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Abstract

Automatically generating invariants, key to computer-aided analysis of probabilistic and
deterministic programs and compiler optimisation, is a challenging open problem. Whilst
the problem is in general undecidable, the goal is settled for restricted classes of loops. For
the class of solvable loops, introduced by Rodriguez-Carbonell and Kapur (in: Proceedings of
the ISSAC, pp 266-273, 2004), one can automatically compute invariants from closed-form
solutions of recurrence equations that model the loop behaviour. In this paper we establish a
technique for invariant synthesis for loops that are not solvable, termed unsolvable loops. Our
approach automatically partitions the program variables and identifies the so-called defective
variables that characterise unsolvability. Herein we consider the following two applications.
First, we present a novel technique that automatically synthesises polynomials from defective
monomials, that admit closed-form solutions and thus lead to polynomial loop invariants.
Second, given an unsolvable loop, we synthesise solvable loops with the following property:
the invariant polynomials of the solvable loops are all invariants of the given unsolvable loop.
Our implementation and experiments demonstrate both the feasibility and applicability of
our approach to both deterministic and probabilistic programs.
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Extension of previous work

This paper is an extended version of the conference paper ‘Solving invariant generation for
unsolvable loops’ published at SAS 2022 [1]. We extended the text and results from the
conference paper.

In addition, this paper brings the following two new contributions when compared to
our SAS 2022 paper [1]. First, we introduce an algorithmic approach (Algorithm 2) that
synthesises solvable loops from unsolvable loops, such that the polynomial invariants of
the solvable loop are also invariants of the unsolvable one. Second, we expand the list of
unsolvable loops (with new Examples 36-—43), drawn from the Mathematics and Physics
literature; our benchmarks yield a new test suite for evaluating loop analysis techniques and
demonstrate the feasibility of our approach.

1 Introduction
1.1 Background and motivation

With substantial progress in computer-aided program analysis and automated reasoning, sev-
eral techniques have emerged to automatically synthesise loop invariants, thus advancing a
central challenge in the computer-aided verification of programs with loops. In this paper,
we address the problem of automatically generating loop invariants in the presence of poly-
nomial arithmetic, which is still unsolved. This problem remains unsolved even when we
restrict consideration to loops that are non-nested, without conditionals, and/or without exit
conditions. Our work improves the state of the art under such and similar considerations.

Loop invariants, in the sequel simply invariants, are properties that hold before and after
every iteration of a loop. Invariants therefore provide the key inductive arguments for automat-
ing the verification of programs; for example, proving correctness of deterministic loops [2—6]
and correctness of hybrid and probabilistic loops [7-9], or data flow analysis and compiler
optimisation [10]. One challenging aspect in invariant synthesis is the derivation of poly-
nomial invariants for arithmetic loops. Such invariants are defined by polynomial relations
P(x1,...,xx) = 0 among the program variables xi, ..., xy. While deriving polynomial
invariants is, in general, undecidable [11], efficient invariant synthesis techniques emerge
when considering restricted classes of polynomial arithmetic in so-called solvable loops [2],
such as loops with (blocks of) affine assignments [3-6].

A common approach for constructing polynomial invariants, first pioneered in [12, 13],
is to (i) map a loop to a system of recurrence equations modelling the behaviour of program
variables; (ii) derive closed-forms for program variables by solving the recurrences; and (iii)
compute polynomial invariants by eliminating the loop counter n from the closed-forms.
The polynomial invariants resulting from step (iii) over-approximate the fixed point of the
loop. The central components in this setting follow. In step (i) a recurrence operator is
employed to map loops to recurrences, which leads to closed-forms for the program variables
as exponential polynomials in step (ii); that is, each program variable is written as a finite
sum of the form ) i P (n)kﬁ parameterised by the nth loop iteration for polynomials P; and
algebraic numbers A ;. From the theory of algebraic recurrences, this is the case if and only if
the behaviour of each variable obeys a linear recurrence equation with constant coefficients
[14, 15]. Exploiting this result, the class of recurrence operators that can be linearised are
called solvable [2]. Intuitively, a loop with a recurrence operator is solvable only if the non-
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z+—0 r,y «— 1,1
while x do while x do
z—1—2z we—T+Y
T 2r+y*+2 T — w?
y—2y—y*+2z y — w?
end while end while
Closed-form of = + y: Polynomial Invariant:
z(n) + y(n) = 2"(z(0) + y*(n) —2%(n) =0
y(0) +2) - (-1)"/2 - 3/2

(a) The program Prj. (b) The program Psc.

Fig. 1 Two running examples with unsolvable recurrence operators. Nevertheless, 7P admits a closed-form
for combinations of variables and Pgc admits a polynomial invariant. Herein we use  (rather than a loop
guard or true) as loop termination is not our focus. For the avoidance of doubt, in this paper we consider
standard mathematical arithmetic (e.g. mathematical integers) rather than machine floating-point and finite
precision arithmetic

linear dependencies in the resulting system of polynomial recurrences are acyclic (see Sect. 3).
However, even simple loops may fall outside the category of solvable operators, but still admit
polynomial invariants and closed-forms for combinations of variables. This phenomenon is
illustrated in Fig. 1 whose recurrence operators are not solvable (i.e. unsolvable). In other
works, the generation of polynomial invariants is usually limited to those variables that admit
closed-forms. In our work, specifically step (iii), we can generate polynomial invariants from
combinations of program variables that admit closed-forms (where individual variables may
fail to do so). This analysis can lead to a tighter over-approximation of a loop’s fixed point.
In general, the main obstacle in the setting of unsolvable recurrence operators is the absence
of “well-behaved” closed-forms for the resulting recurrences.

1.2 Related work

To the best of our knowledge, the study of invariant synthesis from the viewpoint of recur-
rence operators is mostly limited to the setting of solvable operators (or minor generalisations
thereof). In [2, 16] the authors introduce solvable loops and mappings to model loops with
(blocks of) affine assignments and propose solutions for steps (i)—(iii) for this class of loops:
all polynomial invariants are derived by first solving linear recurrence equations and then
eliminating variables based on Grobner basis computation. These results have further been
generalised in [3, 6] to handle more generic recurrences; in particular, deriving arbitrary expo-
nential polynomials as closed-forms of loop variables and allowing restricted multiplication
among recursively updated loop variables. The authors of [5, 17] generalise the setting: they
consider more complex programs and devise abstract (wedge) domains to map the invariant
generation problem to the problem of solving C-finite recurrences. (We give further details of
this class of recurrences in Sect. 2). All the aforementioned approaches are mainly restricted
to C-finite recurrences for which closed-forms always exist, thus yielding loop invariants. In
[9, 18] the authors establish techniques to apply invariant synthesis techniques developed for
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deterministic loops to probabilistic programs. Instead of devising recurrences describing the
precise value of variables in step (i), their approach produces C-finite recurrences describing
(higher) moments of program variables, yielding moment-based invariants after step (iii).

Pushing the boundaries in analyzing unsolvable loops is addressed in [5, 19]. The approach
of [5] extracts C-finite recurrences over linear combinations of loops variables from unsolv-
able loops. For example, the method presented in [5] can also synthesise the closed-forms
identified by our work for Fig. 1a. However, unlike [5], our work is not limited to linear
combinations (we can extract C-finite recurrences over polynomial relations in the loop vari-
ables). As such, the technique of [5] cannot synthesise the polynomial loop invariant in
Fig. 1b, whereas our work can. A further related approach to our work is given in [19], yet
in the setting of loop termination. However, our work is not restricted to solvable loops that
are triangular, but can handle mutual dependencies among (unsolvable) loop variables, as
evidenced in Fig. 1.

Related work in the literature introduces techniques from the theory of martingales in
order to synthesise invariants in the setting of probabilistic programs [20]. Therein, the
programming model is represented by a class of loop programs where all updates are linear
and the synthesised invariants are given by linear templates. By contrast, our method allows
us to handle polynomial arithmetic; in particular, we automatically generate invariants given
by monomials in the program variables. On the other hand, the approach of [20] can also
synthesise supermartingales whereas our work is restricted to invariants defined by equalities.

1.3 Our contributions

In this paper we consider the sister problems of invariant generation and solvable loop synthe-
sis in the setting of unsolvable recurrence operators. We introduce the notions of effective and
defective program variables where, figuratively speaking, the defective variables are those
“responsible” for unsolvability. Our main contributions are summarised below.

1. Crucial for our synthesis technique is our novel characterisation of unsolvable recurrence
operators in terms of defective variables (Theorem 14). Our approach complements exist-
ing techniques in loop analysis, by extending these methods to the setting of ‘unsolvable’
loops.

2. On the one hand, defective variables do not generally admit closed-forms. On the other
hand, some polynomial combinations of such variables are well-behaved (see e.g., Fig. 1).
‘We show how to compute the set of defective variables in polynomial time (Algorithm 1).

3. We introduce a new technique to synthesise valid linear relations in defective monomials
such that these relations admit closed-forms, from which polynomial loop invariants
follow (Sect.5).

4. Given an unsolvable loop, we introduce an algorithmic approach (Algorithm 2) that
synthesises a solvable loop with the following property: every polynomial invariant of
the solvable loop is also an invariant of the given unsolvable loop (Sect. 6).

5. We generalise our work to the analysis of probabilistic program loops (Sect.7) and
showcase further applications of unsolvable operators in such programs (Sect. 8).

6. We provide a fully automated approach in the tool Polar.! For evaluating our work, we
compiled an extensive lists of challenging loops from the literature, including applications
of mathematical and physical modelling. Our experiments demonstrate the feasibility
of invariant synthesis for ‘unsolvable’ loops and the applicability of our approach to
deterministic loops, probabilistic models, and biological systems (Sect.9).

1 https://github.com/probing-lab/polar.
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1.4 Beyond invariant generation

We believe our work can provide new solutions towards compiler optimisation challenges.
Scalar evolution® is a technique to detect general induction variables. Scalar evolution and
general induction variables are used for a multitude of compiler optimisations, for exam-
ple inside the LLVM toolchain [21]. On a high-level, general induction variables are loop
variables that satisfy linear recurrences. As we show in our work, defective variables do
not satisfy linear recurrences in general; hence, scalar evolution optimisations cannot be
applied upon them. However, some linear combinations of defective monomials do satisfy
linear recurrences, which opens avenues where we can apply scalar evolution techniques
over such monomials. In particular, our work automatically computes polynomial combina-
tions of some defective loop variables, which potentially enlarges the class of loops that, for
example, LLVM can optimise.

1.5 Structure and summary of results

The rest of this paper is organised as follows. We briefly recall preliminary material in
Sect.2. Section 3 abstracts from concrete recurrence-based approaches to invariant synthe-
sis via recurrence operators. Section4 introduces effective and defective variables, presents
Algorithm 1 that computes the set of defective program variables in polynomial time, and
characterises unsolvable loops in terms of defective variables (Theorem 14). In Sect.5 we
present our new technique that synthesises linear relations in defective monomials that admit
well-behaved closed-forms. In Sect. 6 we introduce Algorithm 2 to synthesise solvable loops.
That is, given an unsolvable loop, Algorithm 2 outputs a solvable loop, if it exists such that
each polynomial invariant of the solvable loop is also an invariant of the unsolvable loop. In
Sect.7 we detail the necessary changes to the algorithms in Sects.5 and 6 for probabilistic
programs. We illustrate our approach with several case-studies in Sect. 8, and describe a fully-
automated tool support of our work in Sect. 9. We also report on accompanying experimental
evaluation in Sects. 8-9, and conclude the paper in Sect. 10.

2 Preliminaries
2.1 Notation

Throughout this paper, we write N, @, and R to respectively denote the sets of natural,
rational, and real numbers. We write @, the algebraic closure of @, to denote the field of
algebraic numbers. We write R[xy, ..., xx] and Q[x1, ..., x] for the polynomial rings of all
polynomials P (x1, ..., xx) ink variables x, . . ., x; with coefficients in R and @, respectively
(with k € N and k # 0). A monomial is a monic polynomial with a single term.

For a program P, Vars(P) denotes the set of program variables. We adopt the following
syntax in our examples. Sequential assignments in while loops are listed on separate lines
(as demonstrated in Fig.1). In programs where simultaneous assignments are performed,
we employ vector notation (as demonstrated by the assignments to the variables x and y in
program Pyic in Example 5).

We refer to a directed graph with G, whose edge and vertex (node) sets are respectively
denoted via A(G) and V (G). We endow each element of A(G) with a label according to a

2 https://llvm.org/docs/Passes.html.
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labelling function £. A path in G is a finite sequence of contiguous edges of G, whereas a
cycle in G is a path whose initial and terminal vertices coincide. A graph that contains no
cycles is acyclic. In a graph G, if there exists a path from vertex u to vertex v, then we say
that v is reachable from vertex u and say that u is a predecessor of v.

2.2 Cfinite recurrences

We recall relevant results on (algebraic) recurrences and refer to [14, 15] for further
details. A sequence in Q is a function u: N — @, shortly written also as (u(m))o2,
or simply just (u(n)),. A recurrence for a sequence (u(n)), is an equation u(n+£) =
Rec(u(n+£—1), ..., u(n+1), u(n), n), for some function Rec: R¢*! — R. The number
£ € N is the order of the recurrence.

A special class of recurrences we consider are the linear recurrences with constant coef-
ficients, in short C-finite recurrences. A C-finite recurrence for a sequence (u(n)), is an
equation of the form

u(n+e) = ag_ju(n+€—1) + agou(n+£-2) + - - - + apu(n) (D
where ag, ...,a;—1 € Q are constants and ag # 0. A sequence (u(n)), satisfying a C-
finite recurrence (1) is a C-finite sequence and is uniquely determined by its initial values
upg = u(0), ..., ur—1 = u(€—1). The characteristic polynomial associated with the C-finite

recurrence relation (1) is

n+e nl—1

X —ap_1x Hx 2

ap_ coo—apx".

The terms of a C-finite sequence can be written in a closed-form as exponential polynomials,
depending only on n and the initial values of the sequence. That is, if (u(n)),, is determined by
a C-finite recurrence (1), thenu(n) = 22:1 Py (n)A} where Py (n) € Q[nland g, ..., A, are
the roots of the associated characteristic polynomial. Importantly, closed-forms of (systems
of) C-finite sequences always exist and are computable [14, 15].

2.3 Invariants

A loop invariant is a loop property that holds before and after each loop iteration [22]. In this
paper, we are interested in polynomial invariants, the class of invariants given by Boolean
combinations of polynomial equations among loop variables. There is a minor caveat to our
characterisation of (polynomial) loop invariants. We assume that a (polynomial) invariant
consists of a finite number of initial values together with a closed-form expression of a
monomial in the loop variables. Thus the closed-form of a loop invariant must eventually
hold after a (computable) finite number of loop iterations. Let us illustrate this caveat with
the following loop example.

Example1 x,y,z <« 0,1,0
while « do
x <1
y<y+x
z<z+1
end while

@ Springer



Formal Methods in System Design (2025) 65:163-194 169

The loop admits the polynomial invariant y — z — 1 = 0 given by the initial values
x(0) =0, y(0) =1, z(0) = 0 and the closed-forms x(n) = 1, y(n) = n + 1, and z(n) = n.
For each n > 1, we denote by v(n) the value of a loop variable v at loop iteration n.

Herein, we synthesise invariants that satisfy inhomogeneous first-order recurrence rela-
tions and it is straightforward to show that each associated closed-form holds for n > 1.

2.4 Polynomial invariants and invariant ideals

A polynomial ideal is a subset I € Q[x; , « -+, X¢] with the following properties: I contains
0; I is closed under gldition; andif P € Q[xy,...,x;]and Q € I,then PQ € I. For a set
of polynomials S € Q[xy, ..., xx], one can define the ideal generated by S by

1(S) :={s1q1 + -+ s¢qe | 5i € S, qi € Qlx1, ..., x¢], € € N}

Let P be a program as before. For x; € Vars(P), let (x;(n)),, denote the sequence whose
nth term is given by the value of x; in the nth loop iteration. The set of polynomial invariants
of P form an ideal, the invariant ideal of P [16]. If for each program variable x ; the sequence
(xj(n)), is C-finite, then a basis for the invariant ideal can be computed as follows. Let f; (n)
be the exponential polynomial closed-form of variable x ;. The exponential terms A7, ..., A
in each of the f;(n) are replaced by fresh symbols, yielding the polynomials g;(n). Next,
with techniques from [23], the set R of all polynomial relations among A7, ..., A7 (that hold
for each n € N) is computed. Then we express the polynomial relations in terms of the fresh
constants, so that we can interpret R as a set of polynomials. Thus

I(xj —gjm |1 <i <k UR) NQlx1, ..., xi]

is precisely the invariant ideal of P. Finally, we can compute a finite basis for the invariant
ideal with techniques from Grobner bases and elimination theory [23].

3 From loops to recurrences
3.1 Recurrence operators

Modelling properties of loop variables by algebraic recurrences and solving the resulting
recurrences is an established approach in program analysis. Multiple works [3, 5, 6, 17, 24]
associate a loop variable x with a sequence (x(n)), whose nth term is given by the value
of x in the nth loop iteration. These works are primarily concerned with the problem of
representing such sequences via recurrence equations whose closed-forms can be computed
automatically, as in the case of C-finite sequences. A closely connected question to this line of
research focuses on identifying classes of loops that can be modelled by solvable recurrences,
as advocated in [2]. To this end, over-approximation methods for general loops are proposed
in [5, 17] such that solvable recurrences can be obtained from (over-approximated) loops.

In order to formalise the above and similar efforts in associating loop variables with recur-
rences, herein we introduce the concept of a recurrence operator, and the characterisation
of both solvable and unsolvable operators. Intuitively, a recurrence operator maps program
variables to recurrence equations describing some properties of the variables; for instance,
the exact values at the nth loop iteration [2, 3, 17] or statistical moments in probabilistic
loops [9].
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Definition 2 (Recurrence operator) A recurrence operator R maps the program variables
Vars(P) to the polynomial ring R[Vars, (P)]. The set of equations

{x(n+1) = R[x] | x € Vars(P)}

constitutes a polynomial first-order system of recurrences. We call R linear if R[x] is linear
for all x € Vars(P).

One can extend the operator R to R[Vars(P)]. Then, with a slight abuse of notation, for
P(xy,...,x;) € R[Vars(P)] we define R(P) by P(R[x1], ..., R[x;]).

For a program P with recurrence operator R and a monomial over program variables
M = nerars(P) x% we denote by M (n) the product of sequences nerars(P) x% (n).
Given a polynomial P over program variables, P (n) is defined by replacing every monomial
M in P by M (n). For a set T of polynomials over program variables let 7,, := {P(n) | P €
T}.

Example 3 Consider the program Psc in Fig. 1b. One can employ a recurrence operator R in
order to capture the values of the program variables in the nth iteration. For v € Vars(Psc),
R[v] is obtained by bottom-up substitution in the polynomial updates starting with v. As a
result, we obtain the following system of recurrences:

w(n+1) = Rlw] = x(n) + y(n)
x(n+1) = R[x] = x(n)* + 2x(n)y(n) + y(n)*
Y+1) = Ryl = x(0)° + 3x(1) y(n) + 3x(n)y()* + y(n)’.
Similarly, for the program P of Fig. 1a, we obtain the following system of recurrences:
Z(n+1) =R[z] =1 — z(n)
x(n+1) = Rlx] = 2x(n) + y(n)* — z(n) + 1
y(+1) = Ryl = 2y() — y(n)* = 2z(n) + 2.

3.2 Solvable operators

Systems of linear recurrences with constant coefficients admit computable closed-form solu-
tions as exponential polynomials [14, 15]. This property holds for a larger class of recurrences
with polynomial updates, which leads to the notion of solvability introduced in [2]. We adjust
the notion of solvability to our setting by using recurrence operators. In the following def-
inition, we make a slight abuse of notation and order the program variables so that we can
transform program variables by a matrix operator.

Definition 4 (Solvable operators [2, 4]) The recurrence operator R is solvable if there exists
a partition of Vars,; that is, Vars, = W & - - - & Wy such that for x(n) € W;,

RIxl=M; W] + Pj(Wi, ..., W;_1)

for some matrices M; and polynomials P;. A recurrence operator that is not solvable is said
to be unsolvable.

This definition captures the notion of solvability in [2] (see the discussion in [4]).
We conclude this section by emphasising the use of (solvable) recurrence operators beyond
deterministic loops, in particular relating its use to probabilistic program loops. As evidenced
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in [9], recurrence operators model statistical moments of program variables by essentially
focusing on solvable recurrence operators extended with an expectation operator E( - ) to
derive closed-forms of (higher) moments of program variables, as illustrated below.

Example 5 Consider the probabilistic program Pyc of [25, 26] modelling a non-linear
Markov chain, where Bernoulli(p) refers to a Bernoulli distribution with parameter p. Here
the updates to the program variables x and y occur simultaneously.
while x do
s < Bernoulli(1/2)
if s = 0 then

X X +xy
() (1 ii%)
y 3X+ 3y +xy
else 5
()= (545
y 2y + 5xy
end if
end while

We can construct recurrence equations, in terms of the expectation operator E( - ), for this
program as follows:

E(sut1) = 3
E(nr1) = EGn) + 3EOw) + 2EG0yn)
E(nt1) = $EGn) + FEGn) + 2EGnyn).

4 Defective variables

To the best of our knowledge, existing approaches in loop analysis and invariant synthesis are
restricted to solvable recurrence operators. In this section, we establish a new characterisation
of unsolvable recurrence operators. Our characterisation pinpoints the program variables
responsible for unsolvability, the defective variables (see Definition 8). Moreover, we provide
a polynomial time algorithm to compute the set of defective variables (Algorithm 1), in order
to exploit our new characterisation for synthesising invariants in the presence of unsolvable
operators in Sect.5.

For simplicity, we limit the discussion in this section to deterministic programs. We note
however that the results presented herein can also be applied to probabilistic programs. The
details of the necessary changes in this respect are given in Sect. 7.

In what follows, we write M,,(P) to denote the set of non-trivial monomials in Vars(P)
evaluated at the nth loop iteration so that

Mo (P) = | [Tevans(py ¥ (1) | 3x € Vars(P) with o, # 0}

We next introduce the notions of variable dependency and dependency graph, needed to
further characterise defective variables.

Definition 6 (Variable dependency) Let P be a loop with recurrence operator R and x, y €
Vars(P). We say x depends on y if y appears in a monomial in R [x] with non-zero coefficient.
Moreover, x depends linearly on y if all monomials with non-zero coefficients in R[x]
containing y are linear. Analogously, x depends non-linearly on y if there is a non-linear
monomial with non-zero coefficient in R[x] containing y.
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Fig.2 The dependency graphs for Psc and P from Fig. 1

Furthermore, we consider the transitive closure for variable dependency. If z depends on
y and y depends on x, then z depends on x and, if in addition, one of these two dependencies
is non-linear, then z depends non-linearly on x. We otherwise say the dependency is linear.

For each program with polynomial updates, we further define a dependency graph with
respect to a recurrence operator.

Definition 7 (Dependency graph) Let P be a program with recurrence operator R. The depen-
dency graph of P with respect to R is the labelled directed graph G = (Vars(P), A, £) with
vertex set Vars(P), edge set A := {(x, y) | x, y € Vars(P) Ax depends on y}, and a function
L: A — {L, N} that assigns a unique label to each edge such that

L if x depends linearly on y, and
N  if x depends non-linearly on y.

L(x,y) = {

Given a program and a recurrence operator, its dependency graph can be constructed
automatically with standard techniques. In our approach, we partition the variables Vars(P)
of the program P into two sets: effective- and defective variables, denoted by E (P) and D (P)
respectively. Our partition builds on the definition of the dependency graph of P, as follows.

Definition 8 (Effective—defective) A variable x € Vars(P) is effective if:

1. x appears in no directed cycle with at least one edge with an N label, and
2. x cannot reach a vertex of an aforementioned cycle (as in 1).

A variable is defective if it is not effective.

Example 9 From the recurrence equations of Example 3 for the program Psc (see Fig. 1b),
one obtains the dependencies between the program variables of Psc: the program variable
w depends linearly on both x and y, whilst x and y depend non-linearly on each other and
on w. By definition, the partition into effective and defective variables is E(Psc) = ¥ and
D(Psc) = {w, x, y}.

Similarly, we can construct the dependency graph for the program P from Fig. 1a, as
illustrated in Fig. 2. We derive that E(P0) = {z} and D(P) = {x, y}.

We give the following straightforward corollary of Definition 8.

Corollary 10 Given any effective variable x € E(P), the recurrence relation R[x] is a
polynomial in effective variables.
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The concept of effective, and, especially, defective variables allows us to establish a new
characterisation of programs with unsolvable recurrence operators: a recurrence operator
is unsolvable if and only if there exists a defective variable (as stated in Theorem 14 and
automated in Algorithm 1). We formalise and prove this results via the following three
lemmas.

Lemma 11 Let P be a program with recurrence operator R. If D(P) is non-empty, so that
there is at least one defective variable, then R is unsolvable.

Proof Let x € Vars(P) be a defective variable and G = (Vars(P), A, £) the dependency
graph of P with respect to a recurrence operator R. Following Definition 8, there exists a
cycle C such that x is a vertex visited by or can reach said cycle and, in addition, there is an
edge in C labelled by N.

Assume, for a contradiction, that R is solvable. Then there exists a partition Wy, ..., Wy of
Vars,, (P) as described in Definition 4. Moreover, since C isacycle, thereexists j € {1, ..., k}
such that each variable visited by C lies in W;. Let (w, y) € C be an edge labelled with
N. Since w depends on y non-linearly, and R[w] = M; - WJT + Pj(Wi,...,W;_y) (by
Definition 4), it is clear that y(n) € W, for some £ # j. We also have that y(n) € W; since
C visits y. Thus we arrive at a contradiction as W1y, ..., Wy is a partition of Vars, (P). Hence
‘R is unsolvable. m]

Given a program P whose variables are all effective, it is immediate that a pair of
distinct mutually dependent variables are necessarily linearly dependent and, similarly, a
self-dependent variable is necessarily linearly dependent on itself. Consider the following
binary relation ~ on program variables:

x~Yy <= x=yV(xdependsony Ay depends on x).

Thus, any two mutually dependent variables are related by ~. Under the assumption that
all variables of a program P are effective, it is easily seen that ~ defines an equivalence
relation on Vars(P). The partition of the equivalence classes IT of Vars(P) under ~ admits
the following notion of dependence between equivalence classes: for 7, 7 € IT we say that
7 depends on 7 if there exist variables x € 7 and y € 7 such that variable x depends on
variable y.

Lemma 12 Suppose that all variables of a program P are effective. Consider the graph G
with vertex set given by the set of equivalence classes T1 and edge set A’ .= {(w, 7)) | (m #
7) A (7t depends on 7)}. Then G is acyclic.

Proof From the definition of G, it is clear that the graph is directed and has no self-loops.
Now assume, for a contradiction, that G contains a cycle. Since the relation ~ is transitive,
there exists a cycle C in G of length two. Moreover, the variables in a given equivalence class
are mutually dependent. Thus the elements of the two classes in C are equivalent under the
relation ~, which contradicts the partition into distinct equivalence classes. Therefore the
graph G is acyclic, as required. O

Lemma 13 Let P be a program with recurrence operator R. If each of the program variables
of P is effective then R is solvable.

Proof ByLemma 12, the associated graph G = (IT, A’) on the equivalence classes of Vars(P)
is directed and acyclic. Thus there exists a topological ordering of IT = {m1, ..., 7} such
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Algorithm 1 Construct £(P) and D(P) from program P with operator R.

Construct the dependency graph G = (Vars(P), A, L) of P with respect to R.
D(P) <9
for (x,y) € A where L(x,y) = N do
if x = y then
predecessor <
DFS(x, predecessor)
D(P) < D(P)Upredecessor
end if
if x # y then
predecessor <
DFS(y, predecessor)
if x € predecessor then
D(P) < D(P)Upredecessor
end if
end if
end for
E(P) < Vars(P) \ D(P)

that for every (rr;, ;) € A’ we have i > j. Thus if x € 7; then x does not depend on any
variables in class 7 ; for j > i. Moreover, for each r; € I, if x, y € 7; then x cannot depend
on y non-linearly because every variable is effective (and all the variables in 7; are mutually
dependent). Thus IT evaluated at loop iteration n partitions Vars, (P) and satisfies the criteria
in Definition 4. We thus conclude that R is solvable. O

Together, Lemmas 11-13 yield a new characterisation of unsolvable operators.

Theorem 14 (Defective characterisation) Let P be a program with recurrence operator R,
then R is unsolvable if and only if D(P) is non-empty.

In Algorithm 1 we provide a polynomial time algorithm that constructs both E(P) and
D(P) given a program and a recurrence operator. We use the initialism “DFS” for the depth-
first search procedure. Algorithm 1 terminates in polynomial time as both the construction
of the dependency graph and depth-first search exhibit polynomial time complexity. The
procedure searches for cycles in the dependency graph with at least one non-linear edge
(labelled by N). All variables that reach such cycles are, by definition, defective.

In what follows, we focus on programs with unsolvable recurrence operators, or equiva-
lently by Theorem 14, the case where D(P) # @. The characterisation of unsolvable operators
in terms of defective variables and our polynomial algorithm to construct the set of defec-
tive variables is the foundation for our approach synthesising invariants in the presence of
unsolvable recurrence operators in Sect.5.

Remark 15 The recurrence operator R[x] for an effective variable x will admit a closed-form
solution for every initial value xo. For the avoidance of doubt, the same cannot be said for the
recurrence operator of a defective variable. However, it is possible that a set of initial values
will lead to a closed-form expression as a C-finite sequence: consider a loop with defective
variable x and update x <« x2 and initialisation xo < 0 or xo < =%1.
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5 Synthesising invariants

In this section we propose a new technique to synthesise invariants for programs with unsolv-
able recurrence operators. The approach is based on our new characterisation of unsolvable
operators in terms of defective monomials (Sect.4).

For the remainder of this section we fix a program P with an unsolvable recurrence
operator R, or equivalently with D(P) # ). We start by extending the notions of effective
and defective from program variables to monomials of program variables. Let £ be the set of
effective monomials given by

E(P) = ]_[ x% |ay €N
xeE(P)

The complement, the defective monomials, is given by D(P) := M(P)\ E(P). The difficulty
with defective variables is that in general they do not admit closed-forms. However, linear
combinations of defective monomials may allow for closed-forms as illustrated in previous
examples. The main idea of our technique for invariant synthesis in the presence of defective
variables is to find such polynomials. We fix a candidate polynomial called S(n) based on
an arbitrary degree d € N:

Sm= Y cewW, 2

WeD,(P)la

where the coefficients cyy € R are unknown real constants. We use D, (P) |4 to indicate the
set of defective monomials of degree at most d.

Example 16 For P in Fig. 1a we have D, (P) 1= {x, y}, and D, (Pq) [2= {x, y, x%, y2,
Xy, Xz, yz}.

On the one hand, all variables in S(n) are defective; however, S(n) may admit a closed-
form. This occurs if S(n) obeys a “well-behaved” recurrence equation; that is to say, an
inhomogeneous recurrence equation where the inhomogeneous component is given by a
linear combination of effective monomials. In such instances the recurrence takes the form

S(n+1) = kS(n) + Z emM 3)
Me&,(P)

where the coefficients cjs are unknown. Thus an intermediate step towards our goal of
synthesising invariants is to determine whether there are constants cps, cw, « € R that
satisfy the above equations. If such constants exist then we come to our final step: solving a
first-order inhomogeneous recurrence relation. There are standard methods available to solve
first-order inhomogeneous recurrences of the form S(n+1) = «S(n) + h(n), where h(n)
is the closed-form of ZMG&I(P) cuM, see e.g., [15]. We note h(n) is computable and an
exponential polynomial since it is determined by a linear sum of effective monomials. Thus
(S(n)),, is a C-finite sequence.

Remark 17 Observe that the sum on the right-hand side of Eq. (3) is finite, since all but
finitely many of the coefficients cj; are zero. Further, the coefficient cj; of monomial M is
non-zero only if M appears in R[S].

Going further, in equation (3) we express S(n+1) in terms of a polynomial in Vars, (P)
with unknown coefficients ¢y, cw, and x. An alternative expression for S(n+1) in Vars, (P)
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is given by the recurrence operator S(n+1) = R[S]. Taken in combination, we arrive at the
following formula

RIS] — kS(n) — Z euM =0,
Me&,(P)

yielding a polynomial in Vars, (P). Thus all the coefficients in the above formula are nec-
essarily zero as the polynomial is identically zero. Therefore all solutions to the unknowns
¢y, cw,and k are computed by solving a (quadratic) system of equations. The main complex-
ity of our invariant synthesis technique lies in solving the quadratic system. In the candidate
polynomial, every monomial in defective variables (of degree at most d) is associated with
a unique unknown coefficient. Hence, the size of the quadratic system can be polynomial in
d and exponential in the number of defective variables.

Example 18 Consider the following illustration of our invariant synthesis procedure. Recall
program P from Fig. 1a:
7«0
while x do
21—z
x < 2x+y> 47z
y <2y —y2 42z
end while
From Algorithm 1 we obtain E(Pg) = {z} and D(Pg) = {x, y}. Because D(P) # 0,
we deduce using Theorem 14 that the associated operator R is unsolvable. Consider the
candidate S(n) = ax(n) 4+ by(n) with unknowns a, b € R. The recurrence for S(n) given
by R is

S(n+1) =R[S] =aR[x]+ bR[y]
=a+2b+ 2ax(n) + 2by(n) — (a + 2b)z(n) + (a — b)yz(n).

We next express S(n+1) in terms of an inhomogeneous recurrence equation (cf. equa-
tion (3)). When we substitute for S(n), we obtain

S(n+1) = k(ax(n) + by(n)) + (cz(n) +d)

where the coefficients in the inhomogeneous component are unknown. We then combine the
preceding two equations (for brevity we suppress the loop counter 7 in the program variables
X, y,z) and derive

(a+2b—d)+ (—a—c—2b)z+ 2a — ka)x + (2b — kb)y + (a — b)y* = 0.

Thus we have a polynomial in the program variables that is identically zero. Therefore, all
the coefficients in the above equation are necessarily zero. We then solve the resulting system
of quadratic equations, which leads to the non-trivial solution a = b, x = 2, d = 3a, and
¢ = —3a. We substitute this solution back into the recurrence for R[S] and find

L+ (=1

S(n+1) =285n) +3a(l —z(n)) =2S(n) 4 3a 5

Here, we have used the closed-form solution z(n) = 1/2 — (—1)" /2 of the effective variable
z. We can compute the solution of this inhomogeneous first-order recurrence equation. In the
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case that a = 1, we have S(n) = 2"(S(0) + 2) — (—1)"*/2 — 3/2. Therefore, the following
identity holds for each n € N:

x(n) + y(n) =2"(x(0) + y(0) +2) — (=1)"/2-3/2

and so we have synthesised the closed-form of x + y for program P of Fig. la.

5.1 Solution space of invariants for unsolvable operators

Given a program and a recurrence operator, our invariant synthesis technique is relative-
complete with respect to the degree d of the candidate S(n). This means, for a fixed degree
d € N, our approach is in theory able to compute all polynomials of defective variables with
maximum degree d that satisfy a “well-behaved” recurrence; that is, a first-order recurrence
equation of the form (3). This holds because of our reduction of the problem to a system of
quadratic equations for which all solutions are computable. It is not guaranteed that a solution
does exist. In that case, our technique can rule out the existence of well-behaved polynomials
of defective variables of degree at most d if the resulting system has no (non-trivial) solutions.

Example 19 The following loop models the logistic map [27] which is well-known for its
chaotic behaviour.

while x do

x < rx(1—x)
end while
The single variable x is defective due to its non-linear self-dependency. For most values

of r and initial values of x the logistic map does not admit an analytical solution and well-
behaved polynomials in x do not exist [28]. Hence, our invariant synthesis technique provides
no solution for candidates of fixed degrees.

Let P be a program with program variables Vars(P) = {xi, ..., xx}. The set of polyno-
mials P with P(x;(n), ..., x;(n))=0 for all n € N form an ideal, the invariant ideal of P.
The requirement of closed-forms is the main obstacle for computing a basis for the invariant
ideal in the presence of defective variables. Our work introduces a method that includes
defective variables in the computation of invariant ideals, via the following steps of deriving
the polynomial invariant ideal of an unsolvable loop:

e For every effective variable x;, let f;(n) be its closed-form and assume % (n) is the closed-
form for some candidate S given by a polynomial in defective variables.

e Let A, ..., A} be the exponential terms in all f;(n) and i(n). Replace the exponential
terms in all f;(n) as well as h(n) by fresh constants to construct the polynomials g; (1)
and /(n) respectively.

e Next, construct the set R of polynomial relations among all exponential terms, as
explained in Sect. 2. Then, the ideal

I({xi — gi(n) | xi € E(P)yU{S —1(m)}UR) NQlxi, ..., x]

contains precisely all polynomial relations among program variables implied by the
equations {x; = f;(n)} U {S = g(n)} in the theory of polynomial arithmetic.
e A finite basis for this ideal is computed using techniques from Grobner bases and elim-
ination theory. This step is similar to the case of the invariant ideal for solvable loops,
see e.g., [2, 3].
In conclusion, we infer a finite representation of the ideal of polynomial invariants for loops
with unsolvable recurrence operators.
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6 Synthesising solvable loops from unsolvable loops

In previous sections, we introduced a new technique to compute invariants for unsolvable
loops; that is, loops containing defective variables. An orthogonal challenge is to synthesise
a solvable loop from an unsolvable loop that preserves or over-approximates given specifi-
cations.

In this section we establish, with Algorithm 2, a new method to synthesise a solvable loop
P’ from an unsolvable loop P. The solvable loop P’ over-approximates the behaviour of P
in the sense that every polynomial invariant of P’ is an invariant of . Moreover, we show the
invariants among effective variables of P and P’ coincide. The following example illustrates
the main idea leading to Algorithm 2.

Example 20 Example 18 showed how to synthesise the polynomial S = x + y of defective
variables x and y for the loop in Fig. 1a such that S admits a closed-form. In this case, the
polynomial of program variables S satisfies the linear inhomogeneous recurrence S(n+1) =
2 §(n)—3z(n)+3. We can use this recurrence to construct a solvable loop from the unsolvable
from Fig. 1a that captures the dynamics of the only effective variable z as well as S:

<0 z<0
while x do s < x0+ Yo

7z« 1—z Algorithm 2 while % do

x < 2x+y2 4z —> z\ -z

y <2y —y>+2z s 2s —3z+4+3
end while end while

Our algorithmic approach, as given in Algorithm 2, synthesises the solvable loop from the
unsolvable loop on the left. Such a synthesis step is implemented within our tool (Sect.9),
allowing us to synthesize the above solvable loop in about 1 second.

The inputs for Algorithm 2 are an unsolvable loop P with recurrence operator R and a
fixed degree d € N; the algorithm outputs a solvable loop P’, if it exist. Briefly, the algorithm
invokes the invariant synthesis procedure from Sect. 2 (for degree d) and constructs the loop
P’ from P by removing all the defective variables and then introducing a new variable s that
models an invariant among defective monomials, if such an invariant exists. The recurrence
operator R’ associated with the synthesised loop P’ is the canonical recurrence operator: R’
maps every program variable to its assignment.

Lemma 21 (Soundness) The loop P’ returned by Algorithm 2 is solvable. Moreover, we have
E(P) C Vars(P').

Proof Using our characterisation of solvable and unsolvable loops in terms of effective and
defective variables (Theorem 14), we show that all variables in P’ are effective. The variables
of P’ consist of the effective variables of P as well as the fresh variable s: Vars(P’) =
E(P) U {s}, or Vars(P') = E(P) if no invariant among defective monomials with degree d
exists.

First, every x € E(P) necessarily remains effective for the synthesised program P’: in the
dependency graph of P’, the variable x cannot occur in a cycle containing s, because s is a
fresh variable and hence cannot appear in the recurrence R[y] forany y € E(P) (Algorithm 2
line 15). Hence, if z € E(P) N D(P’), then there must exist a cycle in the dependency graph
of P’ with a non-linear edge (x, y) (i.e., L(x, y) = N) such that every vertex in the cycle
is in E(P). Consequently, this cycle is also present in the dependency graph of the original
program P. This means that not all variables in E (P) are effective, which is a contradiction.
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Algorithm 2 Solvable Loop Synthesis

Input: Unsolvable loop P with recurrence operator R, degree d € N
Output: Solvable loop P’
Compute E(P) and D(P) using Algorithm 1.
Fix candidate polynomial S(n) of degree d (as in Section 5 (2)).
Solve for coefficients in
S(n+1) =«kShn) + ZMeEn(P) ¢y M (as in Section 5 (3)).
initial =[]
body_left =]
body_right =[]
> Add all effective variables to new loop
for x € E(P) do
initial.append(x <« xq)
body_left.append(x)
body_right.append(R[x])
end for
> Add well-behaved combination of defective monomials
if S # O then
Choose a fresh symbol s.
initial.append(s < S(0))
body_left.append(s)
body_right.append(ks + ZMEE(P) cyM)
end if
P’ « initial “while x do” body_left <« body_right “end while”
return P’

Second, the variable s is effective. Because s is a fresh variable, the only incoming edge of
s in the dependency graph of P’ is a linear self-loop (Algorithm 2 line 18). Hence s cannot
occur in a cycle with a non-linear edge. Moreover, all outgoing edges point to effective
variables. Thus s € E(P’) is effective. |

With the next two lemmas, we prove that the loop P’ synthesised by Algorithm 2 over-
approximates the invariants of the unsolvable loop P. Let Inv(P) and Inv(P’) denote the
invariant ideals of P and P’ respectively. The next lemma establishes that the synthesised
loop P’ is complete with respect to invariants among effective variables.

Lemma 22 (Completeness with respect to effective variables) The invariant ideals of P and
P’ coincide when restricted on the effective variables of P. That is,

Inv(P) NQ[E(P)] = Inv(P) N QLE(P)].

Proof By the construction of P’, every x € E(P) is also a variable of P’. To distinguish
the variable x in P from the variable x in P’ we refer to the latter by x’. We will show
that for every x € E(P) the sequences (x(n)), and (x'(n)), coincide. If this is the case,
the polynomial invariants for the programs P and P’ among the variables E (P) necessarily
coincide as well.

Let R and R’ be the recurrence operators associated to P and P’, respectively. For every
x € E(P) we have R[x] = R'[x] and xo = x{ by the construction of P’. Furthermore,
by Corollary 10, defective variables cannot occur in R[x] for any x € E(P). Moreover, the
fresh variable s cannot occur in R'[x’] by the construction of P’. Hence the two systems of
first-order recurrences {x(n+1) = R[x] | x € E(P)} and {x'(n+1) = R'[x'] | x € E(P)}
together with the initial values {xo | E(P)} and {xé | E(P)} induce the same sequences
(x(n)), and (x"(n)), forall x € E(P). O
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We note that when an invariant among defective monomials of degree d does not exist, the
variables of the synthesised loop P’ are precisely the effective variables of P. In this case,
Lemma 22 fully characterises the relationship between the invariants of P and P’.

In the following, let us consider the complementary case, namely when an invariant among
the defective monomials of P exists. Hence, the synthesised loop P’ contains the additional
fresh variable s modelling the behaviour of this invariant. With the next lemma, we confirm
that the synthesised loop P’ is indeed a sound over-approximation of the unsolvable loop
P. We show that every invariant of P’ is also an invariant of P. The program variable
s € Vars(P’) introduced by Algorithm 2 is however not a program variable of P; nevertheless,
s models the polynomial S of defective variables in . Hence, to compare the invariant ideals
of P and P’, we need to “substitute” s by the polynomial of defective variables it models.
This can be done by adding the equation s = S (s — S = 0) to the invariant ideal of P’ and
restricting the resulting ideal to Vars(P):

I(Inv(P") U {s — S}) N Q[Vars(P)]. )

Lemma 23 (Over-approximation) Let J be the ideal in (4) constructed from the invariant
ideal of P’ by replacing the program variable s by the polynomial of defective variables it
models. Then, J C Inv(P).

Proof As argued in the proof of Lemma 22, forevery x € E(P), the sequences corresponding
to the variable x in both P and P’ coincide; that s, (x(n)), = (x’(n)),,. Furthermore, we have
Vars(P’) = E(P) U {s}. The fresh variable s in P’ models the polynomial S € Q[Vars(P)].
Let (s(n)),, be the sequence induced by the program variable s in P’ and, likewise, (S(n)),
the sequence induced by the polynomial S € Q[Vars(P)]. Then, by the construction of 7’,
we have (s(n)), = (S()),.

Let Q € Inv(P’). By the definition of the ideal J in (4), it holds that

Qechv(P) < Qf{s— S}eJ

(where the notation indicates that S is substituted for s).

Now, Q is a polynomial relation among the sequences induced by the variables in Vars(P’).
Because (x(n)), = (x'(n)), for every x € E(P) and (s(n)), = (S(n)),, the polynomial
Q{s — S} represents a relation among the sequences induced by the variables in Vars(P).
Hence we have Q € Inv(P). O

Remark 24 Our loop synthesis procedure given in Algorithm 2 computes a single invariant
among defective monomials (if such an invariant exists) of an unsolvable loop P. The results
in this section naturally generalise to multiple invariants among defective monomials, as
follows: for every invariant /, add a fresh variable s; modelling the behaviour of / to the
synthesised program P’. Note that with each additional invariant / added, the dynamics of
the synthesised loop P’ more closely resembles that of the unsolvable loop P.

7 Adjustments for unsolvable operators in probabilistic programs
7.1 Defective variables in probabilistic loop models
The works [9, 29] defined recurrence operators for probabilistic loops. Specifically, a recur-

rence operator is defined for loops with polynomial assignments, probabilistic choice, and
drawing from common probability distributions with constant parameters. Recurrences for
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deterministic loops model the precise values of program variables. For probabilistic loops,
this approach is not viable, due to the stochastic nature of the program variables. Thus a
recurrence operator for a probabilistic loop models (higher) moments of program variables.
As illustrated in Example 5, the recurrences of a probabilistic loop are taken over expected
values of program variable monomials.

The authors of [9, 29] explicitly excluded the case of circular non-linear dependencies to
guarantee computability. However, in contrast to our notions in Sect. 3, they defined variable
dependence not on the level of recurrences but on the level of assignments in the loop body.
To use the notions of effective and defective variables for probabilistic loops, we follow the
same approach and base the dependency graph on assignments rather then recurrences. We
illustrate the necessity of this adaptation in the following example.

Example 25 A probabilistic assignment x < a {p} b intuitively means that x is assigned a
with probability p and b with probability 1— p. Consider the following probabilistic loop and
associated set of first-order recurrence relations in terms of the expectation operator E( - ).

E(yni1) = 4E(y,) — 4E(y2)

while » do E(xn41) = E(x,)

y <4yl —y) 1 1

x <x—y{l/2}x+y E(xyy1) = =BG — yu41)?) + B + yar1)?)
end while 2 ?

= E@2) +E(O2,)

It is straightforward to see that variable y is defective from the deterministic update
y < 4y(1 — y) with its characteristic non-linear self-dependence. Moreover, y appears in
the probabilistic assignment of x: However, due to the particular form of the assignment, the
recurrence of E(x,) does not contain y. Nevertheless, y appears in the recurrence of E(x,%).
This phenomenon is specific to the probabilistic setting. For deterministic loops, it is always
the case that if the values of a program variable w do not depend on defective variables, then
neither do the values of any power of w.

In light of the phenomenon exhibited in Example 25, we adapt our notion of variable
dependency, for probabilistic loops. Without loss of generality, we assume that every program
variable has exactly one assignment in the loop body. Let P be a probabilistic loop and
x,y € Vars(P). We say x depends on y, if y appears in the assignment of x. Additionally,
the dependency is linear if all occurrences of y in the assignment of x are linear, else the
dependency is non-linear. Further, we consider the transitive closure of variable dependency
analogous to deterministic loops and Definition 6.

With variable dependency thus defined, the dependency graph and the notions of effective
and defective variables follow immediately. Analogous to our characterisation of unsolvable
recurrence operators in terms of defective variables for deterministic loops, all (higher)
moments of effective variables of probabilistic loops can be described by a system of linear
recurrences [9, 29]. For defective variables this property will generally fail For instance, in
Example 25, the variable x is now classified as defective and E(x,%) cannot be modelled by
linear recurrences for some initial values.

The only necessary change to the invariant synthesis algorithm from Sect.5 is as follows:
instead of program variable monomials, we consider expected values of program variable
monomials. Now, our invariant synthesis technique from Sect. 5 can also be applied to prob-
abilistic loops to synthesise combinations of expected values of defective monomials that do
satisfy a linear recurrence.
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7.2 Synthesising solvable probabilistic loops

In Algorithm 2 we introduced a procedure, utilising our new invariant synthesis technique
from Sect.5, to over-approximate an unsolvable loop by a solvable loop. The inputs to
Algorithm 2 are an unsolvable loop with a recurrence operator and a natural number spec-
ifying a fixed degree. As mentioned, our invariant synthesis procedure is also applicable to
probabilistic loops using the recurrence operator modelling moments of program variables
introduced in [9, 29]. Hence, Algorithm 2 can also be used to synthesise solvable loops from
unsolvable probabilistic loops. In the probabilistic case, however, the invariants computed
by our approach are over moments of program variables. Therefore, the invariant ideal of
probabilistic loops describes polynomial relations among a given set of moments of program
variables, such as the expected values. Consequently, the loop synthesised by Algorithm 2
for a given probabilistic loop will be deterministic and model the dynamics of moments of
program variables of the probabilistic loop.

Example 26 Recall the program Pyc of Example 5. An invariant synthesised by our approach
in Sect. 5 with degree 1 is E(x, — y,) = %(xo — yo). Hence the solvable loop synthesised
by Algorithm 2 for Pyic with input degree 1 is

f < x0+y0

while x do

1
s <5

£« 2f
end while
where £ is the fresh variable introduced by Algorithm 2 modelling E(x,, — y,). Our
approach from Algorithm 2 synthesises this solvable loop from Pyic, using less than 0.5
within our implementation (Sect.9).

8 Applications of unsolvable operators towards invariant generation

Our approach automatically generates invariants for programs with defective variables
(Sect.5), and pushes the boundaries of both theory and practice of invariant generation:
we introduce and incorporate defective variable analysis into the state-of-the-art method-
ology for reasoning about solvable loops, complementing thus existing methods, see e.g.,
[2, 3,5, 6], in the area. As such, the class of unsolvable loops that can be handled by our
work extends (aforementioned) existing approaches on polynomial invariant generation. The
experimental results of our approach (see Sect.9) demonstrate the efficiency and scalability
of our work in deriving invariants for unsolvable loops. Since our approach to loops via
recurrences is generic, we can deal with emerging applications of programming paradigms
such as: transitions systems and statistical moments in probabilistic programs; and reasoning
about biological systems. We showcase these applications in this section and also exemplify
the limitations of our work. In the sequel, we write [E(¢) to refer to the expected value of an
expression ¢, and denote by E(#,) (or E(¢(n))) the expected value of ¢ at loop iteration n.

Example 27 (Moments of probabilistic programs [25]) As mentioned in Example 26, E(x,, —
Yp) = 27 (xo—yo) is an invariant for the program Pyjc introduced in Example 5. Closed-form
solutions for higher order expressions are also available; for example,

Q4 +39"

o 3dn (x0 — y0)*

E((xn — y)®) =
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refers to the dth moment of x(n) — y(n). While the work in [25] uses martingale theory
to synthesise the above invariant (of degree 1), our approach automatically generates such
invariants over higher-order moments (see Table 2). We note to this end that the defective
variables in Pyic are precisely x and y as can be seen from their mutual non-linear interde-
pendence. Namely, we have D(Pymc) = {x, y} and E(Pmc) = {s}.

Example 28 (non-lin-markov-2) We give a second example of a non-linear Markov
chain. We analyse the moments of this probabilistic program in the next section.

x,y<0,1

while x do
s < Bernoulli(1/2)
if s = 0 then

()= (o)
y 16 (13x + 5y +xy)
else
- Cinsi)
y 152y + 3xy)
end if
end while

Example 29 (Biological systems [30]) A model for the decision-making process of swarming
bees choosing one nest-site from a selection of two is introduced in [30] and further studied
in [31, 32]. Previous works have computed probability distributions for this model [32]. The
(unsolvable) loop is a discrete-time model with five classes of bees (each represented by
a program variable). The coefficient A is the length of the time-step in the model and the
remaining coefficients parameterise the rates of change. All coefficients here are symbolic.

X Normal(475, 5)
y1 Uniform (350, 400)
y2 | < | Uniform (100, 150)
21 Normal(35, 1.5)
20 Normal(35, 1.5)
while « do
X x — A(Bixy1 + Baxy2)
i y1+ A(Bixyr — yy1 +8B1y1z1 +aBiyiz2)
2 | < | 2+ A(Bexy2 — yy2 + 8B2y222 + af2y2z1)
21 Z1 + A(yy1 — 8B1y1z1 — aBay»z1)
22 22+ A(yy2 — 8B2y222 — af1y122)
end while

‘We note that the model in [32] uses truncated Normal distributions, as [32] is limited to
finite supports for the program variables, which is not the case with our work.

In the loop above, each of the variables exhibits non-linear self-dependence, and so the
variables are partitioned into D(P) = {x, y1, y2, 21, X2} and E(P) = (. While the recurrence
operator of the loop above is unsolvable, our approach infers polynomial loop invariants
using defective variable reasoning (Sect. 5). Namely, we generate the following closed-form
solutions over expected values of program variables:

E(x(®) + y1(n) + y2(n) + z1(n) + z2(n)) = 1045,
E((x(n) + y1(n) + y2(n) + z1(n) + 22(0)%) = 3,277,349/3, and
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E((x(n) + y1(n) 4 y2(n) + 21(n) + 22(n))*) = 1,142,497 455.

One can interpret such invariants in terms of the biological assumptions in the model. Take,
for example, the fact that E(x (n) 4y (n) + y2(n) 421 (n) +2z2(n)) is constant. This invariant is
in line with the assumption in the model that the total population of the swarm is constant. In
fact, our invariants reflect the behaviour of the system in the original continuous-time model
proposed in [30], because our approach is able to process all coefficients (most importantly
A) as symbolic constants.

Example 30 (Probabilistic transition systems [25]) Consider the following probabilistic loop
modelling a probabilistic transition system from [25]:
while x do

a Normal(0, 1)
») = \Normal(0, 1)

X X +axy
6
y y+ bxy
end while
While [25] uses martingale theory to synthesise a degree one invariant of the form alE(xx )+

bE(yr) = alE(xo) + bE(yo), our work automatically generates invariants over higher-order
moments involving the defective variables x and y, as presented in Table 2.

The next example demonstrates an unsolvable loop whose recurrence operator cannot
(yet) be handled by our work.

Example 31 (Trigonometric updates) As our approach is limited to polynomial updates of the
program variables, the loop below cannot be handled by our work:

while x do

X cos(x)
e
(3) = (55
end while
Note the trigonometric functions are transcendental, from which it follows that one cannot

generally obtain closed-form solutions for the program variables. Nevertheless, this program
does admit polynomial invariants in the program variables; for example, x> + y> = 1.
Although our definition of a defective variables does not apply here, we could say the variable
x here is somehow defective: while the exact value of sin(x) cannot be computed, it could be
approximated using power series. Extending our work with more general notions of defective
variables is an interesting line for future work.

Examples 32-35 (below) are custom-made benchmarks. We have tailored these bench-
marks to demonstrate the flexibility and applicability of our method to the current state of
the art. Our experimental analysis is delayed to Sect.9.

Example 32 (squares+)
s, x,y,2<0,2,1,0
while x do

s < Bernoulli(1/2)

z<«z—1{1/2}z+42

X <« 2x + y2 +s5s+z

y <2y —y>+2s
end while
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Example 33 (prob-squares)

g <1
while x do
g < Uniform(g, 2g)
a a?+2bc —df +b
b| <« |df —a®+2bd +2¢
c g —bc—bd + %a
end while

Example 34 (squares-squared)
while x do

X xXyz + x?

y 2y +z —x? 4+ 3ymz?

2R Ixdzly+1a?

4 ) %Z 2y 2x

m 2243m — 1x? — txyz — ymz?
end while

Example 35 (deg-d) The benchmarks deg-5, deg-6, deg-7, deg-8, deg-9, and
deg-500 are parameterised by the degree d in the following program.
x,y < 1,1
while x do
z < Normal(0, 1)
X\ 2x? + 7 4 22
y 3x? +z+ 22+

end while

The following set of examples are taken from the literature on the theory of trace maps.
Arguably the most famous example is the classical Fibonacci Trace Map f: R? — R3 given
by f(x,y,2) = (¥,z,2yz — x) (Example 36 below); said map has garnered the attention
of researchers in fields as diverse as invariant analysis, representation theory, geometry, and
mathematical physics (cf. the survey papers [33, 34]). From a computational viewpoint, trace
maps arise from substitution rules on matrices (see, again, the aforementioned survey papers).
Given two matrices A, B € SL(2, R) (the group of 2 x 2 matrices with unit determinant),
consider the following substitution rule on strings of matrices: A +— B and B +—> AB. The
classical Fibonacci Trace Map is determined by the action of this substitution on the traces
of the matrices; i.e.,

f(tr(A), tr(B), r(AB)) = (tr(B), tr(AB), — tr(A) + 2tr(B) tr(AB)).

Further examples of trace maps (Examples 37 and 38 below) are constructed from similar
substitution rules on strings of matrices.
Let
Li(x,y,2) = x>+ y* + 22 — 2xyz,
h(x,y,2) =4x"y —2xz —y,
Lx,y,0)=x"+y +5 —xyz—xy—xz—yz—x—y—z,
Then our work generates the cubic polynomial invariants Iy (x, y, z) — I1(xo, Y0, 20) =

0, Ir(x, y, 2) — Ir(x0, Yo, 20) = 0, and I3(x, y,z) — I3(x0, y0, z0) = O for Example 36,
Example 37, and Example 38, respectively.
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Example 36 (£ibl)

while » do

X y

Y| < z

z 2yz —x
end while

Example 37 (£ib2) A Generalised Fibonacci Trace Map

while x do

X y

vy <« 2xz —y

z dxyz —2x2 —2y? + 1
end while

Example 38 (£ib3) A second Generalised Fibonacci Trace Map

while x do
X l+x+y+xy—z
y < X
< y

end while

Examples 39-40 are while loops that generate Markov triples [35, Chapter 11.3]; that is,
at every iteration each loop variable takes an integer value that appears in a Diophantine
solution of the Markov equation x> + y% + z% = 3xyz.

Example 39 (markov-triples-toggle) A while loop that generates an infinite
sequence of nodes on the Markov tree (the walk alternates between ‘upper’ and ‘lower’
branches).

x,y,z=1,1,2;
branch = 0;
while » do
if branch = 0 then
X x
y] < |3xy—2z];
z y
branch = 1;
else
X y
y] < |3yz—x|;
z z
branch = 0;
end if
end while

For this example, our approach generates the polynomial invariant, the Markov equation,
given by x2 4+ y% + 72 — 3xyz = 0.

Example 40 (markov-triples-random) A while loop that simulates a Bernoulli walk
on the Markov tree.

x,y,z=1,1,2
while « do
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p < Bernoulli(1/2)

if p = 1 then
X X
y| < |3xy—z
< y
else
X y
y| < |3yz—x
z z
end if
end while

For this benchmark, our technique generates both closed-forms and invariants in (higher)
moments of program variables such as E(x,% + y,% +z,zl —3xpynzn) = 0and E(x,, —z,) = 27".

The next two benchmarks concern a special class of polynomial automorphisms,
the Yagzhev maps, (sometimes cubic-homogeneous maps) introduced (independently) by
Yagzhev [36] and Bass et al. [37] in the context of the Jacobian conjecture.

Recall that Yagzhev maps f: C* — C” take the form f(x) = x — g(x) such that
det f'(x) = 1forall x, and g: C" — C" is a homogeneous polynomial mapping of degree
3.

De Bondt exhibited a Yagzhev mapping in 10 dimensions that has no linear invariants
(providing a counterexample to the “linear dependence conjecture” for the class of maps)
[38]. Zampieri demonstrated that De Bondt’s example has quadratic and cubic invariants [39]
(see Example 41 for such a Yagzhev map in 9 dimensions). Work by Santos Freire, Gorni,
and Zampieri [40] exhibited a Yagzhev mapping in 11 dimensions that has neither linear
invariants nor quadratic invariants (see Example 42).

Example 41 (yagzhev9 [39])

while x do
X1 X1 + x1x7x9 + x2x92
X2 X2 — x1x72 — X2X7X9
X3 X3 + x3X7Xx9 + X4x92
X4 X4 — X3x72 — X4X7X9
X5 | < X5 + xX5X7X9 + xﬁxg
X6 X6 — X5x% — X6X7X9
X7 X7 + (X1X4 — X2X3)X9
X8 xg + (X3X6 — X4X5)X9
X9 X9 + (x1X4 — x2x3)X8 — (X3X6 + X4X5)X7

end while

For this example, our work generates an invariant quadratic homogeneous polynomial in
six variables and three symbolic constants, which we can interpret in terms of determinants
(as given below):

x3(n) x4(n)

x5(n) x¢(n)

—u x1(0) x2(0) x3(0) x4(0) c x1(0) x2(0)
x3(0) x4(0) x5(0) x6(0) x5(0) x6(0)|"

Our computation confirms previous work by the authors of [39]. Those authors demonstrated
that this example has no linear invariants, but does admit the above quadratic invariant.

x1(n) x2(n)

. x1(n) ©2(n)
x3(n) x4(n)

x5(n) x¢(n)
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Example 42 (yagzhev11 [40])

while » do
x| x| — x3x120
X2 Xy — xlezl
X3 X3 + x1x121 — x2x120
X4 X4 — XX,
X5 X5 — xsxlz1
X6 | < X6 + x4x121 - x5x120
X7 X7 — X9x10
X Xg — X9X{|
X9 X9 + X7.X121 - xgx%o
X10 X10 + (x3x5 — X2X6)X7 + (X1X6 — X3X4)X8 + (X2X4 — X1X5)X9
X11 X11 — x130

end while

For this example, our approach generates an invariant cubic homogeneous polynomial,
which we can interpret as the determinant of a matrix in the program variables:

x1(n) x2(n) x3(n)|  |x1(0) x2(0) x3(0)
x4(n) xs(n) xe(n)| = |x4(0) x5(0) x6(0)|.
x7(n) xg(n) xo(n)|  |x7(0) x3(0) x9(0)
For the avoidance of doubt, the above polynomial was previously found by the authors of [40].

Indeed, our implementation confirms previous results: there are neither linear nor quadratic
invariants for this example.

Example 43 (nagata [41]) Let us now consider the classical Nagata automorphism intro-
duced by Nagata [41, pg. 41] (see also [42]).

while x do
X x —2(xz+yH)y — (xz+y*)?z
vy < y + (xz 4+ ¥z
z Z

end while

For the Nagata Automorphism, it is easy to see that the variable z is effective and so
contributes a linear invariant. When used to search for quadratic closed-forms, our method
generates the polynomial

c(x(n)z(n) + y(n)?) = az(0) + bz(0)> — az(n) — bz(n)?> + c(x(0)z(0) + y(0)?)

where a, b, and ¢ are symbolic constants. Here we note that x (n)z(n) and y(n)? are defective
monomials. Our computation confirms the invariants and closed-forms established in [41].

9 Experiments

In this section, we report on our implementation towards fully automating the analysis of
unsolvable loops and describe our experimental setting and results.

9.1 Implementation

Algorithm 1, our method for synthesising invariants involving defective variables, and Algo-
rithm 2, for the synthesis of solvable loops from unsolvable loops, are implemented in the
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Polar tool.> We use python3 and the sympy package [43] for symbolic manipulations
of algebraic expressions.

9.2 Benchmark selection

While previous works [2, 4, 5, 9, 16, 44] consider invariant synthesis, their techniques are
only applicable in a restricted setting: the analysed loops are, for the most part, solvable;
or, for unsolvable loops, the search for polynomial invariants is template-driven or employs
heuristics. In contrast, the work herein complements and extends the techniques presented
for solvable loops in [2, 4, 5, 9, 16, 44]. Indeed, our automated approach turns the problem
of polynomial invariant synthesis into a decidable problem for a larger class of unsolvable
loops.

While solvable loops can clearly be analysed by our work, the main benefit of our work
comes with handling unsolvable loops by translating them into solvable ones. For this reason,
in our experimentation we are not interested in examples of solvable loops and so only focus
on unsolvable loop benchmarks. There is therefore no sensible baseline that we can compare
against, as state-of-the-art techniques cannot routinely synthesise invariants for unsolvable
loops in the generality we present.

In our work we present a set of 23 examples of unsolvable loops, as listed in Table 1.4
Common to all 23 benchmarks from Table 1 is the exhibition of circular non-linear dependen-
cies within the variable assignments. We display features of our benchmarks in Table 1 (for
example, column 3 of Table 1 counts the number of defective variables for each benchmark).

Three examples from Table 1 are challenging benchmarks taken from the invariant gen-
eration literature [25, 26, 31, 32]; full automation in analysing these examples was not yet
possible. These examples are listed as non-1in-markov-1, pts, and bees in Table 1,
respectively corresponding to Example 5 (and hence Example 27), Example 30, and Exam-
ple 29 from Sect. 8. Eight further benchmarks, as described in Examples 3643, are drawn
from the theoretical physics and pure mathematics literature (references are given in Sect. 8).

The remaining 12 examples of Table 1 are self-constructed benchmarks to highlight the
key ingredients of our work in synthesising invariants associated with unsolvable recurrence
operators.

Experimental setup

We evaluate our approach in Polar on the examples from Table 1. All our experiments were
performed on a machine with a 1.80 GHz Intel i7 processor and 16 GB of RAM.

Evaluation setting

The landscape of benchmarks in the invariant synthesis literature for solvable loops can
appear complex with: high numbers of variables, high degrees in polynomial updates, and
multiple update options. However, we do not intend to compete on these metrics for solvable
loops. The power of our invariant synthesis technique lies in its ability to handle ‘unsolvable’
loop programs: those with cyclic inter-dependencies and non-linear self-dependencies in the
loop body. Regarding Algorithm 2, specifying our method for synthesising solvable from
unsolvable loops, the main complexity lies in constructing an invariant involving defective
variables. Once, such an invariant has been found, the remaining complexity of Algorithm 2

3 https://github.com/probing-lab/polar.
4 each benchmark in Table 1 references, in parentheses, the respective example from our paper.
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Table 1 Features of the benchmarks

BENCHMARK VAR DEF TERM DEG CAND- 7 EQN-7
squares (Fig. la) 3 2 8 2 35 113
squares+ (Ex.32) 4 2 12 2 35 204
non-lin-markov-1 (Ex.5) 2 2 11 2 35 64
non-lin-markov-2 (Ex. 28) 2 2 11 2 35 64
prob-squares (Ex. 1b) 3 3 4 3 119 337
pts (Ex. 30) 4 2 6 3 35 57
squares-squared (Ex. 18) 4 4 15 4 329 -
bees (Ex. 29) 5 5 21 5 791 -
deg-5 (Ex. 35) 3 2 8 5 35 42
deg-6 (Ex. 35) 3 2 8 6 35 42
deg-7 (Ex. 35) 3 2 8 7 35 42
deg-8 (Ex. 35) 3 2 8 8 35 43
deg-9 (Ex. 35) 3 2 8 9 35 43
deg-500 (Ex. 35) 3 2 8 500 35 43
fibl (Ex. 36) 3 3 4 2 119 204
fib2 (Ex. 37) 3 3 7 3 119 368
fib3 (Ex. 38) 3 3 7 2 119 204
markov-triples-toggle (Ex. 39) 3 3 10 2 119 454
markov-triples-random (Ex. 40) 3 3 9 2 119 254
vagzhev9 (Ex. 41) 9 9 29 3 11,439 -
yvagzhevll (Ex. 42) 11 11 30 3 31, 823 -
nagata (Ex. 43) 3 2 9 4 35 1313

VAR = Total number of loop variables; DEF = Number of defective variables; TERM = Total number of terms
in assignments; DEG = Maximum degree in assignments; CAND- 7 = Number of monomials in candidate with
degree 7; EQN- 7 = Size of the system of equations associated with a candidate of degree 7; - = Timeout (60s)

is linear in the number of program variables. Hence, the experimental results for our invariant
synthesis technique also show the feasibility of our new method synthesising solvable from
unsolvable loops. While the benchmarks of Table 1 may be considered simple, the fact that
previous works cannot systematically handle such simple models crystallises that even simple
loops can be unsolvable, limiting the applicability of state-of-the-art methods, as illustrated
in the example below.

Example 44 Consider the question: does the unsolvable loop program deg-9 in Table 1

(i.e. Example 35) possess a cubic invariant? The program variables for deg-9 are x, y, and

z. The variables x and y are defective. Using Polar, we derive that the cubic, non-trivial

polynomial p(x,, y,, z,) given by

12(ay, + by,% + cy,f +dx, +expy, + fxnyﬁ) —Ba+24b+ 117¢ +2d + 17e + 26f)x,%
—(6a — 6b +315c + 4d — 2e + 88 f)x;yu + 3(3a — 3b + 144c +2d — e + 35 f)x;)

yields a cubic polynomial loop invariant, where a, b, ¢, d, e, and f are symbolic constants.

Moreover, for n > 1, the expectation of this polynomial (deg-9 is a probabilistic loop) in
the nth iteration is given by

E(p(xn, Yn,zn)) = —108a + 312b — 1962¢ — 68d + 52¢ — 68 f.
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Experimental results

Our experiments using Polar to synthesise invariants are summarised in Table 2, using the
examples of Table 1. Patterns in Table 2 show that, if time considerations are the limiting
factor, then the greatest impact cannot be attributed to the number of program variables
nor the maximum degree in the program assignments (Table 1). Three of the examples in
Table 1 exhibit timeouts (60s) in the final column. The property common to each of these
examples is the high number of monomial terms in any polynomial candidate of degree
7. In turn, this property feeds into a large system of simultaneous equations, which we
solve to test for invariants. Indeed, time elapsed is not so strongly correlated with either of
these program features. As supporting evidence we note the specific attributes of benchmark
deg-500 whose assignments include polynomial updates of large degree and yet returns
synthesised invariants with relatively low time elapsed in Table 2. We note the significantly
longer running times associated with the benchmark bees (Example 29). This suggests
that mutual dependencies between program variables in the loop assignment explain this
phenomenon: such inter-relations lead to the construction of larger systems of equations,
which itself feeds into the problem of resolving the recurrence equation associated with a
candidate.

Experimental summary

Our experiments illustrate the feasibility of synthesising invariants and solvable loops using
our approach for programs with unsolvable recurrence operators from various domains such
as biological systems, probabilistic loops, and classical programs (see Sect.5). This fur-
ther motivates the theoretical characterisation of unsolvable operators in terms of defective
variables (Sect.4).

10 Conclusion

We establish a new technique that synthesises invariants for loops with unsolvable recurrence
operators and show its applicability for deterministic and probabilistic programs. Our work
is further extended to translate unsolvable loops into solvable ones, by ensuring that the
polynomial loop invariants of the solvable loop are invariants of the given unsolvable loop.
Our work is based on a new characterisation of unsolvable loops in terms of effective and
defective variables: the presence of defective variables is equivalent to unsolvability. In order
to generate invariants, we provide an algorithm to isolate the defective program variables
and a new method to compute polynomial combinations of defective variables admitting
exponential polynomial closed-forms. The implementation of our approach in the tool Polar
and our experimental evaluation demonstrate the usefulness of our alternative characterisation
of unsolvable loops and the applicability of our invariant synthesis technique to systems from
various domains.
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