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Abstract 

Objective: Although lower brain volume has been routinely observed in individuals with substance 

dependence compared to non-dependent controls, the brain regions exhibiting lower volume have not 

been consistent across studies. In addition, it is not clear whether a common set of regions are involved 

in substance dependence regardless of the substance used or whether some brain volume effects are 

substance-specific. Resolution of these issues may contribute to the identification of clinically relevant 

imaging biomarkers.  

 

Method: Brain structure was examined in a mega-analysis of previously published data pooled from 23 

labs, including 3,240 individuals of whom 2,140 had a substance dependence on one of five substances: 

alcohol, nicotine, cocaine, methamphetamine, or cannabis. Subcortical volume and cortical thickness in 

regions defined by Freesurfer were compared with non-dependent controls when all sampled substance 

categories were combined, and separately, while controlling for age, sex, imaging site and total 

intracranial volume. Due to extensive associations with alcohol dependence, a secondary contrast was 

also performed for dependence on all substances except alcohol. An optimized split half strategy was 

used to assess the reliability of the findings.  

 

Results: Lower volume/thickness in individuals with substance dependence was observed in many brain 

regions. The greatest effects were associated with alcohol use disorder. A set of affected regions related 

to dependence in general regardless of the substance included the insula and the medial orbitofrontal 

cortex. Further, a support vector machine multivariate classification of regional brain volumes 

successfully classified individuals with a substance dependence on alcohol or nicotine relative to non-

dependent controls.  

 

Conclusions: The results indicate that dependence on a range of different substances shares a common 

neural substrate and that differential patterns of regional volume could serve as useful biomarkers of 

dependence on alcohol and nicotine.   

 

 

 

 

 

 

 

 

 

 

 



Introduction  
The social and economic costs associated with problematic use of drugs and alcohol place an enormous 

burden on the individual and society (1-5). In the United States alone, the National Institute on Drug 

Abuse estimates that the costs associated with problematic substance use --including medical care, law 

enforcement and lost productivity-- exceeds $700 billion per year (6). Substance dependence is 

characterized by a loss of control over drug and alcohol taking behavior, which contributes to high 

relapse rates (7-10). The therapeutic landscape would be radically altered by the identification of a set 

of biomarkers that could be used to estimate risk at various stages of the disorder, e.g. the risk of 

transition from occasional to problematic patterns of use or risk of relapse after treatment, and to 

prescribe the most appropriate treatment options based on the specific functional vulnerabilities of the 

individual patient (11, 12).  

 

It remains to be determined whether regional differences in brain volume measured by MRI can provide 

clinically useful biomarkers of substance dependence. Although brain volumetric studies have routinely 

observed lower grey matter volume in individuals with substance dependence compared to controls 

who do not have a substance dependence, the brain regions associated with a substance dependence 

on a specific substance have not been consistent across studies (13-15). Since volumetric studies have 

tended to focus on one substance at a time, it is also not clear from this literature whether a shared set 

of brain areas will exhibit altered volume in all individuals with substance dependence regardless of the 

substance used. Human twin studies suggest that genetic vulnerability to substance dependence is 

accounted for principally by a shared set of variations regardless of the substance used with 

proportionately smaller substance specific effects (16). On the basis of preclinical research and data 

from other imaging modalities, several candidate brain regions have been proposed to play a central 

role in substance dependence, including the striatum, the insula and parts of the frontal cortex 

(reviewed in (17-19)).  

 

The authors of this study joined together to form an international working group within the framework 

of the ENIGMA Project (20, 21) to overcome issues related to low statistical power in individual 

neuroimaging studies. This first project of the Addiction working group has pooled data from 23 labs in 

14 countries and represents the largest study of brain volumetric data in substance dependence 

research to date. The objective was to identify general and substance-specific associations between 

dependence and regional brain volume. The large sample size facilitated the adoption of a rigorous 

cross-validation method to address the widespread failure to replicate neuroimaging results that has 

been noted in several recent influential reports (22, 23). In addition, a support vector machine classifier 

was used to explore patterns of regional brain volume that could potentially serve as disease 

biomarkers.  

 

Methods 

Behavioral Phenotyping 

All procedures were performed in accordance with the Declaration of Helsinki. Datasets from the 

working group were selected that assessed individuals for substance dependence on one of five 

substances, i.e. alcohol, nicotine, cocaine, methamphetamine and cannabis. A variety of diagnostic 

instruments was used to assess substance dependence (see Supplemental Table 1). Case/control data 

were gathered from 23 labs on 3,240 individuals of whom 2,140 were diagnosed with current 



dependence on at least one of the five substances of interest: alcohol, nicotine, cocaine, 

methamphetamine, or cannabis. Subjects were excluded if they had a lifetime history of neurological 

disease, a current Axis I diagnosis based on the DSM-IV except depressive and anxiety related disorders, 

or endorsed any contraindication for MRI. Control subjects may have used addictive substances 

recreationally but were not diagnosed as dependent. Summary demographic statistics on participants 

whose data passed the quality control steps described below are provided in Table 1. Site specific 

summaries are provided in Supplemental Table 1.  

 

Preparation of Structural MRI Data 

Structural T1-weighted MRI brain scans were acquired from all participants. Scanner and acquisition 

details at each site are provided in Supplemental Table 1. Data were prepared in Freesurfer (version 

5.3), a fully automated MRI processing pipeline that identifies 7 bilateral subcortical and 34 bilateral 

cortical regions-of-interest (24, 25). A majority of the datasets were prepared using CBRAIN, a network 

of high-performance computing facilities in Canada (26). The volume of subcortical regions-of-interest 

and mean cortical thickness of cortical regions-of-interest served as the dependent measure in all 

analyses. The use of Freesurfer in multi-site analyses has been validated in previous ENIGMA 

publications (27-30) that established a standardized protocol of quality control procedures performed at 

each site (http://enigma.ini.usc.edu/protocols/imaging-protocols/). This includes detection of outliers 

and visual inspection of all data in a series of standard planes (see Supplemental Methods for more 

details). An additional level of visual inspection was performed centrally at the University of Vermont on 

a randomly selected sub-sample of participants to ensure uniformity of quality control across sites.  

 

Linear Mixed Effects Models with Cross-Validation 

Differences in region-of-interest thickness/volume between dependent participants and non-dependent 

controls were assessed in each region-of-interest with two linear mixed effects models using SPSS 

Statistics for Windows, Version 21.0. (Armonk, NY: IBM Corp). The linear mixed effects model effectively 

accounts for site effects including sites that did not collect non-dependent control data (31). In Model 1, 

substance dependent individuals were treated as one group regardless of the substance used, i.e. 

individuals dependent on alcohol, nicotine, cocaine, methamphetamine or cannabis were coded as 

“dependent” and controls as “non-dependent”. Individuals in Model 1 were allowed to be dependent on 

more than one substance.  In Model 2, dependence on the five substances was coded as individual 

categories in a single fixed factor i.e. individuals were coded as belonging to one and only one of 6 

categories: “non-dependent”, dependent on “alcohol”, “nicotine”, “cocaine”, “methamphetamine”, or 

“cannabis”. Individuals in Model 2 were not allowed to be dependent on more than one substance. In 

both Models, MRI site was entered as a random factor while sex, age, and total intracranial volume were 

included as covariates. Further analyses were performed to disconfirm the existence of a site by 

diagnosis interaction (see Supplemental Materials). The replicability of neuroimaging results has 

recently been brought into question (22, 23). The large sample size of the current study facilitated the 

adoption of an optimized split half strategy to verify the reliability of effects. The data were split into 

two halves (a discovery and a replication dataset) with statistically matched stratification for age, sex 

and intracranial volume within each site and dependence status. Since each region-of-interest was 

analyzed separately, a false discovery rate method (i.e. the Benjamini-Hochberg procedure) was used to 

control for multiple comparisons on the first half of the data (the discovery dataset). Associations 

discovered in the first half of the data are reported here as significant only if they were replicated in the 

http://enigma.ini.usc.edu/protocols/imaging-protocols/


second half of the data (the replication dataset), i.e. if the sign of the difference in means was the same 

and the null hypothesis had a probability of p < 0.05.  

 

General versus Substance-specific Dependence Effects 

Model 2 permitted a comparison of the estimated marginal mean region-of-interest volume/thickness 

between non-dependent controls and participants dependent on each substance. Significance was 

defined as in Model 1. The large impact of alcohol dependence on the data (see Results) influenced the 

decision to examine whether dependence on any substance except alcohol was related to differences in 

region-of-interest volume/thickness compared to non-dependent controls. This was assessed with a 

secondary linear contrast within Model 2 that grouped dependence on nicotine, cocaine, 

methamphetamine and cannabis (but not alcohol) in a comparison with non-dependent controls.   

 

Past 30 Day Use 

Linear mixed effects models were used to determine whether past 30 day nicotine or past 30 day 

alcohol use was related to the volume/thickness of regions-of-interest identified by Model 1 or 2 (i.e. 

those brain regions listed in Table 2). See Supplemental Information for more details.  

 

Support Vector Machine Classification 

Support vector machine classification was implemented in MATLAB (Nattick, MA: Mathworks Inc.) with a 

radial basis function kernel, tuned by parameter sweep in a 10-fold inner loop nested within an 

optimized split-half cross validation (32) (see Supplemental Methods for details). The radial basis 

function kernel facilitates the inclusion of non-linear relationships in the classifier. In other words, the 

support vector machine can detect informative patterns in the data which may not be identified by 

traditional linear analyses such as Model 1 and Model 2. To mitigate site, sex, age, and intracranial 

volume effects, region-of-interest data were residualized prior to classification. Five studies without 

control participants were excluded. Area-under-the-curve of the receiver operating characteristic curve, 

along with their corresponding p-values based on equivalence with the Mann-Whitney U test, were 

calculated to estimate generalizable classifier performance on the independent half of the data for each 

of two train-test scenarios (i.e. train on the first half, test on the second, and vice versa). More area-

under-the-curve in a receiver operating characteristic curve, which plots true positive rate against false 

positive rate, indicates a better separation of the dependent and non-dependent groups. Significance 

for the area-under-the-curve was defined as p < 0.05 in both classification scenarios. The top twenty 

features of each classification were determined by the greatest change in cost function resulting from 

their individual removal from the classification (33). 

 

Results 
Demographic information is provided in Table 1 and by site in Supplemental Table 1. 

 

Model 1: Dependent vs. Non-Dependent 

Subcortical volume in dependent individuals was significantly lower in the bilateral hippocampus, 

bilateral amygdala and right nucleus accumbens (Table 2). Lower cortical thickness was observed in 

several areas including the bilateral insula, bilateral precentral gyrus, bilateral supramarginal gyrus and 

the right medial orbitofrontal cortex. See Table 2 for a complete list and Supplemental Table 2 for an at-

a-glance summary.  



 

Model 2: Each Substance Dependence Group Compared Separately to Non-Dependent Controls 

All subcortical regions-of-interest identified in Model 1 plus the right thalamus, bilateral putamen, right 

globus pallidus, and left nucleus accumbens had significantly lower volume in Model 2 when alcohol 

dependent participants were compared to non-dependent controls. In addition, alcohol dependent 

participants exhibited lower average thickness in twenty-seven cortical regions-of-interest (Table 2; 

Figure 1). Cocaine dependence was associated with lower cortical thickness in only one brain region 

(Table 2; Figure 1). No cross-validated differences in regional volume/thickness were significant for 

dependence on nicotine, methamphetamine or cannabis on their own. Since most effects were related 

to alcohol dependence, a secondary linear contrast was performed to explore the effect of removing 

alcohol from the analysis. The contrast compared participants dependent on any substance except 

alcohol against non-dependent controls. It revealed that the insula bilaterally was significantly thinner in 

dependent individuals (Table 2).  

 

Substance-specific v Shared Substance-General Effects 

Three distinct patterns of results emerged which are illustrated by bar graphs in Figure 2.  

Pattern 1) [Substance Specific] In most regions-of-interest where a significant difference was observed, 

the effect was demonstrated in Model 2 to be related specifically to dependence on alcohol alone (27 

regions-of-interest), e.g. the right nucleus accumbens (Figure 2), or both alcohol and cocaine, i.e. the 

right supramarginal gyrus (1 region-of-interest) (Figure 1; Table 2).  

Pattern 2) [Substance-General] Six cortical regions-of-interest (e.g. the left supramarginal gyrus and the 

right medial orbitofrontal cortex) were associated with dependence in Model 1 but were not 

significantly thinner in any one particular substance group relative to non-dependent controls in Model 

2 (Table 2; Figures 1 & 2).  

Pattern 3) [Substance-General] Two cortical regions-of-interest (i.e. the right and left insula) were 

significantly thinner when all dependent groups were compared to controls (Model 1), and when all 

dependent groups except alcohol were contrasted against controls (Model 2). In addition, the left insula 

was significantly thinner in the alcohol dependent group alone relative to controls (Table2; Figures1 &2).  

 

Past 30 Day Use 

The volume of several subcortical regions-of-interest were negatively associated with past 30 day use of 

alcohol, namely bilateral amygdala and nucleus accumbens, right hippocampus and left globus pallidus, 

after a false discovery rate correction for multiple comparisons. No brain regions were related to past 30 

day nicotine use. 

 

Support Vector Machine 

The support vector machine produced a significant classification of alcohol and nicotine dependent 

individuals relative to non-dependent controls (Figure 3) in both halves of the data, p<0.05. The 

classification of cocaine dependent individuals approached significance. The top twenty structural 

predictors distinguishing dependence on each substance from non-dependent controls in each 

classification is listed in Supplemental Table 3.  

 

Discussion  



Subcortical volume or cortical thickness was significantly lower on average in dependent individuals 

compared to non-dependent controls across widespread parts of the brain (i.e. 20 distinct brain regions-

of-interest out of a total of 82) (Table 2; Supplemental Table 2). Some of these differences were 

substance-specific while others appear to constitute a shared neural substrate associated with 

dependence regardless of the substance used (Figure 1). A majority of the identified regions-of-interest 

were smaller/thinner specifically in the brains of alcohol dependent individuals (e.g. bilateral posterior 

cingulate and superior frontal cortex). A more limited set of seven regions with lower cortical thickness 

across substance dependence groups included the bilateral insula, the left inferior parietal cortex, the 

right medial orbitofrontal cortex, the bilateral middle temporal cortex and the left supramarginal gyrus. 

No region-of-interest was significantly larger/thicker in substance dependent individuals relative to 

controls. An unexpected finding of the present study was the absence of substance-specific linear 

effects on brain volume related to nicotine, methamphetamine or cannabis dependence despite the 

collection of large pooled samples. Also, the successful classification of individuals dependent on 

nicotine, alcohol, or cocaine using the support vector machine approach suggests that the development 

of clinically useful neuroimaging biomarkers of substance dependence may be more productive if based 

on broader patterns of brain function/structure rather than differences in unique brain regions 

considered alone. 

The set of brain regions identified with substance dependence in general are supported by prior 

evidence. The insula performs a central role in the perception of the internal state of the body (34). 

Disruption of the insula could alter regulation of the intense positive and negative bodily states 

associated with drug-taking and withdrawal, biasing the individual towards relapse as a maladaptive 

response to anticipated challenges to physiological homeostasis (35). It has been reported that smokers 

who have suffered brain damage involving the insula have subsequently lost the urge to smoke (36). The 

parietal cortex has been associated with attention and working memory (37, 38). Disruption of these 

processes could interfere with self-awareness about a substance use problem and the management of 

stressful situations. The medial orbitofrontal region-of-interest defined by Freesurfer (also known as the 

ventromedial prefrontal cortex) encodes the subjective value of future rewards during decision-making 

(39). Lesions of this brain region produce disadvantageous choices on gambling tasks that model real-life 

decisions (40). Altered neural activity in the insula, medial orbital and parietal cortex has frequently 

been linked to substance dependence and may predict greater craving and risk of relapse (41-44). The 

present results support the idea that substance dependence is mediated by a shared set of mechanisms 

across substance groups. Indeed, human twin studies suggest that vulnerability to substance 

dependence is accounted for principally by a shared set of genetic variations regardless of the substance 

used with proportionately smaller substance specific effects (16). 

Although subtle in magnitude, the wide spatial distribution of alcohol specific effects is a 

striking finding of the study. Alcohol consumption enjoys greater cultural acceptance in the countries 

from which the data for this study was sampled relative to the other substances examined (45). Not only 

is alcohol legal to buy and consume, widely publicized government sanctioned guidelines exist for “safe” 

low-dose use of alcohol. This tolerance of alcohol-related health risks is unlike any of the other 

substances investigated here (i.e. nicotine, cocaine, methamphetamine and cannabis) whose use even in 

small amounts is discouraged (45). It should be noted that lifetime exposure to each substance could 

not be uniformly assessed in the current datasets. As a consequence, the scope of the alcohol 

dependence effects may, in part, be related to greater absolute consumption of alcohol relative to the 

other drugs. It was possible to assess past 30 day use of nicotine and alcohol, a limited proxy of level of 



exposure, in a sizable minority of the datasets. Several subcortical regions-of-interest, such as the 

amygdala and nucleus accumbens, were significantly smaller in individuals who reported drinking the 

most number of alcoholic drinks in the past 30 days consistent with the notion that greater exposure 

could be responsible for the magnitude of the observed alcohol effects. Further studies will be required 

to clarify whether the greater number of observed alcohol specific effects relative to the other 

substances is related to differences in toxicity or total exposure.  

As the first study to compare brain volume effects of dependence on five different substances 

and the largest neuroimaging study of addiction to date, it is also notable that, besides the seven brain 

regions associated with dependence in general, there were no drug specific effects for dependence on 

nicotine, methamphetamine and cannabis. Although cross validation demonstrated that the volumetric 

differences observed were reliable, the effect sizes were uniformly small (Table 2). This suggests that the 

lack of consistency in the literature (13-15) may be related to the insufficient power of most studies to 

detect true effects. Other imaging modalities such as task-based fMRI (41-44) or higher resolution 

structural imaging may be required to detect reliable substance-specific nicotine, methamphetamine, or 

cannabis effects if they exist. It is also possible that substance dependence has multiple heterogeneous 

interactions with brain volume that are not well assessed by simple linear analyses. Evidence for this is 

provided by the support vector machine classification.  

The support vector machine classification found that the pattern of regional volume differences 

could be used successfully to distinguish between non-dependent controls and individuals dependent 

on alcohol and nicotine. The transformation of the data with a radial basis function kernel prior to 

classification facilitated the detection of non-linear patterns that cannot be detected by Model 1 and 2. 

Additionally, the support vector machine can identify a multivariate pattern of effects across numerous 

ROIs, each of which, in isolation, may not pass statistical threshold. Thus, the support vector machine 

detected useful information in the pattern of results that was not apparent from the linear analysis. The 

significant classifications suggest that the overall pattern of volumetric effects may contain useful 

clinical information that would not be apparent if only traditional univariate linear analyses were 

performed. While influential features in the classification partly overlapped with the regions-of-interest 

identified by the univariate analyses, e.g. brain regions associated with alcohol dependence such as the 

hippocampus and amygdala, additional regions not identified by the linear mixed effects analyses (i.e. 

Model 1 and Model 2) were also involved (Supplemental Table 3). Future efforts of the working group 

will include the incorporation of other imaging modalities with which it may be possible to distinguish 

dependence on additional substances such as methamphetamine and cannabis from non-dependent 

controls. It would also be clinically useful to examine whether the support vector machine classifications 

developed in this study offer an index of the strength of substance dependence in individuals who go on 

to recover or relapse. It is worth noting that current blood and urine tests do not identify dependence 

like the machine learning classifier in the present study but rather detect, and to an extent quantify, 

recent substance use. While the present findings are preliminary and the support vector machine 

classifications should be tested on other independent samples, if brain volume is confirmed as a viable 

biomarker of dependence, or biological risk of dependence, it could be used to plan how prevention and 

treatment resources are allocated to individual patients as well as, potentially, track intervention 

success. A structural MRI scan in combination with other factors known to be related to substance use 

problems (e.g. change in employment or marital status, health issues) could be used to assess risk of 

transition to problematic patterns of use or to quantify the current degree of dependence, which 

would influence the intervention strategy. 



Several factors limit the interpretation of the current findings. Different diagnostic instruments 

were used to assess substance dependence (Supplemental Table 1). Although the validity of each of 

these instruments has been well established, between instrument variation could add noise to the 

measured behavioral phenotype. This, however, could be an advantage because the extrapolation of 

significant findings to the general population is also likely to be more robust by virtue of generalizing 

over different methods of assessment. The absence of nutrition and education information, which are 

potential confounds, also limits the interpretability of the results. A perennial concern with multi-site 

studies is variation attributable to different scanners and acquisition protocols. This issue was mitigated 

by using a standard data extraction protocol developed by the ENIGMA Project that has been validated 

in previous multi-site reports (20, 28-30) and the formal consideration of potential site differences in all 

statistical analyses. As discussed above, the degree of exposure to the various substances was not 

characterized uniformly across studies, which limits, for instance, the interpretation of the widespread 

alcohol effects and whether alcohol represents a greater source of toxicity than the other substances 

examined. It should be emphasized, however, that this study examined brain volumetric associations 

with dependence and not with total lifetime substance use. A beneficial outcome of this first study of 

the Addiction Working Group will be to raise awareness of the data needed to estimate the relation 

between brain volume and total exposure, and more generally of the utility of uniform phenotypic data 

for data pooling. Greater consideration of how data may be used in international collaborations may 

influence the collection of data in future studies, which will increase their impact beyond their primary 

research, focus. The PhenX toolkit (https://www.phenxtoolkit.org/), for example, provides an extensive 

catalog of standardized measures expressly intended to facilitate secondary cross-study comparisons. 

Finally, co-occurring substance use limits the interpretation of the findings. Pervasive recreational 

substance use is a general issue for all studies of human substance dependence. For example, it is likely 

epidemiologically that a methamphetamine user will be exposed to alcohol. Studying 

methamphetamine users who do not use any other addictive substance is an unusual group who, in 

practice, would be difficult to identify but, more importantly, would not be characteristic of the real-

world population of methamphetamine users, i.e. there would be a selection bias. Unlike studies on 

animal models, it is not possible to randomly assign humans to groups with restricted exposure to one 

substance alone. The typical strategy, which was used in the datasets included in this study, is to screen 

subjects for dependence on other substances but not to exclude for non-dependent use of other 

substances.  

The field of neuroimaging faces a crisis of relevance if published studies cannot be replicated as 

noted in a series of recent reviews (22, 23). The authors of the present study joined together to form a 

working group within the pre-existing framework of the ENIGMA Project in order to assemble a 

sufficiently large sample to overcome issues related to low statistical power that affect most individual 

neuroimaging studies. Using a rigorous cross-validation method, several brain regions were found to 

have a reliable association with substance dependence including a shared set of regions across 

substances, such as the insula and the medial orbitofrontal cortex. Although the univariate analyses 

failed to identify linear effects in relation to nicotine, methamphetamine, or cannabis dependence 

specifically, a machine learning algorithm, which was also able to detect non-linear patterns in the data, 

successfully classified individuals dependent on alcohol or nicotine relative to non-dependent controls. 

This suggests that the overall pattern of volumetric effects may contain more useful information with 

regard to the development of a neuroimaging biomarker of substance dependence than is revealed by 

the magnitude of single brain regions examined in isolation. 
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Tables and Figures 

 



 

 

 

Table 1. Participant demographics. Differences in gender and age assessed with Pearson chi square and 

two sample t-test, respectively; * = p < 0.05. 
 

 All Groups Alcohol Nicotine Cocaine Meth Cannabis 
 Control Case Control Case Control Case Control Case Control Case Control Case 

Total 1100 2140 
 

292 898 290 602 99 227 173 228 246 185 

Female 
(%) 

449* 
(40.8) 

731 
(34.2) 

 

99 
(33.9) 

291 
(32.4) 

155* 
(53.4) 

250 
(41.5) 

39* 
(39.4) 

54 
(23.8) 

71 
(41.0) 

78 
(34.2) 

85 
 (34.6) 

58 
(31.4) 

Mean Age 
(+/- s.d.) 

28.5* 
(9.9) 

33.3 
(10.6) 

 

31.3* 
(10.2) 

34.7 
(10.7) 

26.1* 
(8.0) 

30.8 
(9.8) 

36.0* 
(10.3) 

40.2 
(7.7) 

31.7 
(9.3) 

32.9 
(10.0) 

22.7* 
(7.5) 

26.5 
(10.0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Left and right hemisphere regions-of-interest that exhibited lower subcortical volume/cortical 

thickness. Names of the cortical regions-of-interest are as they appear in the Freesurfer atlas. In Model 

1, all individuals were classified as either dependent or non-dependent. In Model 2, individuals were 

sorted by dependence on one and only one substance, i.e. individuals dependent on more than one 

substance were excluded from Model 2. Comparison of estimated marginal means for dependence on 

alcohol and cocaine relative to non-dependent controls are presented for Model 2. The additional 

contrast in Model 2 included individuals dependent on nicotine, cocaine, methamphetamine and 

cannabis (i.e. but not alcohol). Only significant associations are shown. There were no significant 

associations with nicotine, methamphetamine or cannabis dependence on their own.  



 

 

 

Subcortical Volume 
 

Model 1 Dependent v Non-Dependent 
 

Model 2 ALCOHOL v Non-Dependent 

 Left   Right   Left  Right   
 p-value Cohen’s d p-values Cohen’s d  p-values Cohen’s d p-values Cohen’s d 
 1st half       2nd half Both halves 1st half 2nd half Both halves  1st half 2nd half Both halves 1st half 2nd half Both halves 

Amygdala 0.0002 0.0042 -0.055 0.0011 0.0048 -0.041 Amygdala 0.0000 0.0019 -0.107 0.0000 0.0003 -0.112 
       Globus Pallidus    0.0274 0.0006 -0.075 
Hippocampus 0.0000 0.0000 -0.086 0.0000 0.0000 -0.081 Hippocampus 0.0000 0.0000 -0.196 0.0000 0.0000 -0.180 
Nucleus Accumbens    0.0069 0.0231 -0.025 Nucleus Accumbens 0.0161 0.0011 -0.048 0.0000 0.0000 -0.088 
       Putamen 0.0005 0.0000 -0.101 0.0001 0.0013 -0.080 
       Thalamus    0.0149 0.0009 -0.093 

Cortical Thickness 

             

 

Model 1 Dependent v Non-Dependent    
 

Model 2 ALCOHOL v Non-Dependent 

 Left  Right   Left  Right  
 p-values Cohen’s d p-values Cohen’s d  p-values Cohen’s d p-values Cohen’s d 
 1st half 2nd half Both halves 1st half 2nd half Both halves  1st half 2nd half Both halves 1st half 2nd half Both halves 

Caudal Middle Frontal 0.0000 0.0461 -0.038    Caudal Middle Frontal  0.0006 0.0210 -0.064 0.0239 0.0276 -0.057 
Fusiform 0.0000 0.0354 -0.035    Fusiform 0.0017 0.0002 -0.074 0.0000 0.0000 -0.097 
Inferior Parietal 0.0000 0.0355 -0.028           
       Inferior Temporal 0.0021 0.0146 -0.058 0.0148 0.0213 -0.049 
Insula 0.0000 0.0003 -0.059 0.0011 0.0003 -0.044 Insula 0.0021 0.0000 -0.091    
       Isthmus Cingulate    0.0009 0.0005 -0.079 
       Lateral Occipital    0.0013 0.0220 -0.042 
       Lateral Orbitofrontal    0.0309 0.0019 -0.064 
Medial Orbitofrontal    0.0093 0.0453 -0.029 Medial Orbitofrontal 0.0434 0.0191 -0.061    
Middle Temporal 0.0101 0.0078 -0.031 0.0049 0.0470 -0.026        
       Parahippocampal 0.0284 0.0265 -0.077    
Paracentral Lobule 0.0022 0.0015 -0.032 0.0401 0.0061 -0.024 Paracentral Lobule 0.0002 0.0001 -0.075 0.0052 0.0003 -0.062 
       Posterior Cingulate 0.0000 0.0000 -0.096 0.0004 0.0000 -0.089 
Precentral 0.0000 0.0024 -0.039 0.0000 0.0044 -0.042 Precentral 0.0087 0.0007 -0.063 0.0008 0.0003 -0.079 
Precuneus 0.0014 0.0415 -0.024    Precuneus 0.0007 0.0002 -0.065 0.0036 0.0002 -0.064 
       Rostral Anterior 

Cingulate 
0.0378 0.0095 -0.085    

       Superior Frontal 0.0000 0.0027 -0.075 0.0003 0.0058 -0.073 
       Superior Parietal 0.0187 0.0261 -0.043    
       Superior Temporal 0.0228 0.0350 -0.064    
Supramarginal 0.0049 0.0139 -0.028 0.0041 0.0349 -0.028 Supramarginal    0.0458 0.0165 -0.048 
       Temporal Pole    0.0516 0.0411 -0.063 
              
       Model 2 COCAINE v Non-Dependent 
       Supramarginal    0.0177 0.0490 -0.048 
         
       Model 2 Nic+Coc+Meth+Cann v Non-Dependent 
       Insula 0.0042 0.0348 -0.043 0.0430 0.0280 -0.034 



 
 

Figure 1. Cortical regions-of-interest exhibiting Substance-specific or shared Substance-General effects 

displayed on the surface of partially inflated average brains. Substance Specific: Alcohol alone (green), 

Alcohol and Cocaine (purple); Substance-General: Pattern 2 (yellow), Pattern 3 (orange). 

 

  

 

 

 

 



 
 

 

Figure 2. Dependence on the five substances studied contributed in different ways to the association of 

lower volume/thickness with substance dependence. Note, for illustration purposes, both halves of the 

data have been combined in the bar graphs. Three different patterns are illustrated: 1) Pattern 1 

(substance-specific effect) lower volume in the right nucleus accumbens was largely accounted for by 

dependence on alcohol alone 2) Pattern 2 (substance-general effect) volume in the left supramarginal 

gyrus was significantly lower in dependent vs. non-dependent individuals (Model 1) but was not 

significantly lower in any one particular substance group (Model 2) compared to controls, and 3) Pattern 

3 (substance-general effect) volume in the left insula was lower when either the alcohol dependent 

group or the linear contrast of all substance groups except alcohol was compared to non-dependent 

controls. Bars represent estimated marginal means expressed as percent difference from mean 

volume/thickness in non-dependent controls. Error bars represent standard error.  

 

 

 

 

 

 

 
 

Figure 3. Plot of receiver operating characteristic curves for the support vector machine classification of 

individuals dependent on one of five substances relative to non-dependent controls. The area under the 

curve (AUC) is significant for alcohol or nicotine dependence when trained on the 1st half of the data 

and tested on the 2nd half (left) as well as then trained on the 2nd half and tested on the 1st half (right). 


