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Abstract
Aim: Miombo, a prominent dry forest formation, holds ecological importance for both 
humans and wildlife. Trees are a driving force behind miombo dynamics, thus, spatially 
explicit metrics of tree cover are essential for evaluating habitat characteristics, re-
source availability, and environmental change. We developed predictive models and 
maps of tree species diversity and biomass within a previously undescribed landscape.
Location: Mahale Mountains National Park (MMNP), Greater Mahale Ecosystem 
(GME), Tanzania.
Methods: We created models of tree density, basal area, tree species richness, and 
tree diversity according to the Shannon Diversity Index. We created a predictive 
model using an ensemble modeling approach using plot-based data from MMNP and 
predictor variables derived from satellite data associated with climate, habitat struc-
ture, plant productivity, and topography. We assessed predictor importance across 
models and produced maps based on model predictions and compared them to land 
cover type and protective status.
Results: Results revealed strong positive correlations between tree metrics (r ≥ 0.70) 
and substantial overlap in the selection and relative importance of predictors. Canopy 
height was the most important predictor across models, followed by climate and to-
pography predictors associated with energy. Predictors derived from the soil-adjusted 
vegetation index were also valuable. Model performances ranged from R2 values of 
0.45 to 0.55, with tree density performing best. Maps show high tree species diversity 
and biomass in protected areas.
Conclusions: This study and the maps it produced provide a baseline for land manage-
ment and future modeling efforts in the GME. Our results highlight the contribution 
of a wide variety of environmental predictors and the importance of a select few. We 
confirmed the importance of the current protected area network where conserva-
tion efforts align, and help sustain, an abundance and diversity of trees. Current and 
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1  |  INTRODUC TION

Miombo is one of Africa's most valuable, threatened, and ex-
tensive dry forest formations (Timberlake & Chidumayo,  2011; 
Ribeiro, 2015). Stretching from Tanzania to Zimbabwe, the miombo 
ecoregion boundary is primarily determined by an interaction be-
tween topography and climate and occurs within a zone that ex-
periences extreme fluctuations in rainfall. Its distinct biodiversity 
and vast distribution have garnered international recognition, and 
it is included in the world's top five list of most valuable wilder-
ness areas (Mittermeier et al., 2003). Miombo provides a myriad of 
services (e.g., nutrient cycling, erosion control) and resources (e.g., 
food, wood fuels), supporting the approximately 150 million peo-
ple who live on these lands and in nearby urban settlements (Ryan 
et al., 2016). This ecosystem is highly threatened by anthropogenic 
land use activities and climate change, dramatically affecting species 
distributions and ecosystem processes (Verhegghen et  al.,  2022). 
Dry forests like miombo now surpass humid forests (Sunderland 
et al., 2015) (that have been the subject of far more scientific inquiry 
and resource allocation) (Schröder et al., 2021) in deforestation rate.

Miombo ecosystems are dominated by tree species from the fam-
ily Fabaceae in the genera Brachystegia, Julbernardia, and Isoberlinia 
(Frost, 1996). While they are primarily composed of woodland, these 
ecosystems are a mosaic of vegetation types, e.g., grasslands, shrub-
lands, dense forests, that vary in size and composition according to 
environmental factors like soil, water, and topography and anthropo-
genic factors like land use (Timberlake & Chidumayo, 2011). The dy-
namics of miombo are driven by the dynamics of trees, which strongly 
influence vegetation structure, water and nutrient cycling, and fire 
regimes (Frost, 1996). Data detailing tree cover characteristics such 
as tree distribution, density, and diversity can help researchers de-
scribe land cover types and identify resource-rich areas, as well as 
assess the health and productivity of the ecosystem to the benefit 
of both wildlife and humans (Torres & Lovett, 2013; Ribeiro, 2015; 
Ryan et al., 2016). The importance and vulnerability of miombo and 
its resources has garnered attention (Syampungani et al., 2009), but 
inter-site variability warrants expanding research into understudied 
regions and localities (FAO, 2019; Schröder et al., 2021).

One such understudied region is the Greater Mahale Ecosystem 
(GME) in western Tanzania. The Tanzania miombo represents the 
most northern and eastern boundary of the miombo ecoregion, 
yet it is largely separated from most of the ecoregion due to the 
expansion of cropland (Timberlake & Chidumayo, 2011). The GME 
(20,000 km2) is part of this ecoregion and the Albertine Rift, and 

encompasses crucial habitat for threatened species and plays a 
vital role in regional biodiversity and ecosystem services (Plumptre 
et al., 2007; Bietsch et al., 2016). The land is managed under a vari-
ety of designations that include protected and unprotected areas. 
Mahale Mountains National Park (MMNP), the only national park 
within the GME, exhibits low human activity and protects key 
habitat for the biodiversity of the region (Plumptre et  al.,  2007; 
Chitayat et al., 2021). Outside MMNP the landscape faces threats 
from accelerated human population growth and expanding land use 
practices (e.g., agriculture, charcoal production) that are driving hab-
itat loss and degradation and threatening biodiversity in the region 
(Pintea, 2012; Thomsen et al., 2023). Tree cover within the GME has 
yet to be comprehensively evaluated and described, and because of 
the importance of tree cover in miombo dynamics, this is a signif-
icant gap in our understanding of this landscape and the broader 
miombo ecosystem. One reason this has not yet been accomplished 
is due to the physical and logistical challenges involved in surveying 
the vast miombo woodlands of the GME, compounded by the fact 
that historical research efforts in western Tanzania have primarily 
concentrated on chimpanzees at established long-term field sites 
(Nakamura, 2012; Wilson, 2012; Piel et al., 2019).

Satellite remote sensing technology has emerged as an invalu-
able tool for alleviating the limitations of ground surveys, provid-
ing spatial–temporal data that can be used to identify and describe 
biophysical landscape attributes like trees (Kerr & Ostrovsky, 2003). 
Moreover, as satellite data is often collected continuously and is 
freely available to the public, it provides accessible, up-to-date in-
formation that can be easily integrated into monitoring frameworks. 
Spatial predictive models can be used to connect satellite data with 
field data to make broad-scale predictions that expand the utility 
of in-situ observations (McNellie et al., 2021; Barreras et al., 2023). 
These predictions can be used to generate continuous maps that 
serve as valuable communication tools and can also inform land 
management decisions, guide conservation efforts, and facilitate in-
frastructure development projects. Spatial models can also aid in the 
identification of current and historic landscape conditions, uncover-
ing patterns that aid our understanding of ecosystem dynamics and 
predicting changes that may arise (Jinga & Palagi, 2020).

The GME is vital for biodiversity, especially threatened species, 
in the miombo ecoregion. Here, we aim to fill a crucial gap in our 
understanding of tree cover in the GME with the development of 
important tools that can describe tree cover characteristics related 
to species diversity and biomass in a miombo. We conducted field 
surveys in MMNP where the minimal human impact allows us to 

historical disturbance-related predictors should be considered to address remaining 
unexplained variance.

K E Y W O R D S
basal area, biomass, ensemble model, Mahale, miombo, satellite data, species diversity, species 
richness, tree cover, tree density
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focus on non-anthropogenic sources of tree cover variability. Our 
objectives were to (1) create predictive models of tree cover char-
acteristics related to tree species diversity and biomass and (2) gen-
erate continuous, high-resolution maps for the GME. We present a 
baseline assessment on the development of tree cover spatial mod-
els for the GME and discuss landscape patterns revealed by model 
predictions concerning land cover land use types and protected 
areas (PAs).

2  |  METHODS

2.1  |  Study area

The GME is an ecologically rich area that boasts a variety of distinct 
species and those of conservation concern, including eastern 
chimpanzees (Pan troglodytes schweinfurthii), African elephants 
(Loxodonta africana), and mninga trees (Pterocarpus angolensis) 
(Plumptre et al., 2007; Thomsen et al., 2023). Situated alongside Lake 
Tanganyika, the health of this ecosystem is inherently connected 
to the lake, which is significant for its ecosystem services and its 
diverse aquatic life, hosting 300 endemic species of fish (Sweke 
et  al.,  2013). The GME exhibits topography consisting of broad 
valleys interspersed by steep mountains and flat plateaus, ranging in 
elevation from 780 to 2460 m above sea level (Carvalho et al., 2022). 
MMNP protects 1517 km2 of land and encompasses the GME's 
highest peaks. The region is highly seasonal, experiencing a rainy 
season from October to mid-May and a dry season from mid-May to 
September. Annual precipitation ranges from 900 to 2100 mm, and 
temperatures vary from 11 to 38°C.

2.2  |  Response variables – Tree cover 
characteristics

We collected tree data in 463 plots across MMNP from March 
2018 to January 2019 (Figure  1) as part of an extensive study 
on chimpanzees (Chitayat et  al.,  2021). Plots were placed along 
transects at 12 randomly selected sites where we established eight 
transects, each measuring 1 km in length. These transects featured 
plots measuring 5 m × 100 m, spaced at 100 m intervals. Within each 
plot, all trees with a diameter at breast height (1.3 m) ≥ 10 cm were 
identified and measured.

We calculated tree cover characteristics at the plot level that 
were used as response variables in the development of four separate 
predictive models: (1) tree density, (2) basal area of trees, (3) tree spe-
cies richness, and (4) tree species diversity according to the Shannon 
Diversity Index. Tree density and basal area are both useful biomass 
proxies (Torres & Lovett, 2013): density provides information about 
the number of trees per unit area, while basal area quantifies the vol-
ume of trees per unit area according to the diameter at breast height. 
Similarly, species richness and the Shannon index offer different 
measures of species diversity: species richness counts the number 

of species per unit area, while the Shannon index considers both the 
number of species and their relative abundances in its calculation 
(Shannon, 1948; Whittaker, 1972). We selected these characteris-
tics because they provide valuable and complementary information 
about forest structure and composition. Non-parametric Spearman 
rank correlation coefficient tests were conducted to establish the 
relationship between all pairs of tree cover characteristics. We 
tested for spatial autocorrelation using Moran's I test and found no 
statistically significant spatial autocorrelations (p > 0.05) for any re-
sponse variables (Zuur et al., 2010).

2.3  |  Predictor variables – Satellite 
remote-sensing data

We utilized environmental predictor variables derived from remote-
sensing satellite data to build models of tree cover characteristics 
in the GME. Tropical dry forests can be challenging to model 
using satellite data owing to the pronounced temporal and spatial 
fluctuations of these ecosystems (Bastin et  al., 2017; Verhegghen 
et  al.,  2022); however, incorporating a wide array of biotic and 
abiotic predictors can help improve the quality of model outputs 
(Slik et  al.,  2010; Zellweger et  al.,  2015). The predictors were 
categorized into four groups: (1) climate, (2) habitat structure, (3) 
plant productivity, and (4) topography (Table 1).

We tested several predictors derived from climatic data, includ-
ing mean annual temperature and precipitation from the period of 
1979–2013 (Karger et  al., 2017) and mean annual actual and po-
tential evapotranspiration from the period of 1950–2000 (Zomer 
et  al.,  2006). These variables influence the availability of crucial 
resources like energy and water (White, 1983; Ribeiro et al., 2020) 
and are often used for modeling vegetation in miombo (Pearson 
et al., 2006; Slik et al., 2010; Zellweger et al., 2015).

Canopy heights (m) were used to represent habitat structure 
(Potapov et  al.,  2021). This variable has demonstrated previous 
success for modeling tree cover characteristics (Wolf et  al., 2012; 
Knapp et al., 2020).

To represent plant productivity, we included a variety of veg-
etation indexes (VI) that were derived from Sentinel-2. We used 
L1C data for its higher spatial resolution and a cloud-masking tech-
nique was applied to remove pixels affected by clouds and cirrus 
using the QA60 band (bits 10 and 11). While surface reflectance 
data (L2A) are commonly used, atmospheric correction is not al-
ways required for classification applications, and vegetation indices 
such as the normalized difference vegetation index (NDVI) and soil-
adjusted vegetation index (SAVI) reduce atmospheric effects (Song 
et al., 2001; Verhegghen et al., 2022). Researchers commonly utilize 
VIs to model trees because their capacity to quantify greenness is 
effective for assessing plant abundance and variability (Pettorelli 
et al., 2005; Timberlake et al., 2010; Barati et al., 2011; Mutowo & 
Murwira, 2012; Zellweger et al., 2015; Cavada et al., 2017; Mayes 
et al., 2017). For each VI, we calculated summary statistics using all 
of the 2018 values, the study period, which served as our predictors 
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(Cabacinha & de Castro, 2009). For example, maximum (max) value 
was the highest observed value from 2018 and the mean value was 
the mean of all 2018 values.

Topographic predictors were used to describe topographic po-
sition and heterogeneity (Amatulli et al., 2018; Mattivi et al., 2019) 
and obtained from the Shuttle Radar Topography Mission (SRTM). 
These features can influence tree cover characteristics through as-
sociations with local microclimates, soil properties, and water accu-
mulation (de Castilho et al., 2006; Thuiller et al., 2006; Engelbrecht 
et al., 2007; Homeier et al., 2010; Slik et al., 2010; Fricker et al., 2015).

Satellite data were collected at resolutions ranging from 10 to 
1000 m (see Table  1). Data were resampled, scaling either up or 
down, to a uniform resolution of 100 m using conventional bilinear 
interpolation (Divíšek & Chytrý, 2018). This was done to mitigate 
potential challenges from spatial resolution disparities like data com-
patibility and model complexity (Moudrý et al., 2019).

2.4  |  Predictor variable selection process

To create the most parsimonious predictive models, we applied a 
variable selection process to remove predictors that provided little 

predictive capacity or were highly correlated based on a correlation 
coefficient of r ≥ |0.7| (Jantz et al., 2016). First, we utilized recursive 
feature elimination to remove predictors of low importance (David 
et al.,  2022). Then, using Pearson product–moment and Spearman 
rank correlation coefficient tests, we identified pairs of predictors 
that were highly correlated (Zuur et al., 2010) and retained the pre-
dictor with higher relative importance according to recursive feature 
elimination rankings. Finally, we tested for multicollinearity using a 
variance inflation factor (VIF) set to 10 or more. This variable selec-
tion process was used for each response variable and subsequent 
model. We only included the selected predictors in future analyses 
and the building of ensemble models. A spatial evaluation of the cali-
bration range of selected predictors showed that our training data 
were able to capture the majority of conditions across the GME but 
that coverage varies between predictors (Appendix S1).

2.5  |  Ensemble model development

To build and verify the models, each data set was divided into 
training (80%) and testing (20%) subsets. We employed an en-
semble modeling approach that combines multiple individual base 

F I G U R E  1 Locator map of the study area in western Tanzania. Maps show (a) the location of the Greater Mahale Ecosystem (GME) in 
Tanzania, (b) a digital elevation model of the GME, (c) land cover types in the GME, and (d) the location of vegetation plots sampled across 
Mahale Mountains National Park (MMNP).
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models into a single predictive ensemble model that capitalizes 
on the collective strength of its components to improve model 
robustness and reduce uncertainty (Van Der Laan et  al., 2007). 
Ensemble models were developed separately for each tree cover 
characteristic using the package SuperLearner and a 10-fold 
cross-validation risk. Three base modeling methods were used 
to develop ensembles: a regression method (multivariate adap-
tive regression splines, MARS) and two machine-learning meth-
ods (gradient boosted model, GBM, and random forest, RF). All 
methods account for non-linear relationships and automatically 

consider interactions between variables while avoiding overfitting 
(Leathwick et al., 2006; Zellweger et al., 2016).

For our ensemble models, we included the default model and 
several tuned models of each base modeling method, which can 
increase ensemble model performance by leveraging the strengths 
of different and diverse model configurations (Polley & Van Der 
Laan,  2010). We tuned base models according to critical hyper-
parameters that can enhance prediction accuracy and reliability 
(Appendix S2) (Yates et al., 2023). Tuning was performed using a 10-
fold cross-validation to ensure robust model performance and avoid 

TA B L E  1 Environmental predictor variables used to develop ensemble models of tree cover characteristics.

Predictor variable Description Mean value (range) Model Source

Climate

Rain Mean annual precipitation (mm)a 1369 (1042–1828) BA CHELSA

Temperature Mean monthly temperature (°C)a 21.5 (15.7–23.7) R, SDI CHELSA

AET Mean annual actual evapotranspirationb 982 (392–1334) D, BA, R, SDI CGIAR-CSI

PET Mean annual potential evapotranspirationb 1709 (1351–1862) BA CGIAR-CSI

Habitat structure

Canopy height Canopy height (m)c 9.3 (0–25.9) D, BA, R, SDI GLAD

Productivity

NDVImax Maximum (max) normalized difference 
vegetation index (NDVI)d

0.78 (0.69–0.84) BA S2

NDVImean Mean NDVI 0.34 (0.26–0.45) BA S2

RGImean Mean red–green index (RGI)e 0.11 (0.01–0.25) D, BA, R, SDI S2

RGIstdv Standard deviation (stdv) of RGI 0.09 (0.04–0.14) D, BA, R, SDI S2

RRmean Mean reflectance ratio (RR)e 1.29 (0.74–1.59) D, BA, R, SDI S2

RRstdv Stdv of RR 0.20 (0.07–0.99) BA S2

SAVImax Max soil-adjusted vegetation index (SAVI)f 1.17 (1.03–1.26) D, R, SDI S2

SAVImean Mean SAVI 0.51 (0.38–0.78) D, R, SDI S2

SAVIstdv Stdv SAVI 0.10 (0.03–0.17) D, BA, R, SDI S2

SLAVImax Max specific leaf area vegetation index 
(SLAVI)g

1.69 (1.31–2.28) D, BA, R, SDI S2

Topography

Elevation Elevation (m a.s.l.)h 1204 (797–2212) D SRTM

Ruggedness Terrain ruggedness indexh 2.0 (0.7–6.5) D SRTM

Roughness Topographic roughness indexh 15.6 (2.6–53.7) BA, R, SDI SRTM

TPI Topographic position indexh 0.04 (−2.34–3.55) BA SRTM

TWI Topographic wetness indexi 7.2 (4.7–12.7) BA SRTM

Note: Individual models were developed for tree density (D), stand basal area (BA), tree species richness (R), and tree diversity according to the 
Shannon Diversity Index (SDI). Data sources include the CGIAR-CSI Global-Aridity and Global-PET Database (CGIAR-CSI) (1000 m), Climatologies at 
high resolution for the Earth land surface areas (CHELSA) (1000 m), Copernicus SENTINEL-2 (S2) (10 m), Global Land Analysis and Discovery (GLAD) 
(30 m), and Nasa's Shuttle Radar Topography Mission (SRTM) (30 m).
aKarger et al. (2017).
bZomer et al. (2006).
cPotapov et al. (2021).
dPettorelli et al. (2005).
eCavada et al. (2017).
fMutowo and Murwira (2012).
gBarati et al. (2011).
hAmatulli et al. (2018).
iMattivi et al. (2019).
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overfitting. The optimal values were determined through a grid 
search over specified ranges, allowing for systematic exploration of 
parameter combinations.

We present three statistical metrics to evaluate the performance 
of our ensemble models: the correlation coefficient (r) depicting the 
relationship between predicted and observed values, the percent-
age of explained variance (R2), and the percentage of root mean 
squared error derived from a 10-fold cross-validation resampling 
procedure with data shuffling. Higher r and R2 values and lower root 
mean squared error values signify superior model performance. We 
assessed the importance of predictor variables by measuring their 
contributions to reducing cross-validated risk through mean squared 
error.

2.6  |  Mapping spatial model predictions

We used ensemble models to generate spatially explicit predictions 
and produce individual maps of tree cover characteristics. Maps 
showing the uncertainty of model predictions were also generated 
for each tree cover characteristic by quantifying the standard 
deviation of prediction results from all individual models within the 
ensemble. We created a composite map aggregating all tree cover 
characteristics by summing each raster cell's normalized predicted 
values, scaled from 0 to 1. Then, we evaluated the distribution of 

composite values against land cover designations as determined 
by the Climate Change Initiative and European Space Agency (CCI/
ESA) land cover map for 2020 (Zanaga et  al., 2021). All analyses 
were performed in R (R Core Team,  2022) and QGIS 3.6 (QGIS 
Development Team, 2020).

3  |  RESULTS

3.1  |  Ensemble models of tree cover characteristics

Tree cover characteristics varied between plots, ranging from 
0 to 37 for tree density (mean = 9 ± 7), 0 to 5.1 for basal area 
(mean = 0.5 ± 0.5), 0 to 16 for tree species richness (mean = 5 ± 3), and 
0 to 2.6 for Shannon index (mean = 1.2 ± 0.7). Pairwise correlation 
tests revealed all tree cover characteristics to be highly correlated 
with each other (r = 0.70–0.97), with the strongest relationship 
between tree species richness and the Shannon index.

Each model included at least one predictor variable from each 
category (e.g., climate). Several predictors were selected for basal 
area that were absent from other models (e.g., precipitation, 
NDVImean). Other than these predictors for basal area, the selection 
and relative importance of predictor variables showed substantial 
overlap among response variables. This was especially true between 
species richness and the Shannon index models that included the 

F I G U R E  2 Importance of predictor variables used to model individual tree cover characteristics in the Greater Mahale Ecosystem. Plots 
show a 95% confidence interval around the mean squared error (MSE).
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same predictors and displayed the same top three most important 
(Figure  2). Canopy height consistently demonstrated the highest 
mean importance across ensemble models. Temperature, potential 
evapotranspiration, and elevation emerged as the second most im-
portant predictors across models. These predictors also exhibited 
strong positive correlations with each other that prevented their in-
clusion within the same model.

Performance scores varied between ensemble models of tree 
cover characteristics, with R2 scores ranging from 0.45 to 0.55 and 
our model for tree species density performing best across metrics 
(Table  2). Additionally, predicted values were all significantly cor-
related with their observed values (p < 0.001).

3.2  |  Maps of tree cover characteristics in the GME

We expanded model predictions to produce maps of tree biomass 
and diversity in the GME (Figure  3), which exhibited generally 
low levels of uncertainty (Figure  4). Higher uncertainty values are 
predominantly observed in areas with known human settlements 
along the coast of Lake Tanganyika and the north-central region of the 
GME around the Mishamo refugee camp, as well as along the highest 
elevation peaks in MMNP. Similarities and divergences between tree 
cover characteristics can be readily observed in our composite map 
(Figure 5), such as high-value areas along the western side of MMNP. 
Nearly half of the GME is under some protective status (49%), where 
the majority of the highest and lowest composite values occur, 64% 
and 66%, respectively. Composite values were disproportionately 
distributed across land cover types, with results showing that sites 
dominated by stretches of forest represent only 1% of the landscape 
but hold 10% of the highest 25% of composite values (Table  3). 
Similarly, results showed that the lowest 25% of composite values 
occur in primarily non-tree-dominated, natural or human-modified 
land cover types, such as grasslands and croplands. Additionally, the 
land cover classification system was sometimes inaccurate within the 
study area. For example, some misclassifications occurred in areas that 
are known to be occupied by human settlements and croplands but 
were classified as land cover types such as grasslands or shrublands.

4  |  DISCUSSION

We modeled and made predictions of tree species diversity and 
biomass for the GME by using an ensemble modeling framework, 

available remotely sensed satellite data, and plot-based survey 
data of trees in MMNP. Individual ensemble models achieved 
moderate performance scores, with our models of tree density and 
tree species richness performing best. High correlations between 
observed and predicted values for all response variables suggest 
that models could generalize well on unseen data. Maps that show 
the extension of model-based predictions allow for visualizing tree 
cover characteristics across the GME landscape.

4.1  |  Relative importance of predictor variables

The diverse environmental predictors we tested showed substantial 
overlap during the predictor selection process and in relative 
importance among models. This likely stems from the strong positive 
correlations between tree cover characteristics similarly affected 
by environmental factors like soil conditions (Homeier et al., 2010). 
Canopy height was the most important predictor for all models, 
which aligns with previous research showing that canopy height can 
account for a significant portion of the observed variability in tree 
species diversity and biomass metrics in tropical forests on local 
scales (Wolf et  al., 2012; Knapp et  al.,  2020). The importance of 
canopy height may also correspond to structural contrasts between 
GME vegetation types. Some areas, like grasslands, are not tree-
dominated and exhibit low tree biomass; conversely, areas where 
trees dominate the landscape display discernible canopy structures. 
Ogawa et  al.  (2007) observed differences in canopy height 
between vegetation types in the GME, showing that forested sites, 
predominantly located in valley bottoms, have a greater density of 
tall trees than woodlands. Similar findings have been documented 
for other sites, showing tree height, basal area, and richness 
decrease from valleys to plateaus (Homeier et al., 2010; Rodrigues 
et  al.,  2020). This pattern may stem from local differences in soil 
water and nutrient availability that alter plant growth and can impact 
species coexistence (Ryan & Yoder,  1997; Homeier et  al.,  2010). 
Canopy height can vary across different vegetation types under the 
characteristics of the species found therein, which display minimal 
overlap in MMNP (Chitayat et al., 2021).

The strong positive correlations between temperature, poten-
tial evapotranspiration, and elevation and their concurrent high im-
portance across models suggest that a common underlying factor 
like atmospheric energy availability may indirectly drive their value 
(Hawkins et  al.,  2003; Fisher et  al., 2020  ). Energy availability is 
known to influence plant growth, reproduction (Dong et al.,  2012), 

Response variable
Correlation 
coefficient (r)

Root mean squared 
error (RMSE)

Explained 
variance (R2)

Tree density 0.7 16% 0.55

Tree stand basal area 0.7 19% 0.47

Tree species richness 0.7 19% 0.54

Tree species diversity 
(Shannon Diversity Index)

0.7 23% 0.45

TA B L E  2 Performance metrics of 
individual ensemble models for tree cover 
characteristics related to tree species 
diversity and biomass.
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and species diversity (Fisher et al., 2010). Conversely, water avail-
ability is often shown to drive plant dynamics in the tropics (Hawkins 
et al., 2003; Siyum, 2020); however, water-related predictors were 
mostly excluded from model development (i.e., topographic wetness 
index [TWI], precipitation). Precipitation was included in our model 
of basal area but demonstrated only modest importance toward pre-
dictions. This aligns with the results of (Barreras et al., 2023), which 
showed that mean precipitation held relatively low importance in 
ensemble models for tree density and height, especially in dry eco-
system types. Actual evapotranspiration was the only water-related 
predictor chosen across response variables, but it consistently dis-
played only modest importance. Actual evapotranspiration's broad 
connection to water and energy dynamics might render it a some-
what simplistic index of the environmental factors affecting plant 
growth (Fisher et al., 2010), allowing it to be widely applicable but 
restricting its explanatory power. However, the spatial resolution 
of our climatic data scale may have also influenced the effective-
ness of these predictors in describing tree cover dynamics. These 
data were upscaled from a coarser resolution of 1000 m to 100 m, 
which redistributes the data across a finer grid but does not add any 
new information. Coarse data have clear benefits for model devel-
opment, reducing model size and complexity, but course climatic 
data can also introduce errors when there is a discrepancy between 
the climate used in analysis and that experienced by organisms and 
the habitat on the ground (Bütikofer et  al.,  2020). Particularly in 
heterogeneous and mountainous regions where local microclimate 
conditions can differ dramatically, fine-scale data sets may be more 

useful. Future modeling efforts may benefit from exploring the use 
of higher-resolution climatic data, diminishing the risk of missing crit-
ical small-scale variations.

Multiple SAVI-based predictors were selected and showed im-
portance among models. SAVI provides advantages over other VIs 
given the GME's high seasonality and predominantly open veg-
etation, leading to significant spatial and temporal soil exposure 
and reduced vegetative coverage (Huete, 1988). Moreover, SAVI's 
ability to mitigate the influence of soil brightness is valuable in fire-
impacted landscapes, like the GME, where exposed and charred soil 
leads to distinct soil–vegetation contrasts (White & Swint,  2014; 
Meng et al., 2017). In Tanzania, fire events occur annually even in 
PAs, and are caused mainly by anthropogenic ignitions for activities 
such as farm preparation, cattle grazing, hunting, honey harvesting, 
and charcoal production (Kikula, 1986). PAs like MMNP are also sub-
jected to prescribed burns managed by authorities, which are gen-
erally employed to protect the ecosystem under a fire management 
plan. In miombo, fire plays a pivotal role in shaping tree species com-
position and is often linked to a decline in tree biomass (Frost, 1996; 
Chidumayo, 2013).

The importance of VI-based predictors differed between mod-
els of tree species diversity and models of tree biomass. RGI (red–
green index) mean was found to be more important in models of 
tree biomass, likely due to its association with tree crown size which 
is related to tree size (Cavada et al., 2017). In addition, when pre-
dicting the biomass of long-lived species, the mean may be a more 
relevant metric as it smooths out the short-term fluctuations and 

F I G U R E  3 Predictions of tree cover 
characteristics across the Greater Mahale 
Ecosystem. Predictions were generated 
from individual ensemble models 
developed using plot-based vegetation 
data from Mahale Mountains National 
Park (outlined in black) and satellite-
derived predictors. The color gradient 
legend applies to all maps.
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extremes inherent in metrics such as standard deviation or maxi-
mum. Conversely, SAVI standard deviation encapsulates temporal 
variation in vegetation greenness and demonstrates greater im-
portance in models of tree species diversity. Temporal variations 
reflect seasonal changes influenced by tree species compositions, 
distributions, and phenological characteristics (e.g., deciduous). This 
predictor gains significance by capturing these differences and the 
occurrence of disturbance events like fires, which often result in dra-
matic changes to greenness, and connecting them to spatial differ-
ences in tree diversity.

4.2  |  Spatial predictions across the GME

Model predictions demonstrated spatial similarities between tree 
cover characteristics, revealing overlapping areas of high or low val-
ues. This may reflect stages of ecological succession as the GME ex-
periences annual fires (Naftal et al., 2022) and successional dynamics 
play a crucial role in shaping vegetation structure and composition 
(Ouyang et al., 2016), particularly in areas recovering from or expe-
riencing disturbance events (Kalaba et al., 2013; Saito et al., 2014). 
The observed pattern between tree characteristics may also indi-
cate a potential functional relationship between diversity and bio-
mass, whereby diverse tree communities encourage tree growth 
through more efficient resource utilization (Grossman et al., 2018). 
Similar patterns can be expanded to other taxa, with tree diversity 
and abundance identified as key drivers of taxon-level (e.g., bats, 

birds, insects) and forest-associated biodiversity in previous stud-
ies (Harvey et al., 2006; Ampoorter et al., 2020). Further investiga-
tion on this topic is required as the relationship between biomass 
and biodiversity is often complex and non-linear, at times exhibiting 
a hump-shaped (unimodal) pattern that reveals a decline in biodi-
versity at the highest biomass levels (Graham & Duda, 2011). In a 
woodland–forest mosaic in eastern Tanzania, Shirima et  al.  (2015) 
observed a monotonically increasing trend between tree species 
richness and biomass in miombo woodland, but a unimodal pattern 
in montane forest. This suggests that there could be an optimal level 
of biomass that maximizes species diversity in montane forests but 
not miombo woodland (Shirima et al., 2015).

Forests, particularly non-riverine forests that stretch out over 
large areas, are rare in the GME. We observe that high tree species 
diversity and biomass occur disproportionately more in forest and 
mixed woodland–forest land covers. The highest concentration of 
high-value predictions can be found along the lakeshore of MMNP, 
which encompasses large swaths of miombo woodland and the largest 
forest block in the region. This finding supports the well-established 
importance of northwestern MMNP, which is known to support rel-
atively unique species assemblages and high densities of species like 
chimpanzees (Plumptre et al., 2007; Chitayat et al., 2021). PAs in East 
Africa were historically established with large, charismatic mammal 
species in mind, yet these efforts can lead to broad advances that 
extend beyond the original intention, such as biodiversity conserva-
tion or carbon sequestration (Banda et al., 2006; Dickson et al., 2020). 
Outside MMNP, we see high values clustered within the Ntakata 

F I G U R E  4 Maps showing the level 
of uncertainty of ensemble model 
predictions for tree cover characteristics 
across the Greater Mahale Ecosystem, 
with Mahale Mountains National Park 
outlined in black. The color gradient 
applies to all maps and provides the 
relative level of prediction uncertainty 
(standard deviation) from low to high.
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forest reserve. This area also possesses significant ecological impor-
tance, providing sanctuary for endangered and endemic species and 
corridor habitat for elephants and chimpanzees beyond the boundar-
ies of national parks (Plumptre et al., 2007; Lindsey et al., 2020). This 
reserve is part of the Ntakata Mountains REDD project, spearheaded 
by Carbon Tanzania (Dickson et al., 2020).

The composite map highlights the importance of the PA 
network in the GME for conserving tree species diversity and 

biomass. However, there is clear variation both within and be-
tween PAs likely stemming from multiple factors. This includes 
the natural heterogeneity of the GME and occurrence of vegeta-
tion types that display low tree cover, such as grasslands, and thus 
low composite values. Additionally, there are differences in when 
PAs were established, the history of land use across the GME, and 
PA designation (e.g., national park, village forest reserve), which 
dictates restrictions on human activity and often the availability 

F I G U R E  5 Composite map of tree 
species diversity and biomass predicted 
across the Greater Mahale Ecosystem. 
Values are based on the summed 
predictions of individual ensemble models.

TA B L E  3 Percentage of composite values of tree cover characteristics occurring in different land cover types.

Land cover type % GME landscape

Tree cover composite values

Low quartile 1 Med-low quartile 2 Med-high quartile 3 High quartile 4

Cropland, human settlement 5% 10% 14% 2% 1%

Grassland, wetland 5% 32% 7% 3% 4%

Natural mosaic 10% 32% 16% 6% 3%

Woodland (15%–40% trees) 40% 14% 41% 42% 26%

Woodland, forest mix 39% 12% 22% 46% 56%

Forests (≥40% trees) 1% 0% 0% 1% 10%

Note: Land cover types may encompass multiple vegetation types, for example, natural mosaics can include bamboo thicket, shrubland, and miombo 
woodland. Composite values are divided into equal interval quartiles, with quartile 1 containing the lowest 25% of values and quartile 4 the highest 
25% of values calculated across the GME.
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of resources to enforce those restrictions. This results in a spec-
trum of conservation outcomes, showcasing the value of long-
established and strictly regulated PAs like MMNP, as well as those 
occurring in areas with a history of sustainable land use practices 
like Ntakata forest reserve. Comparatively, those with less restric-
tive protections or lacking resources may fail to prevent habitat 
loss and degradation (Itoh et al., 2012; Thomsen et al., 2023), or 
may simply require more time to benefit from their recent changes 
to their status and resources, such as the Tongwe West Forest 
reserve.

4.3  |  Model improvements

The performance scores of our models demonstrate unexplained 
variance that may result from the scale of the predictors used or 
a lack of predictors related to current and historic environmental 
disturbances. After MMNP was gazetted in 1985, authorities 
prohibited human activities except those related to tourism and 
research. However, illegal activities (e.g., wood harvesting, medicinal 
plant collection) and human encroachment into the park can be 
challenging to manage and vary over time. Miombo demonstrates 
the ability to recover from human activities, but the process can 
take decades, and recurrent disturbances can significantly impede 
the recovery rate (Williams et al., 2008; Chidumayo, 2013; Kalaba 
et al., 2013). Because of these dynamics, Ribeiro (2015) argue that 
land use data and land cover recovery rates are valuable for modeling 
vegetation patterns in miombo.

Future models may also benefit from the inclusion of fire-related 
predictors that go beyond the scope of the VI predictors we included. 
Fire has a well-documented influence on tree cover in miombo wood-
lands (Frost, 1996) and studies indicate that fire characteristics like 
frequency, intensity, and timing can have varied effects on trees 
and tree communities (Ryan & Williams,  2011; Chidumayo,  2013; 
Mapaure,  2013; Saito et  al.,  2014; Tarimo et  al.,  2015; Buramuge 
et al., 2023). While fire has the potential to open up areas for coloni-
zation and promote diversity through the establishment of new spe-
cies, frequent and intense fires can reduce diversity and biomass by 
favoring fire-tolerant species and suppressing tree growth because 
of mortality or damage to the stems, bark, and roots (Ribeiro, 2015; 
Buramuge et al., 2023). Moreover, disturbance impacts can be syn-
ergistically influenced by additional factors like large herbivores 
(Mapaure,  2013; Ivory & Russell,  2016). Improved model accuracy 
may require the integration of novel variables that, independently or 
in synergy with other variables, can help explain the spatial variability 
of tree cover characteristics and enhance the reliability of models.

Lastly, to capture a greater diversity of environmental condi-
tions across the GME and enhance the reliability of predictions, fu-
ture efforts should incorporate data from areas outside MMNP and 
protected zones. By using data solely from MMNP in the current 
study, we lacked data from sites where human activities like agri-
culture or cattle herding occur — practices prohibited in MMNP but 

widespread outside the GME — that are known to impact tree cover 
characteristics (Chidumayo, 2013; Macave et  al., 2022; Buramuge 
et al., 2023).

5  |  CONCLUSIONS

This study provides a crucial baseline for the development of spatial 
models and tree maps in the heterogeneous miombo landscape 
of the GME, addressing a previously lacking area of research. The 
challenges encountered underscore the complexity of modeling 
trees in this landscape. Our results emphasize the significance of 
the existing PA network where high composite values align with 
unique species assemblages and conservation efforts. The strong 
positive correlations found between tree cover characteristics 
suggest a potential functional relationship between tree diversity 
and biomass, which may have implications for broader biodiversity 
conservation efforts. This finding warrants further investigation as 
it may yield insights into biodiversity and biomass patterns across 
taxa that can inform broad monitoring and conservation strategies. 
We are cautious in interpreting some results due to methodological 
limitations and encourage future research to incorporate additional 
explanatory factors and data from areas outside protected zones 
to enhance the reliability of estimates. Given the environmental 
impacts we can expect to occur as a result of climate change and 
human population growth (Warren et  al., 2018; Elisa et  al.,  2024), 
there is an urgent need to expand and refine spatial products and 
tools that can help monitor any changes and guide the effective 
management of the GME.
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