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Abstract: Children with cerebral palsy (CP) exhibit head instability during simple overground
walking, which may comprise sensory input and reduce stepping accuracy. Investigations of head
stability during more challenging tasks, where fall risk may be increased, are limited. This study
explored differences in head stability between ambulatory children with hemiplegic CP (N = 9) and
diplegia (N = 9) (GMFCS I and II) and typically developing (TD) children (N = 8) during a targeted
stepping task. All children completed five trials stepping into two successive rectangular floor-based
targets whilst walking along an 8 m walkway. Three-dimensional motion capture enabled calculation
of head stability and foot placement within and before each target. A two-way mixed-design
ANOVA compared differences between all groups and target approach. Children with diplegic CP
showed greater sagittal, frontal, and resultant head-to-laboratory and head-to-trunk head instability
compared to children with hemiplegic CP and TD children. Anteroposterior foot placement error
was significantly greater in children with hemiplegic CP (8.5 ± 5.0 cm) compared to TD children
(3.8 ± 1.5 cm). Group differences in head instability were not consistent with group differences in
foot placement error. To better understand how head instability might affect fall risk in children with
CP, more challenging environments should be tested in future.

Keywords: cerebral palsy; ambulatory; head stability; foot placement; postural control

1. Introduction

Many treatment strategies for ambulatory children with cerebral palsy (CP) focus on
developing better control of the lower limbs [1–3] to improve mobility and independence.
The achievement of these outcomes requires the maintenance of postural stability, for which
effective control of the head segment is critical [4]. Despite this, head stability is rarely
considered when determining the causes and planning treatment of gait impairments for
these children.

There is growing evidence that the head is unstable in children with CP [5–11]. In
comparison to typically developing (TD) children, children with CP exhibit differences in
several discrete measures of head stability, such as greater sagittal and frontal plane head
displacement during quiet sitting [9] and reaching [12], excessive flexion and extension of
the head during squatting and standing movements [10], and increased angular amplitudes
of the head in the frontal, sagittal, and transverse planes during straight line overground
gait [6–8,11] and turning gait [13]. When responding to balance perturbations, children
with CP are more likely to stabilize their head to the trunk segment (e.g., use an ‘en bloc’
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strategy) when task difficulty increases [5], suggesting the ability to independently control
the head may be compromised in challenging scenarios. Head stability can also change
depending on the visual condition. Previous research highlights the differential effects
that focusing on a target in front of them during overground gait can have on children
with CP; while children with CP GMFCS I reduced their head movements in all planes of
motion in a similar manner to TD children indicating increased visual attention, children
with CP GMFCS II remained unchanged [6]. Though it is currently unclear, it is likely that
head instability could further compromise existing visual, vestibular, and proprioceptive
sensory deficits that are common in children with CP [14–17] due to the organs of the visual
and vestibular systems being located within the head [18]. These sensory systems are
critical for controlling spatial orientation of the head and trunk, stabilizing vision during
rotational movements and accelerations of the head, and gauging the relative alignment of
neighboring body segments within the environment.

There is limited consensus on the most appropriate ways to measure head instability
in children with CP, and whether this should differ between diagnosis. Previous research
has investigated head instability in small numbers of children with only diplegic CP or
hemiplegic CP compared to TD children [10,11], or the combined group effects of children
with varying diagnosis of CP [5,9,12]. This ignores potential group differences between
children with hemiplegic and diplegic CP, which is particularly important since both groups
demonstrate different development rates [19] and impairment characteristics [20] in their
gait. It is unknown, for example, whether children with bilateral lower limb impairment
(diplegic CP) are less able to attenuate accelerations of the head compared to children with
unilateral lower limb impairment (hemiplegic CP). Impaired attenuation of accelerations
between the trunk and head segments was previously reported in a CP cohort combining
children with hemiplegia, diplegia, and dystonia compared to TD children [21]. Reporting
these groups separately could better inform future tailored treatment strategies.

Understanding of head instability is limited to typical level straight-line gait [6–8]
with little focus on the interaction between instability of the head and how this might affect
functional performance of the child, except for basic spatiotemporal parameters (e.g., gait
speed, cadence, or step length). To increase the complexity of typical gait, the current study
used a targeted stepping task (stepping into two successive floor-based targets) to replicate
the functional challenges of navigating a cluttered or busy environment. In this way, we
hope to elucidate more functionally relevant links between head stability and accurate
movement control. The aim of this study was to explore the differences in head stability
between children with diplegic and hemiplegic CP and TD children when completing the
stepping task. It was hypothesized that children with diplegic and hemiplegic CP show
greater head instability compared to TD children when stepping into both targets.

2. Materials and Methods
2.1. Participants

Eighteen children diagnosed with hemiplegic or diplegic CP (Table 1) took part in this
study. Children with confirmed diagnosis of spastic CP, aged 7–16 years, and independently
mobile without walking aids (GMFCS I–II) who were referred for routine clinical gait
assessment were included in this study. Children who had received orthopedic surgical
intervention or botulinum toxin injections within the previous year, with a history of
orthopedic or neurological conditions (other than CP), having an equinus contracture
greater than 10◦, and corrected binocular visual acuity worse (greater) than 0.5 LogMar,
assessed via FrACT [22,23], were excluded. Eight TD children aged 7–16 years were
recruited as a control group.
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Table 1. Participant characteristics (mean (1SD)).

Diplegic CP Group
(n = 9)

Hemiplegic CP Group
(n = 9)

TD Group
(n = 8)

Sex (m/f) 6/3 5/4 5/3
Age (yrs) 10.2 (2.5) 10.6 (2.8) 10.9 (2.4)

Height (m) 1.43 (0.13) 1.43 (0.15) 1.31 (0.48)
Mass (kg) 40.02 (15.02) 38.00 (10.01) 35.86 (13.65)

GMFCS level (I/II) 6/3 8/0 * -
Affected side (L/R) - 4/5 -

Visual acuity (LogMAR) 0.10 (0.19) † −0.04 (0.22) −0.21 (0.09) †
Contrast sensitivity (LogCS) 1.82 (0.34) 1.59 (0.80) 1.96 (0.08)

TMT part A (s) 55.3 (24.7) 60.0 (38.5) 27.4 (7.9)
TMT part B (s) 138.2 (86.3) 174.4 (102.4) 89.8 (70.5)

Executive function (TMT B–TMT A) (s) 82.9 (64.6) 114.4 (71.3) 62.4 (64.5)
Foot length (cm) 22.4 (2.5) 21.4 (1.7) 21.6 (2.6)
Foot width (cm) 8.5 (1.1) 8.0 (0.6) 8.2 (1.1)

NB: * One patient had no formal documentation confirming GMFCS level. † There was a significant main effect of
group on visual acuity (TD v CP DI; p = 0.01). There were no significant main effects of group on age (p = 0.87),
height (p = 0.62), mass (p = 0.81), contrast sensitivity (p = 0.36), TMT part A (p = 0.052), TMT part B (p = 0.17),
executive function (p = 0.30), foot length (p = 0.52), or foot width (p = 0.68), as determined via a one-way between
group ANOVA.

This study was conducted in accordance with the Declaration of Helsinki. Written
informed assent and consent was gained from children and their parents or guardians,
respectively.

Visual and Executive Function Tests

Visual and executive function tests were carried out to examine the group differences
of factors that may influence stepping performance. Visual acuity and contrast sensitivity
were assessed using the FrACT [22,23]. Executive function was assessed with the Trail
Making Test (TMT, parts A and B) and was calculated as the time taken to complete TMT
part B minus that taken to complete TMT part A [24].

2.2. Procedure

Testing took place following each child’s prescribed clinical gait assessment. Children
were asked to walk at a self-selected (preferred) speed along an 8 m walkway, stepping into
two successive targets on the floor (Figure 1). Targets were created using black electrical
tape affixed flush to the floor. Target position for each participant was determined during
three practice overground gait trials, so that the participant’s 4th step landed in target
1 and 7th step landed in target 2. No other guidance was provided. The targets were
rectangular with dimensions normalized to 150% of participant’s foot length and foot
width. Therefore, the position of targets on the ground, the relative distance between
targets, and the size of targets changed between participants. Target size was chosen to
reflect scenarios in activities of daily living where precise foot placement is required to
navigate the environment. Participants walked to a cone beyond target 2 to ensure steady
walking speed through the targets. Five trials were captured, and all children successfully
stepped in to both targets during each trial. Children with CP did not wear any orthotics or
use any form of walking aid, and 11 children (3 TD children, 5 children with diplegic CP,
and 3 children with hemiplegic CP) wore glasses when completing the trials.

Participants wore tight-fitting clothing (e.g., Lycra or swimsuit). Twenty-nine retrore-
flective markers were placed according to a modified Davis model [25], with additional
markers placed on both acromion processes, xyphoid process, T10, and a headband com-
prising four markers. Children completed this study in bare feet with one additional marker
placed centrally on the dorsum of each foot (determined as 50% of measured foot length
and width), representing the foot center. A four-marker cluster positioned on the laboratory
floor was used to define virtual landmarks for each corner of both targets using a digitizing
wand (C-Motion, Germantown, MD, USA). Kinematic data were captured at 340 Hz using
12 Smart DX cameras (BTS Bioengineering, Milan, Italy).
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Figure 1. A schematic of the experimental setup. Black electrical tape was used to create two
high-contrast targets normalized to 150% of participant foot length and width, measured whilst
lying prone. Approach to the targets (Target 1 Approach and Target 2 Approach) was defined from
touch-down of penultimate foot placement of the targeting foot prior to the target up to touch-down
within the target.

2.3. Data Analysis

Kinematic data were labelled and gap-filled in BTS SMART Analyzer (BTS Bioengi-
neering, Milan, Italy), then exported as c3d files for further analysis in Visual3D (C-Motion,
Germantown, MD, USA). All gaps in trajectories were interpolated with a 3rd-order poly-
nomial fit and a maximum gap size of 34 frames (10% of the 340 Hz capture rate, that is,
0.1 s) and then all trajectories were filtered using a 4th-order Butterworth low-pass digital
filter at 8 Hz. Kinematic-based overground gait events (touch-down and foot-off) were
determined by calculating the local maxima and minima distance of the foot relative to the
pelvis segment in the anteroposterior direction [26].

2.3.1. Head Stability Variables

Angular velocity was calculated for the head-to-lab (head angle relative to the global
laboratory coordinate system), representing overall movement of the head, and head-to-
trunk (head angle relative to the trunk segment), representing movement of the head on top
of the trunk unit. A resultant (square root of the sum of the squares) angular velocity of all
three orthogonal components combined was calculated, to determine the net effect of the
task on head instability, along with the angular velocity in the separate planes of movement
(sagittal, flexion/extension; frontal, obliquity; transverse, rotation). Head stability was then
defined to determine magnitude and direction of head movements during the approach
to both target 1 and target 2. Approach to the targets (Target 1 Approach and Target 2
Approach) was defined from touch-down of penultimate foot placement of the targeting
foot prior to the target up to touch-down within the target:

1. Peak maxima and peak minima of angular velocity: peak vector of resultant (all three
planes) and the individual planes of head-to-lab and head-to-trunk angular velocity,
reflecting peak values of instability in the direction (±) of head movements.

2. Variability: standard deviation of head-to-lab and head-to-trunk angular velocity
amplitude, calculated over each approach phase (within-trial variability).

3. Angular velocity inflection count: the number of zero crossings of head-to-lab and
head-to-trunk angular acceleration (first-order derivative of angular velocity), reflect-
ing the overall frequency of head movements.

2.3.2. Foot Placement Variables

Foot placement error within the target was determined as the relative distance between
the foot center and target center when the foot was flat within the target. Target centers
were calculated as the mean of the four virtual landmarks digitized on each corner of
the respective target. Foot placement bias, accuracy, and precision were calculated in the
anteroposterior and mediolateral directions separately for both target 1 (right foot strike)
and target 2 (left foot strike):

1. Foot placement bias: displacement (magnitude and direction) of the foot center
relative to the target center; positive anteroposterior and mediolateral foot placement
bias indicates the foot was placed anterior and lateral to the target center, respectively.
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2. Foot placement accuracy: the sum of foot placement bias in the AP and ML direction,
reflecting the overall absolute magnitude of the foot center relative to the target center.

3. Foot placement precision: the standard deviation of foot placement bias across trial
repetitions [27–29].

4. Approach duration: the time taken to complete two steps prior to touch-down within
each target.

2.4. Statistical Analysis

For each participant, the average of 5 trials for each condition were used for statistical
analysis. Differences between groups (children with hemiplegic CP, children with diplegic
CP and TD children) and approach to target (target 1 and target 2) in head stability and
foot placement variables were assessed using two-way mixed-design ANOVAs. Multiple
post-hoc comparisons were adjusted for using a Bonferroni correction and effect sizes
(partial eta squared) were calculated for each statistical comparison, common indicative
thresholds for which are small (0.01), medium (0.06), and large (0.14) [30].

Considering the small study sample size, exploratory nature of our analysis (i.e.,
high number of variables reported), and use of multiple Bonferroni-corrected ANOVA
models, a studywide false discovery rate method was implemented for all main effects
and interactions to mitigate the potential for high false-positives that could lead to false or
misleading conclusions. An appropriate approach to do this is the Benjamini–Hochberg
procedure, with a threshold of 20% for all p-values produced from all ANOVA models [31]
being used to rank all ANOVA main effects. Statistical calculations were computed in SPSS
(version 25.0) (Chicago, IL, USA).

3. Results
3.1. Visual and Executive Function Tests

There was a significant main effect of group on visual acuity (TD children = −0.21
(0.09) versus children with diplegic CP = 0.10 (0.19); p = 0.01). There were no significant
main effects of group on contrast sensitivity (p = 0.36), TMT part A (p = 0.052), TMT part
B (p = 0.17), or executive function (p = 0.30), as determined via a one-way between-group
ANOVA.

3.2. Head Stability Measures

All outcome measures separated by approach to target 1 and target 2 (mean and 1SD) are
reported in Supplementary Table S1. All statistical comparisons and Benjamini–Hochberg
outcomes are reported in Supplementary Table S2.

3.2.1. Head-to-Lab Angular Velocity

Resultant and frontal maximum head-to-lab angular velocity were significantly greater
in children with diplegic CP (p = 0.006) compared to children with hemiplegic CP and
TD children (Figure 2). Sagittal and frontal minimum head-to-lab angular velocity were
significantly greater in children with diplegic CP compared to children with hemiplegic CP
(sagittal p = 0.028, frontal p = 0.002) and TD children (sagittal p = 0.002, frontal p = 0.003).
Resultant, sagittal, and frontal head-to-lab angular velocity variability were significantly
greater for children with diplegic CP compared to children with hemiplegic CP (resultant
only, p = 0.023) and TD children (resultant p = 0.024, sagittal p = 0.011, frontal p = 0.023).

A significant group-by-approach interaction was present for resultant, sagittal, and
frontal head-to-lab angular velocity inflection count. In each case, children with diplegic
CP had a greater number of inflections than children with hemiplegic CP and TD children
during approach to target 2 compared to target 1 approach, but children with hemiplegic CP
and TD children had similar head-to-lab inflections across both approach phases (Figure 3).
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3.2.2. Head-to-Trunk Velocity

Frontal maximum head-to-trunk angular velocity was significantly greater for children
with diplegic CP compared to children with hemiplegic CP (p = 0.003) and TD children
(p = 0.001) (Figure 4). Transverse maximum head-to-trunk angular velocity was greater for
all three groups during target 2 approach compared to target 1 approach (p = 0.003).

A significant group-by-approach interaction indicated that transverse minimum head-
to-trunk angular velocity increased during the approach to target 2 compared to target 1
for children with both diplegic and hemiplegic CP but decreased for TD children. Sagittal
and frontal minimum head-to-trunk angular velocity was significantly greater for children
with diplegic CP compared to children with hemiplegic CP (sagittal only; p = 0.007) and
TD children (frontal only; p = 0.032). Resultant, sagittal, and frontal head-to-lab angular
velocity variability was significantly greater for children with diplegic CP compared to
children with hemiplegic CP (resultant p = 0.012, sagittal p = 0.022, frontal p = 0.009) and
TD children (frontal only, p = 0.003).

A significant group-by-approach interaction was present in resultant, sagittal, and
frontal head-to-trunk angular velocity inflection count. In general, the interaction was
described by children with diplegic CP having a greater number of inflections during the
approach to target 2 compared to target 1 approach across all planes and the resultant,
but children with hemiplegic CP and TD children having a greater number of inflections
during approach to target 1 compared to target 2 (Figure 3).
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3.3. Foot Placement Variables

A significant group-by-approach interaction for mediolateral foot placement bias,
representing different foot placement preferences between groups revealed that children
with diplegic CP placed their foot lateral to the target center in target 1 (1.2 ± 2.2 cm) and
target 2 (0.5 ± 3.0 cm), and TD children placed their foot medial to the target center in
target 1 (−1.3 ± 1.8 cm) and target 2 (−0.4 ± 2.3 cm) (Figure 5). In comparison, children
with hemiplegic CP placed their foot medial to the target center of target 1 (−1.2 ± 3.7 cm)
but lateral to the target center of target 2 (2.3 ± 3.7 cm). Anteroposterior foot placement
accuracy was significantly greater in children with hemiplegic CP (8.5 ± 5.0 cm) compared
to TD children (3.8 ± 1.5 cm, p = 0.014).

3.4. Approach Duration

There was a significant group-by-approach phase interaction for approach duration.
All groups had a similar approach duration during the approach to target 1 (diplegic CP;
1.03 ± 0.16 s, hemiplegic CP; 1.08 ± 0.12 s, TD children; 1.10 ± 0.12 s), but approach
duration to target 2 increased in children with diplegic CP (1.31 ±0.33 s) whilst decreasing
in children with hemiplegic CP (1.04 ± 0.12 s) and TD children (1.03 ± 0.11 s).
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placement bias (unfilled shapes). Positive anteroposterior and mediolateral values indicate the foot
was placed anterior and lateral to the target center, respectively.
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4. Discussion

This is the first study to measure head stability in children with CP when completing
a targeted stepping task. Children with diplegic CP exhibited greater head instability than
children with hemiplegic CP and TD children during the task, but similar foot placement
error to TD children. Children with hemiplegic CP exhibited similar head stability to TD
children but greater absolute anteroposterior foot placement error.

Children with diplegic CP showed greater head-to-lab and head-to-trunk instability
than other groups, whilst children with hemiplegic CP behaved similarly to TD children.
One explanation of this global instability may be the challenge for children with diplegic
CP to attenuate accelerations travelling up the body to the head via active or passive
methods when impaired by reduced bilateral lower limb control and differing gait patterns
compared to unilateral impairment in children with hemiplegic CP. This is consistent with
previous findings [21,32].

Children with diplegic CP exhibited a significantly greater downward (sagittal) angu-
lar velocity of the head relative to the lab and trunk, compared to children with hemiplegic
CP and TD children. This may be because children with diplegic CP tilt their head to look
down at the ground more to gather additional information about the target location in an
attempt to reduce foot placement errors [15,33,34]. Children with diplegic CP may also look
down at the ground more due to their reduced visual acuity, which could make it more
difficult to see the target clearly on the floor, although their visual acuity still fell within
typical ranges for children [35]. Capturing gaze behavior with an eye-tracker alongside
head segment kinematics may provide further insight into whether children with diplegic
CP utilize movement of the head to maintain visual focus at the expense of previewing
what is in front of them, though this could lead to an increased fall risk due to reduced
detection of upcoming obstacles along their travel path.

Children with CP have previously exhibited an ‘en-bloc’ stabilization strategy by
locking (i.e., reducing the degrees of freedom between) neighboring segments together
under challenging circumstances [5,36]. In contrast during the current stepping task,
children with diplegic CP showed greater head-to-trunk angular velocity. This suggests
that the task may not have produced a significant threat to postural control and future gait
studies could focus on higher risk activities such as obstacle clearance or stair descent.

Children with hemiplegic CP exhibited greater anteroposterior foot placement error
despite no differences in head instability, suggesting the inaccuracies in foot placement are
driven by factors other than the impaired gathering of accurate sensory information because
of head instability. One possible explanation may relate to asymmetry between the affected
and unaffected limb. The previous literature has reported step length differences between
limbs in children with hemiplegic CP [37,38]. However, since targets were positioned within
the regular footfall of each child during familiarization trials, this is unlikely to be the case.
Instead, the difference is likely to be caused by the low difficulty/demand of the task and
verbal instructions provided by the investigator. Due to the construction of the targets, the
task presented no significant consequence if the child failed to place their foot within the
target, and no specific instructions were provided to the participants regarding placement
of the foot within the target, as long as the foot was inside the rectangle. No instruction
was given to limit potential visual targeting by participants, but may this have resulted in
participants simply placing the foot within the borders of the target. More complex and
unpredictable travel paths are required to determine how accuracy of movement control
changes when there are greater consequences for fall risk.

Whilst head-to-lab and head-to-trunk angular velocity remained similar between
approach phases for all participant groups, children with diplegic CP increased the number
of head accelerations during the approach to target 2 compared to target 1, evidenced by an
increase in velocity inflection count. A corresponding increase in time taken to approach
target 2 was responsible for this change for children with diplegic CP, as rate of inflec-
tion did not significantly increase (head-to-lab resultant rate of inflection: target 1 = 9.7;
target 2 = 9.8).
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Limitations

All children stepped into targets with the same limb (i.e., the right foot in target 1
and left foot in target 2), meaning the unilateral nature of hemiplegia gait may impact on
current findings, although visual inspection of the data shows no clear impact of targeting
with the affected versus unaffected limb. Future studies may choose to assess stepping into
targets with children’s affected versus unaffected side to ensure a standardized approach,
an approach previously taken when assessing stepping accuracy in unilateral amputees [27].
Children with diplegic CP varied across GMFCS I and II, but children with hemiplegic
CP were all GMFCS I, suggesting group outcome measures may have been influenced by
the child’s level of motor involvement. Although preliminary in nature, this study reports
head instability, with large effect sizes, during a functionally relevant task in a cohort where
this was previously thought not to be the case. This study can be used to inform future
research design and the development of methodologies to target this issue further. Future
test protocols should aim to challenge head stability in all three planes of movement, which
may provide more comprehensive differences in the resultant 3D movement of the head.

5. Conclusions

In this exploratory study, group differences in head instability were not consistent with
group differences in foot placement error. More detailed and insightful methodological
approaches are required to understand the cause and environmental factors underpinning
fall risk for children with CP.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app14199008/s1, Table S1: Mean (1 SD) of all outcome measures.
Results of post-hoc testing (p ≤ 0.05) and above the stated false discovery rate threshold (20%) are
represented in the significant differences column. Table S2: Statistical output for all dependent
outcome measures. F statistic, p value and effect size (partial eta squared (ηp2) are reported for main
effect comparisons of approach, group, and group-by-approach interaction. Outcome measures with
p ≤ 0.05 and above the stated false discovery rate threshold (20%; indicating statistical significance)
are shaded in grey.
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