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ABSTRACT

Context. The William Herschel Telescope Enhanced Area Velocity Explorer (WEAVE) is a new, massively multiplexing spectrograph that allows
us to collect about one thousand spectra over a 3 square degree field in one observation. The WEAVE Stellar Population Survey (WEAVE-StePS)
in the next 5 years will exploit this new instrument to obtain high-S/N spectra for a magnitude-limited (IAB = 20.5) sample of ∼25 000 galaxies at
moderate redshifts (z ≥ 0.3), providing insights into galaxy evolution in this as yet unexplored redshift range.
Aims. We aim to test novel techniques for retrieving the key physical parameters of galaxies from WEAVE-StePS spectra using both photometric
and spectroscopic (spectral indices) information for a range of noise levels and redshift values.
Methods. We simulated ∼105 000 galaxy spectra assuming star formation histories with an exponentially declining star formation rate, covering
a wide range of ages, stellar metallicities, specific star formation rates (sSFRs), and dust extinction values. We considered three redshifts (i.e.
z = 0.3, 0.55, and 0.7), covering the redshift range that WEAVE-StePS will observe. We then evaluated the ability of the random forest and
K-nearest neighbour algorithms to correctly predict the average age, metallicity, sSFR, dust attenuation, and time since the bulk of formation,
assuming no measurement errors. We also checked how much the predictive ability deteriorates for different noise levels, with S/NI,obs = 10, 20,
and 30, and at different redshifts. Finally, the retrieved sSFR was used to classify galaxies as part of the blue cloud, green valley, or red sequence.
Results. We find that both the random forest and K-nearest neighbour algorithms accurately estimate the mass-weighted ages, u-band-weighted
ages, and metallicities with low bias. The dispersion varies from 0.08–0.16 dex for age and 0.11–0.25 dex for metallicity, depending on the redshift
and noise level. For dust attenuation, we find a similarly low bias and dispersion. For the sSFR, we find a very good constraining power for
star-forming galaxies, log sSFR&−11, where the bias is ∼0.01 dex and the dispersion is ∼0.10 dex. However, for more quiescent galaxies, with
log sSFR.−11, we find a higher bias, ranging from 0.61 to 0.86 dex, and a higher dispersion, ∼0.4 dex, depending on the noise level and redshift.
In general, we find that the random forest algorithm outperforms the K-nearest neighbours. Finally, we find that the classification of galaxies as
members of the green valley is successful across the different redshifts and S/Ns.
Conclusions. We demonstrate that machine learning algorithms can accurately estimate the physical parameters of simulated galaxies for a
WEAVE-StePS-like dataset, even at relatively low S/NI,obs = 10 per Å spectra with available ancillary photometric information. A more traditional
approach, Bayesian inference, yields comparable results. The main advantage of using a machine learning algorithm is that, once trained, it requires
considerably less time than other methods.
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1. Introduction

Over the last two decades, several wide-area photometric and
spectroscopic surveys have greatly improved our understand-
ing of galaxy formation and evolution. Most notably, the com-
bination of wide-area and pencil-beam spectroscopic surveys,
including the Sloan Digital Sky Survey (SDSS; York 2000),
the Galaxy And Mass Assembly (GAMA; Hopkins et al. 2013),
zCOSMOS (Lilly et al. 2009), the VIMOS Public Extragalac-
tic Redshift Survey (VIPERS; Guzzo et al. 2014), and 3D-
HST (Momcheva et al. 2016), have pushed the boundaries of
galaxy formation studies to a few billion years after the Big
Bang. These spectroscopic efforts usually target well-known

? Corresponding author; james.angthopo@inaf.it

fields, where multi-wavelength imaging campaigns provide
deep complementary datasets, often covering the UV to near-
infrared (NIR) parts of the electromagnetic spectrum. These sur-
veys include the SDSS imaging survey, the Cosmic Assembly
Near-infrared Deep Extragalactic Legacy Survey (CANDELS;
Koekemoer et al. 2011), UltraVISTA (McCracken et al. 2012),
and the Hyper Suprime-Cam Subaru Strategic Prime (HSC-SSP;
Aihara et al. 2018). Exploitation of these data in combination
with numerical hydrodynamic simulations (Crain et al. 2015;
Schaye 2015; Springel et al. 2017) and semi-analytic models
(Somerville & Davé 2015, and references within) has allowed
us to greatly advance our understanding of galaxy formation and
evolution mechanisms.

One of the key discoveries of recent decades has been the exis-
tence of a bimodality in the star formation activity of galaxies
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(Strateva et al. 2001; Baldry et al. 2004; Faber et al. 2007), with
two distinct populations of galaxies: one star-forming popula-
tion characterised by blue optical colours and a separate red-
der population of quiescent galaxies. This bimodality holds
locally and at high redshifts, up to z ≈ 3–4 (Fritz et al. 2014;
de Graaff et al. 2021). Moreover, a broad separation of the
galaxy population into two classes is found in different param-
eters, including colour–colour (Williams et al. 2009), star for-
mation rate (or colour)–stellar mass (Salim 2014; Trayford et al.
2016; Phillipps et al. 2019; Wright & Lagos 2019; Nelson et al.
2019), and Dn(4000)–velocity dispersion (Angthopo et al. 2019)
planes. Finally, an important sample of transitioning galaxies
straddle the two main populations, often referred to as galaxies
in the green valley (GV). The study of GV galaxies is essential
to understanding the quenching mechanism of star formation.
Faber et al. (2007) proposed multiple evolutionary paths across
the GV depending on the quenching mechanism. This was fur-
ther supported by Schawinski et al. (2014), who found that there
are two distinct quenching timescales depending on the mor-
phology of the galaxy: elliptical galaxies are thought to have a
more rapid quenching than spiral galaxies.

To gain insights into the physical mechanisms related to the
quenching of star formation and the origin of the aforementioned
bimodality, it is essential to obtain accurate estimates of galaxy
physical parameters. These parameters can be obtained by fitting
observed galaxies to synthetic spectral energy distribution tem-
plates (Gavazzi et al. 2002; Ilbert et al. 2006) or by comparing
spectral indices of observed galaxies to templates obtained with
different star formation histories (SFHs; Gallazzi et al. 2005;
Costantin et al. 2019; Angthopo et al. 2020; Ditrani et al. 2023).
Furthermore, with access to a large quantity of spectroscopic
and photometric data, sophisticated spectral fitting codes such
as STARLIGHT (Cid Fernandes et al. 2005), pPXF (Cappellari
2017, 2023), BAGPIPES (Carnall et al. 2018), and Prospector
(Johnson et al. 2021) have been developed to estimate various
physical parameters and to reconstruct the SFHs of galaxies from
joint fits of the available spectroscopy and photometry. A large
scatter, however, remains in the estimates of these parameters
due to the different physical recipes assumed by different codes.
Pacifici et al. (2023) explore such differences for 15 different
spectral fitting algorithms when used to estimate stellar masses,
star formation rates (SFRs), and effective dust attenuation (AV) at
z ∼ 1 and 3. They find systematic differences in the estimations
of physical parameters by different algorithms of 0.1–0.3 dex.

Despite these systematics, modern spectral fitting codes pro-
vide accurate estimates of the physical parameters of galaxies,
often thanks to Bayesian inference methods and advanced algo-
rithms used to explore the high-dimensional likelihood space.
However, existing and upcoming large surveys that will mea-
sure the spectro-photometry of tens of thousands to millions
of galaxies are bringing the field into the realm of big data,
making the computational time of traditional fitting codes a
variable of growing interest. As an alternative, machine learn-
ing (ML) algorithms have been applied to estimate galaxy
parameters. These codes have been used to estimate photo-
metric redshifts (Ball et al. 2008; Li et al. 2022), SFRs or spe-
cific star formation rates (sSFRs; Stensbo-Smidt et al. 2017;
Davidzon et al. 2019; Euclid Collaboration 2023), and metallic-
ities (Simet et al. 2021), with a good agreement found between
true and predicted values. ML algorithms can be broadly divided
into two categories – supervised and unsupervised. Supervised
ML algorithms require data with labels and are mostly used for
the purposes of regression and classification. Unsupervised ML
algorithms do not use any labels for the data and instead learn to

characterise the distribution of the dataset on their own. Unsu-
pervised methods are predominantly used to group data points
with similar properties as a tool for dimensionality reduction and
data compression or to identify outliers.

Our study uses the former method – supervised ML for
regression. We make use of random forest (RF) and K-nearest
neighbour (KNN) algorithms to estimate physical parameters –
including the average age of the stellar population, both the
mass-weighted age (mwa) and the u-band-weighted age (uwa),
the metallicity, the sSFR, the AV, and the time from the bulk of
the star formation – using both spectral and photometric infor-
mation. Most of the analysis is performed on a simulated dataset
that mimics the upcoming observations of the WHT Enhanced
Area Velocity Explorer Stellar Population Survey (WEAVE-
StePS; Iovino et al. 2023b) at the 4.2 m William Herschel Tele-
scope (WHT) in La Palma. The WEAVE spectrograph has a
large field of view, ∼3 square degrees, and huge multiplex-
ing capabilities, with nearly 1000 spectra observed in a sin-
gle pointing (Jin et al. 2024). The spectral coverage spans from
∼3660−9590 Å at a resolution of R ∼ 5000 (Dalton et al. 2012,
2016). WEAVE-StePS aims to observe a magnitude-limited
(IAB = 20.5) sample of ∼25 000 galaxies, mostly between z =

0.3 and 0.7 with median S/NI,obs = 10 per Å. This survey is
designed to bridge the redshift gap between SDSS and LEGA-C
(van der Wel et al. 2016). The combination of the three surveys
will allow us to directly study galaxy evolution on a long and
continuous span of cosmic time, over nearly 8 billion years.

The paper is structured as follows: In Sect. 2 we describe
the two ML algorithms and the models used to create the syn-
thetic galaxy templates. We also describe the procedure to sim-
ulate realistic spectra and photometry with measurement uncer-
tainties. Section 3 outlines our main findings, and we test how
well we can retrieve the physical parameters, both in the absence
of measurement errors and with realistic uncertainties on spec-
tra and photometry. Additionally, we investigate the variations
in retrieval capabilities for data with different S/N values and
redshifts. In Sect. 4 we classify galaxies into three groups –
blue cloud (BC), GV, and red sequence (RS) – and we dis-
cuss the completeness of the classification. Section 5 discusses
our results, outlining the methodology’s caveats and potential
limitations. Finally, in Sect. 6 we summarise our main results.
Throughout the paper, we assume H0 = 69.6 kms−1 Mpc−1,
ΩM = 0.286, and ΩΛ = 0.714 (Bennett et al. 2014). Magnitudes
are given in the AB system (Oke 1974) unless otherwise stated.

2. Methodology

This section describes the two ML algorithms applied in this
paper, the library of templates adopted, and how we used them to
obtain observed magnitudes and spectra that simulate WEAVE-
StePS observations.

2.1. Machine learning methods

To retrieve the physical parameters, we made use of two ML
algorithms for regression, RF (Breiman 2001) and KNN (Altman
1992), as they are two well-known algorithms that are simple to
implement and yield accurate results (Stensbo-Smidt et al. 2017;
Bonjean et al. 2019). These algorithms are implemented using
the scikit-learn v1.4.0 Python package (Pedregosa et al.
2011). The algorithms take as input the set of galaxy spectro-
photometric observables and output the predicted physical
parameters. They are first trained on a galaxy dataset with known
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physical parameters. Once trained, new observables can be input
to determine estimates of the physical parameters. We used a
simulated dataset of galaxy spectro-photometric measurements
for which we have the underlying model physical parameters.
We used 90% of the dataset for training the algorithms, and the
remaining 10% of the sample for testing and validation. We ran-
domised the data selection so that both the training and testing
samples are fully representative of each other. Generally, ML
algorithms perform better when the input values are normally
distributed and centred on 0 with a standard deviation of 1. Thus,
before running the algorithms for training or testing, we pre-
processed the galaxy parameters by subtracting the mean val-
ues and dividing by the standard deviation, computed from the
training set. For parameters that range over many orders of mag-
nitude, such as the sSFR, we used the base ten logarithm of the
value and then standardise to mean 0 and standard deviation 1.

The first algorithm we considered, the RF, uses an ensemble
of decision trees. A decision tree consists of a sequence of rules
applied to determine the output value. It is constructed by itera-
tively splitting the training sample according to the values of the
observables (features). A different feature is used to make the
partition at each tree level. The process can be stopped after a
certain number of splits – this stopping point is known as the
maximum depth. The final nodes, known as leaf nodes, have
physical parameter values assigned to them, which are returned
to give the parameter estimate. The final estimate from the RF is
determined by averaging the estimates from each decision tree.
We tested the algorithm with a number of trees ranging from 1
to 100 (see Sect. 3). We find that a larger number of trees in the
forest gave more robust results, although the performance is not
sensitive to the precise number (see Appendix A for details). We
thus opted for 100 trees. The trees were expanded until each leaf
node contained a single galaxy.

The KNN algorithm is the second algorithm that we used
for the purposes of estimating the physical parameters of our
templates. The algorithm stores the training sample, then when
given observables to evaluate, it finds the nearest neighbours in
the multi-dimensional parameter space of the training sample. A
weighted average of the estimates from each neighbour deter-
mines the returned parameter estimate. We weighted the neigh-
bours according to the inverse of the Euclidean distance. Sim-
ilarly to the RF, we tested the performance with the number of
neighbours ranging from 1 to 100. The optimal value depends on
the dataset’s size and distribution; in our case, we opted to use
100 neighbours for our runs.

2.2. Template library

We tested the ML algorithms described in the previous section
using a library of spectral templates. The library is based on the
Bruzual & Charlot (2003) models (2016 revised version, here-
after CB16) assuming a Chabrier initial mass function (Chabrier
2003). The CB16 models cover a wide spectral range using differ-
ent stellar spectral libraries. The optical wavelength is based on
the MILES stellar library (Sánchez-Blázquez et al. 2006), which
covers the range 3525 < λ < 7500 Å at the resolution of 2.5 Å.
The UV part of the spectra, λ ≤ 3525 Å, is purely theoretical,
based on Martins et al. (2005) models with a resolution of 1 Å.
Finally, the NIR part of the spectra is based on the BaSeL semi-
empirical library (Westera et al. 2002) at a resolution of 3 Å.

We built our template library assuming a simple SFH repre-
sented by an exponentially decaying SFR:

SFR(t) ∝ e−t/τ, (1)

where t is the time elapsed since the onset of star formation in
Gyrs, and τ is the rate of decay of the SFR. The model ages,
t, vary from 0.1 to 10.04 Gyr, where we have a total of 59 dif-
ferent ages1. For τ we considered 20 different values ranging
from 0.05 Gyr to 10 Gyr. Between 0.05 and 1 Gyr, the values of τ
were set with a linear step size of 0.1 Gyr to represent quenched
old galaxies, while for τ ≥ 1 Gyr, we used a logarithmic step
of ∼0.09 dex. We also added two more sets of templates with
τ ∼ 100 and 200 Gyr to mimic a constant SFH. The metallic-
ity varies from log Z/Z� = −1.69 to +0.6. Since BC16 mod-
els are distributed at discrete values of metallicity log Z/Z� =
−1.69,−0.40,+0.0,+0.40, we created templates covering a con-
tinuous distribution of this parameter by interpolating between
the spectra on random values between those obtained on the
fixed grid. We reached a maximum value of +0.6 by linear
extrapolation of the template spectra obtained with log Z/Z� =
+0.00 and +0.40. Finally, we adopted the Charlot & Fall (2000)
dust prescription, which applies dust attenuation depending on
the galaxy’s SFH. We chose the total optical depth in the V band,
τ̂V, to range from 0 to 3, where for each τ and metallicity we
have a model for τ̂V = 0 and 3. In addition to these two opti-
cal depths, we randomly generated two additional values from
a uniform distribution between 0 and 3. We note that the pre-
scription treats dust in younger stellar populations, ≤107 yr, dif-
ferently to that in older stellar populations. Less dust affects the
older population, owing to the diffuse interstellar medium, and
is formulated as µτ̂V. We selected µ = 0.3. In total, we have
∼105 000 galaxy templates, which do not contain any emission
lines, as we assumed that their contribution has already been
removed from the simulated spectra. We note that correcting
for nebular emissions from stellar contributions is challenging
and may introduce systematic errors in the estimation of cer-
tain absorption lines. As a worst-case scenario, we assumed that
the systematics associated with emission line corrections are so
high that the absorption features potentially affected by emis-
sion line residuals (namely Mgb, Balmer lines, and Fe5015) are
no longer usable. We therefore performed a test run exclud-
ing all these indices from the spectral analysis and verified
that this extreme choice induces only minimal variations in the
age and metallicity estimates. The major effect is present for
the age estimates, where removing all the Balmer lines (Hβ,
Hγ, and Hδ) in the absence of photometric information causes
an increase in the uncertainty in all age estimates by roughly
0.06 dex.

Figure 1 shows the distribution of the physical parameters of
our templates. We used the uwa and mwa to retrieve ages that
are sensitive mostly to young stellar populations and to all stars
regardless of age, respectively. We defined the sSFR as

sSFR =
SFR

Mlive
? + Mrem.

?

, (2)

where SFR is the instantaneous SFR in M�/yr, and Mlive
? and

Mrem.
? are the stellar mass in M� stored in living stars and rem-

nants, respectively. For galaxies with log(sSFR)≤−15, we set
it to −15 as it has been found that measurements of SFRs,

1 The changes in the observables, such as the spectral indices, do not
scale linearly with the changes in the age of the stellar population.
Therefore, the time steps, tmod, are chosen ad hoc so that we have a more
uniform distribution in the average ages of our templates while ensur-
ing that we do not have a strong over-density region in the observable
plane, such as the Hβ vs. [MgFe]′. Note that since we tried to ensure
uniformity in multiple dimensions, we do not have complete uniformity
in any single given dimension.
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Fig. 1. Histograms of the physical parameters of the templates created using the BC16 models. Top panels: distribution of, from left to right,
model age, i.e. age since the birth of the simulated galaxy, metallicity, rate of decay of star formation (τ), and time since the bulk of the star
formation (tmod/τ). Bottom panels: histograms of mwa and uwa, sSFR, and effective dust attenuation (AV). See the main text for more details on
the distribution of these parameters.

and thus sSFRs, are highly uncertain below a certain thresh-
old (Brinchmann et al. 2004; Donnari et al. 2019) since there is
a high degree of degeneracy between observables and sSFRs.
Finally, we note that the Charlot & Fall (2000) prescription
applies to dust depending on the SFH; thus, for a given τ̂V, the
AV will differ for different τ. This leads to the non-uniform dis-
tribution shown above.

2.2.1. Observables

We considered two sets of observables from each template:
spectral indices and photometric magnitudes, observables that
will be available for the upcoming WEAVE-StePS data. These
quantities are computed at three redshifts, z = 0.3, 0.55, and
0.7. Figure 2 shows a typical spectrum of an old stellar pop-
ulation with all of the observables available. We selected a
particular set of indices available in the UV and optical, fol-
lowing the reasoning outlined in Costantin et al. (2019) and
Table 1 of Ditrani et al. (2023). To summarise this reason-
ing, the optical spectral indices were selected specifically as
they are sensitive to the age and metallicity of the popula-
tion but not affected by other physical phenomena, such as
the specific elements abundance, the chromospheric emission
from the stellar atmosphere, flux calibration, or being highly
sensitive to the initial mass function. In the UV part of the
spectrum, all spectral indices are considered except Mgwide,
which is heavily affected by flux calibration. While Dn(4000)
is also affected by flux calibration, it is less so compared to
Mgwide as it is measured over a shorter wavelength range. How-
ever, we still accounted for uncertainties due to flux calibration
(see Sect. 3.2).

The photometric data consists of the observed magnitudes
covering the observed wavelength range from the UV to the NIR
(see Sect. 2.2.3). The inset of Fig. 2 shows the filters that we used
(GALEX FUV, GALEX NUV, CFHT u?, HSC g, r, i, z, y, VISTA
J,H, and Ks). Observations in all these filters are available in the

COSMOS field (Scoville et al. 2007), which will be observed by
WEAVE-StePS (Iovino et al. 2023b).

2.2.2. Simulated WEAVE-StePS spectra

This section briefly describes how we obtained simulated
WEAVE-StePS spectra at each redshift value and S/N value
used in our analysis. Full details can be found in Costantin et al.
(2019).

To create a set of realistic WEAVE-StePS observed spectra,
we started by convolving each template spectrum (see Sect. 2.2)
with a common velocity dispersion of σ? = 200 km/s, well
suited to the massive tail of the galaxy stellar mass distri-
bution covered by WEAVE-StePS (see below and Zahid et al.
2016). The convolved templates are then shifted to the observed
wavelengths corresponding to the redshift value considered
and trimmed to cover the WEAVE LR-MOS mode wavelength
range, including the WEAVE CCD gaps. These ‘observed’
model spectra are converted from flux units to counts on the
CCD, using the total WEAVE throughput, which includes the
signal lost due to atmospheric transmission and the optics of the
WHT and the WEAVE spectrograph. The expected noise due
to the WEAVE CCD detectors and the Poisson noise of the sky
background are added in quadrature to the Poisson noise present
in the signal itself in such a way as to obtain the desired S/N in
the I band. Finally, the spectra are converted back into flux units.
We note that this methodology results in different S/Ns depend-
ing on the considered wavelength.

In our analysis, we considered three different signal-to-
noise ratios and redshifts, chosen according to values expected
within WEAVE-StePS (Iovino et al. 2023b). Most galaxies are
expected to be observed at z = 0.3, Ngal ∼ 550 ± 60 deg−2 per
∆z = 0.1 and have log M?/M� & 10.2. The distribution of galax-
ies observed by the WEAVE-StePS will extend to z ∼ 0.8, but
z = 0.7 with Ngal ∼ 80 ± 20 deg−2 is the highest redshift that
still contains a statistically good sample of galaxies. As a third
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Fig. 2. Example of a normalised spectrum for one of our templates. The vertical lines show the central wavelength in the definition of the spectral
indices used here. The horizontal bar at the top shows the wavelength coverage available for the WEAVE spectrograph at z = 0.3 (blue), 0.55
(yellow), and 0.7 (red). The black lines show spectral indices available for all three redshifts, while the green line indicates indices measurable
only at z = 0.3 and 0.55. The orange and red lines show the spectral indices available at z = 0.55 and 0.7 and only at z = 0.7, respectively. While
not shown here, we also measured the 4000 Å break. We note that while some spectral indices have their central bandpass within the WEAVE
wavelength coverage at a given redshift, they still cannot be used as their blue or red bandpass falls at the very border or outside the wavelength
range available to WEAVE at a given redshift (see Ditrani et al. 2023, and references within for the spectral index definitions).The inset shows the
filters we used to calculate the observed magnitudes.

redshift value we chose z = 0.55, a representative mid-point
value of the redshift distribution, with Ngal ∼ 310 ± 40 deg−2

per ∆z = 0.1. At z = 0.55 we will observe galaxies with stellar
mass, log M?/M� & 11.0, while at z = 0.7, the sample will have
log M?/M� & 11.3. At z = 0.3, we have ∼105 700 simulated
spectra at each S/N level. This number decreases to ∼97 000 and
∼89 000 at z = 0.55 and z = 0.7, respectively, as we excluded all
galaxies that are older than the age of the Universe.

Using the simulated WEAVE-StePS spectra, we measured
the set of UV and optical spectral indices available in the spec-
tral ranges shown in Fig. 2. To assess the impact of measure-
ment errors, we generated 1000 Monte Carlo realisations for
each spectrum according to the error model described above
for a given S/N. For each realisation, we computed the spec-
tral indices. We then computed the statistical error on the indices
from the standard deviations of the 1000 realisations. We note
that Dn(4000) will be sensitive to the spectro-photometric cali-
bration; therefore, to account for such systematics, we added a
5% lower limit on its uncertainty.

2.2.3. Simulated photometry

From the model templates, we calculated the observed magni-
tudes in each filter bandpass by transforming the spectra to the
corresponding redshift and convolving the model spectrum with
the correct filter bandpass. For the uncertainty in these observed
magnitudes, we assigned the photometric ancillary data that
will be available in WEAVE-StePS to each simulated galaxy
(Iovino et al. 2023b). In particular, we considered the photo-

metric catalogues covering the COSMOS field from the UV to
NIR. To assign uncertainties to the simulated photometric mea-
surements from our templates, we used the COSMOS catalogue
(Laigle et al. 2016) to fit a relation between the observed magni-
tudes and their formal uncertainties in each band. We normalised
the templates to have IAB = 20.5, which is the WEAVE-StePS
magnitude limit. We note that we added an error of 0.05 mag in
quadrature to set a lower limit on the uncertainty to account for
possible systematics.

3. Results

A well-known issue in retrieving the stellar population properties
of galaxies is the age-metallicity degeneracy, especially for the
older population (Worthey 1994), which is further complicated
by the presence of dust. This is largely due to the fact that dif-
ferent combinations of age, metallicity, and dust produce similar
spectral shapes, making it impossible to disentangle the compo-
nents unless we have a sufficient S/N and a large enough wave-
length range. Therefore, in this section, we first examine how
well ML algorithms retrieve the physical parameters on perfect
observables without measurement errors. We then analyse how
well the ML algorithms can predict the same physical parame-
ters for our simulated galaxies containing realistic noise. Regard-
ing the spectral indices, we performed this test for S/N levels of
10, 20, and 30. In each case, the noise in the photometric data
was fixed to that of the WEAVE-StePS COSMOS ancillary cat-
alogue. For each S/N level, we also tested the retrieval capability
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of the ML algorithms at three different redshifts, z = 0.3, 0.55,
and 0.7, respectively.

3.1. Simulated data with no errors

For the initial test case, we used the observables without noise.
We quantified the success of the ML algorithms using either
the bias and the Spearman correlation coefficient (scc) when
considering noiseless data or the bias, dispersion (σ), and the
fraction of outliers when dealing with noisy data (see the next
section)2. The bias is estimated as x̄ = median(∆xi), where
∆xi = xpred

i − xtrue
i . For the dispersion, we used the median abso-

lute deviation (MAD) estimate and it is calculated using the for-
mula

σ = 1.4826 ×MAD(∆xi), (3)

where MAD(∆xi) = median(|xi − median(xi)|). In the follow-
ing, we present the dispersion computed in moving average bins,
where the bin size is larger than the bin step. The bin and step
sizes change depending on the physical parameter, as the range
of minimum and maximum values changes. Finally, we consid-
ered a data point an outlier when ∆xi > 2σ.

Figure 3 shows the comparison between predicted values and
true values for the mwa (top left panel) and uwa (top middle
panel), metallicity (top right panel), sSFR (bottom left panel),
AV (bottom middle panel), and log(tmod/τ) (bottom right panel)
assuming no noise on the observables. The values quoted are
the bias and Spearman’s correlation coefficient (scc). We note
that the quoted bias value is the median bias across all bins.
The uncertainty values represent the 25th and 75th percentiles
of the distribution, showing the scatter in bias in different bins.
We do not present the dispersion values since they are negli-
gible in this case of perfect data. Hence, we also excluded the
outlier fractions. This low scatter is demonstrated by the high
scc values calculated for the physical parameters, as discussed
below. There is a good prediction for both the mwa and uwa,
metallicity and AV, as the bias is low, with both the median bias
and the percentiles close to 0. In addition, the scc is high ∼0.99,
indicating a strong correlation between true and predicted val-
ues with little scatter. Looking at the difference between pre-
dicted and true (bottom sub-panels), we find similar results, but
it is evident that RF consistently outperforms KNN. Our retrieval
capability of sSFRs is robust at high specific star formation, as
the bias values are ∼−0.002 and −0.01, but at very low spe-
cific star formation, log sSFR.−12 and −11, there is a clear
bias for RF and KNN, respectively, with KNN having a stronger
bias. This bias may be because there is limited variance in the
observed parameters of templates at low sSFRs, thus creating a
high degeneracy even for perfect data. Therefore, when averag-
ing over 100 trees/neighbours, the high level of degeneracy in
observed parameters for low sSFRs will result in the selection of
numerous galaxies with lower sSFRs, thus underestimating the
sSFR.

Finally, we have log tmod/τ, which can be considered a
second-order physical parameter that indicates the number of e-
folds since the peak of star formation. We find that the retrieval
of this parameter is biased due to degeneracies that exist at low
and high values. At very low values, log tmod/τ < −1, the galax-
ies are actively forming stars and are either very young, with

2 We have two sets of statistics, one for perfect simulated data and
one for simulated data with noise. We do not quantify σ or fraction of
outliers with perfect simulated data as this leads to non-physical inter-
pretations of results.

tmod ∼ 0 Gyr, or have a long decay time, τ. For these effectively
young stellar populations, the observables are relatively insensi-
tive to the precise value of the scale time log tmod/τ. At the low
end, the bias is +0.25 for RF and +0.6 for KNN. At high values,
log tmod/τ > 1, star formation has ended, and the stellar popula-
tions are evolving passively. In this regime, the observables are
not strongly sensitive to the scale time, and the bias is −0.06 for
RF and −0.2 for KNN.

3.2. Simulated data with noise

In the following subsections, we explore how the parameter esti-
mation performs on realistic data. Here, we introduce various
levels of noise on the spectral indices (S/NI,obs = 10, 20, and
30) following the steps described in Sect. 2.2.2. We note that we
do not change the errors in the photometry since it will come
from archival data of the COSMOS field with known photomet-
ric errors. In addition, we also tested the performance of the algo-
rithms to predict physical parameters at three different redshifts,
z = 0.3, 0.55, and 0.7. At each redshift we set the maximum age
of each template to be the age of the Universe (tmod = 10.27 Gyr
at z = 0.3, tmod = 8.27 Gyr at z = 0.55 and tmod = 7.34 Gyr at
z = 0.7). Finally, while the metallicity of the templates covers
the range −1.69 . log Z/Z� . +0.6, we restricted it for the test-
ing sample to −1.39 . log Z/Z� . +0.4 to avoid significant bias
at the lowest and highest metallicity values.

3.2.1. Results for z = 0.3 and S/N = 10

This sample will define the baseline performance. The ML algo-
rithms are trained on the simulated sample with noise. As neither
KNN nor RF directly take the uncertainty as inputs, we perturbed
the simulated spectrum (with noise) five times, in a Gaussian
manner, and re-measured the spectral indices. Similarly, we also
perturbed the photometric data five times in accordance with the
noise. This procedure grows the training sample five-fold; the
testing sample size was not modified, but we also perturbed the
testing sample once according to the noise.

Figure 4 shows the results obtained for the mwa, uwa, metal-
licity, sSFR, AV, and log tmod/τ using the RF algorithm.

The retrieval capability worsens compared to when there
were no errors on the spectro-photometric observables; how-
ever, most of the physical parameters have neither a large bias
nor scatter. For the mwa, the bias reaches 0.1 dex at most. For
the uwa, we find a similar trend; however, in general, both
the bias and σ are smaller. The metallicity shows a negligi-
ble bias <0.1 dex. This is particularly true for high metallicity,
log Z/Z� & +0.0, where the bias and the dispersion tend to be
the lowest. The AV also has a small bias, straddling the 0 value,
except for AV & 1.0, where there is a general underestimation
for the effective dust attenuation, by ∼0.1 mag. The sSFR also
has low bias and σ for log sSFR&−11.0. However, for simu-
lated galaxies considered quiescent, at log sSFR.−11.0, we find
a strong bias and large σ. For log tmod/τ we generally find high
bias and dispersion. Although we observe an increase in the bias
for most physical parameters, it is not significantly different from
the test case where the observables have no error, as in most
instances, the bias is still close to zero. Finally, we observe no
clear difference in the relationship between the retrieval capa-
bility of the physical parameters and the age group of galax-
ies, where we classified the galaxies into three groups based
on their stellar populations: young (tmwa ≤ 1 Gyr), intermedi-
ate (1 ≤ tmwa ≤ 4 Gyr), and old (tmwa ≥ 4 Gyr). We note that the
main exception to this trend is the metallicity, where the older
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Fig. 3. Retrieval of the physical parameters assuming no noise on data. Top panels: density plots showing predicted vs. true values for the mwa
(left), uwa (middle), and metallicity (right) derived using RF. The blue lines show the bias computed as a running average with fixed bin step and
size. The bin size is six times larger than the bin step, and therefore the same galaxies are present in multiple bins; this ensures we have a sufficient
number of galaxies in each bin. The blue labels refer to the median bias and Spearman’s correlation coefficient (label scc in the plot) for RF. For
comparison purposes, we have included a line showing the bias for KNN and the values of the median bias and the scc in orange. The errors quoted
with bias are the 25th and 75th percentile. The smaller, lower panels show the difference between predicted and true values. The red line always
shows the one-to-one line or the 0 value for the variable considered. The colour bar at the top indicates the number of galaxies within a pixel in
the density plot. Bottom panels: same results but for the sSFR (left), dust attenuation, AV (middle), and tmod/τ (right).

stellar population exhibits smaller σ values for low metallici-
ties in comparison to the younger and intermediate stellar pop-
ulations. This trend was also observed in a previous study by
Ditrani et al. (2023) using simulated galaxies and also in real
data (see Fig. 7 of Gallazzi et al. 2005).

We note that the results discussed in this section use the mean
of the 100 trees or of the 100 nearest neighbours – as given by
the output of the scikit-learn python package. While it is
possible to extract the median using additional functions for RF,
for KNN, this requires modifying the source code itself, which
is beyond the scope of this paper. Therefore, we continued to use
the mean estimates of 100 trees/neighbours for a fairer compar-
ison between the two algorithms. Nevertheless, we tested how
much the results vary when we use the mean and median of 100
trees for RF. Using the median gives results comparable to the

mean except at extremes, the minimum and maximum bins along
their true value, where the bias is slightly smaller. For exam-
ple, there is a difference of .0.03 dex for the mwa and uwa, and
.0.09 mag for AV when using the median rather than mean at the
boundaries. For metallicity, the difference between bias and σ is
negligible. Finally, for sSFRs, while the degradation of the sSFR
estimates begins at log sSFR.−11.2, when using the median,
the bias values are larger, as expected, since we imposed a lower
limit of −15.0.

Table 1 presents the median bias, σ and the fraction of out-
liers for RF and KNN. The uncertainties given are the 25th

and 75th percentiles, showing the variation in both bias and σ
for different bins. While the median bias is comparable to that
obtained in the no-noise case, ∼0.00, the bias variations are gen-
erally larger as seen by the quartile ranges, reflecting what is
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Fig. 4. Physical parameters derived using RF, assuming S/N = 10 at z = 0.3. Top: results for the mwa (left), uwa (centre), and metallicity (right).
Bottom: sSFR, AV, and tmod/τ, from left to right. Each sub-panel on the bottom shows the difference between predicted and true values (∆x). The
blue lines show the bias estimated using moving averages. Similarly, the lime-green lines show the σ. The red line shows the one-to-one line (top
sub-panels) or 0 value (bottom sub-panels). Finally, the colour bar shows the number of galaxies in the density plot.

seen in Fig. 4. For RF (KNN), both the mwa and uwa have a
median σ ≤ 0.10 (0.16) dex, and metallicity has a median σ
of ∼0.14 (0.22) dex. The median bias for the sSFR is relatively
low −0.03 (−0.1) dex; however, we see that the scatter on the
dispersion for different bins is much larger, with 25th and 75th

percentile values of −0.80 (−0.70) dex and 0.05 (0.20) dex,
respectively. The AV has a lower median bias for RF, whereas for
KNN, we see a typical bias of 0.1 mag. Similarly, KNN has a larger
scatter than RF by ∼0.04 mag. Finally, log tmod/τ is found to be
the worst constrained parameter as it is the one with the highest
bias, ∼−0.1(−0.2) dex, and σ, ∼0.28(0.27) dex. Overall, RF con-
sistently performs better than KNN, as seen in previous literature
in other contexts (Thanh Noi & Kappas 2018). We note that the
main exception is in the fraction of outliers, where RF always has
a slightly larger outlier fraction. The fraction of outliers is influ-
enced by two factors: how compact the distribution of ∆x is in
a given bin and how Gaussian it is. For RF, we typically find a
strongly peaked distribution with asymmetric tails. This leads to
a low σ but a high fraction of outliers. On the other hand, KNN

has a broader peak, resulting in higher σ, and reduced tails. In
this case, the ∆x distribution is closer to Gaussian, giving a lower
fraction of outliers despite having a larger σ.

3.2.2. Higher S/N at z = 0.3

In this section, we analyse how the previous results improve
when spectral data are affected by lower noise values. For this
test, we considered S/N = 20 and 30 and show S/N = 10 for com-
parison. Figure 5 shows the bias and σ, obtained using RF, as a
function of the true physical parameter values. The black, blue
and red lines show the values for S/N = 10, 20, and 30, respec-
tively. Overall, we find that improving the S/N of the spectra
does not significantly improve the bias for most of the physi-
cal parameters. Regardless of the physical parameter or the true
value of the parameter we are considering, the difference in bias
between S/Ns is .0.05 dex for the age, metallicity, and sSFR and
.0.05 mag for AV. The only exception to this is for log tmod/τ,
where for the lowest value, log tmod/τ . −1.2, we see that the
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Table 1. Average statistics in all bins at different combinations of redshifts and S/Ns.

Random forest K-Nearest neighbour

Physical Parameter Bias σ foutlier (%) Bias σ foutlier (%)
z = 0.3, S/N = 10

log tmwa [yr] 0.00+0.05
−0.03 0.10+0.02

−0.01 4.94 −0.01+0.08
−0.07 0.16+0.03

−0.04 3.15
log tuwa [yr] 0.01+0.01

−0.01 0.08+0.02
−0.02 5.38 −0.03+0.02

−0.02 0.11+0.02
−0.01 4.74

log Z/Z� 0.01+0.01
−0.03 0.14+0.02

−0.02 7.37 0.00+0.05
−0.01 0.20+0.01

−0.02 5.87
log sSFR [yr−1] −0.03+0.05

−0.80 0.4+0.1
−0.3 9.28 −0.1+0.2

−0.7 0.45+0.09
−0.26 7.90

AV 0.00+0.01
−0.08 0.09+0.04

−0.02 11.80 −0.1+0.1
−0.2 0.13+0.02

−0.02 5.06
log tmod/τ 0.1+0.7

−0.2 0.27+0.05
−0.06 7.40 0.1+0.9

−0.3 0.23+0.07
−0.03 5.08

z = 0.3, S/N = 20
log tmwa [yr] 0.01+0.03

−0.04 0.09+0.03
−0.01 5.63 −0.01+0.07

−0.07 0.14+0.01
−0.04 3.16

log tuwa [yr] 0.00+0.01
−0.01 0.07+0.03

−0.01 6.63 −0.02+0.02
−0.01 0.09+0.02

−0.01 4.88
log Z/Z� 0.01+0.01

−0.02 0.13+0.02
−0.02 7.51 0.02+0.02

−0.02 0.16+0.02
−0.02 6.14

log sSFR [yr−1] −0.03+0.04
−0.86 0.4+0.1

−0.4 9.95 −0.1+0.1
−0.9 0.42+0.05

−0.28 9.15
AV 0.00+0.01

−0.07 0.08+0.03
−0.02 11.63 −0.01+0.03

−0.12 0.11+0.02
−0.02 6.49

log tmod/τ 0.0+0.7
−0.2 0.27+0.06

−0.06 7.79 0.1+0.9
−0.3 0.23+0.05

−0.04 5.50
z = 0.3, S/N = 30

log tmwa [yr] 0.00+0.03
−0.03 0.08+0.02

−0.01 6.64 −0.01+0.06
−0.06 0.11+0.02

−0.02 3.19
log tuwa [yr] 0.00+0.01

−0.01 0.06+0.02
−0.01 6.98 −0.01+0.01

−0.01 0.08+0.02
−0.01 4.37

log Z/Z� 0.01+0.01
−0.01 0.11+0.02

−0.01 6.11 0.01+0.02
−0.01 0.12+0.02

−0.01 5.82
log sSFR [yr−1] −0.03+0.03

−0.83 0.4+0.1
−0.3 10.51 −0.1+0.1

−0.9 0.4+0.1
−0.3 9.30

AV −0.01+0.01
−0.05 0.08+0.02

−0.02 11.32 −0.02+0.02
−0.09 0.10+0.02

−0.02 6.77
log tmod/τ 0.0+0.6

−0.2 0.26+0.06
−0.06 8.18 0.1+0.9

−0.3 0.22+0.04
−0.04 5.46

z = 0.55, S/N = 10
log tmwa [yr] 0.00+0.03

−0.03 0.10+0.01
−0.01 5.67 0.01+0.06

−0.08 0.15+0.03
−0.04 3.63

log tuwa [yr] 0.00+0.00
−0.01 0.08+0.03

−0.01 5.72 −0.03+0.04
−0.02 0.11+0.03

−0.01 4.97
log Z/Z� 0.01+0.02

−0.02 0.17+0.03
−0.03 8.20 0.02+0.08

−0.02 0.24+0.01
−0.02 4.73

log sSFR [yr−1] 0.00+0.02
−0.79 0.3+0.2

−0.2 9.86 0.0+0.2
−0.9 0.5+0.1

−0.3 8.17
AV 0.01+0.01

−0.07 0.08+0.03
−0.02 12.18 −0.01+0.09

−0.17 0.13+0.01
−0.01 4.74

log tmod/τ 0.0+0.7
−0.2 0.25+0.07

−0.05 8.73 0.0+0.9
−0.3 0.22+0.07

−0.02 5.40
z = 0.7, S/N = 10

log tmwa [yr] 0.00+0.03
−0.02 0.09+0.01

−0.01 5.93 0.00+0.06
−0.10 0.13+0.02

−0.04 4.01
log tuwa [yr] 0.00+0.01

−0.01 0.07+0.02
−0.00 6.02 −0.03+0.05

−0.02 0.10+0.03
−0.02 4.39

log Z/Z� 0.02+0.01
−0.02 0.16+0.03

−0.02 8.32 0.04+0.09
−0.07 0.24+0.00

−0.01 5.00
log sSFR [yr−1] 0.00+0.02

−0.61 0.3+0.3
−0.2 9.39 0.0+0.1

−0.9 0.5+0.1
−0.4 9.25

AV 0.01+0.01
−0.07 0.07+0.04

−0.02 13.24 −0.01+0.08
−0.16 0.13+0.01

−0.02 6.11
log tmod/τ 0.0+0.7

−0.2 0.29+0.04
−0.08 9.01 0.0+0.9

−0.3 0.22+0.06
−0.04 5.49

Notes. The left and right set of columns show results for RF and KNN, respectively. The first three sets of rows show results at z = 0.3 for S/N = 10,
S/N = 20, and S/N = 30. The bottom two sets of rows show results for S/N = 10 at z = 0.55 and z = 0.7. The leftmost columns indicate the physical
parameters of interest for each set of rows. We estimate the bias, the σ, and the percentage of outliers for each algorithm and physical parameter.
The uncertainty quoted is the 25th and 75th percentiles.

bias (slightly) decreases at higher S/Ns. Compared to the bias,
increasing the S/N decreases σ for most of the physical param-
eters. For the mwa and uwa, the largest difference in σ is seen
for the simulated galaxies in the range 8.5 ≤ log t ≤ 9.5 yr. We
see a decrease in σ for metallicity as we increase the S/N; this
is significant at low metallicity log Z/Z� . −0.5. Additionally,
there is a gradual decrease in the difference between σ of dif-
ferent S/Ns as we increase in metallicity. AV shows a gradual
improvement in constraint capability with respect to the S/N, as
we see a decrease in σ with an increase in the S/N in the range
0.15 . AV . 0.8. For sSFR, improvement in the S/N results
in comparable σ. Finally, we also see no strong trend between

the S/N and σ for log tmod/τ. Overall, while there is no clear
improvement in bias, we find a clear decrease in σ for all physi-
cal parameters except the tmod/τ and sSFR at higher S/Ns.

Table 1 also lists the median bias, σ, and the fraction of out-
liers for both RF and KNN for S/N = 20 and 30 at z = 0.3. The
uncertainties give the 25th and 75th percentiles of the bias and
σ. Similar to the figure, we find minimal change in the median
bias for all of the physical parameters, ∼0.0 dex or mag, irre-
spective of the S/N. We note that while the sSFR and log tmod/τ
have median bias ∼0.0 dex, they have very high scatter on the
bias at different bins, as shown by the percentiles. For exam-
ple, for the sSFR we find a bias of ∼−0.86 dex at different S/Ns
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Fig. 5. Change in bias (sub-top panels) and σ (sub-bottom panels) as a function of the true physical parameter value for RF at z = 0.3. Top panels:
results of, from left to right, the mwa, uwa, and metallicity for S/N = 10 (black), 20 (blue), and 30 (red). Note that while the S/Ns for the spectral
indices change, the uncertainties assumed for the photometric data remain unchanged for the different cases. For the bias plot, the dashed green
line indicates the zero point. Bottom panels: results for the sSFR, AV, and tmod/τ.

as shown by the 25th percentile value. Similarly, for tmod/τ we
find the 25th and 75th percentile values for bias to be ∼−0.2
and 0.7 dex, respectively. The σ shows a gradual decrease with
increasing S/N for most parameters, by ∼0.02 dex for age and
∼0.01 mag for AV, ∼0.03 dex for metallicity. For the sSFR and
log tmod/τ, while we see differences in the curves, we do not see
a strong trend when using average statistics. Generally, RF has
(marginally) lower bias than KNN, by ∼0.02 dex. Similarly, RF
has a lower dispersion than KNN for most physical parameters,
varying between ∼0.02 to 0.6 dex. Again, the main exception to
such a trend is seen for log tmod/τ, where KNN has a lower dis-
persion by ∼0.04 dex. Finally, KNN generally has fewer outliers
than RF owing to the Gaussian-like distribution of the differ-
ences between predicted and true values.

3.2.3. Samples at different redshifts

In the following section, we quantify differences in retriev-
ing galaxy physical parameters at redshift higher than 0.3 for
S/N = 10. Increasing the galaxy redshift affects both the spec-
troscopic and the photometric information. Indeed, the higher
the redshift, the bluer the observed rest-frame spectral window,
thus including a different set of indices. In addition to having
access to more UV spectral indices, the same spectral indices

at different redshifts will possess different S/Ns because they
will fall in different observed wavelength regions of the spec-
trograph. Furthermore, the same photometric filters will sample
bluer rest-frame spectral windows. This results in the same sim-
ulated galaxy having different magnitudes and uncertainties at
different redshifts.

Figure 6 shows the bias and σ as a function of the true
physical parameter for z = 0.3, 0.55 and 0.7 in black, blue and
red lines, respectively, at S/N = 10. These results are for the RF
algorithm. We find no significant differences in the bias for the
mwa and uwa, metallicity, or AV. We note that the maximum
age of the simulated galaxies is lower at higher redshifts due to
the younger age of the Universe. There is an improvement in
the prediction of the sSFR with increasing redshift, as there is a
notable reduction in the bias, where the underestimation of the
sSFR starts at −11.5, at z = 0.7, rather than at −11.0. This is
due to two factors: at higher redshifts we have a lower number
of quiescent galaxies. Therefore, when averaging over 100 trees,
we sample over a lower number of galaxies with sSFR =−15.0,
thus reducing the bias in the estimate of the sSFR. Further-
more, and more importantly, at higher redshifts we have access
to a larger number of UV spectral indices, and the observed
magnitudes sample a bluer region of the spectra, which are
more sensitive to the recent SFH and provide a better constraint
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Fig. 6. Same as Fig. 5 but for S/N = 10 at z = 0.3 (black), 0.55 (blue), and 0.7 (red). Again, these results are obtained with RF.

on the sSFR (Vazdekis et al. 2016; López Fernández et al. 2016;
Salvador-Rusiñol et al. 2020). For tmod/τ, we see only minor
improvements in bias as the redshift increases. In contrast to
bias, there is a clear improvement in σ for both mwa and uwa
estimations with an increase in redshift. This effect is most evi-
dent for older ages, log tmwa (yr)& 9.0 and log tuwa (yr)& 8.5.
The better estimation of age is also visible in Costantin et al.
(2019), which uses a more traditional Bayesian approach. This
trend is likely due to the larger number of UV spectral indices
and the bluer rest frame magnitudes available at higher redshifts.
In contrast, the σ for metallicity are comparable at different red-
shifts. This could be due to higher redshift observations probing
less of the IR part of the spectrum, which, combined with optical
observed magnitudes, is known to help constrain metallicity. For
0.15 . AV . 0.8 mag, we find a larger σ at z = 0.3 than at higher
redshifts. We note that at z = 0.55 and z = 0.7, the σ values are
comparable. At higher redshift, the observed magnitudes sam-
ple the bluer part of the spectrum, which is known to be more
affected by dust, hence the slight improvement in our AV pre-
diction. Finally, the σ of log tmod/τ shows no strong correlation
with any redshift.

Table 1 also lists the bias,σ and percentage of outliers for the
various physical parameters at z = 0.55 and 0.7. This supports
the results found in Fig. 6, where the bias is comparable between
redshifts for most parameters. The main exception is for sSFR,
where while the median value is similar, the 25th percentile value
is closer to 0 by 0.19 dex at z = 0.7 than at 0.3. The median of

σ is marginally lower for both the mwa and uwa. Again for the
sSFR, we see a decrease in σ of 0.1 dex between z = 0.3 to 0.7.
In contrast, the metallicity σ values are comparable, a difference
of only 0.03 dex as we increase the redshift. There is no clear
trend in regards to tmod/τ. In comparison, KNN shows a decrease
in median σ for a mwa (uwa) of 0.03 (0.01) dex between z = 0.3
and 0.7. The median σ for KNN does not have any strong cor-
relation with redshift for the sSFR, AV, or log tmod/τ; however,
overall they display the same behaviour as RF. In contrast, we
see a negligible increase in the median σ of 0.04 dex for metal-
licity between z = 0.3 and 0.7. While RF and KNN follow the
same trend with an increase in z, RF again finds a better con-
straint than KNN.

4. A test case: Red, green, and blue galaxies

As an example of how quantities retrieved from ML algorithms
can be applied to real data, we consider here the use of sSFRs to
classify galaxies into three categories: BC, mostly star-forming
galaxies, GV, galaxies in the process of quenching, and RS,
mostly quiescent galaxies (Salim 2014, and references within).
Once we group simulated galaxies into BC, GV, and RS, we
check for completeness of our classification for different S/Ns,
at each redshift. We note that here we do not look at the purity of
our classification as this is heavily dependent on both the dis-
tribution and fraction of galaxies in BC, GV, and RS. While
completeness might also be affected by the actual distribution of

A198, page 11 of 18



Angthopo, J., et al.: A&A, 690, A198 (2024)

Table 2. sSFR boundary between BC and GV (sSFRBC, GV) and GV
and RS (sSFRGV, RS) for the three redshifts explored in this work, i.e.
z = 0.3, 0.55, and 0.7.

z log sSFRBC, GV log sSFRGV, RS

0.3 −10.1 −11.6
0.55 −10.0 −11.5
0.7 −9.9 −11.4

Table 3. Completeness of BC, GV, and RS.

Random forest K-Nearest neighbour

SN = 10 (Completeness)
Redshift z = 0.3 z = 0.55 z = 0.7 z = 0.3 z = 0.55 z = 0.7
BC 0.99 0.99 0.99 0.99 0.99 0.99
GV 0.78 0.86 0.88 0.52 0.55 0.64
RS 0.99 0.98 0.98 0.97 0.96 0.96

SN = 20 (Completeness)
BC 0.99 0.99 0.99 0.99 0.99 0.99
GV 0.80 0.88 0.90 0.60 0.69 0.75
RS 0.99 0.98 0.97 0.98 0.98 0.97

SN = 30 (Completeness)
BC 0.99 0.99 0.99 0.99 0.99 0.99
GV 0.81 0.88 0.92 0.67 0.76 0.83
RS 0.99 0.98 0.98 0.98 0.98 0.98

Notes. The left and right set of columns show result for RF and KNN.
Top, middle and bottom sets of rows shows completeness at S/N = 10,
20, and 30. We tabulate results at each of three redshifts, z = 0.3, 0.55,
and 0.7.

galaxies, as objects close to the border are more likely to be mis-
classified than those at the centre, it is likely more robust against
the fraction of populations in each region.

While there are several ways to define BC, GV, and RS, we
utilise the definition based on sSFR here. We adopt a cut-off
value for the sSFR that evolves with cosmic time, as this has
been observed in both hydrodynamical simulations and obser-
vations (Fritz et al. 2014; Trayford et al. 2016; Phillipps et al.
2019; Wright & Lagos 2019; Jian et al. 2020). To define the cut-
off boundary between star-forming and quiescent galaxies, we
use the formula: log (sSFR(yr−1)) =−11.0 + 0.5z (Furlong et al.
2015). We then consider 0.75 dex above (below) the cut-off point
to define the border between BC (RS) and GV, resulting in a
GV width of 1.5 dex in the sSFR. Table 2 shows the GV lim-
its obtained by such a method, where log sSFRGV,RS is the bor-
der between GV and RS, and log sSFRBC,GV is the boundary
between BC and GV.

Completeness is defined as

Completeness =
TP

TP + FN
, (4)

where TP is the number of true positives, that is, simulated galax-
ies correctly identified to be in BC, GV, or RS; the FN is the num-
ber of false negatives, that is, galaxies misclassified as belonging
to the ‘wrong’ region. Table 3 shows the completeness obtained
with RF and KNN at each redshift for different S/Ns.

The completeness of galaxies in BC and RS is consistently
very high (&0.96) irrespective of the S/N or ML algorithm we
use. On the other hand, for GV galaxies, completeness is lower,
although RF still performs relatively well, with completeness
&0.75. We note that not only does the GV completeness improve
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Fig. 7. Distribution of galaxy templates in the colour–colour diagram.
The lime-green lines define the demarcation used to select GV galax-
ies (Moutard et al. 2020). Cyan dots are GV galaxies, identified using
the true sSFR at z = 0.3. Green (red) circles around the cyan dots
show galaxies that are correctly identified (misidentified) as GV galax-
ies according to colour–colour selection. The colour bar on the side
shows the number of galaxies.

with increasing S/N, but we also find higher values with increas-
ing redshift, with an increase of ∼10% from z = 0.3 to 0.7. For
KNN, while there is also an improvement with S/N and redshift,
we find that the overall completeness is .0.65, at the lowest S/N
and redshift. This stems from the significant bias in predicting
sSFRs with KNN (see Sect. 3.2), where we consistently under-
estimate the true value. The underestimation leads to misclassi-
fying a GV galaxy into an RS one, while the opposite scenario
is unlikely.

To compare our results with those obtained with other meth-
ods, we also compute the completeness of GV classification
using a NUVrKs diagram (Arnouts et al. 2013). The density plot
in Fig. 7 shows the distribution of simulated galaxies in colour-
colour space. The completeness for this method is 0.38, ∼0.40
(0.30) lower than for RF (KNN) at the same redshift. We note
that at different redshifts, we have different numbers of galaxies,
and also, the definition of demarcation lines varies (see equa-
tion 1 of Moutard et al. 2020). Therefore, we repeated the anal-
ysis at z = 0.55 and z = 0.7, finding that the completeness of
NUVrKs-selected GV galaxies drops to 0.36 and 0.32, respec-
tively. Methods that use the sSFR to define GV galaxies are
expected to perform better than simple colour selections: the
sSFR is the physical parameter that defines GV galaxies, and
it spans a wide range of rest-frame NUVrKs colours. Therefore,
a simple colour-colour selection of GV galaxies is prone to large
incompleteness. On the contrary, the use of ML to estimate the
sSFR with photometry and spectral indices has small uncertain-
ties, leading to high completeness.

5. Discussion

We highlight the capabilities of two ML algorithms to retrieve
the physical properties of galaxies based on photometric and
spectroscopic information. We analysed how results vary for
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simulated galaxy spectra at different redshifts, with S/NI,obs of
10, 20, and 30, respectively. In the following, we discuss some
caveats and possible limitations of our assumptions (Sect. 5.1).
In addition, we compare our results with those obtained using
a more traditional Bayesian approach (Sect. 5.2). Finally, since
spectroscopic data can have a wide range of S/Ns, we analyse
how much our results vary when the training and testing data
have different S/Ns (Sect. 5.3).

5.1. Photometry versus spectroscopy

Both photometry and spectroscopy provide valuable constraints
on the physical parameters of galaxies. Therefore, many state-
of-the-art spectral fitting algorithms combine the two types of
information (Carnall et al. 2018; Johnson et al. 2021; Cappellari
2023). In this section, we discuss the ability of ML algorithms to
retrieve physical parameters of galaxies based on spectroscopy
alone or with spectro-photometry information, discussing limi-
tations due to observations and stellar population models.

Figure 8 shows how well we can retrieve the uwa, metallicity,
AV, and sSFR using only spectroscopic information at z = 0.3 (i;
blue curves), an I-band S/N (per Å) of 10, 20, and 30; (ii; red
curves), and both photometry (all bands) and spectroscopy, the
latter with S/N = 10. Panels in the left (right) column of Fig. 8
show the bias (dispersion, σ) on retrieved quantities.

For age and metallicity, at S/N = 10, the predictions generally
give the highest bias values (especially at the extremes of the
distribution) and σ. At S/N = 20, we find improvement in bias
and σ – most noticeable for younger ages. However, the σ for
spectra is still larger but with differences of less than 0.1 dex. At
S/N = 30, the bias and σ are comparable both when using spec-
troscopic information only and photometry plus spectroscopy,
although the latter method still provides lower σ values for ages
younger than log tuwa[yr] ∼ 8. We note that, while not shown,
the mwa shows the same trend as the uwa.

In contrast to these trends, there is limited constraining capa-
bility on AV solely based on spectral information, independent
of the S/N, as spectral indices are measured over short wave-
length ranges and are therefore insensitive to dust. We note the
low constraining ability is due to Dn(4000) being sensitive to
dust (MacArthur 2005). For the sSFR, we find a noticeable dif-
ference when using only spectral or all information; for the for-
mer, the increase in bias andσ, towards lower sSFR values, starts
at log sSFR∼−10 rather than at −11. While increasing the S/N
tends to decrease the bias and σ, the degradation of constraining
capability for log sSFR remains at about −10.

While we find that the inclusion of photometry gives us a
higher constraining capability for the AV and, more importantly,
for the sSFR, we warn the reader that the uncertainties consid-
ered here do not account for all sources of systematics – as we
consider only formal photometric errors from the COSMOS cat-
alogue (Laigle et al. 2016). While we set a lower limit on pho-
tometric errors by adding 0.05 mag in quadrature to the formal
errors on magnitudes, the true uncertainties, due to systematics,
may be larger for several reasons. A significant source of system-
atics on photometry is dust, as the reddening correction depends
on the adopted dust model. Different dust models may lead to
large variations on measured magnitudes, with such systematics
propagating to colours, thus affecting the retrieval of physical
parameters (Salim & Narayanan 2020; Pacifici et al. 2023).

While NIR wavebands are less affected by dust, they are also
susceptible to systematics due to differences among different
stellar population models. To illustrate this point, we compare
magnitudes obtained from BC16 and EMILES (Vazdekis et al.
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Fig. 8. Bias (left) and σ (right) of the uwa, metallicity, AV, and sSFR
retrieved using either spectral indices only, at different S/Ns, or both
spectroscopic and photometric information. The solid dark blue, dashed
blue, and dash-dotted sky-blue curves show results for S/N = 10, 20, and
30, respectively. For comparison, the red curves show results obtained
using both observed magnitudes and spectral indices at S/N = 10. The
dashed green line in the left panels indicates zero bias. The results are
for the RF algorithm at z = 0.3.

2015) simple stellar population (SSP) models. We considered
only ages &1 Gyr, where EMILES stellar population models are
‘safe’ in the NIR spectral range (λ & 8950 Å, for all metal-
licities; see Vazdekis et al. 2015). While magnitude differences
between the two sets of models are small in the optical (less
than a few percent), large differences are found in the NIR. In
particular, for an age of ∼1 Gyr at solar metallicity, we find
differences of &0.2 mag in the observed H and Ks bands at
z = 0.3. Such systematic differences are due to EMILES mod-
els relying on the empirical library Indo-US library (Valdes et al.
2004) whereas BC16 uses the semi-empirical library BaSeL 3.1
(Westera et al. 2002). Systematics in the models also affect the
UV part of the spectra. In the UV, EMILES models rely on
fully empirical stellar library, whereas BC16 is purely theoret-
ical. The comparison of CFHT u? magnitudes shows a maxi-
mum difference of 0.26 mag for a SSP age of ∼1.4 Gyr, at solar
metallicity. These systematics may lead to higher uncertainties
than what we have assumed on our magnitudes. Another possi-
ble source of systematics is that spectroscopic and photometric
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ent observed magnitude combinations at z = 0.3. Note for all results
shown, we also use all available spectral indices, at z = 0.3, with
S/N = 10. The turquoise lines show results for observed optical (these
consist of HSC g, r, i, z, and y filters) and IR magnitudes (VISTA H, J,
and Ks). The dark orange lines show results for observed optical, IR,
and CFHT u? magnitudes.

observations usually cover different galaxy regions. Both, slit
and aperture spectroscopy usually cover the central parts of
the galaxies, while magnitudes obtained from photometry are
integrated in larger apertures. This may lead to discrepancies
in the estimates of various physical parameters, depending on
whether spectroscopic or photometric data are used. Last but
not least, one should bear in mind that while optical photom-
etry is affected by the age-metallicity degeneracy, for an unre-
solved stellar population, spectral indices are able to partially
break it (e.g. Worthey 1994; Arimoto 1996). The combina-
tions of UV and optical (Kaviraj et al. 2007) or optical and IR
(Carter et al. 2009) colours have been shown to be successful
at partially breaking this degeneracy. However, they suffer from
other issues; for example, the UV and optical combination suf-
fers from age–dust degeneracy.

In addition to systematics, one usually has limited access to
far-UV (FUV) and near-UV (NUV) photometric data, because
of the faint flux of galaxies at these wavelengths. For example,
within the WEAVE-StePS, in the CFHTLS-W4 field, only 4%
(20%) of the sources have FUV (NUV) photometry, while for
the ELAIS field, only 10% of galaxies have GALEX data. In
contrast, for IAB < 20.5 at z > 0.3, the COSMOS field has 60%
and 70% of galaxies with FUV and NUV photometry, respec-
tively. Finally, even when FUV photometry is available, its inter-
pretation for old stellar populations is not trivial, as this spectral
range includes contributions from stars that are difficult to model
(e.g. very young stars and/or hot evolved stars; see Le Cras et al.
2016; Salvador-Rusiñol et al. 2020).

Despite such issues, photometry is a reasonable source of
information for a sensible estimation of the AV and sSFR. With-
out photometry, our estimates of the sSFR worsen significantly,
affecting the completeness. For instance, when using only spec-
tral indices at z = 0.3, the GV completeness drops to 0.43, 0.51,
and 0.56 for S/N = 10, 20, and 30, respectively. Although these
values are relatively low, they are still higher than that obtained

from the NUVrKs diagram (i.e. 0.38; see Sect. 4). A relevant
question is what happens to the constraining capability on AV
and sSFR, when only limited photometric information is avail-
able. We address this point in Fig. 9, showing the bias and σ on
the AV and sSFR, for simulated galaxies at z = 0.3. The blue
and red lines in Fig. 9 are the same as in Fig. 8: they show con-
straints from spectroscopy only, with S/N = 10, and photome-
try plus spectroscopy, respectively. The figure also shows results
when spectroscopy is combined with (i) only optical and IR
photometry (turquoise lines); and (ii) optical, IR, and u-band
photometry (dark orange lines). Access to photometric informa-
tion improves the accuracy of the AV and, more importantly, the
sSFR. When only optical and IR photometry are used, there is
a marginal improvement in the estimate of the sSFR, leading to
a relatively low completeness of 0.52 for GV galaxies, compa-
rable to that for spectroscopy only, with S/N = 20 (see above).
On the other hand, adding CFHT u? to optical and IR magni-
tudes (see the dark orange lines in Fig. 9) leads to a more sig-
nificant improvement of sSFR estimates. The deterioration now
starts at sSFR∼−10.5, increasing GV completeness up to 0.62.
This is particularly relevant for the WEAVE-StePS, where in the
CFHTLS-W4 and COSMOS fields 99% and 70% of galaxies
have u-band magnitudes at z > 0.3 and IAB < 20.5.

5.2. Comparison with Bayesian methodology

In this section, we compare results obtained from ML techniques
with those from a more traditional Bayesian approach follow-
ing the method outlined in Gallazzi et al. (2005) and Zibetti et al.
(2017). To make a fair comparison with previous works present-
ing results for WEAVE-StePS simulated data (Costantin et al.
2019; Ditrani et al. 2023), we consider only UV and optical
spectral indices, assuming S/NI,obs = 10, excluding the photo-
metric information. Under the assumption that errors are nor-
mally distributed, the goodness of the fit for a given statistical
model is given by

χ2 =
∑

i

[
Oi − Mi

σi

]2

, (5)

where Oi are observed values (i.e. index line strengths), σi their
errors, and Mi are model values. Equation (5) can be converted
into a posterior probability distribution function, defined as L ∝
e−χ

2/2. The predicted value of a given quantity is estimated by
marginalising the probability distribution function with respect
to it, taking median values (see Ditrani et al. 2023). We note that
for a fair comparison, we also use median values for RF, namely
we consider the median rather than the mean of 100 trees from
the output of RF algorithm.

For a given physical parameter, we grouped simulated galax-
ies into groups of 1200 objects according to the true values. For
each bin, we calculated the bias and σ. Table 4 shows quantities
for the age and metallicity from both the RF algorithm and the
Bayesian approach.

We find the largest differences in bias between the two meth-
ods for bins that contain either the oldest metal-poor popula-
tions (log Z/Z� = −1.17) or the oldest metal-rich populations
(log Z/Z� = 0.38), particularly those at the boundaries of the
parameter space. For the lowest and highest metallicity bins,
the difference in bias (between the RF and the Bayesian meth-
ods) are 0.06 and 0.05 dex, respectively (see Table 4). Simi-
larly for the uwa, we have the largest difference, of 0.18 Gyr,
in the oldest age bin, Ageu ∼ 7.94 Gyr. In contrast to the bias,
we find comparable results between both methods in their σ.
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Table 4. Comparison of bias andσ of metallicity and age obtained using
RF and Bayesian approach.

RF Bayesian

log Z/Z� Bias σ Bias σ
−1.17 0.13 0.37 0.07 0.35
−0.67 0.10 0.29 0.07 0.27
−0.40 0.07 0.35 0.06 0.34
−0.05 0.00 0.32 0.05 0.32
0.22 −0.08 0.24 0.04 0.23
0.38 −0.19 0.23 −0.14 0.20
Ageu(Gyr) Bias σ Bias σ
0.09 0.02 0.03 0.02 0.03
0.30 0.00 0.11 −0.01 0.10
0.61 −0.03 0.20 −0.04 0.19
1.37 −0.07 0.52 −0.04 0.47
4.19 −0.23 1.34 −0.25 1.24
7.94 −2.55 1.35 −2.37 1.27

Notes. Top and bottom rows tabulates the bias and σ for metallicity and
age across different bins.

While both the Bayesian and RF approaches perform similarly,
the main advantage of RF is that it is orders of magnitude faster
than the Bayesian approach, especially when the training has
been completed. Such a large difference in time is due to the
fact that ML methods have a lower computational complexity
than Bayesian inference. Once the tree is constructed, the RF
simply goes down the different branches to retrieve the physi-
cal parameter, while Bayesian inference requires a comparison
with each template. Previous works in the literature have also
noted differences in computational time between various types
of ML algorithms and classical methods (Stensbo-Smidt et al.
2017; Domínguez Sánchez et al. 2018; Davidzon et al. 2019).

Finally, there have been studies that use more complex ML
algorithms in astronomy for different purposes. For example,
Martínez-Solaeche et al. (2023) used an artificial neural network
(ANN) and RF to classify objects into quasars, galaxies or stars,
finding ANN to outperform RF, given proper calibration. In addi-
tion, Hunt et al. (2024) carried out a similar analysis to us, where
they predicted the average ages of galaxies from the GAMA sur-
vey using ANN. They trained the ANN to predict average ages
based on the optical spectral indices, finding results that are com-
parable to ours.

5.3. Varying the signal-to-noise of the training and testing
samples

Throughout Sect. 3, we assumed the spectra in both the train-
ing and testing samples have the same S/N. For a given S/N,
we included five random realisations of each galaxy in the train-
ing sample. The benefits of such a methodology are outlined
by Shy et al. (2022), namely that it becomes possible for the
ML algorithms to incorporate the uncertainties on the observ-
ables. However, when dealing with real data, one may expect
to observe a large number of spectra (e.g. ∼25 000 target galax-
ies from WEAVE-StePS) with a wide range of signal-to-noise
ratios. Since training the ML algorithm for the S/N of each
galaxy would be extremely time-consuming, we tested the effect
of setting the S/N of the training sample to a different value than
that of the testing sample. In the following, we discuss the impact
of this test on our predictions of age and metallicity.

8 9
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8 9
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Fig. 10. Bias (left panels) and σ (right panels) of the uwa (top panels)
and metallicity (bottom panels) as a function of true values. Black, blue,
and red lines correspond to training samples with S/N = 10, 20, and 30,
respectively. Note that for the testing sample, we set S/N = 10 in all three
cases.

Figure 10 shows the change in bias and σ for both age and
metallicity when the training sample has a S/N of 10, 20, and 30
(see the black, blue, and red lines, respectively), and the testing
sample has a S/N of 10. There are no significant variations in the
age bias with an increase in the difference in S/N between the train-
ing and testing samples. The same applies to metallicity, although
for S/N = 30, we have a slightly higher bias (within 0.03 dex) at
the lowest metallicity (see the red and black curves in the lower-
left panel of Fig. 10). On the contrary, we find a clear trend of σ
with the S/N of the training sample. For age and metallicity, the
σ increases as the difference in S/N between training and test-
ing samples increases, implying a deterioration in the estimate
of physical parameters. The difference in σ between S/N = 10
and 30 amounts to ∼0.05 dex (∼0.10 dex) for the uwa (metallic-
ity), whereas the difference between S/N = 10 and 20 is consid-
erably smaller, ≤0.02 dex, for both quantities. This suggests that
for galaxies with S/Ns close to 10, assuming a fixed S/N = 10 for
the training sample, should have negligible impact, for most of the
applications, on the estimate of physical parameters. This is actu-
ally the case for the WEAVE-StePS, where one expects most of
the source to have spectra with S/Ns in the range from 8.8 to 16.2
(see Fig. 9 of Iovino et al. 2023b). Figure 10 suggests that, in this
case, assuming S/N = 10 to create the training sample will give
results fully consistent with those shown in Fig. 4, where both the
training and testing samples were assumed to have the same S/N.
This result is encouraging and opens up new opportunities in the
analysis of massive datasets using ML techniques.

6. Summary and conclusion

With the increased number of upcoming spectroscopic surveys,
the astrophysics community will have access to a large number of
high-resolution spectra with a wider spectral coverage than ever
before, coupled to rich photometric information. These observa-
tions span from the local Universe to high redshifts and will cover
both the UV and optical rest frames (Euclid Collaboration 2023;
Iovino et al. 2023a,b). With access to such a large quantity of data,
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there is an increasing need to find faster ways to extract accurate
estimates of physical parameters.

In this work, for the first time, we tested the predictive capa-
bilities of two easy-to-implement ML algorithms (KNN and RF)
in estimating the average age (both the mwa and uwa), metallicity,
sSFR, Av, and tmod/τ using photometric and spectral information.
We measured UV and optical spectral indices, which are sensitive
to age and metallicity, in template spectra and obtained synthetic
photometry in the representative UV, optical, and NIR bands.

First, we analysed how well we can retrieve the physical
parameters, assuming no uncertainty in our observed measure-
ments. We then produced realistic simulations of WEAVE-StePS-
like spectra for S/N = 10, 20, and 30 at redshifts z = 0.3, 0.55, and
0.7 following the method outlined in Costantin et al. (2019). We
also assigned uncertainties to the magnitudes calculated for each
galaxy template using the photometric ancillary data. We find that,
in general, both RF and KNN are able to accurately predict most
of the parameters, with a low bias, for all S/Ns and at different red-
shifts. The main exception was for the sSFR and tmod/τ. For the
sSFR, while the median bias was ∼−0.03, the lower percentiles
ranged from ∼0.61, at z = 0.7, to ∼0.86, at z = 0.3 (see Table 1).
We note that this large scatter in the bias is due to an underestima-
tion of the sSFR, specifically below .−11.0 (see Figs. 5 and 6).
Theσwere also relatively low for RF (KNN); for the age we found
a maximum σ ∼ 0.10 (0.16) dex for S/N = 10 at z = 0.3, which
decreased to ∼0.08 (0.11) dex for S/N = 30. At higher redshifts,
we find a similar constraint. For metallicity, the σ on the esti-
mates vary from .0.11−0.16 (0.12−0.25) dex for different S/Ns
at z = 0.3. At higher redshifts for S/N = 10, we find a slightly
worse constraint, σ ∼ (0.17) 0.24 dex. The AV has a typical σ
of 0.09 (0.10−0.13) mag. Again, the sSFR has a different con-
straining power depending on the value. For star-forming galax-
ies, log sSFR&−10, we find a typical σ of .0.1 (0.2) dex, which
increases to 0.3−0.4 dex at lower values, depending on the red-
shift. For RF and KNN, we find no strong trend between redshifts,
S/Ns, and constraint ability for tmod/τ.

In addition, the retrieved sSFR was utilised to classify galax-
ies into three categories, BC, GV and RS, and it was checked
for completeness. The completeness was satisfactory for RF
within each region, with GV values of &0.75 at z = 0.3. At
a redshift of z = 0.7 we find a much higher completeness,
∼0.90. In comparison, the completeness in BC and RS was
much higher, &0.96. While KNN performed similarly well for
BC and RS, the GV completeness was lower and ranged from
∼0.52–0.67 and ∼0.64–0.84 at z = 0.3 and 0.7, respectively.
Although KNN had a lower completeness, it can still be used
to accurately estimate the sSFR, thus giving a higher complete-
ness than what we found for colour–colour selection, ∼0.35 (see
Sect. 4). Finally, with a more traditional approach, Bayesian
statistics, we observe outcomes similar to those of the ML algo-
rithms. Nevertheless, considering the computational time, the
ML algorithm is considerably faster than the traditional method.
This is especially true since most of the computational time
needed for ML is for training, which is only required once. Once
trained, the prediction of physical parameters for any new set
of galaxies (∼9600) can be achieved within seconds. Therefore,
ML techniques are an excellent and efficient tool that can be
used to exploit the high-quality data that will be available from
WEAVE-StePS, and the huge quantity of data3 from upcoming4

3 https://ingconfluence.ing.iac.es/confluence/display/
WEAV/The+WEAVE+Project
4 https://ingconfluence.ing.iac.es/confluence/display/
WEAV/WEAVE+Acknowledgements

large spectroscopic surveys from the MUltiplexed Survey Tele-
scope (MUST; Zhang et al. 2023), the MaunaKea Spectroscopic
Explorer (MSE; The MSE Science Team 2019), and the Wide-
Field Spectroscopic Telescope (WST; Mainieri et al. 2024).
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Appendix A: Optimising ML algorithms

For the optimisation of the ML algorithms, it is necessary to fine-
tune the hyperparameters as these will affect the prediction of
the physical parameters that we considered. We use both sets
of observables (the spectral indices and observed magnitude) as
input. For the output, we estimate the physical parameters —
mwa, uwa, tmod/τ, metallicity, Av, and sSFR. The hyperparam-
eters are adjusted for multiple runs, and two different statistics,
R-squared (R2) and root-mean-square-error (RMSE), are used to
assess the effectiveness of the algorithms. The R2 is defined as

R2 = 1 −

∑n
i=1

(
xpred

i − xtrue
i

)2

∑n
i=1

(
xtrue

i − x̄true
i

)2 , (A.1)

where x̄true
i is mean value of the physical parameter and n is the

number of samples. Similarly RMSE is formulated as

RMSE =

√√√√
n∑
i

(
xpred

i − xtrue
i

)2

n
. (A.2)

These statistics are commonly used to evaluate the goodness of
fit for regression. The R2 value ranges from 0 to 1, where a value
∼ 1 indicates a good fit. Unlike R2, RMSE provides an absolute
measure of fit, where a lower value indicates a better fit. We note
that these statistics are calculated for each physical parameter,
such as the mwa and uwa, and that the final statistics quoted are
averaged across all physical parameters considered.

For the RF, we focus on tuning two hyperparameters: the
number of trees and the maximum depth (MD). Figure A.1
shows the changes in R2 and RMSE for different values of these
hyperparameters. It is important to note that for our templates,
MD=Max corresponds to a range of values between 44 <MD<
58, depending on the particular run, due to the random nature
of the RF algorithm. Both R2 and RMSE exhibit higher sensitiv-
ity to changes in MD compared to the number of trees. Both R2

and RMSE show similar values for MD>20 and number of trees
> 25.

For the KNN algorithm, the hyperparameter that was opti-
mised was the number of neighbours, K. Figure A.2 shows the
R2 (left) and RMSE (right) values for different values of K. The
performance of KNN is dependent on the value of K, but beyond
K & 20 there is minimal change in the R2 and/or RMSE statistics.
To mitigate overfitting, a larger K value is chosen than the point
at which the statistics flatten. Therefore, 100 neighbours are
selected. For comparison, the statistics obtained for the RF algo-
rithm, using MD=Max, are also plotted. It is noted that although
the plateau of the statistics begins around the same number of
estimators for both algorithms, the R2 and RMSE values also
indicate a better fit of the model. Finally, we also checked the
variance around the mean for R2 and RMSE for both algorithms.

0 25 50 75 100
Number of Trees

0.4

0.5

0.6

0.7

0.8

0.9

R
2

MD=1
MD=3

MD=5
MD=10

MD=20
MD=40

MD=Max

0 25 50 75 100
Number of Trees

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R
M

SE

Fig. A.1. Variation in R2 (left) and RMSE (right) for different numbers
of trees and maximum depths (MDs). The number of trees varies (1, 5,
10, 20, 30, 50, and 100), while the MDs we consider are 1 (dashed black
line with circles), 3 (dashed blue line with circles), 5 (dashed green line
with circles), 10 (dashed red line with circles), 20 (dashed magenta line
with circles), 40 (solid purple lines with pentagon markers), and ‘Max’
(solid black lines with pentagon markers). The statistics are averaged
over all six parameters that we consider. Note that these runs assume
S/N=10, and the simulated templates are at z = 0.3.
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Fig. A.2. Variation in R2 (left) and RMSE (right) with the change in the
number of estimators, neighbours for KNN (dashed orange line), and
trees for RF (dashed blue line). These statistics were computed by con-
sidering the difference between true and predicted values. These results
assume the spectra have S/N=10 and the templates are at z = 0.3.

We set the number of trees or nearest neighbours ranging from
1 to 100, and for each configuration we carried out 30 indepen-
dent runs of KNN and RF. For each run, we calculated the R2

and RMSE statistics and computed the variance in these statis-
tics. We find low evidence of overfitting as both KNN and RF
exhibit minimal variance with standard deviation . 10−3, in R2

and RMSE, regardless of the number of trees/neighbours.
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