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ABSTRACT

BACKGROUND: Atrial fibrillation and heart failure commonly coexist due to shared pathophysiological

mechanisms. Prompt identification of patients with heart failure at risk of developing atrial fibrillation

would allow clinicians the opportunity to implement appropriate monitoring strategy and timely treatment,

reducing the impact of atrial fibrillation on patients’ health.

METHODS: Four machine learning models combined with logistic regression and cluster analysis were

applied post hoc to patient-level data from the Warfarin and Aspirin in Patients with Heart Failure and

Sinus Rhythm (WARCEF) trial to identify factors that predict development of atrial fibrillation in patients

with heart failure.

RESULTS: Logistic regression showed that White divorced patients have a 1.75-fold higher risk of atrial

fibrillation than White patients reporting other marital statuses. By contrast, similar analysis suggests that

non-White patients who live alone have a 2.58-fold higher risk than those not living alone. Machine learn-

ing analysis also identified “marital status” and “live alone” as relevant predictors of atrial fibrillation.

Apart from previously well-recognized factors, the machine learning algorithms and cluster analysis iden-

tified 2 distinct clusters, namely White and non-White ethnicities. This should serve as a reminder of the

impact of social factors on health.

CONCLUSION: The use of machine learning can prove useful in identifying novel cardiac risk factors. Our

analysis has shown that “social factors,” such as living alone, may disproportionately increase the risk of

atrial fibrillation in the under-represented non-White patient group with heart failure, highlighting the

need for more studies focusing on stratification of multiracial cohorts to better uncover the heterogeneity

of atrial fibrillation.

� 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/) � The American Journal of Medicine (2023) 136:1099
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INTRODUCTION
Atrial fibrillation and heart failure frequently coexist due to

shared pathophysiological mechanisms and risk factors,1,2
CLINICAL SIGNIFICANCE

� Atrial fibrillation is common in
patients with heart failure with
reduced ejection fraction due to com-
mon risk factors between the 2 condi-
tions.

� Machine learning algorithms have
shown that apart from clinical risk fac-
tors, social factors such as marital sta-
tus and living alone can predict
development of atrial fibrillation in
this patient group.

� Social factors may disproportionately
increase the risk of atrial fibrillation
in an under-represented non-White
patient group with heart failure.

� The use of machine learning can prove
useful in identifying novel cardiac risk
factors.
and the combination increases the

risk of hospitalization and

mortality.2,3 Both conditions are

associated with a hypercoagulable

state, putting patients at an

increased risk of thromboembolic

complications.4,5 However, in the

presence of heart failure, without

associated atrial fibrillation, the

routine use of oral anticoagulation

(OAC) to prevent thrombotic

complications is not recom-

mended.6 This is because

although the use of warfarin sig-

nificantly reduces stroke, it is at

the expense of increasing major

hemorrhage without any mortality

benefit.7 Therefore, the identifica-

tion of atrial fibrillation in patients

with heart failure not only has

implications toward prognostica-

tion but also alters the recommen-

dation toward the use of OAC for

prevention of thrombotic compli-

cations.

Categorizing and integrating demographics and clinical

characteristics to aid clinicians in identifying patients with

heart failure at risk of developing atrial fibrillation is not an

easy task. Shared pathophysiological mechanisms make

several of the clinical predictors common to this population

of patients, thereby confounding the discriminatory power

of those predictors. Interest in the use of machine learning

to help in risk prediction within the clinical environment

has increased in recent years. Although it is still in its pilot

stages with inherent flaws and limitations, machine learning

has shown great promise in improving the prediction of dis-

eases, including atrial fibrillation.8 There is enormous

potential in its application to existing clinical databases to

improve prediction and identification of high-risk patients,

leading on to appropriate monitoring strategies and subse-

quent alterations in their pharmacotherapy.
The Warfarin and Aspirin in Patients with Heart Failure

and Sinus Rhythm (WARCEF)9 study was a double-blind

multicenter clinical trial recruiting patients with left ven-

tricular ejection fraction of 35% or less in sinus rhythm and

randomizing them into either warfarin or aspirin. The study

concluded that there was no significant difference in out-

comes (composite of stroke, intracerebral hemorrhage or

death) between treatment with warfarin and treatment with

aspirin.9 These patients were followed up for up to 6 years

with recorded adverse events, including the development of

atrial fibrillation. In the current analysis the primary out-

come is the incidence of new-onset atrial fibrillation as an

adverse event during the follow-up period. We aim to use
machine learning to identify characteristics which are pre-

dictive of atrial fibrillation in patients with heart failure and

sinus rhythm.
METHODS

Study Design
Patient-level data from the random-

ized, double-blind WARCEF trial

(n = 2305 patients) were used to per-

form the analysis. Patients with atrial

fibrillation at baseline (n = 86) were

excluded from the analysis. Baseline

characteristics, medical history, and

adjudicated adverse events were

extracted and compared between

patients who did and did not develop

atrial fibrillation as an adverse event

throughout the follow-up period. Of

the 2219 patients included for analy-

sis, 215 presented atrial fibrillation as

an adjudicated adverse event during

the follow-up period. Logistic regres-

sion analysis and other 4 machine

learning (ML) methods were

employed to identify characteristics

predictive of atrial fibrillation. These

methods are described in further
details in the supplementary materials (Appendix,10-19

available online).

RESULTS

Descriptive Statistics
A total of 2219 patients were included in the analysis. Of

these, 215 patients developed atrial fibrillation during the

follow-up period. Patients who developed atrial fibrillation

are significantly older, taller (sex-adjusted P value < .001),

and more likely to be males and White. They are also more

likely to be divorced or widowed and live alone. Baseline

characteristics are as shown in Table 1.

Logistic Regression Analysis
Logistic regression was performed including all reported

characteristics, and obtained a c-index for “new-onset atrial

fibrillation as an adverse event during follow-up” of 0.74

(95% confidence interval [CI], 0.71-0.78). The results are

shown below in Table 2. Age, White (ethnicity), marital

status (divorced or widowed), and hospitalization with heart

failure were all identified as significant predictors of atrial

fibrillation.

Machine Learning Analysis Results
Table 3 shows the averaged cross-validation results for pre-

dicting atrial fibrillation as an adverse event (averaged over

100 cross-validations for each fold times 5 folds).



Table 1 Statistical Comparisons (P Values) Based on Wilcoxon Rank Sum Tests for Continuous Variables and Chi-Squared Tests for Others

Patients Who Developed
Atrial Fibrillation (n = 215)

Patients Who Did Not Develop
Atrial Fibrillation (n = 2004)

P Value

Age (years) 59.8 § 11.1 57.3 § 11.4 .00637
Sex, n (%)
Males 185 (86%) 1591 (79%) .02034
Females 30 (14%) 413 (21%)

Race, n (%)
White 188 (90%) 1596 (84%) .01796
Non-White 20 (10%) 300 (16%)

Height (cm) 174.1 § 8.3 171.4 § 9.3 .00017
Weight (kg) 88.6 § 19.6 85.7 § 19.2 .01942
Body Mass Index (kg.m2) 29.1 § 5.5 29.1 § 5.9 .70570
Education, n (%)
≤ 8th grade 29 (13%) 376 (19%) .25730
Some high school 51 (24%) 508 (25%)
High school grad 66 (31%) 525 (26%)
Some college 30 (14%) 292 (15%)
College grad 30 (14%) 215 (11%)
Post-grad education 9 (4%) 88 (4%)

Marital status, n (%)
Single 17 (8%) 257 (13%) .02371
Married 131 (61%) 1284 (64%)
Divorced 37 (17%) 248 (12%)
Widowed 30 (14%) 215 (11%)

Smoking, n (%)
Never 60 (28%) 622 (31%) .58860
Ex 113 (53%) 1028 (51%)
Current 42 (19%) 354 (18%)

Alcohol, n (%)
Never 111 (52%) 1062 (53%) .81760
Ex 46 (21%) 441 (22%)
Current 58 (27%) 501 (25%)

Live alone, n (%)
No 159 (74%) 1566 (78%) .16050
Yes 56 (26%) 438 (22%)

Hypertension, n (%)
No 210 (98%) 1950 (97%) .74920
Yes 5 (2%) 54 (3%)

Diabetes, n (%)
No 148 (69%) 1378 (69%) .98210
Yes 67 (31%) 626 (31%)
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The classification results show that, overall, AdaBoost

was the model with the best predictive performance, fol-

lowed by Random Forest (RF). However, the limited classi-

fication results suggest that, due to the heterogeneity of

atrial fibrillation, identifying patients at risk of developing

atrial fibrillation is not an easy task. The next section

discusses variables and clinical predictors most likely to

contribute to the identification of patients at a higher risk

of developing new-onset atrial fibrillation as an adverse

event.
Variable Importance for Prediction of New-
Onset Atrial Fibrillation
Based on the 3 decision trees classification models (ie, Ada-

Boost, XGBoost, and RF), variable gain contribution to
each model built has been recorded. For each of these ML

models, the cumulative gain of each variable has been aver-

aged over all cross-validations. The top 15 variables (with

the largest overall gain) from each model have then been

selected. For 2 of the 3 models (namely, XGBoost and RF),

the same top 15 variables have been identified (100% agree-

ment). For the other model (AdaBoost), 14 variables over-

lapped with the other 2 models, except for “live alone.”

AdaBoost did not identify “live alone” as one of its top 15

predictors, instead it replaced it with the variable “ethnicity

White” being the only ML mode (except for logistic regres-

sion) to identify this variable as one of the top 15 predictors

of new-onset atrial fibrillation.

Figure 1 shows all 16 variables (including “White” and

“live alone”) identified as top 15 best predictors of new-

onset atrial fibrillation (based on the WARCEF dataset



Table 2 Logistic Regression Predicting “New-Onset Atrial Fibrillation as an Adverse Event During Follow-
Up”

An asterisk close to the variable’s name identifies a statistically significant P value (< .05).

AE = adverse event; BMI = body mass index; CI = confidence interval; DM = diabetes mellitus; MH = medical history;

MI = myocardial infarction; NYHA = New York Heart Association; OR = odds ratio; PVD = peripheral vascular disease.

Table 3 Prediction of Atrial Fibrillation as an Adverse Event on the WARCEF Trial

Model Accuracy Sensitivity Specificity F1 Score MCC AUC AUC (95% CI)

AdaBoost 67.0 55.2 68.3 0.25 0.15 0.62 (0.51-0.73)
XGBoost 57.1 58.7 56.9 0.21 0.09 0.58 (0.50-0.66)
Random Forest 61.5 61.5 61.5 0.24 0.14 0.61 (0.54-0.69)
Neural network 56.4 55.5 56.5 0.18 0.07 0.56 (0.50-0.62)

Results are averaged over 500 independent cross-validations.

AUC = area under the receiver operating characteristic curve; CI = confidence interval; MCC = Matthews correlation coefficient; WARCEF = Warfarin and

Aspirin in Patients with Heart Failure and Sinus Rhythm.
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Figure 1 Top 16 predictors of atrial fibrillation as an adverse event according to the

top variables identified by 3 machine learning algorithms: XGBoost, AdaBoost, and

Random Forest. AF = atrial fibrillation; BMI = body mass index; DM = diabetes melli-

tus; NYHA = New York Heart Association.
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and AdaBoost, XGBoost, and RF results). The weighted

difference between the impurity of 2 child nodes and

the uncertainty of the starting node is used to calculate

information gain. During the decision tree building pro-

cess, the value of the information gain decides which

variable should be used to split the data. The higher the

information gain, the higher the contribution of the vari-

able for splitting the data.

For marital status, comparing “single” vs “divorced”

states produces a significant statistical difference, with

odds ratio showing an increased risk of divorced

patients presenting atrial fibrillation as adverse event of

1.5 (95% CI, 1.1-2.0) and a P value of .008. Studies

suggest that divorce is a major life stressor that can

have economic, emotional, physical, and health

consequences.20,21
Figure 2 Decision curve analysis for the 4 classifica-

tion models evaluated in this study. Each model used the

same 16 top predictors (see Figure 3) of atrial fibrillation

as an adverse event as predictors.
Decision Curve Analysis
A decision curve analysis22 for the validity of the models as

an early warning system is shown in Figure 2. The models

are refitted and evaluated on the whole dataset using 80%/

20% split for training and testing sets, respectively, but

only the 16 top predictors (see Figure 1) of atrial fibrillation

as an adverse event are used to build the models. Overall,

all models are valid as predictors of new-onset atrial fibril-

lation as an adverse event, but only when the threshold

probability is between approximately 7.5% and 15%. Ada-

Boost is the best early warning system, followed by RF,

XGBoost, and ANN.
Clustering the Potential Predictors of Atrial
Fibrillation as an Adverse Event
Cluster analysis has been proposed in previous literature to

examine the phenotypic heterogeneity of new-onset atrial

fibrillation. Figure 3 shows a hierarchical cluster of all vari-

ables of interest in the dataset (based on Ward’s method23).

Figure 4 shows a biplot from a Principal Coordinates

Analysis.24 The biplot suggests that: 1) the variable ethnic-

ity “White” splits the data into 2 clearly distinct clusters;

and 2) new-onset atrial fibrillation is associated with being



Figure 4 Biplot cluster of all variables of interest in the

dataset. White ethnicity splits the data into 2 clearly dis-

tinct clusters.

Figure 3 Hierarchical cluster of all variables of interest

in the dataset. AF = atrial fibrillation; BMI = body mass

index; MI = myocardial infarction; NYHA = New York

Heart Association; PVD = peripheral vascular disease.
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White (ethnicity), male, older, being a smoker, and marital

status (being divorced or widowed).
FOREST PLOTS ON WHITE AND NON-WHITE ETHNICITY GROUPS

Based on all characteristics and clinical predictors avail-

able, the cluster analysis suggests a split between the White

and non-White ethnicities. Therefore, the White and non-

White groups have been reanalyzed separately. Via step-

wise regression, a subset of 12 common variables were

identified to be used in a final regression model for both

groups compared (White and non-White ethnicities). Those

same 12 variables are compared below.

Table 4 shows logistic regression results obtained from

the “White ethnicity (n = 1784)” data (excluding all other

ethnicities) with a c-index of 0.73 (95% CI, 0.70-0.77) for
new-onset atrial fibrillation as an adverse event during fol-

low. Odds ratios for the 12 predictors of new-onset atrial

fibrillation identified by stepwise regression are also shown.

The results suggest that, for the “White” group, age,

divorced, and heart failure are significant predictors of

new-onset atrial fibrillation as adverse event.

Table 5 shows logistic regression results obtained from

the “non-White (n = 435)” (other ethnicity) data (excluding

White ethnicity) with a c-index of 0.92 (95% CI, 0.87-0.97)

for new-onset atrial fibrillation as an adverse event during

follow-up. As before, odds ratios for the 12 predictors of

new-onset atrial fibrillation identified by stepwise regres-

sion are also shown. The results suggest that, for the “non-

White” group, widowed, live alone, and heart failure are

significant predictors of new-onset atrial fibrillation.

Although the number of samples for this group is much

smaller than for the “White ethnicity” group, the high

c-index value for this model suggests that being widowed,

living alone, and suffering from heart failure may signifi-

cantly increase the risk of new-onset atrial fibrillation for

the “non-White” population.
DISCUSSION
Our analysis has highlighted interesting areas to note in

atrial fibrillation prediction in patients with heart failure.

Clustering of Risk Factors Between Ethnicities
When looking at the clusters of variables (Figure 4), 2

clearly distinct clusters are visible for White and non-White

ethnicities. When exploring the association of clinical char-

acteristics with atrial fibrillation, there is a clear dispropor-

tionate impact of social circumstances between White and

non-White participants, in particular marital status and liv-

ing alone. The association between marital status and living

alone is not the same for the White and non-White groups.

In fact, on average, the White group of patients has a higher

incidence of living alone than the non-White group. Never-

theless, it is patients from the non-White group living alone

who have a significantly higher risk of developing atrial

fibrillation when compared with their counterparts from the

White group. This suggests that a complex combination of

these factors: “marital status,” “live alone,” and “ethnicity”

(and probably other factors not observed in this study) con-

tribute to an elevated risk of developing atrial fibrillation on

the non-White cohort. While White patients who are

divorced also have a higher risk of developing atrial

fibrillation (odds ratio [OR] 1.75; 95% CI, 1.19-2.57;

P value = .002); non-White patients who are widowed have

a 3-fold higher risk of developing atrial fibrillation (OR

3.04; 95% CI, 1.28-7.24; P value = .006). Moreover, non-

White patients who live alone have a 2.6-fold higher risk of

developing atrial fibrillation (OR 2.58; 95% CI, 1.45-4.59;

P value = .0006).

A previous analysis of the same database25 has shown

similarly that race was a significant predictor within

the univariate model but lost statistical significance



Table 4 Forest Plot Obtained for the “White Ethnicity” Data Only (Excluding Other Ethnicities)

Odds ratio for the 12 predictors of new-onset atrial fibrillation identified by stepwise regression.

AF = atrial fibrillation; BMI = body mass index; CI = confidence interval; NYHA = New York Heart Association;

OR = odds ratio.
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following adjustment for other covariates. This is in sup-

port of what we have found in our analysis—that the

impact of race and ethnicity on the development of

atrial fibrillation involves a complex interaction among

various factors.

The impact of race and ethnicity has been studied

extensively as a part of the social determinant in inci-

dence of atrial fibrillation.21 A paradoxical finding is
that despite the higher prevalence of risk factors for

atrial fibrillation, a lower prevalence of atrial fibrillation

in non-White ethnic groups has been observed: its etiol-

ogy is poorly understood due to the complex nature.26

Apart from recognizable factors such as household

income,27 which was not recorded within the dataset,

we have shown that living alone had a greater impact

on ethnic minorities in terms of developing atrial



Table 5 Forest Plot Obtained for the “Other Ethnicity (Non-White)” Data Only (Excluding White Ethnic-
ity)

Odds ratio for the 12 predictors of new-onset atrial fibrillation identified by stepwise regression.

AF = atrial fibrillation; BMI = body mass index; CI = confidence interval; NYHA = New York Heart Association;

OR = odds ratio.
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fibrillation. The impact of social isolation on cardiovas-

cular mortality has been shown previously,28,29 and our

analysis has shown that it disproportionately affects the

non-White ethnic group of the WARCEF patients. As

shown in Table 1, there was an under-representation of

non-White ethnic group within the population recruited,

therefore the conclusions drawn may be limited.
However, our analysis serves not only as a reminder of

the impact of social factors on health, but it also high-

lights the need to explore the impact of social factors

on this under-represented group of patients. The study

underlines the potential impact that social interventions,

or the lack thereof, have on ethnic minorities in terms

of developing atrial fibrillation.
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Association of Heart Failure Hospitalization
and Atrial Fibrillation
The association between heart failure hospitalization and atrial

fibrillation is seen in the analyses performed. This not only

accentuates the common pathological background of both

conditions, but also highlights the interdependency between

the 2 pathologies—patients with atrial fibrillation are more

likely to decompensate and be hospitalized with heart failure;

similarly, patients with heart failure are more likely to have an

electrocardiogram performed or monitored while in the hospi-

tal, which increases the detection of atrial fibrillation.

The OPTIMIZE-HF study identified arrhythmia as one

of the most frequent (13.5%) precipitating factors for heart

failure hospitalization,30 and these arrhythmias may be

transient. An interesting pilot study, CARRYING-ON HF,

which implanted loop recorders in patients admitted with

acute heart failure, identified 8 participants with asymp-

tomatic paroxysmal atrial fibrillation of the 18 partici-

pants.31 Our analysis emphasizes that the close

relationship between the 2 and heart failure hospitaliza-

tion, especially in patients without known atrial fibrilla-

tion, should prompt clinicians to consider looking longer

and harder for atrial fibrillation, as they would benefit

from the initiation of OAC.
The Use of ML in Exploring Novel Trends/Risk
Factors
The use of ML methodology in our paper has provided a

different viewpoint toward identifying novel risk factors

that may not be immediately apparent to clinicians. Not

only will we learn more about the disease processes and

latent associations, but it may also help identify other inter-

ventions that may improve clinical outcomes in patients.

ML will also be able to speed up integration of large vol-

umes of data, although the pitfall of poor data quality

remains a huge concern. However, with the use of adjudi-

cated randomized clinical trials data where the data collec-

tion process is more robust, such as WARCEF, this should

be of a lesser concern.

Effective implementation of ML technologies can be a

powerful tool toward early and accurate atrial fibrillation

detection enabling precision in stratification of patient

cohorts. The health impact of experiences of loneliness

among people from Black, Asian, and Minority Ethnic

groups seems to have far-reaching implications, including

an apparent higher risk of developing atrial fibrillation.

This needs to be further investigated and understood so that

a series of recommendations for national policymakers,

local authorities, and health service providers can be put

forward, and people experiencing loneliness can get the

help and support they need.
Limitations
Being a post hoc analysis, there may be presence of

unknown confounders that may limit the conclusions drawn
from the results. Additionally, as the effective sample size

used for training in each random splitting is much less than

the original sample size, the results may not be representa-

tive of the whole dataset. Lastly, as there was no systematic

screening for atrial fibrillation conducted in the WARCEF

trial, there may be an underestimation of patients who

developed atrial fibrillation.
CONCLUSIONS
Our study has highlighted that “social factors” may dispro-

portionately increase the risk of atrial fibrillation in the

under-represented non-White patient groups with heart fail-

ure. There is a need for more studies focusing on stratifica-

tion of multiracial cohorts to better uncover the

heterogeneity of atrial fibrillation mechanisms across differ-

ent racial groups. The integration of ML into clinical prac-

tice is mutually beneficial. It offers clinicians improved

clinical workflow and diagnostic accuracy and cost-effec-

tiveness. Clinicians offer ML the essential exposure it needs

to learn complex clinical case management. This, in turn,

increases critical mass and encourages buy-in from multiple

disciplinary approaches.
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APPENDIX

Model Validation: 5-fold Stratified Cross-
Validation
Prior to data analysis, the dataset was randomly split into

5 independent and randomly stratified folds (n = 2219, n1 =

444, n2 = 444, n3 = 444, n4 = 444, n5 = 443). The class distri-

bution inside these 5 folds is: 4 folds have exactly 444 sam-

ples, of which 43 are cases (positive atrial fibrillation as an

adverse event) and 401 are controls (no atrial fibrillation as an

adverse event). The last and fifth fold has exactly 443, samples

of which 43 are cases (positive atrial fibrillation as an adverse

event) and 400 are controls (no atrial fibrillation). At each

run of the cross-validation, 4 folds are combined and used

as training data and a fifth fold is set aside for validation of

the models (eg, training = n1 + n2 + n3 + n4 = 1776 and

validation = n5 = 443). Each fold is used exactly once as vali-

dation set. The training data (n = 1776) are further split into

stratified sets of 80% of the data for training the models and

20% of the data for testing the models. To make the results

more comparable, all machine learning (ML) algorithms pre-

sented in this paper were trained, tested, and validated on the

same training, testing, and validating sets. The classification

results presented are always the results computed and aver-

aged over the 5 validation folds.

As depicted in Supplementary Figure 1, the 2 classes (no

atrial fibrillation as an adverse event, and atrial fibrillation

as an adverse event) are highly unbalanced.

To cope with this unbalanced dataset, once the training

set (4 combined folds, eg, n = 1776) is created and split into

stratified sets of 80% training and 20% testing sets, random

undersampling (RUS), which was the sampling technique

with the best overall performance in preliminary tests, was

applied to the training set only, but not to the testing set,

which always keeps the original data class distribution.

Therefore, when applying RUS, the models are actually
Supplementary Figure 1 Class distribution for develop-

ing atrial fibrillation as an adverse event during the fol-

low-up period. AF = atrial fibrillation.
trained with approximately 276 samples—of which 138

(80% of 43 cases £ 4 combined folds) are cases (positive

atrial fibrillation as an adverse event) and another 138 are

randomly selected control samples to achieve a 50% split

of the classes in the training dataset. Using only one split of

the 138 control samples (which are chosen out of approxi-

mately 80% of 4 £ 401 samples = 1283 samples) could

bias the model building process, because approximately

1283 � 138 = 1145 samples are left out of training. There-

fore, RUS is repeated 100 times for each training set (4

combined training folds), and each time the 138 control

samples are independently and randomly selected to com-

pose an RUS training dataset with the same 138 cases. For

each of the 100 RUS repetition, the models are validated on

the fifth hold-out validation fold.

The classification results obtained by each model are

averaged over the 5-fold stratified cross-validations times

100 RUS splits = 500 independent cross-validations. Sup-

plementary Figure 2 shows the workflow of the model train-

ing and validation.
Data Pre-Processing and Imputation
Once the 5 folds were constructed, missing values were

imputed using an R package10 “imputeFAMD”11 and

applied independently to each training and validation

fold—that is, 5 £ (combined 4 training folds) and

5 £ (1 validation fold). imputeFAMD works well with

mixed data (continuous and categorical variables) and

uses a principal component method “factorial analysis

for mixed data” to replace missing values. To avoid

data leakage, the imputation process has been indepen-

dently performed on each split of the dataset; namely,

on training set individually, then on test set individually,

and finally on validation set individually. One limitation

of this imputation process is that, even though an appro-

priate imputation algorithm was selected for the type of

data under analysis (mixed data), no other imputation

method was assessed to minimize possible randomness

of the imputation process.
Machine Learning Algorithms Predicting the
Occurrence of Atrial Fibrillation as an Adverse
Event
Four ML models were applied to predict the outcome of

interest (incidence of new-onset atrial fibrillation as an

adverse event during follow-up): Random Forest (RF),12

Adaptive Boosting (AdaBoost),13 eXtreme Gradient Boost-

ing (XGBoost),14 and Artificial Neural Network (ANN).15

As the construction of a single decision tree model may be

overly sensitive to the training data, RF uses bootstrap sam-

pling to build a collection of random and independent deci-

sion trees, a forest; and the trees have no predetermined

size. Via aggregation, each tree in the forest is used to clas-

sify new samples, and the class assignment is decided by

the majority voting, the class predicted by the largest



Supplementary Figure 2 Workflow of model training and validation under random under sampling.

ML = machine learning; RUS = random undersampling.
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number of trees in the forest. In RF each tree has an equal

vote (weight) on the final classification. AdaBoost also

builds a forest of decision trees, but each tree is composed

of only 1 node and 2 leaves; these trees are termed stumps.

Based on how well each stump classifies the samples, in

AdaBoost, some stumps get a higher weight on the classifi-

cation than others. In addition, the classification error that

each stump makes influences the building of subsequent

stumps. New samples are classified based on the weighted

voting from all stumps. XGBoost is an advanced implemen-

tation of gradient boosting (GB)16 algorithm, which builds

fixed-size decision trees based on the errors made by previ-

ous trees and combines them into an ensemble model.

XGBoost uses more complex regularization methods than

GB to improve model generalization. An ANN is a learning

algorithm inspired by the structure of the human brain.

Using a set of nodes called neurons and a set of variable

weights associated to those neurons, an ANN takes in data

and trains itself to recognize patterns in the data and predict

desired outputs. The neurons are the core of the network,

which is usually composed of multiple layers of neurons,

including input layer, output layer, and a set of hidden

layers in between. Via activation functions, the neurons

transmit information to the next layers and the output layer

is compared with the known observed values for the sam-

ples. The weights of the neurons are adjusted to improve

the outputs and minimize errors. For each of the 4 ML mod-

els used for data analysis, the following model performance

metrics were computed: accuracy, sensitivity, specificity,

F1-score,17 Matthews correlation coefficient,18 and the area

under the receiver operating characteristic curve.19 ML is a

proven enabler of advancements in health care. It can

unlock data insights needed to support data-driven deci-

sions for diagnostics and treatments.
Hyperparameter Tuning

Effective application of ML models requires appropriate

model architecture design choices such as parameter

selection or tuning. Parameters that define model archi-

tecture are termed hyperparameters. The process of

searching for the ideal model architecture is referred to

as hyperparameter tuning. This work used a grid search

hyperparameter tuning method computed over the test

sets. With this technique, we simply built a model for

each possible combination of all hyperparameter values

provided, evaluating each model on the test sets, and

selecting the architecture that produced the best results.

For RF, the number of decision trees that are combined

to create the final prediction was tested from 200 to

2000 in steps of 200. The tree depth values were tested

between 5 and 31 in steps of 2. For RF the combination

of (number of trees, tree depth) that produced the best

performance was (1000, 20), respectively (all other

parameters were default values from R). For AdaBoost

and XGBoost, the base estimator used was decision

trees. For both of these algorithms, the combination of

(number of trees, tree depth) that produced the best per-

formance was also (1000, 20), respectively—values

tested the same as for RF. The learning rates for Ada-

Boost and XGBoost were searched between 0.2 and 0.8

(in steps of 0.1), and for both algorithms the best value

was 0.6 (all other parameters were default values from

R). For ANNs, the number of hidden layers tested was

between 1 and 10, whereas the learning rate values var-

ied between 0.05 and 1 (in steps of 0.05). For ANNs,

the combination of (hidden layers, learning rate) that

produced best performance was (4, 0.15), respectively

(all other parameters were default values from R).
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