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A B S T R A C T

The application of data-driven models based on the neural network is pivotal to developing an intelligent fault
diagnostic flowchart. However, the reliability and interpretability of these models for fault prediction have
presented challenges in neural network-based diagnostic approach. Another challenge is data availability, which
has also been a limiting factor in using artificial Intelligence for condition monitoring and fault assessment in
industrial mechanical systems. Consequently, this study proposes a Physics Informed Probabilistic Deep Network
(PIPDN) framework to overcome these challenges. The PIPDN comprises two main components: the physical
labelling module, designed to enhance physical labels with mechanical failure information, and the main body of
PIPDN, responsible for learning fault representative features and generating smart data guided by conditional
and physical labels. Furthermore, a multi-scale PIPDN model is developed to integrate the proposed uncertainty
quantification (UQ) with decision-fusion module for accurate interpretation and enhanced fault diagnosis. The
applicability, effectiveness, and superiority of the proposed framework and approach are validated using an
experimental bearing dataset. The results indicate that integrating physical labels significantly assists the PIPDN
model in capturing more accurate fault characteristics. This increases the importance of latent space features for
subsequent fault diagnosis and also enhances the diagnostic interpretability. Furthermore, the addition of UQ-
based decision-making module improves the reliability of the MS-PIPDN model by reducing epistemic uncer-
tainty in the predictions.

1. Introduction

1.1. Background

The modernization of industries has led to an increased demand for
rotating machinery, including engines, turbines, and centrifuges [25].
The high-intensity and continuous nature of these machines’ operations
can result in fatigue, structural failures and safety concerns, leading to
expensive maintenance. Developing accurate and reliable monitoring
and assessment framework to forecast and manage the health conditions
of critical mechanical components underscores the need to improve
machinery reliability, operational safety and reduce costs [34].

The application of artificial intelligence (AI) in condition monitoring
of industrial machinery, with the primary goal of achieving accurate and
reliable fault diagnosis for optimal maintenance, has been receiving
significant attention. The focus on AI application in fault diagnosis

approaches is the development of a Prognostics and Health Management
(PHM) flowchart, which is a crucial foundation in modern machine
maintenance. This is because the effectiveness and reliability of any fault
diagnosis method employed in machinery maintenance have direct
consequences on the stability and safe operations of the PHM system
[33]. In addition, the robustness of fault diagnostic models is essential in
ensuring the reliability of the PHM system during prolonged operation
[19]. Therefore, ensuring both the practicality and robustness of fault
diagnosis methods is a paramount requirement for the effective func-
tioning of PHM, which potentially ensures operator safety while
potentially reducing Operation and Maintenance (O&M) costs [18].

The application of Deep Learning (DL), an innovative subset of AI,
has been receiving attention because of its capability to enhance the
fault diagnosis methodology of mechanical systems. DL can significantly
reduce the hazards and risks associated with reliance on manual
decision-making in machine maintenance [2]. In addition, other AI
components, such as Convolutional neural networks (CNNs), Recurrent
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neural networks (RNNs) and Self Attention network (Transformer) have
also been successfully applied to model and diagnose faults [15,10] (Y.
[5]. These tools benefit from AI’s adaptable applications in transfer
learning and generative learning. Their effectiveness in addressing
various challenges, including adapting to evolving operational condi-
tions in fault diagnosis, handling small-sample fault diagnosis, and
resolving issues arising from imbalanced diagnostic datasets have been
established [32].

However, data availability, as well as the reliability and complexity
of AI models, are constraints that limit the development and application
of large-scale AI models in the field of fault diagnosis [9]. Conversely,
with the growing maturity and application of Internet of Things (IoT)
technology in industrial applications (D. [23,16], the issue of data
scarcity for DL model learning has been addressed in other sectors. For
example, data availability in other fields has contributed to a shift to-
wards establishing large-scale AI models, as evidenced by the remark-
able success in natural language processing. Nevertheless, such
transformations cannot be directly transferred and applied to mechan-
ical fault diagnostics due to fundamental differences between mechan-
ical dynamics and natural language data.

Consequently, this study is motivated by the need to advance the
development of large-scale AI models for diagnosing mechanical system
faults. The study aims to address the challenges of limited and reliable
data, model trustworthiness, and interpretability to achieve accurate
diagnoses that support intelligent machinery maintenance processes. To
achieve this, the study’s objectives include the development of an AI
model based on a Probabilistic Neural Network and a Physics-Informed
Neural Network, integrated with an interpretable mechanism that in-
corporates uncertainty quantification and a decision-fusion module. The
findings from this study contribute to the advancement of a novel
paradigm in intelligent fault data modelling and interpretation, known
as “Smart Data,” which represents fundamental components in fault
diagnostics for enhancing both the predictive reliability and clarity of
the models.

1.2. Related works

Deep learning applications in mechanical system diagnostics have
been receiving attention due to their role in advancing intelligent fault
diagnostics. Examining previous research that employs conventional
deep neural networks, probabilistic neural networks, and physics-
informed neural networks for fault diagnostics is necessary to gain in-
sights into their applications [14]. Conventional deep neural network
models, necessary to gain insights into their applications [14]. Con-
ventional deep neural network models, including convolutional neural

networks (CNNs), recurrent neural networks (RNNs), and self-attention
networks, among others, are currently used for various aspects of fault
diagnosis.

CNN-based models, for instance, have been employed to develop
intelligent models for bearing diagnosis [35]. The results suggest that 1-
D CNNs can directly extract advanced features from vibration signals for
condition classification, thereby enhancing diagnostic robustness
compared to 2-D CNNs. However, employing 1-D CNNs directly on vi-
bration signals may struggle to capture fault details when the bearing’s
working conditions are changing. Therefore, integrating vibration
analysis as an additional module with CNNs motivates the development
of a fault diagnosis model. The results indicate that using variational
mode decomposition (VMD) as a filter to preprocess raw signals can
enhance diagnostic performance under complex working conditions
[39]. Combining methods like VMD or empirical mode decomposition
(EMD) as preprocessing steps with deep neural networks has proven to
enhance fault diagnosis performance (H. [24]. However, a challenge
arises because these external algorithms require pre-setting parameters,
making model maintenance particularly challenging. To ensure the
model captures sufficient fault features and to alleviate maintenance
difficulties, multi-scale models have been developed for mechanical
system fault diagnosis [3]. [12]. However, using convolutional kernels
to construct a multi-scale feature extraction module increases the
model’s computational complexity and lacks adaptability. Thus, a multi-
scale coarse-grained approach is employed for multi-scale fault diag-
nosis modelling. The examination of the model demonstrates that the
multi-scale CNN model exhibits greater robustness compared to the
CNN-based model [17].

Taking into account the differences in the contribution of scale fea-
tures to fault diagnosis decisions, the attention mechanism is employed
to optimize the significance of scale features in fault recognition,
adopting a feature fusion perspective [40]. Decision fusion may enhance
the robustness of fault diagnosis models more than feature fusion.
Therefore, a CNN model was developed based on weighted soft voting
and a multi-scale module for diagnosing wind turbine gearboxes. The
results indicate that decision fusion significantly reduces the false alarm
rate [38]. To improve the capability of data-driven approaches in
bearing health management, a gated recurrent unit and multi-scale in-
formation fusion were proposed to extract degradation information from
vibration signals [26]. Whether by combining vibration signal process-
ing modules with CNNs or developing end-to-end models with multi-
scale feature extraction modules, the underlying idea is to increase the
richness of fault information. The CNN-based model excels in local
feature extraction. To enhance global feature extraction capability, a
self-attention network was introduced in bearing fault diagnosis. The
results indicate that the application of Transformers in mechanical fault
diagnosis performs as effectively as CNNs [7].

However, fault diagnosis models based on conventional deep neural
networks lack the capability to provide confidence assessments for their
predictions. Overconfident predictions can significantly impact the
reliability and effectiveness of an intelligent diagnosis model. Therefore,
it is essential to equip the model with interval predictions for estimating
fault modes in the form of ranges, rather than point estimates. Proba-
bilistic neural networks are used as the basis for modelling, allowing
the model to accurately reflect its level of confidence in predictions.
Bayesian neural networks, a type of probabilistic neural network
framework, are commonly used to develop fault prognostic models. The
results indicate that uncertain predictions can deliver more fault infor-
mation than traditional point-estimate models [28,37]. Prediction un-
certainty comprises aleatoric and epistemic uncertainty (G. [20]
Quantifying and assessing prediction uncertainty can enhance the
interpretability and reliability of fault diagnosis models [1]. By
decomposing and analysing uncertainty quantification (UQ), a Bayesian
neural network serves as the foundation for developing a fault diag-
nostic model. This approach enables the recognition of faults beyond the
model’s inherent cognitive capabilities, thereby reducing the false

Nomenclature

Acronym Full Name
PIPDN Physics-Informed Probabilistic Deep Network
DCNN Deep Convolutional Neural Network
MS-PIPDN Multi-Scale Physics-Informed Probabilistic Deep

Network
MSCNN Multiscale Convolutional Neural Network
UQ Uncertainty Quantification
AUQ Aleatoric Uncertainty Quantification
EUQ Epistemic Uncertainty Quantification
PINN Physics-Informed Neural Network
PINet Physics-Informed Residual Network
FFT Fast Fourier Transform
BPFI Ball pass frequency, inner race
BPFO Ball pass frequency, outer race
BSF Ball spin frequency
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positive rate [11,42].
Motivated by the need to improve diagnostic performance, Trans-

formers are used as the foundation for developing the intelligent model.
The findings suggest that by leveraging self-attention’s global feature
extraction capability, the Bayesian Transformer-based fault diagnosis
model outperforms the 1-D CNN Bayesian model when dealing with out-
of-distribution data [36]. To achieve cross-device fault prognosis,
Bayesian neural networks are also used for transfer learning. The results
demonstrate that the Bayesian neural network-based model can accu-
rately predict faults even with limited data [43]. Developing a proba-
bilistic fault diagnosis model based on Bayesian neural networks
involves higher computational complexities compared to Monte Carlo
(MC) dropout-based probabilistic neural network modelling. A proba-
bilistic model for fatigue life prediction is developed using a self-
attention network with MC dropout (L. [4]. The examination reveals
that MC dropout can address uncertain predictions as effectively as
Bayesian neural networks, with the added advantage of greater model-
ling flexibility.

Although the aforementioned studies have successfully applied
probabilistic neural networks to mechanical system fault diagnosis and
provided interpretability to deep learning fault diagnosis through un-
certainty quantification and assessment, the underlying mechanisms of
fault diagnosis remain inherently challenging to visualize through
model interpretation. Furthermore, purely data-driven neural networks,
which lack crucial physical information related to mechanical system
failures, compromise the model’s expertise in fault diagnostics. To
address these challenges, physics-informed neural networks have
been proposed as a foundation for fault diagnostic modelling and
structural health monitoring [41]. There are various approaches to
embedding physics into neural networks. For example, fault character-
istic information and their corresponding harmonics can be incorpo-
rated as additional features for neural network learning. Studies have
shown that these supplementary features enable the neural network to
acquire a more comprehensive understanding of mechanical faults,
enriching the model’s knowledge of the physical system [31]. This
physics-informed approach is similar to manually extracting physical
characteristics for neural network learning, a process that can be chal-
lenging for model maintenance and updating. For instance, a fault
characteristic extractor based on kurtosis spectrum has been developed
for feature filtering. The results indicate that employing frequency
domain analysis and judiciously incorporating frequency domain fault
characteristics enhance the neural network’s comprehension of me-
chanical faults, potentially providing interpretable insights [29].

Considering the time dependencies in vibration data, a gear failure
vibration mechanism was used as the physical information to guide the
selection of hyperparameters for a long short-term memory (LSTM)
network, demonstrating the diversity of physics-informed neural
network approaches [6]. To further facilitate the neural network’s un-
derstanding of the physical aspects of mechanical faults, a physics-
informed module was developed to extract vibration-dominant modes,
showing that embedding physical information enhances the model’s
robustness in fault diagnostics under non-stationary conditions [27].
Additionally, the combination of wavelet transforms and CNNs has been
used to visualize fault characteristics in the frequency domain, enabling
a more interpretable diagnostic process. This research demonstrates that
frequency analysis of model features can provide evidence of mechani-
cal failures (T. [21]. Moreover, fault diagnostics based on digital twins
also fall under the category of physics-informed data-driven approaches.
The knowledge learned by neural network-based models from the Digi-
Twins of a gearbox provides accurate degradation information about
gear wear progression [8]. A digital twin-assisted dual transfer method
was developed to better migrate physical information from the digital
twin model to match real sensor information for accurate fault diagnosis
Z. [22].

However, the aforementioned research, which involves training a
physics-informed neural network through a supervised learning

approach and constraining fault categories with state labels, can lead the
model to draw inferences that violate physical laws. Therefore, it is
necessary to redefine the training approach for fault diagnosis to make
the model more physically meaningful.

1.3. Summary and main contribution

Based on a state-of-the-art review of traditional neural networks,
probabilistic neural networks, and physics-informed neural networks in
mechanical system fault diagnosis, it can be summarized that both
conventional and physics-informed neural networks fall under the
category of point-estimate neural networks. Models from these networks
are incapable of providing the necessary confidence in fault diagnosis
assessments. The black-box nature of conventional neural network-
based models makes them challenging to interpret and prone to over-
confident fault predictions. Despite efforts to embed physical informa-
tion, state-of-the-art physics-informed neural networks fundamentally
rely on conditional labels for supervised learning. This reliance limits
their direct physical application due to constraints between data and
labels, rendering the models inexplicable and difficult to trust.

In contrast, probabilistic neural networks can achieve both fault
pattern recognition and uncertainty quantification, offering a more
trustworthy interpretation of fault diagnosis. However, both conven-
tional and probabilistic models fall short in explaining the physical
mechanisms behind fault diagnosis. Additionally, improving the reli-
ability of these models should be rooted in their interpretability,
requiring both aspects to be studied together to enhance trustworthy
fault diagnosis.

To address the limitations and challenges associated with neural
networks in fault diagnosis, this paper proposes a framework called
Physics-Informed Probabilistic Deep Neural Networks (PIPDN) with an
interpretable mechanism to develop a trustworthy fault diagnostic
model. PIPDN possesses the capability for uncertainty predictions
inherent in probabilistic neural networks. The PIPDN model exhibits
high reliability and strong interpretability by accurately analysing pre-
dicted uncertainties and vibration characteristics. Additionally, PIPDN
can generate Smart Data to provide precise fault information corre-
sponding to mechanical dynamics, serving as a valuable foundation for
establishing large-scale AI models for Prognostics and Health Manage-
ment (PHM).

The main contributions of this paper are summarized as follows:

i. A new physical labelling module based on conditional labels to
supervise the neural network in learning the vibration charac-
teristics of mechanical failures for physics-informed neural
network training.

ii. A Physics-Informed Probabilistic Neural Network (PIPDN)
framework for developing a mechanical fault diagnostic model,
enabling the intelligent model to possess high trustworthiness,
strong interpretability, and the capability to generate Smart Data
that elucidates fault information for the development of large-
scale AI models.

iii. An Uncertainty Quantification (UQ)-based decision fusion mod-
ule for multi-scale fault information fusion, aimed at controlling
uncertainty prediction and reducing the false positive rate in fault
diagnosis.

iv. An innovative integration of a physics-informed probabilistic
neural network with the mechanical system fault knowledge
domain to enhance the interpretability of the neural network’s
decision-making process. This integration provides a deeper un-
derstanding of how the model arrives at specific diagnostic
outcomes.

The performance of the developed PIPDN framework, along with the
Multi-Scale PIPDN diagnosis model, is examined using a rotating ma-
chinery experimental dataset. Overall, the proposed PIPDN framework
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contributes to improving prediction reliability and explaining the fault
diagnosis mechanism of neural networks from physical perspectives.
The PIPDN can generate Smart Data for developing large-scale AI
models. The development of a multi-scale PIPDN fault diagnosis model
serves as an illustration of the PIPDN framework and UQ-based decision-
fusion module. The diagnostic mechanism of the multi-scale PIPDN is
explained by considering the perspectives of uncertainty quantification
and physical principles, interpreting the reasons for the reduction in
false positive rates in fault diagnosis.

The structure of the rest of the paper is as follows: Section 2 in-
troduces the proposed methodology, Section 3 describes the dataset and
experimental setup, Section 4 presents case studies, and Section 5 offers
conclusions.

2. Proposed methodology

2.1. Physical labelling module

In studies of supervised deep learning (DL)-based fault diagnosis
modelling, conditional labels are often assigned to features in a
mandatory manner. Using conditional labels to constrain the learned
representational features in models is typically limited to classification
tasks. This process frequently overlooks the fact that these representa-
tional features should have physical significance. To address the limi-
tations of conditional labels, a novel physical labelling module is

proposed in this section. These labels are designed to professionally and
physically address the fault diagnostic task.

Generally, bearing fault diagnosis relies on vibration analysis to
obtain reliable conclusions. Thus, in simple terms, the proposed physical
labelling module incorporates the theoretical fault characteristic fre-
quency of the bearing as a value label.

X(f) = FFT(x(t)) (1)

where x(t) represents a vibration signal sample, and FFT(x(t)) de-
notes the application of the Fast Fourier Transform (FFT) to x(t),
resulting in X(f) containing amplitude and phase information at
different frequency components f. The normalized frequency fn can be
calculated by Eq. (2).

fn = f/fr (2)

where, fr is the rotational frequency. In this study, we focus on three
specific types of faults. For a given type of machinery, the characteristic
frequency of the fault can be determined using Eqs. (3)–(5).

BPFI =
Z • fr
2

(

1+
d
D
cosθ

)

(3)

BPFO =
Z • fr
2

(

1 −
d
D
cosθ

)

(4)
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BSF =
fr • D
d

(

1 −
(
d
D
cosθ

)2
)

(5)

The fault characteristic frequencies (FCFs), such as BPFI, BPFO, and
BSF, are typically considered the gold standard in vibration analysis for
diagnosing bearing faults. These frequencies serve as the basis for our
analysis. For each fault condition, we extract the fault characteristic
frequencies and their harmonics from X(f) as essential physical labels for
subsequent analysis. For example, for a given characteristic frequency
like BPFI, the frequency interval for the ith harmonic is defined as
[BPFIi − 5× Δf , BPFIi + 5× Δf ], where Δf is the frequency spacing,
calculated as the sampling frequency divided by the length of the signal
(i.e. the number of samples). The process for labeling physical infor-
mation for each fault is detailed in Algorithm 1, which considers a total
of n harmonics in feature extraction.

Algorithm 1 defines the physical labelling procedure used to transform
and process the input data in the frequency domain,with the goal of obtaining
filtered information from the input signal. A step-by-step explanation of Al-
gorithm 1 is as follows. (I) Perform Fourier transform on input signal domain
signal x via Eq. (1) to obtain frequency signal X(f). (II) Define bearing fault
characteristics of each sample x in dataset X , which is calculated by the
corresponding theoretical fault characteristic frequency (FCF) provided label
y. (III) Calculate the frequency spacing and normalize the fault character-
istics. By iterating through each sample, generate masks for each sample. (IV)
Apply these masks on original frequency signal X(f) to obtain masked fea-
tures Xphysics(f). (V) Calculate the angle information of βphysics via Eq. (6),
where ∅ = Xphysics.imag and α = Xphysics.real are imaginary part the real
parts of Xphysics(f), respectively. Perform the inverse FFT on Xphysics(f) to
obtain xphysics(t) for each sample. The angle information βphysics and the
xphysics(t) are the physical labels X physics for the proposed PIPDN model
training.

β = tan− 1∅
α (6)

2.2. Physics-informed probabilistic deep network (PIPDN) main body

Fig. 2 illustrates the framework of the PIPDN network, which com-
prises of two autoencoders and uses the proposed Algorithm 1.

As shown in Fig. 2, the collected raw vibration signal x(t) ∈ R
n serves

the input data. Real part α and imaginary part ϕ are obtained by
applying FFT to the x(t). Two encoders are then employed to extract

advanced information from α and ϕ, resulting in ψ(α) and ψ(ϕ),
respectively. The encoder ψ is developed based on a stack of layers
including convolutional layer Conv1d( • ), a dropout layer Dropout( • )
for regularization and uncertainty prediction based on Monte Carlo
dropout, an activation layer ReLU( • ), and batch normalization layer
Batchnorm1d( • ).

Conv1d(x) = W*x+ b (7)

Dropout(x) =

⎧
⎪⎨

⎪⎩

0
Conv1d(x)
1 − p

(8)

Batchnorm1d(x) =
Conv1d(x) − E(Conv1d(x))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(Conv1d(x)) + ε

√ (9)

ReLU(x) = max(0, x) (10)

The decoder φ is similarly constructed using a stack of layers, but
with the convolutional layer replaced by transpose convolution layer
ConvTranspose1d( • ). The operation of ConvTranspose1d is defined as:

ConvTranspose1d(x) = W⊛x+ b (11)

where * denotes convolutional operation, E( • ) represents the sample
mean operation and Var( • ) is sample variance operation, and ⊛ is
transpose convolutional operation.

The latent space feature z(t) ∈ R
r is obtained by inverse FFT,

following z(t) = FFT− 1(ψ1(α),ψ2(ϕ)). This feature reflects the same fault
representative information as the generated features in output space
x̂(t) ∈ R

n. Consequently, it is also used in the classifier f( • ) to obtain
diagnostic results ŷ. Unlike conventional neural network-based fault
diagnosis applications, the features z(t) ∈ R

r in the latent space are
determined by conditional labels and physical labels xphysics and βphysics.

To enhance the physical representation of the feature zzz in the
latent space, the distance between the physical label xphysics and gener-
ated smart data x̂ is used as loss function for optimizing the PIPDN
model parameters. Additionally, the similarity between physical label
βphysics and the generated angle information β̂ is introduced as the pen-
alty loss component in the overall loss, where xphysics and βphysics are the

outputs from Algorithm 1, ϕ̂ = φ1(ψ1(ϕ)) and x̂ = FFT− 1(ϕ̂, α̂). The
parameters of the encoders ψ and decoders φ used to process amplitude
α and phase ϕ are denoted by θ1, θ2 and μ1, μ2 respectively. The pa-

Fig. 2. Schematic of the PIPDN framework.
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rameters of the classifier f( • ) are ω. Thus, the output of model PIPDN( •
) for input data x can be calculated by Eq. (11). Typically, the output ŷ is
the result of softmax normalization.

x̂, ŷ = PIPDN(x|θ1 , μ1 , θ2 , μ2 ,ω) (12)

The training and testing processes of the PIPDN framework,
including model optimization, uncertainty prediction, uncertainty
quantification, are presented in Algorithm 2.
Algorithm 2: PIPDN model optimization and uncertainty quantification of its
uncertainty prediction

Model Optimization
Input:
Training Data D train = {X ,Y } Models ψ i( • ), φi( • ) and f( • ) with initialized
parameters θi , μi and ω ; learning rate η
Output: ψ i( • |θ̂i), φi( • |μ̂i) and fj( • |ω̂)

Training PIPDN branch network:
for epoch in maximum epochs:

Samples
[
x, y,

(
xphysics , βphysics

)]
in
(
X ,Y ,X physics

)
with usage of

Algorithm 1
Down sampling by encoders: ψ1(α) and ψ2(ϕ)
Laten space features:z = FFT− 1[ψ1(α),ψ2(ϕ) ]
Up sampling by decoders: ϕ̂ = φ2[ψ2(ϕ)] and x̂ = FFT− 1(ϕ̂, α̂),

where α̂ = φ1[ψ1(α) ]
Fault prediction:ŷ = f(z)
loss calculation: by

λ1‖x̂ − xphysics‖
2
2 +λ2‖β̂ − βphysics‖

2
2 − λ3

∑
ylog(ŷ)

(By performing k iterations of Monte Carlo sampling, the loss and
performance are averaged over the k iterations)

Parameters θi, μi and ω are optimized by optimizer with learning
rate η

Saving the best performance models (By performing k iterations of
Monte Carlo sampling, the loss and performance are averaged over the k
iterations)

end
Output: ψ i( • |θ̂i), φi( • |μ̂i) and f( • |ω̂)

end

After training the model, MC dropout is used to conduct uncertainty
prediction and quantify the uncertainty of this dynamic prediction re-
sults. Assuming the test data is represented by x, to sample the model
parameters K times, for the kth sampling, the prediction of the PIPDN
model is.

x̂
k
, ŷ

k
= PIPDN

(
x|θk1, θ

k
2, μk1, μk2,ωk

)
according to Eq. (12), where ŷ

k

represents the probability distribution of the estimated status. x̂
k is the

smart data, which can be used for diagnostic explanation in this study. In
the case where ŷ

k equals to kth output of the PIPDN model, the average
prediction after sampling K times is y. Based on the entropy, the model is
able to quantify the prediction uncertainty [13]. The total uncertainty
PU for each x can be quantified by Eq. (12).

PU = H(y|x) = −
∑C

c=1
p(y = c|x) × log[p(y = c|x)] (13)

By considering total uncertainties, PU can be decomposed into
aleatoric (AU) and epistemic uncertainties (EU) that respectively refer to
the uncertainty inherent to the input samples and model parameters.
The AU can be approximated by Eq. (14).

AU ≈ −
1
K
∑K

k=1

∑C

c=1
p
(
yk = c

⃒
⃒x
)
× log

[
p
(
yk= c|x

)]
(14)

According to the definition, epistemic uncertainty is the difference
between total uncertainty and aleatoric uncertainty, which can be
approximated as:

EU ≈ −
∑C

c=1
p(y = c|x) × log[p(y = c|x) ]+

1
K
∑K

k=1

∑C

c=1
p
(
yk

= c
⃒
⃒x
)
× log

[
p
(
yk= c|x

)]
(15)

2.3. Multi-scale diagnostic framework with uncertainty quantification
(UQ) based decision-making module

Motivated by the multi-scale (MS) module’s ability to improve
diagnostic performance, this section introduces a novel MS-PIPDN
model, developed based on the PIPDN framework. The fusion of infor-
mation at the decision-making level has the potential to enhance the
model’s robustness. Therefore, a UQ-based decision-fusion module is
proposed as a component of the MS-PIPDN model. Fig. 3 presents the
diagnostic flowchart using the MS-PIPDN model with the UQ-based
decision-making module.

Fig. 3 illustrates how the MS-PIPDN framework establishes an
explainable and reliable neural network for fault diagnosis. The MS-
PIPDN model operates directly on the raw data collected by sensors
from rotating machinery, using a multi-scale extractor to capture multi-
scale features from the raw vibration signals. The multi-scale extractor
employs average pooling, and for each data point, the multi-scale
feature is calculated using Eq. (16).

output[ĺ ] =
1
τ
∑ĺ +τ− 1

l=ĺ

input[l] (16)

The input is a raw vibration signal x(t), where l represents the po-
sition over the time series x(t), and τ is the kernel size of the average
pool, representing the multi-scale factor. A padding procedure is used to
ensure that the length of the output sequence remains the same as the
input sequence. In this study, the maximum scale factor is set to three,
consistent with the multiscale diagnostic research by .

[17]. Consequently, there are three PIPDN models applied to each
scale of the vibration features. The PIPDN models the multi-scale fea-
tures. Specifically, at each scale, physical labels are obtained through
the physical label module to train a PIPDN model in addition to tradi-
tional conditional labels. In this study, the hidden features extracted by a
PIPDN model from the multi-scale features are defined as branch
networks.

The training process for the MS-PIPDN model follows a similar
approach to training the PIPDN model, with the distinction that the loss
function comprises the sum of losses (Eq. (17) across all multi-scale
branch networks, where n is the number of network branches.

1
n
∑j=n

j=1

[
λ1‖x̂j − xphysics(j)‖

2
2 + λ2‖β̂ j − βphysics(j)‖

2

2 − λ3
∑

ylog
(
ŷj
)]

(17)

According to Eq. (14), by quantifying and decomposing the uncer-
tainty in the PIPDN model’s fault predictions, the epistemic uncertainty
for each sample can be obtained. To make multi-scale feature fusion
more interpretable and to improve diagnostic reliability, this study
proposes a decision fusion module based on uncertainty quantification,
referred to as the UQ-based decision fusion module.

Algorithm 3 implements the reconsideration of uncertain predictions by
MS-PIPDN based on the epistemic uncertainty. Where j is the index of the
scale-factor, j = 1 means the branch network 1 in the MS-PIPDN model.
Traditional multi-scale neural network models [40] use attention mecha-
nisms to fuse each neural network branch with weighted coefficients. How-
ever, since the weight computation is still based on neural network outputs,
the interpretability remains weak. Therefore, the proposed UQ-based decision
module reconsiders the diagnostic results of each branch network based on
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the cognitive uncertainty of the test samples. Lower epistemic uncertainty
indicates that the branch is more confident and reliable in its diagnosis.

Algorithm 3: UQ-based decision-fusion module

Uncertainty Quantification and UQ-based decision fusion module:
Input: Testing Data D test = X test , MS-PIPDN model: PIPDNj( • |θ̂1, μ̂1, θ̂2, μ̂2, ω̂),
sampling time K
Output: Diagnostic result Ŷ

for x in X test

Sampling K times from the branch network of MS-PIPDN
model:PIPDNj(x|θ̂1, μ̂1, θ̂2, μ̂2, ω̂)

where kth prediction is ŷ
k
j = PIPDNj

(
x|θ̂

k
1, μ̂k

1, θ̂
k
2 , μ̂k

2, ω̂k
)

Record ŷj =
{

ŷ
k
j

⃒
⃒
⃒k ∈ N,1 ≤ k ≤ K

}

Obtain epistemic uncertainty EU =
{
EUj
⃒
⃒j ∈ N,1 ≤ k ≤ n

}
by Eq. (13) to Eq.

(15)
Select trustworthy prediction:

Trustworthy index: idx = argmin(EU)

Trustworthy diagnosis for x: ŷ =
{

ŷj

⃒
⃒
⃒j ∈ N,1 ≤ k ≤ n

}
[idx]

end
Diagnosis result for X test : Ŷ = {ŷ}

end
Output: Fault diagnostic:Ŷ ; Smart Data: X̂ calculated by Eq. (12)

end

3. Experimental setup and investigation

3.1. Bearing dataset

In this study, two bearing fault datasets are used to validate the
effectiveness, reliability, and superiority of the proposed PIPDN frame-
work and MS-PIPDN model in fault diagnosis. Dataset I [30], encom-
passes a more comprehensive array of fault types, providing a richer and

more diverse set of scenarios for analysis. This diversity is crucial for
developing robust fault detection methods that can accurately identify
various types of bearing malfunctions. Dataset I also includes early-stage
fault instances, enabling the development and validation of models
capable of detecting faults at their nascent stages. This allows for the
implementation of generalization tests that track the evolution of faults,
ensuring that the developed models not only perform well on specific
fault patterns but also exhibit robustness and adaptability as faults
progress over time.

As illustrated in Fig. 4, the experimental rig for Dataset I comprises
six components, each serving a specific function: (1) an accelerometer,
(2) a microphone, (3) a load cell, (4) a Hall effect sensor, (5) a motor
temperature thermocouple, and (6) a room temperature thermocouple.
All data were recorded with the accelerometer positioned inside the
motor casing, close to the drive-end bearing, to facilitate accurate data
capture. Each data sample is 10 s in length and is collected at a sampling
rate of 42,000 Hz.

All fault characteristics in the experiment are determined through
spectrum analysis. Each bearing corresponds to a unique characteristic
frequency. The physical parameters and characteristic frequencies of the
bearings are outlined in Table 1. In this dataset, each raw sample is
labelled in the format {Letter}-{Number}-{Number}. The letters in the
dataset labelling signify the condition of the tested bearing. Specifically,
“H” denotes a healthy bearing, “I” indicates an inner race fault, “O”
represents an outer race fault, and “B” signifies a ball fault. For example,
the data sample labelled “I-2-1” corresponds to an inner race fault in
bearing 2 with a developing fault, whereas “I-2-2” represents an inner
race fault in bearing 2 that is fully developed.

In addition to Dataset I, Bearing Dataset II is used to further validate
the performance of the PIPDN and MS-PIPDN models under time-
varying speed conditions. In this experiment (Fig. 5), we incorporate

)
)

)

)
)

)

Fig. 3. MS-PIPDN diagnostic framework with UQ-based Decision-Fusion module.
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three distinct bearing health states: normal, inner race wear, and outer
race wear. The setup for the working conditions is innovative, with the
rotational speed varying over time. This study considers three working
states: increasing rotational speed, decreasing rotational speed, and
rotational speed initially increasing and then decreasing. These states
are used to validate the reliability of the diagnostic models.

For example, in test H-A-1, “H” represents the healthy state of the
bearing, “A” indicates the change in rotational speed, and “1” signifies
the first test. For each fault and each speed condition, a total of three
tests were performed. As another example, in test O-3, “O” stands for
outer race damage, and “3” represents the third test. The experiments for
Dataset II were conducted on a SpectraQuest Machinery Fault Simulator
(MFS-PK5M). The shaft is driven by a motor, with its rotational speed
regulated by an AC drive. The shaft is supported by two ER16K ball

bearings: one on the left, which is in optimal condition, and the other on
the right, which serves as the experimental bearing. This experimental
bearing is replaced with bearings exhibiting various health conditions.
An ICP accelerometer (Model 623C01) is mounted on the housing of the
experimental bearing to collect vibration data. Additionally, an incre-
mental encoder (EPC Model 775) is used to monitor the rotational speed
of the shaft.

All fault characteristics in the experiment are determined through
spectrum analysis, with each bearing corresponding to a unique char-
acteristic frequency. The physical parameters and characteristic fre-
quencies of the bearings are outlined in Table 2. In this dataset, the
vibration is sampled at 200,000 Hz for 10 s per sample.

Table 1
Parameters of bearing dataset-II.

Bearing
type

Pitch
diameter

Ball
diameter

Number of
balls

BPFI BPFO BSF

NSK
6203ZZ

28.50 6.77 8 4.95
fr

3.05
fr

3.98
fr

Fig. 5. Experimental rig setup for dataset-II.

Table 2
Parameters of bearing dataset-II.

Bearing
type

Pitch
diameter

Ball
diameter

Number of
balls

BPFI BPFO

ER16K 38.52 7.97 9 5.43
fr

3.57
fr

Fig. 4. Experimental rig setup for dataset-I operation.
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3.2. Diagnostic experimental setup

In this study, all the diagnostic models are implemented using
Pytorch library. Five state-of-the-art methods, including DCNN [42],

PINN [29], PINet [27], MSCNN [40] and Transformer [42] are used for
comparison to demonstrate the superiority of the proposed diagnostic
framework. The DCNN serves as the baseline architecture for feature
extraction and classification in the comparison models.

In Table 3, four main scenarios are designed to examine the diag-
nostic performance of the models. White Gaussian noise is added to the
raw signals to simulate environmental pollution. This process is defined
by xnoisy = awgn(x, snr) based on Eq. (18), where x is the raw signal,
xnoisy the signal with added white Gaussian noise, and snr, represents the

signal–noise-ratio between xnoisy and x, where snr = 10log10
(
Px
Ps

)

, Px =

1
N
∑N− 1

n=0 |x[n] |
2, Pnoisy = 1

N
∑N− 1

n=0
⃒
⃒xnoisy[n]

⃒
⃒2.

xnoisy = x+ s (18)

Under each main scenario, there are four sub-scenarios that repre-
sent different aspects of how themain scenarios are composed. Scenarios
I to III are constructed using dataset-I, while Scenario IV is constructed
with dataset-II. Scenario-I aims to evaluate the model’s resilience to
noise interference. Both the training and test sets are carefully curated to
ensure there is no data overlap. To simulate a noisy test environment,
noise is intentionally introduced to the test samples, allowing us to
assess the model’s performance amidst environmental disturbances.
Scenario-II is designed to showcase the effectiveness of part inspection.
In this scenario, the training and test datasets are sourced from entirely
separate bearings. This deliberate separation ensures that the model’s
ability to inspect parts is thoroughly tested across diverse datasets,
reflecting real-world scenarios where parts may vary significantly.
Scenario-III assesses the model’s robustness against data drift due to
equipment aging. In this scenario, the training data comes from bearings

Table 3
Overview of Diagnostic Examination Scenarios.

Scenario Training data Testing dataset

I-A 70 % × H, I-1, O-6, B-11 30 % × H, I-1, O-6, B-11 with SNR=-
9dB~9dB

I-B 70 % × H, I-2, O-7, B-12 30 % × H, I-2, O-7, B-12with SNR=-
9dB~9dB

I-C 70 % × H, I-3, O-8, B-13 30 % × H, I-3, O-8, B-13with SNR=-
9dB~9dB

I-D 70 % × H, I-5, O-10, B-15 30 % × H, I-5, O-10, B-15with SNR=-
9dB~9dB

II-A H
I-1,I-2,I-3

O-6,O-7,O-8
B-11,B-12, B-13

H
I-5

O-10
B-15

II-B H
I-1,I-2,I-5

O-6,O-7,O-10
B-11,B-12, B-15

H
I-3

O-8
B-13

II-C H
I-1,I-3,I-5

O-6,O-8,O-10
B-11,B-13, B-15

H
I-2

O-7
B-12

II-D H
I-2,I-3,I-5

O-7,O-8,O-10
B-12,B-13, B-15

H
I-1

O-6
B-11

III-A H, I-1-1, O-6-1, B-11-1 H, I-1-2, O-6-2, B-11-2 with SNR=-9dB
III-B H, I-2-1, O-7-1, B-12-1 H, I-1-2, O-7-2, B-12-2 with SNR=-9dB
III-C H, I-3-1, O-8-1, B-13-1 H, I-1-2, O-8-2, B-13-2 with SNR=-9dB
III-D H, I-5-1, O-10-1, B-15-1 H, I-1-2, O-10-2, B-15-2 with SNR=-

9dB
IV-A H-1, H-2, I-1, I-2, O-1, O-2 H-3, I-3, O-3
IV-B H-1, H-2, I-1, I-2, O-1, O-2 H-3, I-3, O-3
IV-C H-1, H-2, I-1, I-2, O-1, O-2 H-3, I-3, O-3

Fig. 6. Prediction uncertainties of the DCNN in the PIPDN model.
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with early-stage structural damage, while the test data is from bearings
with advanced deterioration. By exposing the model to different stages
of equipment degradation, we can evaluate its ability to maintain per-
formance despite changes in the data distribution over time. Scenario-
IV focuses on fault diagnosis under dynamic rotational speed conditions.
Both the training and test sets are sourced from distinct trials, ensuring
no overlap between the datasets.

3.3. Hyper parameters setup

The hyperparameter setup for the PIPDN model is detailed in
Table 3. The hyperparameters for the PIPDN model are set to be
consistent with those of the baseline model and other state-of-the-art
models. The dropout rate, which controls prediction uncertainty, is
examined in the range from 0.1 to 0.5, with 0.5 being selected for
analysis and comparison. The fully connected layer is configured with
dimensions of 8196 (input), 420 (hidden), and the number of output
units corresponding to the bearing working conditions. The mini-batch
size during training is set to 64. The learning rate is initialized at
0.001 to control the step size during optimization, decreasing by 2 %
after every 50 steps. The model undergoes a maximum of 200 training
epochs, with early stopping enabled to enhance training efficiency. The
convolutional kernel sizes are specified as [5, 4, 3, 2], and the stride
values are set at [5, 4, 3, 2]. Transpose convolutional operations use
kernels of sizes [5, 4, 3, 2]. Additionally, minor vibration signals and
normalized rotating speeds are processed by the physical labelling
module. The number of selected harmonics is set to 10, as considering
excessively high harmonic orders would increase computational
complexity. Consequently, interpretable fault information is typically
observed in the low-frequency range. These hyperparameter configu-
rations collectively form the foundation of the PIPDN model’s archi-
tecture and contribute to its effective performance in fault diagnosis
tasks.

4. Discussion and analysis

4.1. Uncertainty quantification and analysis

In this subsection, the prediction uncertainty of the proposed PIPDN

model is compared with that of the baseline model, DCNN, in the context
of fault diagnosis. Information entropy is employed to quantify predic-
tion uncertainties. Since the dropout rate plays a significant role in
addressing uncertainty quantification (UQ) through the MC dropout
methodology, the examination of UQ is conducted with four different
dropout rates under Scenario I. Fig. 6 illustrates the predictive uncer-
tainty for both the baseline DCNN and the proposed PIPDN models.

As depicted in Fig. 6, UQ represents the total average predictive
uncertainty, while AU and EU denote the average aleatoric and
epistemic uncertainties, respectively. The total uncertainties for both the
baseline and the proposedmodels decrease as the dropout rates increase.
This occurs because higher dropout rates simplify the models and reduce
their complexity, leading to a decrease in predictive uncertainties.
Comparing the baseline DCNNmodel to the PIPDNmodel, the predictive
uncertainty of the PIPDN model is consistently lower than that of the
baseline DCNN model, regardless of whether low or high dropout rates
are used. Epistemic uncertainty helps determine whether the models
have acquired sufficient knowledge to confidently handle a specific task.
Consequently, the epistemic uncertainty (EUQ) of the PIPDN model’s
predictions is significantly lower than that of the DCNN model, indi-
cating that the PIPDN model has greater confidence in diagnosing
bearing faults.

Examining Fig. 6b reveals that the uncertainty of the PIPDN model
remains consistently stable as the dropout rate varies. This stability is a
notable advantage of the PIPDNmodel over the DCNN. Additionally, the
independence of the PIPDNmodel from dropout rate variations has been
effectively validated, demonstrating the positive impact of incorpo-
rating physical labels to supervise model training. To ensure that each
model can effectively identify healthy bearing conditions, a dropout rate
of 0.5 will be used for all compared methods in the subsequent analysis
and discussion.

Analysing aleatoric and epistemic uncertainties helps assess the
stability and reliability of diagnostic models. Therefore, Fig. 7 illustrates
the distribution of aleatoric and epistemic uncertainties in fault pre-
diction, indicating whether the model can make stable predictions.

Fig. 7 illustrates the distributions of predictive uncertainty along
with its decomposition. From the perspective of total uncertainty, the
PIPDN model’s average estimation is closer to zero, which is signifi-
cantly lower than that of the DCNN model. Although the uncertainty

Fig. 7. Uncertainty decomposition and analysis for the baseline and proposed models.
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distribution of PIPDN exhibits a longer tail, the predictive confidence of
these extreme values also intersects with the lower bounds of DCNN’s
primary predictive confidence. It should be noted that epistemic un-
certainties reflect the model’s understanding of the task data. Obser-
vations of the epistemic uncertainties of the twomodels indicate that the
upper bounds of epistemic uncertainties in PIPDN’s distribution remain
lower than the lower bounds of DCNN’s epistemic uncertainties distri-
bution. Consequently, PIPDN exhibits a better cognitive capacity for
bearing fault diagnosis compared to DCNN. These results provide a
second motivation for developing the UQ-based decision-making
module.

Moreover, since the MS-PIPDN framework is developed based on the
proposed PIPDN model, where UQ is used as the basis for the proposed
UQ-based decision-making fusion module, the mechanism of this mod-
ule is investigated to demonstrate its reliability and effectiveness for
more trustworthy fault prediction.

Fig. 8 illustrates the uncertainty quantification (UQ) distributions of
various branch networks and their fusion within the MS-PIPDN model,
highlighting the importance of the proposed UQ-based decision-making
module. It is evident that traditional decision fusion methods tend to
increase the expected uncertainty quantification (EUQ) of predictions.
EUQ is a critical indicator of a model’s understanding of fault

knowledge. Therefore, traditional fusion methods, such as averaging
predictions from different branches in a multi-scale deep learning-based
fault diagnosis model, may enhance prediction accuracy but also reduce
confidence. In contrast, a UQ-based decision fusion approach not only
improves prediction accuracy but also enhances confidence in the
predictions.

4.2. Reliability of the proposed trustworthy and interpretable diagnostic
framework

It is essential to ensure the interpretability of neural network-based
fault diagnostic models. One of the innovations of this study is the
introduction of a physical labelling module. These physical labels serve
as guidance for the neural network to better incorporate the underlying
physics associated with conditional labels. In the analysis section, the
PIPDN model learns features generated from physical signals, and the
latent features are used for fault classification. Here, the order is given
by Hz/fr defined as Eq. (2) for following analysis.

The right columns in Figs. 9–11 compare the raw features with those
learned by the PIPDN model in both the time and frequency domains. In
the time domain, the features learned by PIPDN exhibit clearer impact
characteristics than the raw signals. In the frequency domain, the PIPDN

Fig. 8. The mechanism of the proposed UQ-based decision-making module for MS-PIPDN diagnostics.
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Fig. 9. Inner race fault: clean and noisy vibration.

Fig. 10. Clean Vibration Signal of an Outer Race Fault.

Z. Xu et al. Advanced Engineering Informatics 62 (2024) 102806 

12 



features clearly highlight fundamental frequencies and faulty har-
monics, including the inner fault characteristic frequency (close to 5X),
outer-race fault characteristic frequency (close to 3X), and ball fault
characteristic frequency (close to 4X). The frequency information
conveyed by these features aligns perfectly with the BPFI, BPFO, and
BSF harmonics.

However, in comparison, the frequency domain characteristics of the
raw vibration signal are strongly affected by harmonics due to sub-
harmonics generated by nonlinear structural vibrations and noise
interference, which mask the frequencies and make isolating fault
characteristics challenging. This is why using raw vibration signals
directly as input features for neural network modelling is prone to the
influence of unrelated noise characteristics, resulting in inaccurate
representations even with advanced fault diagnostic features. The re-
sults demonstrate that the proposed PIPDN model improves the accu-
racy of understanding the physical characteristics associated with
bearing failure modes.

To further examine the capabilities of the physical labelling module,
the right columns in Figs. 9–11 also assess the physical characteristic
extraction ability of PIPDN for noisy signals. The results show that the
PIPDN model effectively enhances physical understanding, even under
additional noise interference. When a high level of noise is added, it
becomes nearly impossible to discern any fault vibrations in the time or
frequency domains, as they are largely obscured. However, the smart
data generated by the PIPDN model clearly demonstrates the impact
characteristics in both domains. It is easy to identify the actual fault
characteristic frequencies corresponding to the theoretical positions of
BPFI, BPFO, and BSF harmonics. The clarity of these fault harmonics
explains why PIPDN can still provide effective fault diagnostic signals
despite noise interference. This outcome illustrates the interpretability
of the PIPDN model in deep learning-based fault diagnosis.

To elucidate the physical mechanism of the UQ-based decision-
making, the module is used to assist the MS-PIPDN model in diagnosing
faults more effectively and accurately. Fig. 12 illustrates the prediction

uncertainty and the associated physical information for theMS-PIPDN in
identifying each operational condition, combined with confusion matrix
analysis to explain the diagnostic mechanism.

Fig. 12 illustrates the physics of the MS-PIPDN model and its asso-
ciated uncertainty prediction capability, providing an explanation of the
diagnostic mechanisms in terms of both uncertainty quantification (UQ)
and physics. For diagnosing inner race faults in bearings, it is observed
that branch network 3 in the MS-PIPDN model exhibits a higher level of
confidence in predictions compared to other branch networks. This is
attributed to the fact that this specific branch network more accurately
captures the characteristics of inner race faults, particularly at the har-
monics (5X) associated with inner race faults, compared to other branch
networks. For diagnosing outer race faults, it is observed that branch
network 1 in the MS-PIPDN model exhibits a higher level of confidence
in predictions compared to other branch networks. This is because this
specific branch network more accurately captures the characteristics of
outer race faults, particularly at the harmonics (3X) associated with
outer race faults, compared to other branch networks. However, a
notable distinction arises in the analysis of outer race faults. For outer
race diagnostics, the UQ distributions of the three branch networks are
more similar. This phenomenon is also evident in the physics, as the
outer race fault harmonics learned by each branch network closely align
with the characteristic frequency of outer race faults. For ball creak
faults, based on the analysis of UQ, branch network 2 plays a leading
role in diagnostics because network 2 can more clearly extract ball creak
harmonics (3.98X) from the vibration analysis compared to the others.

Combining the analyses from Sections 4.1 and 4.2, it is evident that
while conventional decision-making fusion has the potential to enhance
diagnostic accuracy, it also amplifies the uncertainty associated with its
predictions. Visualizing the vibration in the frequency domain reveals
the reliability of failure predictions. In the ensuing analysis, using a
confusion matrix to explain the mechanism of the UQ-based decision
fusion module demonstrates how it enhances diagnostic performance
while maintaining reliability.

Fig. 11. Ball fault clean vibraion.
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Fig. 12. Fault diagnosis mechanism of the MS-PIPDN model.
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The MS-PIPDN model is developed to address the high false alarm
rate associated with diagnosis models based on single-branch networks.
As illustrated in Fig. 13, Branch Network (BN) 2 and BN3 both exhibit
false alarms when identifying outer race faults. However, the reasons for
these errors differ between the two networks. For BN2, nearly half of the
outer race faults are misclassified as ball faults, while the remaining
faults are identified as healthy bearings. In contrast, more than half of
the outer race faults are incorrectly classified as healthy bearings by
BN3. At the same time, BN1 tends to mistakenly classify healthy bear-
ings as outer race faults and ball faults as outer race faults. The difficulty
in diagnosing outer race faults compared to other faults arises because
their impact characteristics closely resemble those of healthy conditions.
However, after applying the decision-level fusion with the proposed UQ-
based decision-fusion module, the false alarms for outer race faults, ball
faults, and healthy conditions are significantly reduced. By integrating
UQ analysis, physical vibration analysis, and confusion matrix, the
diagnostic mechanism is enhanced, improving the reliability of the
neural network-based diagnostic model.

4.3. Diagnostic examination of the proposed framework

In real industrial engineering applications, the collected signals are
often contaminated by various types of noise. A common practice is to
manually add noise to the signals in order to assess the anti-noise

capabilities of diagnostic models. Fig. 14 demonstrates the diagnostic
performance of the models tested with noise levels ranging from − 9 dB
to 9 dB (Scenario I).

Fig. 14 illustrates the diagnostic performance of the proposed MS-
PIPDN method under different noisy environments, compared to
models from state-of-the-art research. For the test data at − 9 dB, the
performance of DCNN closely approximates that of PINN. As the signal-
to-noise ratio increases, the diagnostic performance of PINN surpasses
that of DCNN, indicating that embedding physical features provides
limited assistance to fault diagnostic performance in high-noise envi-
ronments. PINet constructs a physical feature extraction module and
integrates it into the neural network model, effectively functioning as a
filter that enhances fault information extraction. Consequently, there is
a significant improvement in fault diagnosis performance compared to
DCNN. Although the Transformer model does not explicitly embed a
physical information extraction module, its unique self-attention
mechanism allows it to focus on potential features within the signal it-
self, resulting in superior performance compared to PINet. The MSCNN
model is more robust than PINet due to its multiple branch network
structures combined with a coarse-grained feature extraction module
that effectively filters high-frequency noise. This explains its superior
performance compared to other fault diagnosis models based on single-
branch neural network structures. However, despite these enhance-
ments, all the aforementioned approaches improve the model’s

Fig. 13. Diagnostic mechanism analysis of MS-PIPDN.
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knowledge about bearing failure physics and serve as filters before the
learnable components. The primary learnable components of these
models are still constrained by conditional labels, leading to a loss of
physical meaning. This results in weaker robustness when dealing with
vibration data contaminated by strong noise. The proposed PIPDN
model fundamentally differs from conventional fault diagnosis models.
The inclusion of the proposed physical labelling module makes it less
susceptible to noise interference, thus exhibiting superior robustness
compared to state-of-the-art models. Based on the PIPDN structure, the
developed MS-PIPDN model captures a more comprehensive set of fault
information and learns the physical characteristics. Moreover, with the
inclusion of the proposed UQ-based decision-level fusion module, the
MS-PIPDN model maintains diagnostic performance exceeding 95 %
even in the presence of substantial noise in the collected data. The su-
periority of the proposed diagnostic framework is demonstrated through

a comparison of its diagnostic performance with state-of-the-art fault
diagnosis models. Table 4 presents the diagnostic results of the models
examined in Scenario II, where the training and testing data are sourced
from multiple working conditions, aligning with the assumptions made
in most supervised learning-based fault diagnostic works.

In this examination, the diagnostic performance of the models is
generally better than that observed in Scenario I due to the absence of
environmental noise contaminating the collected data. The diagnostic
performances of DCNN and PINN are relatively close, indicating that
simply embedding fault characteristics as additional input features is not
sufficient for a model to effectively learn mechanical failures (Table 5).
PINet diagnoses bearing faults more effectively than PINN because it
includes a physics-informed module, which acts as a filter to capture
more representative fault features, thereby improving model learning.
MS-CNN and Transformer outperform PINet by 4–5 %, due to MS-CNN’s
ability to acquire more comprehensive information for fault diagnosis
and the self-attention mechanism in the Transformer, which enables it to
capture detailed fault features.

As the foundational physics-informed neural network framework
proposed in this study, the PIPDN model achieves performance

Fig. 14. Diagnostic performance examination in a noisy environment.

Table 4
Hyper parameters setup of PIPDN model.

Hyperparameter value Hyperparameter value

Dropout Rate 0.5 (0.1 ~
0.5)

Fully connected layer 8196/420/output

Mini Batchsize 64 Frequency 42000/200000
Learning Rate 0.001 Minor vibration signal True
Max Epochs 200 Normalized rotating

speed
True

Early stop True Number of selected
harmonious

10

Conv Kernel [5,4,3,2] Optimizer Adam
Stride [5,4,3,2] Scheduler Step_size = 50/

gama = 0.98
TransposeConv
Kernel

[5,4,3,2] If Multi-Scale Scale = (1, 3, 5)

Table 5
The average diagnostics performance across from Scenario II-A to I-D.

Model Accuracy (%) Recall (%) Precision (%) F1 Score (%)

DCNN 83.25 ± 1.77 83.25 ± 1.77 83.67 ± 2.03 82.40 ± 1.88
PINN 84.51 ± 2.15 84.51 ± 2.15 84.68 ± 2.31 84.07 ± 2.24
PINet 93.78 ± 1.51 93.78 ± 1.51 94.01 ± 1.52 93.70 ± 1.54
MSCNN 97.75 ± 0.94 97.75 ± 0.94 97.82 ± 0.91 97.75 ± 0.94
Transformer 96.41 ± 1.30 96.41 ± 1.30 96.55 ± 1.25 96.41 ± 1.30
PIPDN 98.97 ± 0.81 98.97 ± 0.81 99.04 ± 0.76 98.97 ± 0.80
MS-PIPDN 99.88 ± 0.23 99.88 ± 0.23 99.88 ± 0.24 99.86 ± 0.22

Z. Xu et al. Advanced Engineering Informatics 62 (2024) 102806 

16 



exceeding 98.95 % in Scenario II. This robust performance is attributed
to its capability to learn accurate fault physics through the proposed
physical labelling module. The features in PIPDN are traceable in the
frequency domain and, as hidden features, provide clearer expressions
for classification. MS-PIPDN achieves its highest diagnostic performance
of 99.88 %. This model builds on the PIPDN framework, leveraging
uncertainty prediction and the UQ-based decision-fusion module to
reduce the false alarm rate. Fig. 15 visualizes the distance between
advanced features of different conditional data in DCNN, PINN, PINet,
Transformer, and the PIPDN model using T-SNE.

As shown in Fig. 15, the distance between each sample in the low-
dimensional space reflects their true discrepancies in the original
space. The distance scale in the low-dimensional space representing
DCNN features is larger than that of the other models. This observation
indicates that features in the corresponding original space may be over-
diffused, suggesting that DCNN features may not accurately convey fault
information. In contrast, the distance scale in the low-dimensional space
representing advanced features in the Transformer, PINet, PINN, and
PIPDN models decreases significantly. Given that the Transformer
framework is one of the physics-informed methods, this suggests that
embedding failure physics into a neural network can enhance its diag-
nostic capabilities, thereby reducing the uncertainty of the features in
their original spaces. Comparing the cluster distributions of features in
the Transformer, PINet, PINN, and PIPDN models, the PIPDN model
demonstrates superior clustering performance, effectively grouping
bearing faults based on their similarities. No misclassifications are
observed because the PIPDN model can accurately learn from the
representative fault features.

The superiority of the proposed diagnostic framework is

demonstrated through a comparison of its diagnostic performance with
state-of-the-art fault diagnosis models. Fig. 16 presents the diagnostic
results of the models examined in Scenario III, where the training and
testing data are sourced from different degradation stages to evaluate
the models’ extrapolation abilities.

In this examination, the diagnostic accuracy of each model showed a
slight decline compared to the assessments in Scenarios I and II. This
decline occurs because the distribution of test data changes with the
degradation of bearing performance. The purpose of this test is to
demonstrate the models’ extrapolation capability. In industrial appli-
cations, bearing health deteriorates over time. Therefore, modelling
degradation at a specific stage may significantly increase the model’s
false alarm rate when applied to bearings at more advanced stages of
degradation. A model capable of diagnosing faults at various degrada-
tion stages can greatly reduce training costs, as it would not need to be
retrained for each stage of the bearing’s lifespan.

The poor performance of the models stems from their failure to
incorporate physical information. Although multiscale features provide
more information than those captured by DCNNs, additional informa-
tion becomes less effective if the test data extends beyond the model’s
original knowledge due to the bearing’s performance degradation. The
Transformer model outperforms DCNNs due to its capability for global
feature extraction. However, despite its ability to capture global features
through self-attention mechanisms, the Transformer model exhibits
poor extrapolation capability due to the lack of embedded physical
information.

The models with embedded physical information can reduce false
alarms by around 40 % for ball fault diagnosis compared to the DCNN.
This improvement is attributed to PIPDN’s unique approach to physical

Fig. 15. Visualization of advanced features in the deeper layers of the models.
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Fig. 16. Diagnostic performance examined across different degradation stages.
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Fig. 17. Diagnostic performance under rotating speed increasing.
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Fig. 18. Diagnostic performance under rotating speed increasing.
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Fig. 19. Diagnostic performance under rotating speed increasing.
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enhancement, which guides themodel to learn physical features through
the proposed physical labelling module, rather than merely augmenting
the features for the model to learn. Furthermore, MS-PIPDN builds upon
PIPDN’s performance, significantly improving diagnosis accuracy in
inner race fault identification, increasing from 64 % to 71 %. This un-
derscores the effectiveness of the UQ-based decision fusion module.

To validate the effectiveness and reliability of the proposed MS-
PIPDN and PIPDN models in diagnosing faults in mechanical systems
under varying rotating speed conditions, Figs. 17–19 evaluate their
performance in Scenario IV.

Fig. 17(a) shows the vibration signals in scenario IV-A. The ampli-
tude increases with the rotating speed. The diagnostic performance of
the models is evaluated by dividing the 10-second raw signals into five
stages. Fig. 17(b) depicts the epistemic uncertainty of various diagnostic
models across different speed cases. It is evident that the uncertainty
associated with PIPDN is consistently lower than that of any existing
methods, highlighting the effectiveness of integrating a physical
approach to enhance the model’s understanding of fault diagnosis tasks.
Furthermore, the epistemic uncertainty observed in MS-PIPDN is even
lower than that in PIPDN. This improvement is facilitated by integrating
a more comprehensive understanding of physical principles and imple-
menting the proposed UQ-based decision-making module. This module
prioritizes reasoning with significantly lower epistemic uncertainty
within the MS-PIPDN model, resulting in improved final diagnostics.
Additionally, the reliability of fault diagnosis for each model is validated
through two additional scenarios. Fig. 18(a) and Fig. 19 illustrate the
results of fault diagnosis in scenarios involving decreasing rotating
speed and alternating between decreasing and then increasing rotating
speed, respectively. Regardless of how the scenarios change, the pro-
posed method (MS-PIPDN) consistently exhibits the lowest epistemic
uncertainty and achieves the best fault diagnosis results across all four
test metrics. This highlights the superiority and reliability of the pro-
posed diagnostic approach.

5. Conclusion

In this study, a physics-informed probabilistic deep neural network
(PIPDN) is proposed to develop an intelligent fault diagnosis model for
mechanical systems. The PIPDN integrates a physical labelling module
and an interpretable mechanism to enhance the model’s trustworthiness
and interpretability in diagnosing faults. This model generates smart
data based on accurate fault information, which supports fault analysis
and large-scale AI modelling in mechanical systems. Furthermore, a
multi-scale physics-informed probabilistic deep neural network (MS-
PIPDN) is developed by extending the PIPDN framework. This extension
enhances the model’s reliability in providing accurate fault diagnoses.
To further improve diagnostic performance and reduce false positive
alarms, uncertainty quantification (UQ) is incorporated into the MS-
PIPDN model through a decision fusion module. The availability, reli-
ability, and effectiveness of the proposed PIPDN and MS-PIPDN ap-
proaches are validated using a bearing experimental dataset. The
diagnostic examination of these approaches indicates the following:

i. The proposed physical labelling module, combined with condi-
tional labels, guides the PIPDN model to learn fault-

representative features, making the model highly interpretable
and trustworthy.

ii. The PIPDN model offers improved accuracy in diagnosing me-
chanical system (bearing) faults during the inference phase,
generating smart data with more accurate fault characteristics
compared to many state-of-the-art diagnostic models, which
often provide such information at a later stage.

iii. The fault diagnosis mechanism of the PIPDN model is enhanced
by incorporating UQ and smart data vibration analysis capabil-
ities, revealing deeper insights into fault characteristics.

iv. The integration of the UQ-based decision fusion module signifi-
cantly enhances the diagnostic performance and prediction reli-
ability of the MS-PIPDN model compared to existing state-of-the-
art models.

6. Future Work

In this study, the performance and reliability of neural networks in
mechanical system fault diagnosis are improved by embedding physical
information into the networks. This process involves using physical in-
formation to guide the neural network in learning more interpretable
features. However, a limitation is that the computational cost of physical
information labelling via encoder-decoder frameworks is relatively
high, and subsequent efforts should focus on reducing this computa-
tional complexity. Future research will aim to further develop physics-
informed neural network models for diagnostics by exploring various
methods of embedding physical information to enhance the reliability
and explainability of the models.
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Appendix 1. PIPDN details based on Pytorch

PIPDN( (ED): Physics_Informed_Encoder_Decoder( (encoder4real): Sequential( (0): Conv1d(1, 32, kernel_size=
(5,), stride=(5,), bias = False) (1): Dropout(p = 0.5, inplace = False) (2): ReLU() (3): BatchNorm1d(32,
eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (4): Conv1d(32, 64, kernel_size=(4,),
stride=(4,), bias = False) (5): Dropout(p = 0.5, inplace = False) (6): ReLU() (7): BatchNorm1d(64, eps =
1e-05, momentum= 0.1, affine= True, track_running_stats = True) (8): Conv1d(64, 128, kernel_size=(3,), stride=
(3,), bias = False) (9): Dropout(p = 0.5, inplace = False) (10): ReLU() (11): BatchNorm1d(128, eps = 1e-
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(continued )

05, momentum = 0.1, affine = True, track_running_stats = True) (12): Conv1d(128, 256, kernel_size=(2,), stride=
(2,), bias = False) (13): Dropout(p = 0.5, inplace = False)) (encoder4imag): Sequential( (0): Conv1d(1, 32,
kernel_size=(5,), stride=(5,), bias = False) (1): Dropout(p = 0.5, inplace = False) (2): ReLU() (3):
BatchNorm1d(32, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (4): Conv1d(32, 64,
kernel_size=(4,), stride=(4,), bias = False) (5): Dropout(p = 0.5, inplace = False) (6): ReLU() (7):
BatchNorm1d(64, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (8): Conv1d(64, 128,
kernel_size=(3,), stride=(3,), bias = False) (9): Dropout(p = 0.5, inplace = False) (10): ReLU() (11):
BatchNorm1d(128, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (12): Conv1d(128,
256, kernel_size=(2,), stride=(2,), bias = False) (13): Dropout(p = 0.5, inplace = False)) (decoder4real):
Sequential( (0): ConvTranspose1d(256, 128, kernel_size=(2,), stride=(2,), bias = False) (1): Dropout(p = 0.5,
inplace = False) (2): ReLU() (3): BatchNorm1d(128, eps = 1e-05, momentum = 0.1, affine = True,
track_running_stats = True) (4): ConvTranspose1d(128, 64, kernel_size=(3,), stride=(3,), bias = False) (5):
Dropout(p = 0.5, inplace = False) (6): ReLU() (7): BatchNorm1d(64, eps = 1e-05, momentum = 0.1, affine =
True, track_running_stats = True) (8): ConvTranspose1d(64, 32, kernel_size=(4,), stride=(4,), bias = False)
(9): Dropout(p = 0.5, inplace = False) (10): ReLU() (11): BatchNorm1d(32, eps = 1e-05, momentum = 0.1,
affine = True, track_running_stats = True) (12): ConvTranspose1d(32, 1, kernel_size=(5,), stride=(5,), bias =
False) (13): Dropout(p = 0.5, inplace = False) (14): ReLU() (15): Conv1d(1, 1, kernel_size=(1,), stride=
(1,), bias = False)) (decoder4imag): Sequential( (0): ConvTranspose1d(256, 128, kernel_size=(2,), stride=(2,),
bias = False) (1): Dropout(p = 0.5, inplace = False) (2): ReLU() (3): BatchNorm1d(128, eps = 1e-05,
momentum = 0.1, affine = True, track_running_stats = True) (4): ConvTranspose1d(128, 64, kernel_size=(3,),
stride=(3,), bias = False) (5): Dropout(p = 0.5, inplace = False) (6): ReLU() (7): BatchNorm1d(64, eps =
1e-05, momentum = 0.1, affine = True, track_running_stats = True) (8): ConvTranspose1d(64, 32, kernel_size=
(4,), stride=(4,), bias= False) (9): Dropout(p= 0.5, inplace= False) (10): ReLU() (11): BatchNorm1d(32,
eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (12): ConvTranspose1d(32, 1,
kernel_size=(5,), stride=(5,), bias = False) (13): Dropout(p = 0.5, inplace = False) (14): ReLU() (15):
Conv1d(1, 1, kernel_size=(1,), stride=(1,), bias = False)) (classifier4u): Sequential( (0): Linear(in_features =
8960, out_features = 420, bias = True) (1): ReLU() (2): Linear(in_features = 420, out_features = 4, bias =
True))))

Appendix 2. MS-PIPDN details based on Pytorch

MS-PIPDN((MS_1): AvgPool1d(kernel_size=(1,), stride=(1,), padding=(0,))(MS_2): AvgPool1d(kernel_size=(3,), stride=
(1,), padding=(1,))(MS_3): AvgPool1d(kernel_size=(5,), stride=(1,), padding=(2,))(ED_1):
Physics_Informed_Encoder_Decoder( (encoder4real): Sequential( (0): Conv1d(1, 32, kernel_size=(5,), stride=
(5,), bias = False) (1): Dropout(p = 0.5, inplace = False) (2): ReLU() (3): BatchNorm1d(32, eps = 1e-05,
momentum = 0.1, affine = True, track_running_stats = True) (4): Conv1d(32, 64, kernel_size=(4,), stride=(4,),
bias = False) (5): Dropout(p = 0.5, inplace = False) (6): ReLU() (7): BatchNorm1d(64, eps = 1e-05,
momentum = 0.1, affine = True, track_running_stats = True) (8): Conv1d(64, 128, kernel_size=(3,), stride=(3,),
bias = False) (9): Dropout(p = 0.5, inplace = False) (10): ReLU() (11): BatchNorm1d(128, eps = 1e-05,
momentum= 0.1, affine= True, track_running_stats= True) (12): Conv1d(128, 256, kernel_size=(2,), stride=(2,),
bias = False) (13): Dropout(p = 0.5, inplace = False)) (encoder4imag): Sequential( (0): Conv1d(1, 32,
kernel_size=(5,), stride=(5,), bias = False) (1): Dropout(p = 0.5, inplace = False) (2): ReLU() (3):
BatchNorm1d(32, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (4): Conv1d(32, 64,
kernel_size=(4,), stride=(4,), bias = False) (5): Dropout(p = 0.5, inplace = False) (6): ReLU() (7):
BatchNorm1d(64, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (8): Conv1d(64, 128,
kernel_size=(3,), stride=(3,), bias = False) (9): Dropout(p = 0.5, inplace = False) (10): ReLU() (11):
BatchNorm1d(128, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (12): Conv1d(128,
256, kernel_size=(2,), stride=(2,), bias = False) (13): Dropout(p = 0.5, inplace = False)) (decoder4real):
Sequential( (0): ConvTranspose1d(256, 128, kernel_size=(2,), stride=(2,), bias = False) (1): Dropout(p = 0.5,
inplace = False) (2): ReLU() (3): BatchNorm1d(128, eps = 1e-05, momentum = 0.1, affine = True,
track_running_stats = True) (4): ConvTranspose1d(128, 64, kernel_size=(3,), stride=(3,), bias = False) (5):
Dropout(p = 0.5, inplace = False) (6): ReLU() (7): BatchNorm1d(64, eps = 1e-05, momentum = 0.1, affine =
True, track_running_stats = True) (8): ConvTranspose1d(64, 32, kernel_size=(4,), stride=(4,), bias = False)
(9): Dropout(p = 0.5, inplace = False) (10): ReLU() (11): BatchNorm1d(32, eps = 1e-05, momentum = 0.1,
affine = True, track_running_stats = True) (12): ConvTranspose1d(32, 1, kernel_size=(5,), stride=(5,), bias =
False) (13): Dropout(p = 0.5, inplace = False) (14): ReLU() (15): Conv1d(1, 1, kernel_size=(1,), stride=
(1,), bias = False)) (decoder4imag): Sequential( (0): ConvTranspose1d(256, 128, kernel_size=(2,), stride=(2,),
bias = False) (1): Dropout(p = 0.5, inplace = False) (2): ReLU() (3): BatchNorm1d(128, eps = 1e-05,
momentum = 0.1, affine = True, track_running_stats = True) (4): ConvTranspose1d(128, 64, kernel_size=(3,),
stride=(3,), bias = False) (5): Dropout(p = 0.5, inplace = False) (6): ReLU() (7): BatchNorm1d(64, eps =
1e-05, momentum = 0.1, affine = True, track_running_stats = True) (8): ConvTranspose1d(64, 32, kernel_size=
(4,), stride=(4,), bias= False) (9): Dropout(p= 0.5, inplace= False) (10): ReLU() (11): BatchNorm1d(32,
eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (12): ConvTranspose1d(32, 1,
kernel_size=(5,), stride=(5,), bias = False) (13): Dropout(p = 0.5, inplace = False) (14): ReLU() (15):
Conv1d(1, 1, kernel_size=(1,), stride=(1,), bias = False)) (classifier4u): Sequential( (0): Linear(in_features =
8960, out_features = 420, bias = True) (1): ReLU() (2): Linear(in_features = 420, out_features = 4, bias =
True))) (ED_2): Physics_Informed_Encoder_Decoder( (encoder4real): Sequential( (0): Conv1d(1, 32,
kernel_size=(5,), stride=(5,), bias = False) (1): Dropout(p = 0.5, inplace = False) (2): ReLU() (3):
BatchNorm1d(32, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (4): Conv1d(32, 64,
kernel_size=(4,), stride=(4,), bias = False) (5): Dropout(p = 0.5, inplace = False) (6): ReLU() (7):
BatchNorm1d(64, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (8): Conv1d(64, 128,
kernel_size=(3,), stride=(3,), bias = False) (9): Dropout(p = 0.5, inplace = False) (10): ReLU() (11):
BatchNorm1d(128, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (12): Conv1d(128,
256, kernel_size=(2,), stride=(2,), bias = False) (13): Dropout(p = 0.5, inplace = False)) (encoder4imag):
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Sequential( (0): Conv1d(1, 32, kernel_size=(5,), stride=(5,), bias = False) (1): Dropout(p = 0.5, inplace =

False) (2): ReLU() (3): BatchNorm1d(32, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats =
True) (4): Conv1d(32, 64, kernel_size=(4,), stride=(4,), bias = False) (5): Dropout(p = 0.5, inplace =

False) (6): ReLU() (7): BatchNorm1d(64, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats =
True) (8): Conv1d(64, 128, kernel_size=(3,), stride=(3,), bias = False) (9): Dropout(p = 0.5, inplace =

False) (10): ReLU() (11): BatchNorm1d(128, eps= 1e-05, momentum= 0.1, affine= True, track_running_stats
= True) (12): Conv1d(128, 256, kernel_size=(2,), stride=(2,), bias = False) (13): Dropout(p = 0.5, inplace =
False)) (decoder4real): Sequential( (0): ConvTranspose1d(256, 128, kernel_size=(2,), stride=(2,), bias =
False) (1): Dropout(p= 0.5, inplace = False) (2): ReLU() (3): BatchNorm1d(128, eps = 1e-05, momentum
= 0.1, affine= True, track_running_stats = True) (4): ConvTranspose1d(128, 64, kernel_size=(3,), stride=(3,), bias
= False) (5): Dropout(p = 0.5, inplace = False) (6): ReLU() (7): BatchNorm1d(64, eps = 1e-05,
momentum = 0.1, affine = True, track_running_stats = True) (8): ConvTranspose1d(64, 32, kernel_size=(4,),
stride=(4,), bias = False) (9): Dropout(p = 0.5, inplace = False) (10): ReLU() (11): BatchNorm1d(32, eps
= 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (12): ConvTranspose1d(32, 1, kernel_size=
(5,), stride=(5,), bias = False) (13): Dropout(p = 0.5, inplace = False) (14): ReLU() (15): Conv1d(1, 1,
kernel_size=(1,), stride=(1,), bias = False)) (decoder4imag): Sequential( (0): ConvTranspose1d(256, 128,
kernel_size=(2,), stride=(2,), bias = False) (1): Dropout(p = 0.5, inplace = False) (2): ReLU() (3):
BatchNorm1d(128, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (4):
ConvTranspose1d(128, 64, kernel_size=(3,), stride=(3,), bias = False) (5): Dropout(p = 0.5, inplace = False)
(6): ReLU() (7): BatchNorm1d(64, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True)
(8): ConvTranspose1d(64, 32, kernel_size=(4,), stride=(4,), bias = False) (9): Dropout(p = 0.5, inplace =

False) (10): ReLU() (11): BatchNorm1d(32, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats
= True) (12): ConvTranspose1d(32, 1, kernel_size=(5,), stride=(5,), bias = False) (13): Dropout(p = 0.5,
inplace = False) (14): ReLU() (15): Conv1d(1, 1, kernel_size=(1,), stride=(1,), bias = False)) (classifier4u):
Sequential( (0): Linear(in_features = 8960, out_features = 420, bias = True) (1): ReLU() (2): Linear
(in_features = 420, out_features = 4, bias = True))) (ED_3): Physics_Informed_Encoder_Decoder( (encoder4real):
Sequential( (0): Conv1d(1, 32, kernel_size=(5,), stride=(5,), bias = False) (1): Dropout(p = 0.5, inplace =

False) (2): ReLU() (3): BatchNorm1d(32, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats =
True) (4): Conv1d(32, 64, kernel_size=(4,), stride=(4,), bias = False) (5): Dropout(p = 0.5, inplace =

False) (6): ReLU() (7): BatchNorm1d(64, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats =
True) (8): Conv1d(64, 128, kernel_size=(3,), stride=(3,), bias = False) (9): Dropout(p = 0.5, inplace =

False) (10): ReLU() (11): BatchNorm1d(128, eps= 1e-05, momentum= 0.1, affine= True, track_running_stats
= True) (12): Conv1d(128, 256, kernel_size=(2,), stride=(2,), bias = False) (13): Dropout(p = 0.5, inplace =
False)) (encoder4imag): Sequential( (0): Conv1d(1, 32, kernel_size=(5,), stride=(5,), bias = False) (1):
Dropout(p = 0.5, inplace = False) (2): ReLU() (3): BatchNorm1d(32, eps = 1e-05, momentum = 0.1, affine =
True, track_running_stats = True) (4): Conv1d(32, 64, kernel_size=(4,), stride=(4,), bias = False) (5): Dropout
(p = 0.5, inplace = False) (6): ReLU() (7): BatchNorm1d(64, eps = 1e-05, momentum = 0.1, affine = True,
track_running_stats = True) (8): Conv1d(64, 128, kernel_size=(3,), stride=(3,), bias = False) (9): Dropout(p =

0.5, inplace = False) (10): ReLU() (11): BatchNorm1d(128, eps = 1e-05, momentum = 0.1, affine = True,
track_running_stats = True) (12): Conv1d(128, 256, kernel_size=(2,), stride=(2,), bias = False) (13): Dropout
(p= 0.5, inplace= False)) (decoder4real): Sequential( (0): ConvTranspose1d(256, 128, kernel_size=(2,), stride=
(2,), bias = False) (1): Dropout(p = 0.5, inplace = False) (2): ReLU() (3): BatchNorm1d(128, eps = 1e-05,
momentum = 0.1, affine = True, track_running_stats = True) (4): ConvTranspose1d(128, 64, kernel_size=(3,),
stride=(3,), bias = False) (5): Dropout(p = 0.5, inplace = False) (6): ReLU() (7): BatchNorm1d(64, eps =
1e-05, momentum = 0.1, affine = True, track_running_stats = True) (8): ConvTranspose1d(64, 32, kernel_size=
(4,), stride=(4,), bias= False) (9): Dropout(p= 0.5, inplace= False) (10): ReLU() (11): BatchNorm1d(32,
eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (12): ConvTranspose1d(32, 1,
kernel_size=(5,), stride=(5,), bias = False) (13): Dropout(p = 0.5, inplace = False) (14): ReLU() (15):
Conv1d(1, 1, kernel_size=(1,), stride=(1,), bias = False)) (decoder4imag): Sequential( (0): ConvTranspose1d
(256, 128, kernel_size=(2,), stride=(2,), bias = False) (1): Dropout(p = 0.5, inplace = False) (2): ReLU()
(3): BatchNorm1d(128, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (4):
ConvTranspose1d(128, 64, kernel_size=(3,), stride=(3,), bias = False) (5): Dropout(p = 0.5, inplace = False)
(6): ReLU() (7): BatchNorm1d(64, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True)
(8): ConvTranspose1d(64, 32, kernel_size=(4,), stride=(4,), bias = False) (9): Dropout(p = 0.5, inplace =

False) (10): ReLU() (11): BatchNorm1d(32, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats
= True) (12): ConvTranspose1d(32, 1, kernel_size=(5,), stride=(5,), bias = False) (13): Dropout(p = 0.5,
inplace = False) (14): ReLU() (15): Conv1d(1, 1, kernel_size=(1,), stride=(1,), bias = False)) (classifier4u):
Sequential( (0): Linear(in_features = 8960, out_features = 420, bias = True) (1): ReLU() (2): Linear
(in_features = 420, out_features = 4, bias = True)))))
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