This is achieved by calculating the mean open (ōd) and

closed (c̄d) dwell times of a single IP3R at different constant Ca2+ concen-

trations and fitting qoc∞ and qco∞ to the inverse of these results. That is,

qoc∞ = 1
ōd

and qco∞ = 1
c̄d
. We use MATLAB’s lsqnonlin function to fit qoc∞

and qco∞ to the mean dwell times. Lower boundaries were set to ensure pa-

rameters estimated were positive and greater than 0. The open probability

(Po) is calculated as qco∞
qco∞+qoc∞

. Po is gathered from the experimental data by

calculating the ratio of open to closed events. The transition rates and Po at

differing Ca2+ concentrations for both models are presented in Table 4.1

Latency distributions

We simulate activation and deactivation latencies using our two-state model

described in Section 4.2.1. We replicate the experimental conditions by Mak

et al. (2007) and compare our results for the wild-type 1 IPR and E2002D-

type 1 IPR. Simulations are repeated 1000 times.
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Table 4.1: Transition rates and Po for the wild-type 1 IPR and E2002D-type 1
IPR models

Ca2+ (nm) Wild-type 1 IPR E2002D-type 1 IPR
qoc∞(s−1) qco∞(s−1) Po qoc∞ qco∞ Po

10 - - 0 - - 0
50 2.009 0.3933 0.1627 0.8527 0.1313 0.1305
200 0.9749 4.4678 0.8208 1.0773 1.0655 0.4948
1000 1.7389 5.6471 0.7645 1.0155 0.9006 0.4638
3000 1.5654 0.6536 0.2937 1.0903 0.3319 0.2259

100 000 - - 0 - - 0

Deterministic calcium dynamics

We use the same system of ODES presented in Chapter 3 (Cao et al., 2013),

to simulate the fluxes that influence the Ca2+ concentration, c, in the cytosol

as well as the Ca2+ dye, bfluo4.

dc

dt
= JincreaseNo + Jleak − Jdecrease − kon(Bfluo4 − bfluo4)c+ koffbfluo4

(4.12)

dbfluo4
dt

= kon(Bfluo4 − bfluo4)c− koffbfluo4 (4.13)

Parameter values for each model are detailed in Table 4.2.

Calcium puff statistics

We compare the Ca2+ puff statistics gathered from our Ca2+ trace with

those from the experimental data (see Chapter 2 for details). Due to the

stochastic nature of the biological process, there will be differences between

the data sets. However, a comparison of key statistical metrics enables us

to determine how well our model compares to the experimental data. Short
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Table 4.2: Wild-type 1 IPR and E2002D-type 1 IPR model parameters. IP3-
dependent parameters are evaluated at a concentration of 1 µm as indicated by
subscripts. Full model details are given in Cao et al. (2013).

Symbol Description Wild-type 1 IPR E2002D-type 1 IPR Units
Gating kinetics

aoc Basal level of qoc 1.21p=1µm 0.11 p=1µm s−1

Voc Gating-dependent part of qoc 55.29p=1µm 37.99 p=1µm s−1

aco Basal level of qco 0.02p=1µm 0.0024p=1µm s−1

Vco Gating-dependent part of qco 12.5 62.14 s−1

n−oc Hill coefficient for Ca2+ dependency of hoc∞ 0.35 1
k−oc Half-saturation constant for Ca2+ dependency of hoc∞ 0.952p=1µm 0.009p=1µm

hoc∞ Steady state of hoc

k
n−oc
−oc

cn−oc + k
n−oc
−oc

k
n−oc
−oc

cn−oc + k
n−oc
−oc

ahco Basal level of λhco (tuning parameter) 0.5 0.5 s−1

Vhco Ca2+-dependent part of λhco 100 100 s−1

Khco Half-saturation constant for Ca2+-dependency of λhco 20 20 µm

λhco Rate of approach to steady state of hco ahco +
Vhcoc

7

c7 +K7
hco

ahco +
Vhcoc

7

c7 +K7
hco

s−1

n−co Hill coefficient for Ca2+ dependency of hco∞ 3 3

k−co Half-saturation constant for Ca2+ dependency of hco∞ 0.17p=1µm 0.17p=1µm

hco∞ Steady state of hco

k
n−co
−co

cn−co + k
n−co
−co

k
n−co
−co

cn−co + k
n−co
−co

noc Hill coefficient for Ca2+ dependency of moc∞ 10 10

koc Half-saturation constant for Ca2+ dependency of moc∞ 0.11p=1µm 0.012p=1µm

moc∞ Steady state of moc
cnoc

cnoc + knoc
oc

cnoc

cnoc + knoc
oc

nco Hill coefficient for Ca2+ dependency of mco∞ 2 2

kco Half-saturation constant for Ca2+ dependency of mco∞ 0.718p=1µm 4.128p=1µm

mco∞ Steady state of mco
cnco

cnco + knco
co

cnco

cnco + knco
co

Ca2+ balance

ch Elevated Ca2+ in vicinity of open IP3R channel 120 120 µm
B Total buffer concentration 20 20 µm
kon Binding of fluo4 buffer to Ca2+ 150 150 µms−1

koff Unbinding of fluo4 buffer from Ca2+ 300 300 s−1

Jr Flux of Ca2+ through single channel 200 200 µms−1

Jleak Ca2+ influx from cluster environment 33 33 µms−1

Vd Rate of cytoplasmic Ca2+ removal from the cluster 4000 4000 µm s−1

Kd Half-saturation constant for cytoplasmic Ca2+ removal 12 12 µm
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experimental study time and inactive IP3R can lead to a limited data set.

To overcome this, one can pool the experimental data. We compare our IPI

distributions and those from the pooled experimental results by analysing

key statistical metrics, histograms and parameter values from the Gamma

distribution. Violin plots are used to compare the spread of the data and the

density of the distributions. We compare the experimental data with multiple

simulations of the same length. This enables us to ensure agreement between

the mathematically modelled Ca2+ puff data and the experimental data.

Numerical methods

We solve Eq (4.12), (4.13) using the fourth-order Runge-Kutta method. A

hybrid Gillespie algorithm is used to simulate the Markov models represent-

ing the IP3R channels (Alfonsi et al., 2005; Cao et al., 2013; Rüdiger, 2013).

A maximum time step size of 10-4s is used. Integrals in Eq (4.6) are calcu-

lated using the Riemann Sum, using a larger time step (10-2s). Alternative

methods of numerical integration, such as adaptive quadrature, Simpson’s

rule and the trapezoidal rule, were tested when computing the integrals in

our model. However, the Riemann Sum method produced similar results

under a small time-step of 10-2s and was less computationally challenging.

IP3 is set to 1µm for all simulations, replicating the experimental conditions

by Arige et al. (2022). We assume Ca2+ concentrations prior to time t0 are

constant and low at 0.1µm. τ is set to 3s. Ca2+ traces are run for a simu-

lation time of 400s. All results were gathered using MATLAB (MathWorks,

Natick, MA).
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4.3 Results

4.3.1 Single channel

Fig 4.2 shows the steady state transition rates and Po curves fit to the wild-

type 1 IPR and E2002D-type 1 IPR experimental data by Arige et al. (2022).

Due to the IP3R being consistently closed when the Ca2+ concentration was

10nm and 100µm transition rates could not be calculated. The fit of our

curves suggests these rates are high for qoc∞ and low for qco∞. Steady-state

transition rates for wild-type 1 IPR are faster than the E2002D-type 1 IPR.

Whilst the wild-type 1 IPR appears to respond to different Ca2+ concentra-

tions, shown by the decrease in qoc∞ when the Ca2+ concentration is 200nm,

the E2002D-type 1 IPR does not. This suggests that the E2002D mutation

causes the IP3R to be less responsive to Ca2+ concentrations between 200nm

and 3µm. For both the wild-type 1 IPR and E2002D-type 1 IPR, qco∞ follows

a bell shaped curve, peaking between 200nm and 1µm. However, qco∞ for the

E2002D IP3R are slower. The slower transition rates for both qoc∞ and qco∞

along with the lack of Ca2+ sensitivity will lead to the E2002D-type 1 IPR

being less responsive. Whilst qco∞ fits well to the experimental data, it is

evident in Fig 4.2 that qoc∞ does not. qoc∞ cannot model the decrease in the

transition rate observed in the E2002D-type 1 IPR data and only fits well to

two data points in the wild-type 1 IPR data.

The E2002D-type 1 IPR has a smaller Po than the wild-type 1 IPR, con-

sistent with experimental data. The maximum Po reached by the E2002D

curve is 0.56 compared with 0.83 for the wild-type 1 IPR curve when IP3 is

held constant at 10µm. The E2002D-type 1 IPR appears to be most greatly
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effected for Ca2+ concentrations between 200nm and 3µm. By basing our

IP3R model on the work of Cao et al. (2013), our transition rates include an

IP3 dependency. This allows us to simulate Po for different IP3 concentra-

tions. In Fig 4.2, we present Po for the wild-type 1 IPR and E2002D-type

1 IPR models when the IP3 concentration is 1µm. A maximum Po reached

by the wild-type 1 IPR curve is 0.017 and 0.002 by the E2002D-type 1 IPR

curve.
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Figure 4.2: Transition rate and open probability curves for the wild-type 1 IPR
and E2002D-type 1 IPR (Arige et al., 2022). Curves are fit using Eq 4.1-4.2 at
their steady state using parameters from Table 4.2.

4.3.2 Latency distributions

The latency distributions for the wild-type 1 IPR, E2002D-type 1 IPR and

Mak et al. (2007) data can be observed in Fig 4.3. We replicate the ex-
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perimental study by Mak et al. (2007) by switching the Ca2+ concentration

between low (10nm), intermediate (2µm) and high (300µm). Our latency

distributions are log-transformed and compared to the results by Mak et al.

(2007), presented on the right in Fig 4.3. The maximum peak activation

latency for the wild-type 1 IPR is 0.19s when responding to a step change in

Ca2+ concentration from 10nm to 2µm in comparison to the faster response

of the E2002D (0.008s). The maximum peak activation latency for a step

change from 300µm to 2µm was the same for both IP3R types (3s). When

responding to a step change in Ca2+ concentration from 2µm to 10nm and

2µm maximum peak deactivation latencies from the E2002D-type 1 IPR were

longer than those from the wild-type 1 IPR at 0.75s and 0.57s in comparison

to 0.21s and 0.33s, respectively.

4.3.3 Ca2+ puffs

Fig 4.4 presents the Ca2+ trace using our parameterised IP3R cluster models.

Our models produce Ca2+ puffs of the desired shape i.e. the high increase

in Ca2+ concentration, from the opening of several IP3R, followed by a stag-

gered decrease in the Ca2+ concentration as the IP3Rs close. The wild-type

1 IPR is more active than the E2002D-type 1 IPR evidenced by the contin-

ual fluctuations in Ca2+ concentration. The E2002D-type 1 IPR has longer

intervals and spends more time at the resting Ca2+ concentration. Along-

side the more frequent openings of the wild-type 1 IPR, more channels open

during Ca2+ events, with a maximum of 5 IP3R opening during a Ca2+ puff

in comparison to 3 from the E2002D-type 1 IPR model.

In Fig 4.5 we compare the behaviour of the gating variables for the wild-
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Figure 4.4: Example of Ca2+ trace produced by the wild-type 1 IPR and E2002D-
type 1 IPR models.
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type 1 IPR and E2002D-type 1 IPR models. We use the average of the

gating variable values over the entire IP3R cluster. Due to us making a quasi-

steady-state approximation, moc, hoc and mco go immediately to steady state,

whereas hco relies on past Ca2+ concentrations. A key difference between the

gating variable dynamics for the wild-type 1 IPR and E2002D-type 1 IPR

models is that moc and hoc do not respond as significantly to changes in

Ca2+ concentrations for the E2002D-type 1 IPR. Furthermore, whilst mco

does respond to a change in Ca2+ concentration for the E2002D-type 1 IPR

it is not as great as the wild-type 1 IPR. mco can be interpreted as controlling

the opening of IP3R, therefore this lack of response from the mco E2002D-

type 1 IPR gating variable will cause fewer IP3R to open. hco can be seen to

fluctuate for both the wild-type 1 IPR and E2002D-type 1 IPR models. This

is because hco depends on Ca2+ concentrations from the previous 3s, and we

compute the average of hco across the entire cluster.

In Fig 4.6 we compare Ca2+ puff statistics from our models with the

pooled experimental data. The IPI distribution for the experimental and

simulated data of wild-type 1 IPR are in good agreement. Both distributions

appear to be exponentially distributed. In contrast the IPI distributions

for the E2002D-type 1 IPR experimental and simulated data are dissimilar.

The experimental IPI distribution is exponentially distributed whereas the

simulated IPI data fits to a Gamma distribution. A possible reason for

discrepancies between the E2002D-type 1 IPR experimental and simulated

IPI data could be the difference in their data point counts. Our wild-type

1 IPR simulated amplitudes are in good agreement with the experimental

data. Both data sets show a high proportion of short Ca2+ puffs. Our
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Figure 4.5: Comparison of gating variable behaviour in response to Ca2+ puffs
produced by the wild-type 1 IPR and E2002D-type 1 IPR Ca2+ puff models. The
average gating variable value is shown in blue and the Ca2+ concentration is
shown in black.
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model did not simulate the larger Ca2+ puffs seen within the experimental

data. Our E2002D-type 1 IPR model simulated Ca2+ puffs that have a

similar variance to the experimental data. However, whilst our Ca2+ puff

amplitude distribution has a very distinct peak, the experimental data does

not. The wild-type 1 IPR experimental and simulated duration distributions

are skewed to the right. The duration distribution from the experimental

data shows a very dominant peak in density. Durations simulated using

our wild-type 1 IPR model show a peak in a similar region with a lower

density. This result is also seen in the E2002D-type 1 IPR duration data.

The experimental duration distribution has a peak at ≈ 0.075s and a small

variation. Whilst our E2002D-type 1 IPR duration distribution peaks in a

similar area as the experimental data, the variability of the data is much

larger. Full summary statistics for the Ca2+ puff statistics are presented in

Table 4.3.

The simulated and experimental wild-type 1 IPR IPI distributions are ex-

ponentially distributed, evidencing at the high frequency of Ca2+ puff events.

The wild-type 1 IPR data has a higher IPI mean (1.25s) compared to the

simulated IPIs (0.72s). Median IPIs are closer in comparison. The maximum

IPI from the wild-type 1 IPR experimental data is over two times greater

than the maximum IPI simulated from our model. When considering the

IPI distribution for the E2002D-type 1 IPR experimental data we see two

groups of data. However, the cause for this may be the small data set. The

mean IPI from the E2002D-type 1 IPR model is higher than that from the

experimental data (3.65s compared to 1.93s). This value will be skewed by

the higher IPIs in our model. Although the time between Ca2+ puffs is often
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longer in our model, if the experiments were conducted for longer periods we

would expect longer IPIs. Whilst the IPI distribution for the E2002D-type

1 IPR experimental data is exponentially distributed, the results from our

simulation are not.

The wild-type 1 IPR and E2002D-type 1 IPR produce Ca2+ puffs of a

low amplitude. The median Ca2+ puff amplitude for our wild-type 1 IPR

model (437.53nm) is larger than the experimental data (348.69nm). How-

ever, the mean Ca2+ puff amplitude is smaller (583.41nm) compared to the

experimental data (740.89nm). The maximum Ca2+ puff amplitude for the

experimental data is greater than the simulated results (10 668.58nm com-

pared to 2370.27nm). Ca2+ puff amplitudes produced by the E2002D-type

1 IPR model fall within a similar range to the experimental data. Whilst

the median and mean Ca2+ puff amplitude is smaller for the model results

compared to the experimental data (467.78nm and 527.93nm compared to

624.42nm and 655.58nm, respectively), the maximum Ca2+ puff amplitude is

similar (1899.66nm compared to 1908.57nm).

Ca2+ puff durations are often very short with the wild-type 1 IPR and

E2002D-type 1 IPR experimental data having a mean of 0.09s and 0.07s,

respectively. Our models are able to produce similar Ca2+ puff duration’s,

with means of 0.12s and 0.11s. Furthermore, the wild-type 1 IPR experi-

mental data has longer Ca2+ puff durations with a maximum of 0.48s. Our

wild-type 1 IPR model produces a maximum duration of 0.4s. The maximum

Ca2+ puff duration from the E2002D-type 1 IPR data is shorter than that

produced by our E2002D-type 1 IPR model, 0.16s compared to 0.31s.

In Fig 4.7 we present violin plots used to compare the distribution shape
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Figure 4.6: Comparison of simulated Ca2+ puff statistics and pooled experimental
data by Arige et al. (2022).
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Table 4.3: Comparison of Ca2+ puff summary statistics gathered from the wild-
type 1 IPR and E2002D-type 1 IPR models and experimental data

IP3R
Statistical
metric

Simulated Pooled Experimental
IPI (s) Amplitude (nm) Duration (s) IPI (s) Amplitude (nm) Duration (s)

Wild-
type 1
IPR

Min < 0.001 193.29 0.02 0.02 14.77 0.02
Q1 0.22 284.69 0.06 0.32 157.64 0.06

Median 0.54 437.53 0.1 0.68 348.69 0.08
Mean 0.72 583.41 0.12 1.25 740.89 0.09
Q3 1.07 710.20 0.16 1.64 938.54 0.1
Max 3.91 2370.27 0.40 10.06 10668.58 0.48

E2002D-
type 1
IPR

Min 0.04 197.62 0.02 0.02 61.69 0.04
Q1 1.17 302.60 0.06 0.41 248.99 0.05

Median 2.96 467.78 0.10 1.8 624.42 0.06
Mean 3.65 527.93 0.11 1.93 655.58 0.07
Q3 4.79 669.93 0.15 3.24 987.55 0.08
Max 18.34 1899.66 0.31 5.44 1908.57 0.16

Table 4.4: Comparison of parameters for the Gamma distribution

IP3R
Simulated Experimental
α β α β

Wild-type 1 IPR 0.9595 1.3287 0.8728 2.3288
E2002D-type 1 IPR 1.2492 0.3427 0.8931 0.4639

of the Ca2+ puff statistics. The white symbol in each violin plot displays me-

dian values. The white line on the violin plots depicts the mean of each data

set. Violin plots of the wild-type 1 IPR IPIs from both simulated and exper-

imental data show a concentrated distribution around the mean and median

values. The experimental data has longer IPIs compared to the simulated

data. In comparison to the wild-type 1 IPR IPI data, the E2002D-type 1

IPR IPI data has a broader shape but maintains the uni-modal distribution.

Our E2002D-type 1 IPR model simulated longer IPIs than those seen within

the experimental data. The large difference between the frequency of Ca2+

puffs in the wild-type 1 IPR and E2002D-type 1 IPR data can be seen in the

violin plots. This is shown by the data points displayed in the plot which

highlight a higher density within the wild-type 1 IPR data.

Except for some higher Ca2+ puff amplitudes in the wild-type 1 IPR
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experimental data, the shape of the violin plots for the simulated and exper-

imental wild-type 1 IPR amplitude data are similar. These results are also

consistent with the E2002D-type 1 IPR data. The violin plots for the wild-

type 1 IPR duration data have a similar density and variability. As shown

in Fig 4.6, our wild-type 1 IPR model produces Ca2+ puff durations that are

longer than those seen in the experimental data. This result is also evident

in the E2002D-type 1 IPR data set.

We have shown our Ca2+ puff model produces IPI, puff amplitude and

puff duration that are in good agreement with the pooled experimental data.

To analyse this further, we randomly select a 60 second sub-interval from our

Ca2+ traces and compare our puff statistics to those from an experimental

data set. We choose 60 seconds as this is the same time frame used in the

experiments by Arige et al. (2022) and sample 10 times from our simulated

data to compare with each of the experimental wild-type 1 IPR data sets.

The frequency of Ca2+ events produced by an E2002D-type 1 IPR is so small

these results are not suitable to be compared using histograms, therefore we

compare the data using a point-by-point comparison of our model statistics

with the experimental data. We repeated the sampling from our E2002D-type

1 IPR model 5 times, in line with the number of experimental groups used

to produce the pooled E2002D-type 1 IPR statistical distributions described

in Chapter 2. An example of our results, presented in Fig 4.8, shows for a

time period equivalent to that used in the experimental studies, our wild-

type 1 IPR model produces a similar IPI distribution, has an amplitude

distribution of a similar variation and duration distribution with a similar

mode. However, the duration distribution from the wild-type 1 IPR model
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Figure 4.7: Violin plots comparing the Ca2+ puff statistics for the wild-type 1
IPR and E2002D-type 1 IPR models and experimental data results.
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has a larger variation. Comparison of our 60s subsets with each wild-type 1

IPR experimental data group is presented in Fig A.4-A.5. Results from our

E2002D-type 1 IPR model are comparable with the experimental results.

Comparisons of each E2002D-type 1 data set is shown in Fig A.6.

Our results show we can successfully simulate similar IPI distributions,

Ca2+ puff amplitudes and Ca2+ puff durations to the experimental data.

From our results, we have shown that our model can accurately produce the

same Ca2+ puff results as the wild-type 1 IPR data (Arige et al., 2022). This

suggests that our model could be used to understand the IP3R behaviour for

longer periods that are not feasible within experimental studies.

4.4 Chapter discussion

Mathematical models can support understanding the effect of molecular

changes on the IP3R. Through parameterising models for both wild-type

1 IPR and E2002D-type 1 IPR, one can identify the differences between the

models and relate this to the biological changes made to the IP3R. The pri-

mary aim of this chapter was to parameterise two hybrid stochastic systems,

based on the model presented in Chapter 3, that can simulate Ca2+ puffs

representative of experimental data (Arige et al., 2022).

The stochastic behaviour of the IP3R is influenced by the positive and

negative feedback effects of Ca2+ (Berridge, 1997). Arige et al. (2022) state

the negative charge on the side chain residue at the 2002 position in hIP3R1

is critical for binding to Ca2+. Whilst it is evident within the analysis of

the experimental data (see Chapter 2) that the substitution at the 2002 glu-

tamic acid residue with aspartate causes a decrease in Po of the IP3R and
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Figure 4.8: Comparison of Ca2+ puff statistics from a 60 second subset of our
simulated Ca2+ trace with data from one experimental group.
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thus, a decrease in Ca2+ puff activity, here we want to understand mathe-

matically, why this is and how can we relate the changes that occur within

our mathematical model to the biological processes.

Hierarchical mechanistic models which begin with building a single chan-

nel model and develop into an IP3R cluster model allow us to understand

how single IP3R dynamics influence Ca2+ puffs (Islam, 2020). A single IP3R

with a high Po is more likely to respond to Ca2+ and trigger a response from

neighbouring IP3R . However, if Po is decreased the IP3R becomes less likely

to open. This can reduce the frequency of Ca2+ puff events and lead to longer

IPIs and shorter Ca2+ puff amplitudes. The positive and negative feedback

of an IP3R to Ca2+ influences Ca2+ puff amplitude (Berridge, 1997). There-

fore, a change to the feedback of a single IP3R can impact the amplitude of

Ca2+ puffs.

We compared the steady-state transition rates for the wild-type 1 IPR

and E2002D-type 1 IPR models. Due to the IP3R being in a consistent

closed state when the Ca2+ concentration was 10nm and 100µm, we were

unable to calculate the transition rates. As described in the Results section,

the fit of our curve shows qoc∞ is high and qco∞ is low at these concentrations.

These results are similar to the transition curves of Siekmann et al. (2012);

Cao et al. (2014). Our results show that although qco∞ is lower for the

E2002D-type 1 IPR, the transition rate for both models is largest when the

Ca2+ concentration is between 200nm and 1µm. In comparison, for the wild-

type 1 IPR model, qoc∞ decreases between 200nm and 1µm. This behaviour

is akin to previous IP3R models (Siekmann et al., 2012; Cao et al., 2013,

2014). Interestingly, for the E2002D-type 1 IPR, qoc∞ is similar for Ca2+
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concentrations between 50nm and 1µm. This difference in the qoc∞ transition

rate for the wild-type 1 IPR and E2002D-type 1 IPR suggests the substitution

at the 2002 glutamic acid residue causes a loss of Ca2+ sensitivity as the

transition rate qoc∞ is not affected by changes in Ca2+ concentration. The fit

of qoc∞ to the experimental data could be considered poor, more specifically

for the E2002D-type 1 IPR. Our model is not able to fit the lower transition

rate seen at 10nm. This may suggest that the equations for qoc∞ do not

correctly represent the behaviour of the E2002D-type 1 IPR. However, we

see a good fit to qco∞ and Po. Due to this, one could argue that the transition

from the closed to open state is the main driver behind IP3R behaviour.

The difference between the transition rates for the wild-type 1 IPR and

E2002D-type 1 IPR models was investigated further through a comparison of

the gating variables. The moc, hoc,mco and hco gating variables can be con-

sidered activation and inhibition variables controlling the transition rates qoc

and qco (Cao et al., 2013). mco and hco control the activation and termination

of Ca2+ puffs (Cao et al., 2013). In the wild-type 1 IPR model, mco repli-

cated a similar shape to the Ca2+ puff whereas in the E2002D-type 1 IPR

model, mco did not respond as greatly (see Fig 4.5). Similarly, gating vari-

ables associated with qoc, moc and hoc, were not sensitive to changes in Ca2+

concentration in the E2002D-type 1 IPR model. moc remained high and hoc

remained low, thus effecting qoc. The subsequent effect of the E2002D-type 1

IPR not responding to Ca2+ concentrations that would otherwise stimulate

a healthy IP3R is that fewer IP3R open, therefore leading to infrequent Ca2+

puff events and smaller Ca2+ puff amplitudes.

A difficulty within parameterising our models lies in firstly, the large



4.4 Chapter discussion 157

number of parameters required to model the gating variable dynamics and

secondly, having access to patch clamp data from one IP3 concentration.

Maximal Po vary upon cell type, with Swaminathan et al. (2009) reporting

values between <0.01 and 0.5 for IP3 concentrations of 2µm. Wagner and

Yule (2012) state a Po value of 0.27 for rhIP31 at an IP3 concentration of

1µm. Our maximal Po for the wild-type 1 IPR model at IP3=1µm was 0.017,

therefore conforms with prior results. The maximal Po for the E2002D-type

1 IPR is greatly affected, reducing to 0.0016.

Both of our IP3R cluster models were able to produce attributes of the

Ca2+ puffs seen within the experimental data. Our wild-type 1 IPR model

can capture the exponential decay evidenced in the experimental IPI distribu-

tion as well as having Ca2+ puffs that are of similar amplitude and duration.

Whilst our model did not produce Ca2+ puffs of a high amplitude during our

simulation, the number of IP3R in a cluster within our model could enable

this to happen. Longer simulations would be required to determine if this

is the case. 60 second subsets of our simulated wild-type 1 IPR Ca2+ trace

produced comparable Ca2+ puff statistics to different experimental groups.

A notable difference when comparing the experimental and simulated IPI

distributions from the pooled E2002D-type 1 IPR data is that the experimen-

tal data is exponentially distributed whereas the simulated data is gamma

distributed. The result from our model suggests the E2002D-type 1 IPR does

have a refractory period. An advantage of our model is that we can simulate

longer Ca2+ traces than capable under experimental conditions, therefore we

can capture more data and a possible refractory period that is missed in ex-

periments. Furthermore, the maximum IPI from the simulated data is over
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three times greater than the experimental result. Again, the longer simu-

lation time from our mathematical model will pick up the longer IPIs that

would be missed in experimental studies that are 60 seconds long. Compari-

son of the spread and density of the IPI, Ca2+ puff amplitude and Ca2+ puff

duration distributions indicated simulated results are similar to the exper-

imental data. Due to the infrequency of Ca2+ events in the E2002D-type

1 IPR simulated and experimental data, comparison of Ca2+ puff statistics

using histograms was not possible. Instead, we opted for comparing the data

by point-by-point comparison, ensuring our model produced Ca2+ statistics

within the same range as the experimental data. Our E2002D-type 1 IPR

model produced Ca2+ puff amplitudes of a similar range to the experimental

data, however IPIs were often longer.

Latency distributions can provide valuable insights into how a single IP3R

responds to changes in ligand concentration. Previous studies have shown

that the successful modelling of Ca2+ puffs relies on stationary single channel

and latency data (Ullah et al., 2012a; Cao et al., 2013, 2014). To parameterise

their Markov models, researchers such as Ullah et al. (2012a) and Cao et al.

(2013), use the experimental results by Mak et al. (2007). Our models have

two states therefore they cannot generate the multi-modal distribution ob-

served in the experimental results presented by Mak et al. (2007). However,

the activation and deactivation latency’s maximum peak of the wild-type

1 IPR appears to be similar to the results obtained in the experiments by

Mak et al. (2007) and the simulations by Cao et al. (2013). The average

deactivation latencies were longer for the E2002D-type 1 IPR. These results

suggest the E2002D-type 1 IPR takes longer to recover from activating Ca2+
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concentrations.

In this chapter, we have demonstrated that a simple two-state Markov

model can be used to simulate the behaviour of wild-type 1 IPR and E2002D-

type 1 IPR and show that using this model we can produce Ca2+ puffs char-

acteristic of the experimental data. We achieve this by, firstly, parameterising

a two-state continuous time Markov model using patch clamp data (Arige

et al., 2022). Stationary transition rates were calculated using the inverse

of the mean open and closed time of the IP3R. To account for the delay

in the IP3R opening (Mak et al., 2007) our model uses integral terms that

can be interpreted as the IP3R averaging over past Ca2+ concentrations (see

Chapter 3 for details). The latency distributions for the two models were

simulated and compared.

Using our parameterised single channel models, we built IP3R cluster

models and simulated Ca2+ traces for 400s. To determine the accuracy of

our model at simulating Ca2+ puffs that have the same characteristics as the

experimental data we compared the IPIs, Ca2+ puff amplitudes and Ca2+

puff duration’s qualitatively and quantitatively. Our Ca2+ puffs followed the

same characteristics as the experimental data, exhibiting a rapid rise in Ca2+

concentration followed by a slower decrease (Berridge, 1997). We compared

Ca2+ puff statistics with pooled experimental data. With the aim of direct

comparison between the simulated and experimental data, we took random

60 second subsets from our longer Ca2+ trace and compared the Ca2+ puff

statistics with individual experimental groups.

A key aspect within IP3R modelling is modal gating (Siekmann et al.,

2016). Whilst we chose to focus on the Ca2+ dynamics within our research,
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future investigations could include building upon our two-state models to

create IP3R models that can simulate modal gating behaviour seen within

the experimental data (Arige et al., 2022).



5
Discussion

5.1 Discussion

Ca2+ plays a crucial role in supporting the regulation of cellular processes

within the human body (Berridge et al., 2000). The control of Ca2+ ions

by ion channels causes cellular physiological changes that allow humans to

function (Islam, 2020). For example, the contraction of muscles, firing of

neurons, release of insulin from the pancreas and secretion of fluid from sali-

vary glands all rely on a healthy Ca2+ signalling system (Capener et al.,

2002; Bezprozvanny, 2009; Rückl et al., 2015; Han et al., 2017). However, an

abnormal Ca2+ signalling system has been linked with a vast array of human

diseases, such as heart failure, neurological conditions, diabetes and cancers

(Etcheberrigaray et al., 1998; Berridge, 2003; Pchitskaya et al., 2018; Tong

et al., 2018; Islam, 2020; Grady and Morgan, 2021; Klocke et al., 2023). Ex-

perimentalists have investigated the effect of mutation on the IP3R activity.

Mutations can affect IP3R binding, decrease channel activity and cause a lack

of Ca2+ release (Terry et al., 2020; Arige et al., 2022). This change in the

IP3R activity can be detrimental to individual health, having been linked

to diseases such as ataxia, Gillespie syndrome, and generalized anhidrosis

(Terry et al., 2020).
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Mathematical models of the Ca2+ signalling are often complex, requiring

a high number of parameters to be able to account for both IP3R and Ca2+

dynamics. However, when parameterised using experimental data, they can

provide insights into the Ca2+ signalling system that may be difficult to

uncover under experimental conditions.

In this thesis, we presented a hybrid stochastic system based on integrod-

ifferential equations. Using our model we were able to accurately simulate

the IP3R and Ca2+ dynamics seen within experimental data and previous

Ca2+ puff models (Cao et al., 2013, 2014). By incorporating integrodiffer-

ential equations into our IP3R model, we had the advantage of being able

to investigate the idea of IP3R memory. We then parameterised our model

using stationary single channel and Ca2+ puff data from Arige et al. (2022),

creating two Ca2+ puff models.

In Chapter 2 we analysed data from three IP3R and compared the Ca2+

puff statistics from the different data sets. Our results demonstrated that

exo 76 wild-type 1 IPR produces longer IPIs compared to wild-type 1 IPR

and E2002D-type 1 IPR. Furthermore, we found that the substitution at the

2002 glutamic acid residue with aspartic acid led to infrequent Ca2+ puffs

of a shorter amplitude. We then parameterised the exponential, gamma

and time-dependent (Thurley and Falcke, 2011) distributions using the IPI

data from each experimental data set. Results showed the wild-type 1 IPR

and E2002D-type 1 IPR recover quickly from Ca2+ inhibition in comparison

to exo 76 wild-type 1 IPR. We compared the statistical distributions by

calculating information criteria. We determined that statistically the gamma

distribution provided the best representation of all IPI data sets because it
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can capture the presence of latent and non-latent behaviour of the IP3R .

This is the first time, to our knowledge, that information criteria have been

used to compare statistical distributions for IPI distributions.

In Chapter 3 we built a hybrid stochastic system based on integrodiffer-

ential equations. Beginning with the Cao et al. (2013) model, which uses

gating variables to simulate the delay in the IP3R responding to change in

Ca2+ concentration, we turned the ODEs representing the gating variables

into integral terms using the method by Brady (1972). This gave us the

advantage of being able to directly compare our model results to those by

Siekmann et al. (2012); Cao et al. (2013) and investigate IP3R memory. We

simplified our six-state model, creating a reduced six-state and two-state

Markov model that produces comparable results to more complex models.

Our model results show the IP3R requires “knowledge” of past Ca2+ con-

centrations to produce Ca2+ puffs, however infinite integrals, that would rep-

resent an “infinite memory” are computationally unfeasible and in our opin-

ion, not biologically realistic. By introducing the integrals as finite terms,

our model has the advantage of analysing how changes to the delay term, τ ,

impact IP3R and Ca2+ dynamics. We find that the IP3R does not require

an infinite memory, however, one that is sufficiently long. Our model uses

a delay length of 3s. Experimental results by Mak et al. (2007) have shown

the IP3R does not respond immediately to step changes in ligand concen-

trations. Our model, through incorporating the integral terms, was able to

account for this latent behaviour. Results showed that Ca2+ puffs were not

produced when the length of the delay term, τ , was short and only took

into account the current Ca2+ concentration. This, along with results by
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Mak et al. (2007), contrast the view of Villalba-Galea and Chiem (2020) who

stated ligand-gated ion channels are unaffected by previous exposures of the

receptor to the ligand.

We replicated the experimental conditions by Mak et al. (2007) for each

model. Activation latencies simulated by the six-state model from a step

change in Ca2+ concentration 10nm to 2µm were longer than those produced

by Mak et al. (2007). However, activation latencies simulated by the reduced

six-state and two-state models are comparable with those produced by Mak

et al. (2007). This indicates IP3R activation only requires “knowledge” of

the recent or small portion of the past calcium concentration.

In the final chapter of this thesis, Chapter 4, we used stationary single

channel data from wild-type 1 IPR and E2002D-type 1 IPR (Arige et al.,

2022) to parameterise a two-state Markov model and built an IP3R cluster

model to simulate Ca2+ puffs. We compared our simulated results with the

experimental results and considered how the models differ to understand

the biological differences between the two IP3R. Results showed our hybrid

stochastic systems could simulate the same Ca2+ puff dynamics seen within

experimental conditions. Arige et al. (2022) state the negative charge on the

side chain residue at the 2002 position in hIP3R1 is critical for Ca2+ binding.

This is shown by the substitution at the 2002 glutamic acid residue with

aspartic acid leading to inactivity in the hIP3R1. Using our model, we showed

that this mutation causes the gating variables to be less responsive to change

in Ca2+ concentrations. This leads to longer IPIs and shorter Ca2+ puff

amplitudes. To accurately compare the experimental and simulated data, we

took a random 60 second subset of our model results and compared this with
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data from an experimental group. Results were comparable, indicating our

mathematical model can be used to provide details that would be provided

from longer experimental conditions.

5.2 Future work

The analysis of stochastic models is often a considerable computational chal-

lenge. Understanding stochastic dynamics generally requires time-consuming

simulations which then need to be analysed statistically. However, for hybrid

stochastic systems, time-dependent probability densities for the states of the

Markov model depending on the continuous variables of the ODE system

coupled to the Markov model can be calculated from a system of determinis-

tic partial differential equations (PDEs). Future research could explore how

the open and closed time distributions depend on Ca2+ and the fluorescent

buffer. Similar to the open and closed time distributions for models of single

ion channels, the open and closed time densities are very useful for gaining

general insights into the model behaviour. An interesting question to con-

sider would be how the probability density functions differ depending on how

healthy the ion channel is, as demonstrated by Tveito and Lines (2016). This

approach has already been applied in both cellular biology and predator-prey

models (Tveito and Lines, 2016; Bressloff and Maclaurin, 2018; Hawker and

Siekmann, 2023). Furthermore, we suggest there could be development of

the models produced within this thesis. Firstly, an attempt could be made

to simplify the integrodifferential equation proposed within our model. If

successful, this would result in a kernel integrated into our ODE model. The

kernel could thus be parameterised easily with single-channel data, such as
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that by Mak et al. (2007). A second development could include incorporating

modal gating into the IP3R model. Whilst complex, these detailed models

would provide even more distinguishable differences between the wild-type

1 IPR and E2002D-type 1 IPR. For example, we could answer questions

such as how many modes do the IP3R have and do the number of states

within the models differ? This would provide interesting insight into the

IP3R structure.
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Appendix

A.1 IPI distributions parameterised using sta-

tistical distributions

In Fig A.1, we present the IPI distributions from the pooled experimental

data with the parameterised Exponential, Gamma and Time-Dependent dis-

tributions. Whilst the exo 76 wild-type 1 IPR and wild-type 1 IPR pooled

data appear to have a refractory period, shown by the gradual increase in

IPIs, the E2002D-type 1 IPR display an Exponential distribution. Parameter

estimations for each statistical distribution are presented in Chapter 2. The

Gamma and Time-Dependent distribution qualitatively fit the pooled exo

76 wild-type 1 IPR IPI distribution best as they describe the shorter IPIs.

Whilst the wild-type 1 IPR IPI distribution hints at a possible refractory

period, all three statistical distributions do not describe this behaviour. The

E2002D-type 1 IPR IPI distribution appears to be exponentially distributed,

with a higher frequency of short IPIs. All statistical distributions model

this exponential decay, however, it is difficult to determine if this is the true

nature of the E2002D-type 1 IPR due to the small number of data points

available.
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Figure A.1: Comparison of pooled IPI distributions for the exo 76 wild-type 1
IPR, wild-type 1 IPR and E2002D-type 1 IPR. All IPI distributions are fit with
the Exponential (black line), Gamma (blue dot-dashed line) and Time-Dependent
(red dashed line) distributions.
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A.2 Kolmogorov Smirnov test for the pooled

exo 76 wild-type 1 IPR and wild-type 1

IPR IPI distributions

Fig A.2 shows the empirical and model CDF for the exo 76 pooled wild-type

1 IPR IPI distributions. The Exponential CDF does not fit well with the

empirical CDF. We reject Ho at the 5% significance level for the Exponential

distribution. P-values and test statistics can be found in Table 2.5.

In Fig A.3 we present the empirical and model CDF for the pooled wild-

type 1 IPR IPI distributions. Our test statistics, presented in Table 2.3.2,

demonstrate the Exponential distribution has the largest difference from the

empirical CDF. This can be seen within Fig A.3; the Gamma and Time-

Dependent distributions have a much closer fit to the pooled experimental

data.

A.3 Comparison of simulated and experimen-

tal Ca2+puff statistics for wild-type 1 IPR

and E2002D-type 1 IPR

In Fig A.4-A.5 we compare the Ca2+ puff statistics taken from 60s subsets

of our simulated wild-type 1 IPR model, presented in Chapter 4, with each

group of experimental wild-type 1 IPR data. Our results demonstrate that

when considering 60s subsets of our wild-type 1 IPR model, we can produce

similar IPI distributions to the experimental data. Ca2+ puff amplitude



172 Appendix

0 5 10 15 20 25

x

0

0.2

0.4

0.6

0.8

1

F
(x

)

Exponential Distribution

Empirical CDF
Exponential CDF

0 5 10 15 20 25

x

0

0.2

0.4

0.6

0.8

1

F
(x

)

Gamma Distribution

Empirical CDF
Gamma CDF

0 5 10 15 20 25

x

0

0.2

0.4

0.6

0.8

1

F
(x

)

Time-Dependent Distribution

Empirical CDF
Time-Dependent CDF

Figure A.2: Comparison of the Exponential, Gamma and Time-Dependent cumu-
lative density function with the empirical cumulative distribution function from
the pooled exo 76 wild-type 1 IPR IPI data.
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lative density function with the empirical cumulative distribution function from
the pooled wild-type 1 IPR IPI data.
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distributions were similar for 6 of our data sets, however, the experimental

data often have a longer tail. Whilst our Ca2+ puff duration distributions

have a similar mode to the experimental data, they were more variable.

In Fig A.6 we compare the Ca2+ puff statistics taken from random 60s

subsets of our simulated E2002D-type 1 IPR model, presented in Chapter

4, with each group of experimental E2002D-type 1 IPR data. Due to the

sample size of the experimental data sets, we cannot compare our results us-

ing histograms and instead opt for a point-by-point comparison. Our results

demonstrate our model simulates longer IPIs and Ca2+ puff durations com-

pared to the experimental data. The range of Ca2+ puff amplitudes is similar

across the simulated and experimental groups. One experimental group has

very short Ca2+ puff amplitudes - this is not replicated in the random subsets

selected from our model.
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Figure A.4: Comparison of Ca2+puff statistics taken from 60s subsets of our
simulated wild-type 1 IPR model with experimental data sets 1-5 from Chapter
2.
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Figure A.5: Comparison of Ca2+puff statistics taken from 60s subsets of our
simulated wild-type 1 IPR model with experimental data sets 6-10 from Chapter
2.
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Figure A.6: Comparison of Ca2+puff statistics taken from 60s subsets of our
simulated E2002D-type 1 IPR model with experimental data sets from Chapter
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Geneviève Dupont, Martin Falcke, Vivien Kirk, and James Sneyd. Models
of Calcium Signalling. Springer Cham, 2016. ISBN 9783319296456. doi:
https://doi.org/10.1007/978-3-319-29647-0.

Kyle L Ellefsen, Brett Settle, Ian Parker, and Ian F Smith. Cell calcium
an algorithm for automated detection , localization and measurement of
local calcium signals from camera-based imaging. Cell Calcium, 56:147–
156, 2014. ISSN 0143-4160. doi: 10.1016/j.ceca.2014.06.003. URL http:

//dx.doi.org/10.1016/j.ceca.2014.06.003.

Kyle L Ellefsen, Jeffrey T Lock, Brett Settle, Carley A Karsten, and Ian
Parker. Applications of flika, a python-based image processing and analysis
platform, for studying local events of cellular calcium signaling. Biochim-
ica et Biophysica Acta (BBA) - Molecular Cell Research, 1866:1171–1179,
2019. doi: 10.1016/j.bbamcr.2018.11.012.

Scott M. Emrich, Ryan E. Yoast, Ping Xin, Vikas Arige, Larry E. Wag-
ner, Nadine Hempel, Donald L. Gill, James Sneyd, David I. Yule, and
Mohamed Trebak. Omnitemporal choreographies of all five stim/orai and
ip3rs underlie the complexity of mammalian ca2+ signaling. Cell Reports,
34, 3 2021. ISSN 22111247. doi: 10.1016/j.celrep.2021.108760.
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