
Ait El Manssour, R, Kenison, G, Shirmohammadi, M and Varonka, A

 Simple Linear Loops: Algebraic Invariants and Applications

http://researchonline.ljmu.ac.uk/id/eprint/24814/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Ait El Manssour, R, Kenison, G, Shirmohammadi, M and Varonka, A (2025)
Simple Linear Loops: Algebraic Invariants and Applications. Proceedings of
the ACM on Programming Languages, 9. pp. 745-771.

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Simple Linear Loops: Algebraic Invariants and Applications

RIDA AIT EL MANSSOUR, CNRS - IRIF, France
GEORGE KENISON, Liverpool John Moores University, United Kingdom

MAHSA SHIRMOHAMMADI, CNRS - IRIF, France
ANTON VARONKA, TU Wien, Austria

The automatic generation of loop invariants is a fundamental challenge in software verification. While this

task is undecidable in general, it is decidable for certain restricted classes of programs. This work focuses on

invariant generation for (branching-free) loops with a single linear update.

Our primary contribution is a polynomial-space algorithm that computes the strongest algebraic invariant

for simple linear loops, generating all polynomial equations that hold among program variables across all

reachable states. The key to achieving our complexity bounds lies in mitigating the blow-up associated with

variable elimination and Gröbner basis computation, as seen in prior works. Our procedure runs in polynomial

time when the number of program variables is fixed.

We examine various applications of our results on invariant generation, focusing on invariant verification

and loop synthesis. The invariant verification problem investigates whether a polynomial ideal defining an

algebraic set serves as an invariant for a given linear loop. We show that this problem is coNP-complete and

lies in PSPACE when the input ideal is given in dense or sparse representations, respectively. In the context of

loop synthesis, we aim to construct a loop with an infinite set of reachable states that upholds a specified

algebraic property as an invariant. The strong synthesis variant of this problem requires the construction of

loops for which the given property is the strongest invariant. In terms of hardness, synthesising loops over

integers (or rationals) is as hard as Hilbert’s Tenth problem (or its analogue over the rationals). When the

constants of the output are constrained to bit-bounded rational numbers, we demonstrate that loop synthesis

and its strong variant are both decidable in PSPACE, and in NP when the number of program variables is fixed.

CCS Concepts: • Theory of computation→ Logic and verification; • Computing methodologies→
Algebraic algorithms.

Additional Key Words and Phrases: Algebraic Invariant, Program Synthesis, Loop Invariant, Zariski Closure,

Polynomial Space, Algebraic Reasoning.

ACM Reference Format:
RidaAit ElManssour, George Kenison,Mahsa Shirmohammadi, andAntonVaronka. 2025. Simple Linear Loops:

Algebraic Invariants and Applications. Proc. ACM Program. Lang. 9, POPL, Article 26 (January 2025), 27 pages.

https://doi.org/10.1145/3704862

1 Introduction
Reasoning about loops is a foundational task in program analysis and verification. Loop invariants

play a crucial and indispensable role; for instance, they help establish both safety properties (as

seen in proofs of non-reachability) and liveness properties (as supporting invariants in termination

Authors’ Contact Information: Rida Ait El Manssour, CNRS - IRIF, Paris, France, manssour@irif.fr; George Kenison,

Liverpool John Moores University, Liverpool, United Kingdom, g.j.kenison@ljmu.ac.uk; Mahsa Shirmohammadi, CNRS -

IRIF, Paris, France, mahsa@irif .fr; Anton Varonka, TU Wien, Vienna, Austria, anton.varonka@tuwien.ac.at.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/1-ART26

https://doi.org/10.1145/3704862

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0001-6228-9071
HTTPS://ORCID.ORG/0000-0002-7661-7061
HTTPS://ORCID.ORG/0000-0002-7779-2339
HTTPS://ORCID.ORG/0000-0001-5758-0657
https://doi.org/10.1145/3704862
https://orcid.org/0000-0001-6228-9071
https://orcid.org/0000-0002-7661-7061
https://orcid.org/0000-0002-7779-2339
https://orcid.org/0000-0001-5758-0657
https://doi.org/10.1145/3704862
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3704862&domain=pdf&date_stamp=2025-01-09

26:2 Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and Anton Varonka

proofs). The paper [14] goes so far as to call the problem of automatic invariant generation the
most important task in program verification.
The focus of this paper is on the algorithmic generation of algebraic invariants for programs.

The invariants we study are given by polynomial equations in the program variables. Not only are

these invariants expressive, but they are amenable to a rich collection of techniques from algebraic

geometry. From a computational perspective, a key question is to determine when the invariant

generation problem is decidable. For decidability, the program model must be fairly abstract, as for

instance, algebraic invariant generation is already undecidable for polynomial programs [39].

Müller-Olm and Seidl [61] considered the generation of polynomial invariants within the frame-

work of affine programs, raising the question of whether it is possible to compute (a basis of) all

polynomial invariants for any given affine program. This problem can be recast in purely algebraic

terms as a question about matrix semigroups: namely, the objective is to compute a representation

of the Zariski closure of a finitely generated semigroup of matrices. If the matrices involved are all

invertible then this task is equivalent to that of computing the Zariski closure of a finitely generated

matrix group.
The first algorithm to compute the polynomial ideal defining the Zariski closure ⟨𝑀1, . . . , 𝑀𝑘⟩

of the group generated by a set of invertible matrices 𝑀1, . . . , 𝑀𝑘 was introduced in [28]. This

algorithm was recently employed in [39, 40] as a subroutine to address the above-mentioned

question posed by Müller-Olm and Seidl regarding invariant generation for affine programs. Both

of these decision procedures have significant shortcomings in terms of computational complexity;

notably, the complexity bound for the group-closure computation in [28] is not known to be

elementary [63, Appendix C].

A recent advance in computing the group closure was obtained through a linearization tech-

nique from [46, 60] in combination with a novel upper bound on the degrees of the polynomials

defining the closure [63]. The resulting complexity bounds, although elementary, are of the order

of severalfold exponential time for rational matrices; nevertheless there still remains a significant

gap between the upper and lower complexity bounds.

This paper aims to address and resolve the computational complexity for cyclic matrix groups and

semigroups. Surprisingly, the approaches in [28, 39, 40, 63], and other works such as [27, 31], fail to

achieve reasonable complexity even in the simplest setting of cyclic matrix groups and semigroups.

This complexity blow-up is a consequence of using variable elimination in the computational

procedures, which generally has a worst-case exponential-space complexity. Alternative approaches

based on reductions to the theory of real-closed fields, combined with the degree upper bound

obtained in [63], will also result in similar complexity bounds. In this case, the complexity blow-

up arises from the doubly exponential space required for quantifier elimination in real-closed

fields [25].

In the vocabulary of loop programs, the above simple setting translates to that of branch-free

loops with a single linear update, unlike the commonly studied programs with multiple linear

updates [40, 51]. Notwithstanding the radical simplicity of this model, the most natural verification

problems (such as termination and reachability) are already very difficult in this setting [64]. We

refer to this subclass as the simple linear loops, and focus on the invariant generation problem for

such loops.

By performing the updates simultaneously, a simple linear loop is specified by a single square

matrix𝑀 and a vector 𝜶 of initial program values. The program state is given by a vector, and an

iteration of the loop body is summarised by a matrix-vector product. We call a loop with 𝑑 program

variables 𝑑-dimensional. The orbit of the loop ⟨𝑀,𝜶 ⟩ is the reachable set of program states, defined

by O := {𝑀𝑛𝜶 : 𝑛 ∈ N}. Our main contribution is as follows.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

Simple Linear Loops: Algebraic Invariants and Applications 26:3

Theorem 1.1. Let ⟨𝑀,𝜶 ⟩ be a rational loop with orbit O. A set of polynomials defining O is
computable in PSPACE. For all fixed 𝑑 ∈ N, the computation of O for 𝑑-dimensional loops is in
polynomial time.

Loops with linear updates appear in many settings, such as Markov chains and linear hybrid

automata. In [55], the strongest algebraic invariant is generated for a class of linear hybrid automata,

where the permitted state transitions are linear updates. Further motivation for complexity results

for prototypical classes of loops, as in Theorem 1.1, arises from bottom-up approaches to invariant

generation, where one works to summarise larger and larger subprograms in order to analyse

expressive program models (cf. [24]).

In general, the strongest algebraic invariant of a loop with linear updates and equality guards is

not computable [60]. Similarly, allowing multiple polynomial updates renders invariant generation

undecidable [39], or Skolem-hard [62] with a single polynomial update. Thus linear loops are

arguably the richest model where the invariant generation problem admits a complete algorithmic

procedure.

Applications in Invariant Verification and Loop Synthesis. The concept of orbit closure is
fundamental to numerous subfields of computer science, including geometric complexity theory,

quantum computation, non-convex optimisation problems, and graph isomorphism [15, 17, 18, 28,

30]. Our problem of invariant generation can be interpreted as an implicit orbit-closure problem

under the action of a cyclic semigroup [2].

The first application of invariant generation that we consider is the invariant verification problem.

In our setting this amounts to checking whether all reachable states of a given loop satisfy a given

collection of polynomial equations. We do not assume that the property to be verified is inductive,

and so our analysis involves a non-trivial examination of reachability in the loop. The fact that

our invariants are equations plays a key role. For example, allowing inequalities in our invariants

would render the invariant verification problem more general than the positivity problem for linear

recurrence sequences, whose decidability status has been open for many decades [65].

The second application of our algorithm for invariant generation is loop synthesis. An example of

the kind of scenario we seek to model is as follows. Imagine that a loop has integer variables 𝑥,𝑦,𝑤 ,

and 𝑧. If, in each iteration of the loop, both𝑤 and 𝑦 are incremented by 1, how should we update

variables 𝑥 and 𝑧 to preserve the invariant 𝑥2 − 𝑦2𝑧2 + 𝑧3 = 0? In other words, we ask to synthesise

variable updates that maintain a given relation among the loop variables. In the example at hand,

one solution is 𝑥 := 𝑤 (𝑦2 −𝑤2) and 𝑧 := 𝑦2 −𝑤2
. We note that this task is related to the problem

of computing a parametrisation of a variety given by polynomial equations, which is a classical

problem in algebraic geometry.

We prove that the invariant verification problem is coNP-complete when the polynomials de-

scribing the invariant to be verified are given in dense representation. We also show that the

problem lies in PSPACE when the polynomials are given in sparse representation. In the context of

synthesising loops over integers and rationals, building on our work in invariant generation, we

consider bit-bounded variants of the synthesis problem and provide PSPACE algorithm for these

cases. Additionally, when the loop dimension is fixed, we establish NP upper bounds and, in some

cases, provide matching lower bounds.

A summary of our main results is provided in Fig. 1. A comprehensive discussion of these results,

along with related previous works, is presented in Section 2. The full version of this paper, including

the appendices, is available at [1].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

26:4 Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and Anton Varonka

Invariant Generation
(decision problem)

rational loops

PSPACE

rational loops

fixed dimension

PTIME

Invariant Verification
(decision problem)

dense ideal

coNP-complete

sparse ideal

PSPACE

Loop Synthesis over 𝑅 ∈ {Q,Z}
(decision problem)

weak

as hard as HTP over 𝑅

strong

remains open

Bit-Bounded

weak

PSPACE and NP-hard
strong

PSPACE

Bit-Bounded fixed dimension

weak

NP
NP-hard over Z

strong

NP

Fig. 1. Summary of our main results (see Section 2 for a comprehensive overview).

2 Overview of Main Results
In this section, we give a high-level overview of our main results. We will also introduce the basic

definitions required to follow the main techniques exhibited in the algorithms we introduce. See

Appendix A in [1] for extended preliminaries.

We denote by Z and Q the set of all integer and rational numbers, respectively. We write Q[𝑥]
for the ring of univariate polynomials with rational coefficients over 𝑥 , and Q[𝒙] for the ring of
multivariate polynomials over variables 𝒙 = (𝑥1, . . . , 𝑥𝑑). Given a polynomial 𝑃 ∈ Q[𝒙], its total
degree is defined as the maximum total degree of its constituent monomials. Following [53], we

define 𝑃 (𝒙) as being written in dense representation if it is given as an array of coefficients (both zero

and nonzero) for all monomials up to its total degree. In contrast, it is in sparse representation if it is

given as an explicit set of monomials with nonzero coefficients. The size of the polynomial 𝑃 (𝒙), in
either representation, is the bit length of a reasonable encoding of the polynomial in the required

representation, with all numbers written in binary. For instance, the size of 𝑥2
𝑛

is 2
𝑛+1when written

in dense representation, whereas it is 𝑛 + 2 when written in sparse representation. By the above, the

degree of 𝑃 (𝒙) in dense representation is at most its size, whereas in sparse representation it could

be exponential in its size. Given a set 𝑆 ⊆ Q[𝒙], its description size is defined as the combination

of its cardinality, the size of its polynomials, and the number of variables.

Recall that a complex number is algebraic if it is a root of a nonzero univariate polynomial

in Q[𝑥]. Denote by Q the set of all algebraic numbers. The minimal polynomial of 𝛼 ∈ Q, denoted
by𝑚𝛼 , is uniquely defined as the monic polynomial in Q[𝑥] of smallest degree for which 𝛼 is a

root. For algorithmic purposes, we rely on a symbolic representation of algebraic numbers
1
, which

results in effective arithmetic, see [22, Section 4.2.1] for more details.

Complexity Theory.We briefly summarise some relevant notions from complexity theory [7].

The Arthur–Merlin complexity class (AM) consists of all decision problems that admit a two-round

interactive proof in which Arthur tosses some coins and sends the result to Merlin, who responds

with a purported proof of membership in the language [8]. It is well-known that AM contains

both BPP (that is, the class of randomised polynomial time with two-sided error) and NP. It is also
contained in Π2, the second level of the polynomial hierarchy (PH).

1
The symbolic representation of 𝛼 ∈ Q consists of𝑚𝛼 , in sparse representation, combined with a triple (𝑎,𝑏, 𝑅) ∈ Q3 such
that 𝛼 is the unique root of𝑚𝛼 that lies within the 𝑅-radius circle centered at (𝑎,𝑏) in the complex plane.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

Simple Linear Loops: Algebraic Invariants and Applications 26:5

Denote by ∃R the class of problems that are polynomial-time reducible to the decision problem

for the existential theory of the reals. Since the latter lies in PSPACE we have that ∃R ⊆ PSPACE.
We recall that PSPACE is closed under PSPACE-oracles, that is, PSPACEPSPACE = PSPACE.

Simple Linear Loops. A simple linear loop consists of a single-path loop with linear variable

updates. For example, consider the loop in Fig. 2. It is easy to see that after 𝑛 iterations of the while
loop, the values of the variables 𝑥 and 𝑦 are given by the (𝑛 + 1)th and 𝑛th Fibonacci numbers,

respectively. After 𝑛 iterations, the value of variable 𝑧 is (−1)𝑛 .

Input: (𝑥,𝑦, 𝑧) ← (1, 0,−1)
while true do

©«
𝑥

𝑦

𝑧

ª®¬← ©«
1 1 0

1 0 0

0 0 −1
ª®¬ ©«

𝑥

𝑦

𝑧

ª®¬
end while

Fig. 2. Fibonacci simple loop program.

Recall that Mat𝑑 (Q) is the set of all 𝑑 × 𝑑 matrices with entries in Q. A simple linear loop
L = ⟨𝑀,𝜶 ⟩ is formally defined as a loop program of the form

𝒙 ← 𝜶 ; while true do 𝒙 ← 𝑀𝒙,

where 𝜶 ∈ Q𝑑 is an initial vector and 𝑀 ∈ Mat𝑑 (Q) is an update matrix. The main focus of this

paper is on rational and integer loops, where the constants of𝑀 and 𝜶 lie inQ and in Z, respectively.
We define loops more generally to encompass intermediate steps in our procedures.

The orbit of L is the reachable set of program states defined by O B {𝑀𝑛𝜶 : 𝑛 ∈ N} ⊆ Q𝑑 . The
orbit of the program in Fig. 2 is©«

1

0

−1
ª®¬ , ©«

1

1

1

ª®¬ , ©«
2

1

−1
ª®¬ , ©«

3

2

1

ª®¬ , ©«
5

3

−1
ª®¬ , ©«

8

5

1

ª®¬ , . . .
 .

A program with a finite orbit is called trivial, and non-trivial otherwise. The above program is

non-trivial [50].
2

Algebraic Geometry. A polynomial ideal 𝐼 is an additive subgroup of Q[𝒙] that is closed under

multiplication by polynomials in Q[𝒙]. Hilbert’s Basis theorem states that every polynomial ideal

𝐼 ⊆ Q[𝒙] is finitely generated, equivalently, that every strictly ascending chain of ideals in Q[𝒙] is
finite. We shall write 𝐼 = ⟨𝑆⟩ if 𝑆 ⊆ Q[𝒙] is a generating set for 𝐼 .

We view program orbits as a subset of the affine space Q𝑑 for some dimension 𝑑 . Following [39,

40], we consider over-approximations of program orbits by algebraic sets. An algebraic set (or

variety) is the set of common zeros of a polynomial ideal 𝐼 ; thus, the set 𝑉 (𝐼) B {𝒗 ∈ Q𝑑 : 𝑓 (𝒗) =
0 for all 𝑓 ∈ 𝐼 }, is an algebraic set. By Hilbert’s Basis theorem, every algebraic set can be represented

as the set of common zeros of a finite set of polynomials. An algebraic set 𝑋 ⊆ Q𝑑 is irreducible if
it cannot be written as 𝑋 = 𝑋1 ∪ 𝑋2 such that 𝑋1 and 𝑋2 are both algebraic sets and both proper

subsets of 𝑋 . In this paper we use the terms algebraic set and variety interchangeably whereas

certain authors reserve the term variety for irreducible algebraic sets.

The strongest algebraic approximation for a program is the smallest algebraic set containing the

program orbit. In this context, smallest refers to the closure in the Zariski topology on Q𝑑 , where

2
The definition of a non-trivial loop aligns with that of a wandering point in the arithmetic dynamics literature [12, 69].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

26:6 Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and Anton Varonka

closed sets are algebraic subsets of Q𝑑 . For any set 𝑋 ⊆ Q𝑑 , its closure in the Zariski topology

on Q𝑑 , denoted by 𝑋 , is the smallest algebraic set that contains it. Subsequently, the strongest

algebraic approximation of a program is O.

Algebraic Invariant. Given a loop program L = ⟨𝑀,𝜶 ⟩, a set 𝐴 ⊆ Q𝑑 is an invariant if it over-
approximates the orbit O of L, that is, {𝑀𝑛𝜶 : 𝑛 ∈ N} ⊆ 𝐴. Moreover, if 𝐴 is an algebraic set then

we call 𝐴 an algebraic invariant. We may refer to the polynomial ideal 𝐼 ⊆ Q[𝒙] such that𝑉 (𝐼) = 𝐴

as an invariant ideal for L.
We say that a set 𝐴 ⊆ Q𝑑 is inductive with respect to L if 𝜶 ∈ 𝐴 and {𝑀𝑣 : 𝑣 ∈ 𝐴} ⊆ 𝐴. It is

immediate that an inductive set is an invariant. It is equally straightforward that the converse fails in

general: not every invariant is inductive. However, the loop L admits a smallest algebraic invariant,

namely the Zariski closure O of the orbit, and this set is inductive. Indeed 𝑀 (O) ⊆ 𝑀 (O) ⊆ O
holds by Zariski continuity of the self-map 𝑣 ↦→ 𝑀𝑣 on Q𝑑 . A non-trivial algebraic invariant for

the program depicted in Fig. 2 is (the zero set of) the polynomial

(𝑦2 + 𝑥𝑦 − 𝑥2)2 − 𝑧2 = 0; (1)

see, for example [49]. This set is an invariant by virtue of being inductive. Indeed, we have that the

initial point (1, 0,−1) satisfies (1). Further, by substitution of the update assignments in Fig. 2, we

have that (𝑥2 + (𝑥 +𝑦)𝑥 − (𝑥 +𝑦)2)2 − (−𝑧)2 = (𝑦2 +𝑥𝑦 −𝑥2)2 −𝑧2 = 0. In other words, Equation (1)

is stable under the update matrix of the loop.

2.1 Algebraic Invariant Generation
Our main contribution (Theorem 1.1) is a PSPACE algorithm that computes the strongest algebraic

invariant of a given simple linear loop. This algorithm runs in polynomial time if the dimension of

the loop is fixed.

The geometric properties of the algebraic closure of cyclic subsemigroups of Mat𝑑 (Q) are studied
in [31]. Principally, it is shown that each irreducible component of the closure of a cyclic semigroup

is either an isolated point or isomorphic to a toric variety. Recall that a toric variety is the closed

image of a monomial map. Toric varieties form an important and rich class of varieties in algebraic

geometry, particularly in view of their combinatorial and algorithmic properties. To obtain the

result in Theorem 1.1, we rely on the observation that the closures of cyclic subsemigroups of

matrices and orbit closures of linear loops, under some isomorphism of varieties, have the same

geometric structure. A careful analysis of the results in [31], which inspired our research, provides

an exponential degree bound for the polynomials defining the closure of matrix semigroups. Such

an exponential degree bound, combined with linearization techniques in [46, 60], gives an inefficient

EXPSPACE procedure for invariant generation.

In our construction, the main obstacle to improve the PSPACE bound is a basis computation for

the lattice of multiplicity relations between the eigenvalues of the update matrix. The best known

bound for this task is through a brute-force search in combination with Masser’s bound, see [28,

31, 39, 63] and Appendix A in [1]. If the eigenvalues of the matrix updates are rational numbers,

rational multiples of roots of unity, or rational multiples of unnested radicals, this task can be

performed more efficiently through identity testing problems for the underlying fields [9, 10]. In

those cases, this allows us to place the invariant generation problem in the second level of the

polynomial hierarchy (PH).

Related Work: Invariant Generation. Automatically generating invariants for simple linear

loop programs has garnered significant attention. This task remains highly challenging even for

simple loop programs with multiple linear updates [40, 43, 51, 54].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

Simple Linear Loops: Algebraic Invariants and Applications 26:7

There is also a line of work addressing more expressive computational models, such as programs

with nested loops, conditional branching, probabilistic updates, and unstructured control flow.

However, these procedures are often limited by the types of polynomial invariants they can generate,

rendering them necessarily incomplete. Typically, they produce polynomials only up to a user-

defined degree [5, 6, 11, 61]. Amongst recent works, a complete method for generating polynomial

invariants for extended P-solvable loops is presented in [44]. Another recent work [24] generates

polynomial invariants for programs with arbitrary control flow, building on an earlier heuristic

framework in [51]. The approach is complete for solvable transition ideals, a generalisation of

solvable polynomial maps [67]. However, the Gröbner basis calculations in [24, Algorithm 3]

dominate the running time, making the computation exponential [24, pg.21]. Recently, invariant

generation for moment-computable probabilistic loops was shown to be decidable [62]; the proof

employs a reduction to invariant generation in our setting (that of simple linear loops).

2.2 Invariant Verification
In this subsection, we consider two decision problems concerning invariants for a given loop. The

first problem asks whether a set is an inductive invariant; the second problem asks whether a set is

an invariant, not necessarily inductive.

Determining whether an input ideal defines an inductive set for a given loop is in principal

a simple task, reducible to radical membership testing. Recall that the radical of a polynomial

ideal 𝐼 ⊆ Q[𝒙], denoted by

√
𝐼 , is obtained by taking all roots of its elements within Q[𝒙]. By

Hilbert’s Nullstellensatz, if a variety𝑉 is such that𝑉 = 𝑉 (𝐼), the only polynomials that vanish on𝑉

are those in

√
𝐼 . The radical membership test asks to determine whether a polynomial 𝑃 (𝒙) ∈ Q[𝒙]

belongs to the radical of a given ideal 𝐼 ⊆ Q[𝒙] (see [23, Proposition 8, Chapter 4]). Radical

membership testing reduces to the satisfiability problem of polynomial equations over Q. This is a

byproduct of the Rabinowitsch trick, see [23, Chapter 4. §2] for example, which shows that 𝑓 ∈
√
𝐼

if and only if 𝑉 (⟨𝐼 ∪ {1 − 𝑦𝑓 }⟩) = ∅ where 𝐼 ⊆ Q[𝒙] and ⟨𝐼 ∪ {1 − 𝑦𝑓 }⟩ ∈ Q[𝒙, 𝑦].
The satisfiability problem for polynomial equations over Q, also known as the Hilbert’s Null-

stellensatz problem (HN for short), takes as an input a set 𝑆 of polynomial equations and asks to

determine whether the system is satisfiable, i.e., whether the variety of the ideal ⟨𝑆⟩ is non-empty.

It is known that the HN problem admits an AM protocol [52] under the generalised Riemann

hypothesis. This result is independent of the representation of the input polynomials.

By the above, an algorithm to decide whether an input ideal ⟨𝑆⟩ ⊆ Q[𝒙] defines an inductive

set for a given loop ⟨𝑀,𝜶 ⟩ must (1) determine whether 𝜶 satisfies all relations in 𝑆 , and (2) test

whether 𝑃 (𝑀𝒙) ∈
√︁
⟨𝑆⟩ for all polynomials 𝑃 (𝒙) ∈ 𝑆 . Both of these tests algorithmically reduce

to HN. An alternative approach is to write a query in the existential theory of reals; this leads to

an unconditional ∃R upper bound. We note in passing that for a fixed number of variables such

queries can be decided in polynomial time.

Determining whether an ideal defines an inductive set for a linear loop is less demanding than

determining whether an ideal defines an invariant (not necessarily inductive). We call the latter

the invariant verification problem. A conceptually simple algorithm for the invariant verification

problem is a backward algorithm, used in similar settings in [11, 13, 47, 48], which examines the

ascending chain 𝐼0 ⊆ 𝐼1 ⊆ 𝐼2 ⊆ · · · of ideals where
𝐼0 = ⟨𝑆⟩ and 𝐼𝑖 = ⟨𝑃 (𝑀 𝑗𝒙) : 𝑃 ∈ 𝑆, 𝑗 ≤ 𝑖⟩, (2)

for all 𝑖 ∈ N. By virtue of Q[𝒙] being Noetherian, the ascending sequence of nested ideals in (2)

stabilises. In our setting, by properties of linear transformations and the well-known fingerprinting

procedure for solving Algebraic Circuit Identity Testing (ACIT) [3], we obtain the following.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

26:8 Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and Anton Varonka

Proposition 2.1. Given 𝑆 ⊆ Q[𝒙] in dense representation and a loop with orbit O, verifying
whether O ⊆ 𝑉 (𝑆) is coNP-complete.

The above naïve algorithm results in an inefficient EXPSPACE upper bound when the polynomials

in 𝑆 have sparse representation. One of our contributions shows that invariant verification is in

PSPACE, even if the input polynomials are given in sparse representation. Our procedure also

verifies whether O = 𝑉 (𝑆), a task that cannot be performed through the study of the ideal chain

in (2).

Proposition 2.2. Given 𝑆 ⊆ Q[𝒙] and a loop with the orbit O, verifying whether O ⊆ 𝑉 (𝑆) holds
is in PSPACE, and is coNP-hard. Similarly, the test O = 𝑉 (𝑆) can be performed in PSPACE. For all fixed
𝑑 ∈ N, both problems for 𝑑-dimensional loops are decidable in polynomial time.

Related Work: Invariant Verification. Invariant verification in the setting of matrix semigroups

(a non-deterministic model of loop programs) was shown to be decidable by Dräger [29]. While

the program model considered in [29] is more expressive than linear loops (which essentially

correspond to matrix semigroups with a single generator), the class of invariants is restricted—the

invariants therein are given by conjunctions of linear equations.

2.3 Weak and Strong Loop Synthesis
Another application for the computation of strongest invariants, is the complementary view of

synthesising linear loops from a given invariant. Most generally, the loop synthesis problem asks,

given a polynomial ideal with generating set 𝑆 ⊆ Q[𝒙], whether there exists a linear loop with (an

infinite) orbit O such that O ⊆ 𝑉 (𝑆). This problem and its variants have recently received much

attention [37, 41, 42]; see the discussion in related works below.

A recently defined variant of the loop synthesis problem sharpens the inclusion of O in 𝑉 (𝑆) by
requiring equality of these two varieties. We call this variant the strong synthesis problem, whereas

we may refer to the loop synthesis problem as the weak synthesis problem. As an instance, recall the

ideal 𝐼 B ⟨(𝑦2 + 𝑥𝑦 − 𝑥2)2 − 𝑧2⟩ generated by the polynomial in (1). Given 𝐼 as the input, the loop

program in Fig. 2 is a witness for weak synthesis but not for strong synthesis. Indeed, the strongest

polynomial invariant for the loop in Fig. 2 is the ideal generated by 𝐽 = ⟨𝑦2 + 𝑥𝑦 − 𝑥2 − 𝑧, 𝑧2 − 1⟩
for which 𝐼 is a strict subset (meaning that 𝑉 (𝐽) ⊂ 𝑉 (𝐼)).

We study both weak and strong synthesis for loops over Z and Q. An informal discussion in [37,

Remark 2.8] connects loop synthesis and Diophantine equations. The immediate observation in

Lemma 2.3 formalises this connection. The proof of Lemma 2.3 is given in Appendix B of [1].

Lemma 2.3. The weak synthesis problem over {Z,Q} is as hard as Hilbert’s Tenth problem (HTP)
over {Z,Q}, even in fixed dimension.

HTP over Z was shown undecidable by Matiyasevich in 1970 [58], even for polynomial equations

with fixed number of variables (as small as 11 variables) [66]. The decidability of HTP over Q
is a long-standing open problem in the theory of Diophantine Equations [68] and in arithmetic

geometry [66]. Lemma 2.3 implies undecidability of the weak synthesis of loops over Z. In [26], it

is shown that the problem of asking whether a variety has infinitely many integer points is as hard

as HTP over Z. The reduction in [26] can be extended naturally to show that the problem of asking

whether a variety has infinitely many rational points is also as hard as HTP over Q. The strong
synthesis of loops over Z and Q has the flavour of this latter problem, and we leave the decidability

open.

Bit-bounded Synthesis. The HTP-hardness of the (weak) synthesis problem motivates the fol-

lowing notion of bit-bounded synthesis. The bitsize of a rational number
𝑎
𝑏
, with 𝑎 and 𝑏 co-prime

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

Simple Linear Loops: Algebraic Invariants and Applications 26:9

integers, is log(|𝑎 |) + log(|𝑏 |). Given a linear loop L = ⟨𝑀,𝜶 ⟩, we say that it is 𝐵-bounded rational,
if all entries of𝑀 and 𝛼 are rational numbers with bitsize at most 𝐵.3

The strong bit-bounded synthesis problem asks, given a set 𝑆 ⊆ Q[𝒙] of polynomials and a

bound 𝐵 ∈ N, whether there exists some 𝐵-bounded pair ⟨𝑀,𝜶 ⟩ with orbit O such that O = 𝑉 (𝑆).
Similarly, the weak bit-bounded synthesis problem asks whether O ⊆ 𝑉 (𝑆) holds.

We place the bit-bounded variants of loop synthesis, for both strong and weak cases, in PSPACE
through the invariant verification problem. We also establish complexity lower bounds for these

problems through reductions from 3SAT and Unique SAT.

Proposition 2.4. The strong and weak bit-bounded synthesis problems over {Q,Z} lie in PSPACE.
The weak variant is NP-hard; and the strong variant is NP-hard under randomised reductions.

When synthesising loops with a fixed dimension 𝑑 ∈ N, we obtain an NP upper bound. For weak

synthesis over Z we show that the problem is complete for the class NP.

Proposition 2.5. For all fixed 𝑑 ∈ N, the strong and weak bit-bounded synthesis problems in
dimension 𝑑 over {Q,Z} are in NP. Moreover, weak bit-bounded synthesis over Z is NP-complete.

Related Work: Loop Synthesis. Program synthesis, conceived as the problem of generating

constraints that relate unknowns and enforce correctness requirements, has received significant

attention [4, 36]. Recent works focusing on polynomial invariants [37, 41, 42, 50] have leveraged

algebraic techniques to recast the problem of loop synthesis as that of solving an algebraic system

of recurrence sequences. The template-based procedure in the work by Humenberger et al. [41,

42] finds the solution to this system of recurrences by solving a polynomial constraint problem;

however, we note their solutions result in loops defined over Q. A Diophantine approach to loop

synthesis is employed in [37]; therein those authors synthesise loops when given a single quadratic

equation as an input. Another recent work [50] gave a procedure for synthesising loops for an

input binomial ideal.

Matrix completion is the task of completing a partially defined matrix according to a given

specification [45]. Perhaps the most notable variant is the Netflix Problem [21] (an application in

collaborative filtering [34]). In this application the goal is to complete a matrix of movie recom-

mendations so as to minimise the rank (or some proxy thereof such as the nuclear norm). This

is reminiscent of template-based approaches towards program synthesis [70]. In the language of

loop synthesis, the partial matrix represents an incomplete program fragment and the task is to

complete the program so as to guarantee certain desired polynomial invariants.

3 Algebraic Closure of Linear Loops
Our goal in this section is to construct the strongest algebraic invariant of an input loop. Fix a

loop L with update matrix𝑀 ∈ Q𝑑×𝑑 and initial vector 𝜶 ∈ Q𝑑 . We define the size of L as 𝑑 + ℓ ,
where ℓ is the bitsize of the entries of𝑀 and 𝜶 .

As in [28, 31, 39, 63], our first step is to compute the Jordan normal form of the update matrix𝑀

via a Jordan decomposition. A Jordan decomposition of 𝑀 comprises a Jordan matrix 𝐽 , and a

change-of-basis matrix 𝑃 which satisfy𝑀 = 𝑃 𝐽𝑃−1. Recall that the matrix 𝐽 is such that the only

nonzero entries of 𝐽 are on its diagonal and its superdiagonal, and that the matrix 𝑃 in the Jordan

decomposition is not unique. In Section 3.1, roughly speaking, we show that 𝑃 can be chosen such

that 𝑃−1𝜶 is a binary vector. This simplifies the computation of the invariant equations, derived

in Section 3.2, and our proposed algorithms. We analyse the computational complexity of the

algorithm in Section 3.3. Worked examples demonstrating the algorithm are given in Section 4.

3𝐵-boundedness does not place any restrictions on higher powers of𝑀 nor the orbit of the associated loop L.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

26:10 Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and Anton Varonka

3.1 A Convenient Jordan Block Decomposition
The Jordan normal form 𝐽 ∈ Q𝑑×𝑑 of𝑀 is given by the direct sum of several so-called Jordan blocks

𝐽1, . . . , 𝐽𝑠 . Each block 𝐽𝑖 is a square matrix of dimension 𝑑𝑖 as follows:

𝐽𝑖 B

©«
𝜆𝑖 1

. . .
. . .

𝜆𝑖 1

𝜆𝑖

ª®®®®¬
.

The multiset {𝜆1, . . . , 𝜆𝑠 } of algebraic numbers is equal to the multiset of eigenvalues of𝑀 . Indeed,

for each eigenvalue 𝜆𝑖 the sum of the sizes of all Jordan blocks corresponding to 𝜆𝑖 is its algebraic

multiplicity. Recall that 𝐽 is unique up to the ordering of its Jordan blocks.

A Jordan decomposition of𝑀 , denoted by (𝑃, 𝐽), consists of the associated Jordan normal form 𝐽

and an invertible change-of-basis matrix 𝑃 ∈ Q𝑑×𝑑 for which𝑀 = 𝑃 𝐽𝑃−1. According to the 𝑠 blocks
of (𝑃, 𝐽), we can partition 𝑑-dimensional vectors 𝒗 into 𝑠 block vectors 𝒗𝑖 such that

𝒗 B (𝒗1, . . . , 𝒗𝑠) (3)

where each 𝒗𝑖 is a vector of size 𝑑𝑖 . The fingerprint of 𝜶 with respect to (𝑃, 𝐽) is defined as a binary

vector 𝜷 ∈ {0, 1}𝑑 where, for each block 𝜷𝑖 = (𝛽𝑖,1, . . . , 𝛽𝑖,𝑑𝑖) with 𝑖 ∈ {1, . . . , 𝑠},
• the entry 𝛽𝑖, 𝑗 is 1 if and only if 𝑗 is the largest index such that 𝛼𝑖, 𝑗 is nonzero.

We define a Jordan decomposition (𝑃, 𝐽) as convenient for ⟨𝑀,𝜶 ⟩ if 𝑃−1𝜶 is the fingerprint of 𝜶
with respect to the decomposition.

Lemma 3.1. For a loop ⟨𝑀,𝜶 ⟩ and any Jordan decomposition (𝑃, 𝐽) of 𝑀 , there exists a matrix
𝑈 ∈ GL𝑑 (Q) such that (𝑃𝑈 −1, 𝐽) is a convenient Jordan decomposition for ⟨𝑀,𝜶 ⟩. The computation
of𝑈 is in polynomial time in the size of the loop.

Proof. Let (𝑃, 𝐽) be a Jordan decomposition of𝑀 , wherein all algebraic numbers are represented

symbolically. The computation of (𝑃, 𝐽) and 𝑃−1 can be performed in polynomial time [19, 20].

Write 𝐽 = 𝐽1 ⊕ · · · ⊕ 𝐽𝑠 as a direct sum of Jordan blocks. Consider the corresponding block

decomposition of the vector 𝑃−1𝜶 = 𝜶1 ⊕ · · · ⊕ 𝜶𝑠 . We construct a matrix 𝑈 = 𝑈1 ⊕ · · · ⊕ 𝑈𝑠

such that 𝑈𝑃−1𝜶 ∈ {0, 1}𝑑 and 𝑈 commutes with 𝐽 . To this end, suppose that 𝜶𝑖 is given by

𝜶𝑖 = (𝛼1,𝑖 , . . . , 𝛼𝑟,𝑖 , 0 . . . , 0)T such that 𝛼𝑟,𝑖 ≠ 0. We define

𝑈𝑖 B

©«

𝑏𝑟 · · · 𝑏1 · · · 0

. . .
. . .

...

. . . 𝑏1
. . .

...

𝑏𝑟

ª®®®®®®®®¬
such that each 𝑈𝑖 is upper triangular and Toeplitz (meaning that along each diagonal the entries

are constant). The entries 𝑏1, . . . , 𝑏𝑟 are chosen such that 𝑈𝑖𝜶𝑖 = 𝒆𝑟 , where 𝒆𝑟 is the standard unit

vector with 1 in the 𝑟 th position. Specifically, 𝑏𝑟 = 1/𝛼𝑟,𝑖 , and the other 𝑏 𝑗 ’s are defined one-by-one

for 𝑗 = 𝑟 − 1, . . . , 1 by back substitution.

By construction we have𝑈𝑃−1𝜶 ∈ {0, 1}𝑑 . By a well-known property of upper triangular Toeplitz
matrices, each 𝑈𝑖 commutes with 𝐽𝑖 , implying that 𝐽𝑈 = 𝑈 𝐽 . Define 𝑄 B 𝑃𝑈 −1, and observe that

𝑀 = 𝑃 𝐽𝑃−1 = 𝑄𝐽𝑄−1. Moreover, 𝑄−1𝜶 ∈ {0, 1}𝑑 holds and 𝑄−1𝜶 is the fingerprint of 𝜶 . Hence,

the Jordan decomposition (𝑃𝑈 −1, 𝐽) is convenient for ⟨𝑀,𝜶 ⟩. □

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

Simple Linear Loops: Algebraic Invariants and Applications 26:11

3.2 Computing the Strongest Algebraic Invariant
Let (𝑃, 𝐽) be an arbitrary Jordan decomposition of𝑀 such that all Jordan blocks with zero eigenvalue

appear first. Consider the orbit O B {𝑀𝑛𝜶 : 𝑛 ∈ N} of the loop. We are interested in computing

the polynomials that define the algebraic set O = {𝑀𝑛𝜶 : 𝑛 ∈ N}. Since 𝑀𝑛𝜶 = 𝑃 𝐽𝑛𝑃−1𝜶 holds

for all 𝑛 ∈ N, we compute the polynomials that define O in two steps:

• first, we can compute the polynomials that define the algebraic set {𝐽𝑛 (𝑃−1𝜶) : 𝑛 ∈ N} and
• second, we apply the invertible linear transformation 𝑃 .

For the decomposition (𝑃, 𝐽) of𝑀 , let 𝑁 be the direct sum of all Jordan blocks associated with

eigenvalue 0. Let 𝑑0 be the dimension of 𝑁 ; that is, the algebraic multiplicity of 0. Write 𝐽1, . . . , 𝐽𝑠
for all Jordan blocks with associated nonzero eigenvalues 𝜆1, . . . , 𝜆𝑠 , respectively. Denote by 𝑑𝑖 the

dimension of the Jordan blocks 𝐽𝑖 . Thus 𝐽 = 𝑁 ⊕ 𝐽1 ⊕ · · · ⊕ 𝐽𝑠 .

The above-mentioned matrix 𝑁 is nilpotent, i.e., there is an integer𝑚 ≤ 𝑑0 such that 𝑁𝑚 = 0.

Thus the set {𝑁𝑛
: 𝑛 ∈ N} is finite, which in turn implies that the algebraic set {𝐽𝑛 (𝑃−1𝜶) : 𝑛 ∈ N}

contains at most𝑚 isolated points:

{𝑃−1𝜶 , 𝐽𝑃−1𝜶 , . . . , 𝐽𝑚−1𝑃−1𝜶 }. (4)

Write 𝑛0 for the number of distinct isolated points in the above set. Define 𝜸 B 𝐽𝑛0 (𝑃−1𝜶). We

obtain 𝐽 from 𝐽 = 𝑁 ⊕ 𝐽1 ⊕ · · · ⊕ 𝐽𝑠 by replacing 𝑁 with the zero matrix (of size 𝑑0 ×𝑑0). By (4) and
the definitions of 𝜸 and 𝐽 , the algebraic set {𝐽𝑛 (𝑃−1𝜶) : 𝑛 ∈ N} decomposes into

{𝐽 𝑖𝑃−1𝜶 : 0 ≤ 𝑖 < 𝑛0} ∪ {𝐽𝑛 𝜸 : 𝑛 ∈ N}.

This allows us to first focus on the Zariski closure of the loop with the invertible transition

matrix 𝐽1 ⊕ · · · ⊕ 𝐽𝑠 , and then recover O.
Towards this goal, we apply Lemma 3.1 to ⟨𝐽 ,𝜸⟩ in order to compute the matrix 𝑈 for which

(𝑃𝑈 −1, 𝐽) is a convenient Jordan decomposition for ⟨𝐽 ,𝜸⟩, which by construction respects the

ordering of the Jordan blocks in 𝐽 . Define 𝜷 B 𝑈𝜸 . Consider the partition of 𝜷 according to the

decomposition (𝑃, 𝐽), defined in (3). Denote by 𝜷𝑖 the block of 𝜷 that corresponds to the Jordan

block 𝐽𝑖 . Thanks to the convenient Jordan decomposition, each block 𝜷𝑖 is either a zero vector, or a

standard unit vector. For block 𝜷𝑖 , we refer to 𝑘𝑖 as the index of the nonzero entry 𝛽𝑖,𝑘𝑖 of 𝜷𝑖 . (We

assume 𝑘𝑖 = 0 in the case that 𝛽𝑖 is a zero vector.)

Consider 𝑖 ∈ {1, . . . , 𝑠} such that the block 𝜷𝑖 is a standard unit vector. By analysing 𝐽𝑛𝑖 𝜷𝑖 , we
find that

𝐽𝑛𝑖 𝜷𝑖 =

©«

(
𝑛

𝑘𝑖−1
)
𝜆
𝑛−𝑘𝑖+1
𝑖(

𝑛
𝑘𝑖−2

)
𝜆
𝑛−𝑘𝑖+2
𝑖

...

𝑛𝜆𝑛−1𝑖

𝜆𝑛𝑖
0

...

0

ª®®®®®®®®®®®®®®¬
(5)

holds for all 𝑛 ∈ N.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

26:12 Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and Anton Varonka

At the next step we introduce a linear transformation 𝑅 B 𝐼𝑑0 ⊕ 𝑅1 ⊕ · · · ⊕ 𝑅𝑠 to simplify (5) such

that

𝑅𝑖 𝐽
𝑛
𝑖 𝜷𝑖 =

©«

𝑛𝑘𝑖−1𝜆𝑛𝑖
𝑛𝑘𝑖−2𝜆𝑛𝑖

...

𝑛𝜆𝑛𝑖
𝜆𝑛𝑖
0

...

0

ª®®®®®®®®®®®®®¬
. (6)

Recall the combinatorial identity

𝑛𝑘 =

𝑘∑︁
𝑖=1

𝑖!

{
𝑘

𝑖

}
·
(
𝑛

𝑖

)
=

𝑘∑︁
𝑖=1

𝑐𝑘,𝑖

(
𝑛

𝑖

)
, (7)

where

{
𝑘
𝑖

}
=

𝑐𝑘,𝑖
𝑖!

is the Stirling number of the second kind. Since the Stirling numbers are defined

recursively by the relation 𝑐𝑘+1,𝑖 = 𝑖 (𝑐𝑘,𝑖 + 𝑐𝑘,𝑖−1), we can compute the coefficients in 𝑅𝑖 , starting

with 𝑐1,1 = · · · = 𝑐𝑘𝑖−1,1 = 1, in polynomial time. The block matrix 𝑅𝑖 is defined below.

𝑅𝑖 B

©«

𝑐𝑘𝑖−1,𝑘𝑖−1𝜆
𝑘𝑖−1
𝑖

𝑐𝑘𝑖−1,𝑘𝑖−2𝜆
𝑘𝑖−2
𝑖

. . . 𝑐𝑘𝑖−1,1𝜆𝑖 0

𝑐𝑘𝑖−2,𝑘𝑖−2𝜆
𝑘𝑖−2
𝑖

𝑐𝑘𝑖−2,1𝜆𝑖
...

...

. . .

𝑐2,2𝜆
2

𝑖 𝑐2,1𝜆𝑖
𝑐1,1𝜆𝑖 0

1

𝐼𝑑𝑖−𝑘𝑖

ª®®®®®®®®®®®®®®¬
. (8)

One can see that (6) is a direct consequence of (5), (7) and (8). We note that, by construction, 𝑅 is

an invertible matrix.

Let 𝒙 = (𝑥1, . . . , 𝑥𝑑) where 𝑑 is the dimension of the matrix 𝑀 . Consider the partition of 𝒙 =

(𝒙0, . . . , 𝒙𝑠) according to the decomposition (𝑃, 𝐽), defined in (3). Let 𝒙𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑑𝑖) be the
block vector corresponding to the Jordan block 𝐽𝑖 with 𝑖 ∈ {1, . . . , 𝑠} and 𝒙0 = (𝑥0,1, . . . , 𝑥0,𝑑0) the
concatenation of the block vectors corresponding to Jordan blocks with zero eigenvalues.

In the following, we construct a set of polynomials in Q[𝒙] that define the variety

𝑅 · {𝐽𝑛 𝜷 : 𝑛 ∈ N}, (9)

which in turn helps us define the set of polynomials for the algebraic closure of the orbit of ⟨𝑀,𝜶 ⟩.
Recall that the only nonzero entry of the block 𝜷𝑖 is indexed by 𝑘𝑖 if 𝜷𝑖 is a standard unit vector,

and 𝑘𝑖 = 0 otherwise. Define the set 𝑆1 of polynomials in Q[𝑥1,𝑘1 , . . . , 𝑥𝑠,𝑘𝑠] such that

𝑉 (𝑆1) = {(𝜆𝑛
1
, . . . , 𝜆𝑛

𝑖
, . . . , 𝜆𝑛𝑠) : 𝑛 ∈ N; 𝜷𝑖 ≠ 0}. (10)

The task of computing the defining polynomials is well-understood, see for example [28, 31, 39,

63] and Appendix A in [1] for details. The underlying idea is to compute a basis for the lattice of

multiplicity relations between the eigenvalues.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

Simple Linear Loops: Algebraic Invariants and Applications 26:13

For each Jordan block 𝐽𝑖 with 𝑖 ∈ {1, . . . , 𝑠}, define the set 𝑆2,𝑖 of polynomials in Q[𝒙𝑖] as follows:

𝑆2,𝑖 B

{
{𝑥 𝑗

𝑖,𝑘𝑖−1 − 𝑥𝑖,𝑘𝑖− 𝑗𝑥
𝑗−1
𝑖,𝑘𝑖

: 2 ≤ 𝑗 ≤ 𝑘𝑖 − 1} if 𝑘𝑖 ≥ 3,

∅ otherwise.

This set captures the relations between the nonzero entries of the 𝑖th block, as in (6).

For each pair of distinct Jordan blocks 𝐽𝑖 , 𝐽 𝑗 , with 𝑖, 𝑗 ∈ {1, . . . , 𝑠}, we define the set 𝑆3,𝑖, 𝑗 of

polynomials in Q[𝑥𝑖,𝑘𝑖−1, 𝑥𝑖,𝑘𝑖 , 𝑥 𝑗,𝑘 𝑗−1, 𝑥 𝑗,𝑘 𝑗
] as follows:

𝑆3,𝑖, 𝑗 B

{
{𝑥𝑖,𝑘𝑖−1𝑥 𝑗,𝑘 𝑗

− 𝑥 𝑗,𝑘 𝑗−1𝑥𝑖,𝑘𝑖 } if 𝑘𝑖 ≥ 2 and 𝑘 𝑗 ≥ 2,

∅ otherwise.

This set defines the relations between the two blocks 𝐽𝑖 and 𝐽 𝑗 . Such a relation only exists when in

both blocks 𝜷𝑖 and 𝜷 𝑗 , the indices 𝑘𝑖 and 𝑘 𝑗 corresponding to the nonzero entries are both greater

than or equal 2.

Define the set 𝑆4 of polynomials in Q[𝒙] such that

𝑆4 B {𝑥0, 𝑗 : 1 ≤ 𝑗 ≤ 𝑑0} ∪ {𝑥𝑖, 𝑗 : 1 ≤ 𝑖 ≤ 𝑠, 𝑘𝑖 < 𝑗 ≤ 𝑑𝑖 }
captures the zero entries. Define 𝐼𝑅 B

〈
𝑆1, 𝑆2,𝑖 , 𝑆3,𝑖, 𝑗 , 𝑆4 : 𝑖, 𝑗 ∈ {1, . . . , 𝑠}

〉
. We are now in the

position to prove the following:

Claim 3.2. 𝑉 (𝐼𝑅) = 𝑅 · {𝐽𝑛 𝜷 : 𝑛 ∈ N}.

Proof. Let 𝒗𝑛 be the vector obtained from 𝐽𝑛 𝜸 under the transformation 𝑅, shown explicitly

in (6). We consider the block decomposition of 𝒗𝑛 according to (𝑃, 𝐽).
We did not precisely define the set of polynomials in 𝑆1 as we borrow the technology developed

in [28, Lemma 6] to construct 𝑆1 defining the variety in (10). The polynomials in 𝑆1 are defined over

the variables 𝑥1,𝑘1 , . . . , 𝑥𝑠,𝑘𝑠 . This choice is justified by the fact that in the block corresponding to

the Jordan block 𝐽𝑖 of 𝒗𝑛 the 𝑘𝑖 th entry is 𝜆𝑛𝑖 .

For each Jordan block 𝐽𝑖 , the set 𝑆2,𝑖 reflects the relations between corresponding entries in 𝒗𝑛 .
Inspecting (6) again for the entries of 𝒗𝑛 , the following identity(

𝑛𝜆𝑛𝑖
) 𝑗 − 𝑛 𝑗𝜆𝑛𝑖

(
𝜆𝑛𝑖

) 𝑗−1
= 0

is realised by 𝑥
𝑗

𝑖,𝑘𝑖−1 − 𝑥𝑖,𝑘𝑖− 𝑗 · 𝑥
𝑗−1
𝑖,𝑘𝑖

, with 𝑗 ∈ {2, . . . , 𝑘𝑖 − 1}.
Furthermore, for each pair of distinct Jordan blocks 𝐽𝑖 , 𝐽 𝑗 , with 𝑖, 𝑗 ∈ {1, . . . , 𝑠}, the set 𝑆3,𝑖, 𝑗

encompasses the relations between the two blocks. As mentioned above, there is no relation

between 𝐽𝑖 and 𝐽 𝑗 if either 𝑘𝑖 < 2 or 𝑘 𝑗 < 2. Otherwise, the identity

(𝑛𝜆𝑛𝑖) (𝜆𝑛𝑗) − (𝑛𝜆𝑛𝑗) (𝜆𝑛𝑖) = 0

is realised by 𝑥𝑖,𝑘𝑖−1𝑥 𝑗,𝑘 𝑗
−𝑥 𝑗,𝑘 𝑗−1𝑥𝑖,𝑘𝑖 . The set 𝑆4 reflects the entries in 𝒗𝑛 that are identically zero. □

In [31] it was shown that each irreducible component of the variety defined by a cyclic matrix

semigroup is isomorphic to the Cartesian product of a toric variety and a normal rational curve

(excluding a number of isolated points). Our contribution in this regard is to show an explicit

construction of that isomorphism (in the case of loops) can be computed in polynomial time using

the matrices 𝑅 and𝑈 . In (6) we read-off the effect of the Cartesian product of a toric variety and a

normal rational curve.

It remains to define a generating set of polynomials for O from the ideal 𝐼𝑅 . From the steps

detailed in the construction, we observe that

{𝑀𝑛𝜶 : 𝑛 ∈ N} = 𝑃𝑈 −1𝑅−1𝑅 · {𝐽𝑛 𝜷 : 𝑛 ∈ N} ∪ {𝑀𝑖𝜶 : 0 ≤ 𝑖 < 𝑛0}. (11)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

26:14 Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and Anton Varonka

By this equality, to obtain the polynomials defining O,
• we first compute ideals I0, . . . ,I𝑛0−1, each defining one of the 𝑛0 ≤ 𝑑 isolated points in

{𝑀𝑖𝜶 : 0 ≤ 𝑖 < 𝑛0},
• next we obtain an idealJ by applying the transformation 𝑃𝑈 −1𝑅−1 to the vector of variables 𝒙
for each polynomial in the set

𝑆 B (𝑆1 ∪ 𝑆4) ∪
⋃

𝑖, 𝑗∈{1,...,𝑠 }
𝑖≠𝑗

(𝑆2,𝑖 ∪ 𝑆3,𝑖, 𝑗) (12)

defining𝑉 (𝐼𝑅). This completes the construction of the strongest algebraic invariant of the loop ⟨𝑀,𝜶 ⟩
as it is simply𝑉 (I0∩· · ·∩I𝑛0−1∩J). For complexity purposes, in particular to avoid an exponential

blow-up, we choose to output the generators of the I𝑖 and J separately. (This choice is crucial for

the obtained PSPACE bound in Proposition 2.2.)

The obtained polynomials are not in Q[𝒙] but in 𝑘 [𝒙] where 𝑘 = Q(𝜆1, . . . , 𝜆𝑠) is the number

field obtained by adjoining the eigenvalues toQ. Furthermore, the eigenvalues are given in symbolic

presentation. As an extra step (not necessary to obtain the complexity bound) we convert the

coefficient of polynomials to integers. We introduce the variables 𝑦𝑖 , one for each eigenvalue 𝜆𝑖 .

Recall that each 𝜆𝑖 appears with all its Galois conjugates, and its degree is bounded from above by 𝑑 .

For brevity, given a Galois automorphism 𝜎 of the fieldQ(𝜆𝑖) we denote by 𝜎 (𝑦𝑖) the variable among

𝑦1, . . . , 𝑦𝑠 corresponding to 𝜎 (𝜆𝑖). For each 𝜆𝑖 , write𝑚𝜆𝑖 =
∑𝑛

𝑘=0
𝑎𝑘𝑥

𝑘
for the minimal polynomial.

By basic algebra, we know that the set of equations

𝑎𝑛−1 = −
∑︁

𝜎∈Gal(Q(𝜆𝑖)/Q)
𝜎 (𝑦𝑖)

𝑎𝑛−2 =
∑︁

𝜎,𝜎 ′∈Gal(Q(𝜆𝑖)/Q)
𝜎 (𝑦𝑖) 𝜎 ′ (𝑦𝑖)

...

𝑎0 = (−1)𝑛
∏

𝜎∈Gal(Q(𝜆𝑖)/Q)
𝜎 (𝑦𝑖)

(13)

is such that the solutions to variables 𝜎 (𝑦𝑖) define the set of all conjugates of 𝜆𝑖 .
Define the rewrite rules 𝜏 := {𝜆𝑖 → 𝑦𝑖 , 𝑥𝑖,𝑘𝑖 → 𝑦𝑖 | 1 ≤ 𝑖 ≤ 𝑠}. Similarly to the above, we define

the ideal Y ∈ Q[𝒙, 𝑦1, . . . , 𝑦𝑠] obtained by applying the transformation 𝜏 (𝑃𝑈 −1𝑅−1) to the vector

of variables 𝒙 for each polynomial in (12), the set of polynomials given in (13) for each 𝜆𝑖 , the set

𝜏 (𝑆1) of multiplicity relations expressed in 𝑦𝑖 , together with 𝜏 (𝑃 𝐽𝑃−1) −𝑀 and 𝜏 (𝑈𝑃−1)𝜶 − 𝜷 .
Observe that 𝑉 (J) = 𝜋 (𝑉 (Y)) where 𝜋 is the projection map onto the 𝑥𝑖 coordinates, see

Lemma B.1 in [1, Appendix B] for a detailed proof.

3.3 Computational Complexity
We now proceed with the statement and proof of our main result.

Theorem 1.1. Let ⟨𝑀,𝜶 ⟩ be a rational loop with orbit O. A set of polynomials defining O is
computable in PSPACE. For all fixed 𝑑 ∈ N, the computation of O for 𝑑-dimensional loops is in
polynomial time.

Proof. The construction detailed in Section 3.2 can be performed in polynomial time, modulo

the computation of the set 𝑆1 of polynomials defining {(𝜆𝑛
1
, . . . , 𝜆𝑛

𝑖
, . . . , 𝜆𝑛𝑠) : 𝑛 ∈ N; 𝜷𝑖 ≠ 0} in (10).

Indeed, every rational square matrix has a Jordan decomposition that can be computed in

polynomial time [19], and in polynomial time we can shuffle the decomposition so that the Jordan

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

Simple Linear Loops: Algebraic Invariants and Applications 26:15

blocks with zero eigenvalues appear first. Due to the symbolic representation of eigenvalues [22,

Section 4.2.1], all constructions in the remaining steps are performed in polynomial time. This

includes the computation of𝑈 obtained by applying Lemma 3.1 and the computation of its inverse.

It remains to discuss the computation of 𝑆1. Here, we employ the architecture developed in

[28, Lemma 6]. Therein, the problem of computing the polynomial ideal that defines the closure

{(𝜆𝑛
1
, . . . , 𝜆𝑛

𝑖
, . . . , 𝜆𝑛𝑠) : 𝑛 ∈ N; 𝜷𝑖 ≠ 0} reduces to finding a set of generators for the associated

lattice 𝐿. To obtain the complexity bounds, we rely on a theorem of Masser [57] that gives an

explicit upper bound on the magnitude of the components of a basis for 𝐿.

Following [38], membership of a tuple 𝒗 ∈ 𝐿 is in ∃R, using a decision procedure for the existential
theory of the reals. In combination with Masser’s bound, it follows that we can compute a basis

for 𝐿 in PSPACE by brute-force search if the dimension is not fixed, and in polynomial time when

the dimension is fixed. See Appendix A in [1] for further details. □

In the construction above, the input matrix-vector pair ⟨𝑀,𝜶 ⟩ encodes a loop with rational

constants. Our procedures naturally extend to cases where the loop constants are algebraic numbers.

This is because algebraic numbers can be expressed in the power basis of their splitting field, with

each number represented as a vector of rational coefficients. This encoding increases the loop’s

dimension by a factor equal to the degree of the splitting field over Q. For further details about
computations with algebraic numbers see [59].

4 Worked Examples
We illustrate the multi-step procedure of Section 3 with three worked examples. The computations

involved in preparing these examples were performed in Macaulay2 [35].

The orbit closure of the loop in Example 4.1 has three isolated points. By design, this example

highlights the role of the convenient Jordan form and the transformation 𝑅 in computing the ideal

defining the invariant. As the update matrix in this example has only a single nonzero eigenvalue,

the lattice of multiplicity relations is not relevant.

Example 4.1. We run our procedure for generating the strongest algebraic invariant for the loop

below.

Input: (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) ← 1

16
(0, 8, 14,−5, 0, 0)

while true do

©«

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

ª®®®®®®®¬
← 1

14

©«

42 0 −7 −42 21 28

−50 10 0 2 −2 −20
−26 −20 28 52 −10 −30
−4 −2 0 −6 6 4

14 0 −14 −28 28 14

−38 −12 14 48 −20 −18

ª®®®®®®®¬

©«

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

ª®®®®®®®¬
end while

Loop 1. Loop defined by the tuple ⟨𝑀,𝜶 ⟩

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

26:16 Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and Anton Varonka

The tuple (𝑃, 𝐽) is a Jordan decomposition of the update matrix𝑀 , where

𝑃 =

©«

0 −1 0 0 −1 −1
2 0 0 1 1 1

1 1 −1 −1 −1 1

1 0 1 0 0 0

1 1 1 1 −1 −1
1 1 0 −1 1 1

ª®®®®®®®¬
and 𝐽 =

©«

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 2 1 0

0 0 0 0 2 1

0 0 0 0 0 2

ª®®®®®®®¬
.

The matrix 𝐽 decomposes into two blocks 𝐽 = 𝑁 ⊕ 𝐽1, where the block 𝑁 is the nilpotent block

associated with the eigenvalue 0 and 𝐽1 is the block associated with the eigenvalue 2. Since 𝑁 3 = 0,

we deduce that O has 3 isolated points {𝜶 , 𝑀𝜶 , 𝑀2𝜶 }, see equation (4). Let

𝜸 = 𝐽 3𝑃−1𝜶 = (0, 0, 0, 0, 0, 1)T and 𝐽 = 03×3 ⊕ 𝐽1.

This implies that (Id6, 𝐽) is a convenient Jordan decomposition for ⟨𝐽 ,𝜸⟩; as in Lemma 3.1 and the

discussion at (4). For every 𝑛 ≥ 3, as in equation (5), we have

𝑀𝑛𝜶 = 𝑃 𝐽𝑛𝜸 = 𝑃

©«

0

0

0

𝑛 (𝑛−1)
2

2
𝑛−2

𝑛2𝑛−1

2
𝑛

ª®®®®®®®¬
.

Let 𝑅 = Id3 ⊕ ©«
8 2 0

0 2 0

0 0 1

ª®¬ . Then for every 𝑛 ≥ 3, as in (6), we get

𝑀𝑛𝜶 = 𝑃𝑅−1

©«

0

0

0

𝑛22𝑛

𝑛2𝑛

2
𝑛

ª®®®®®®®¬
. (14)

In this simple example, our procedure outputs 𝑆2,1 = {𝑥4𝑥6 − 𝑥25} and 𝑆4 = {𝑥1, 𝑥2, 𝑥3}. One can also

infer these polynomial relations from (14). Altogether, the ideal ⟨𝑥1, 𝑥2, 𝑥3, 𝑥4𝑥6 − 𝑥25⟩ defines the
closure of 𝑅𝑃−1 {𝑀𝑛𝜶 : 𝑛 ≥ 3}. After applying the transformation 𝑃𝑅−1, we obtain the polynomials

that define the closure of {𝑀𝑛𝜶 : 𝑛 ≥ 3}. Indeed, the transformed relations generate the polynomial

𝐼 = ⟨𝑥5 + 𝑥6, 𝑥4, 2𝑥1 + 𝑥2 + 𝑥6, 4𝑥22 + 3𝑥2𝑥3 − 3𝑥23 − 3𝑥2𝑥6 + 𝑥3𝑥6 − 2𝑥26⟩.
It follows that the variety defining the orbit closure O of the loop ⟨𝑀,𝜶 ⟩ is given by 𝑉 (𝐼) ∪
{𝜶 , 𝑀𝜶 , 𝑀2𝜶 }. ◀

In the following example we consider a loopwhose updatematrix has several nonzero eigenvalues.

Thus to compute the orbit closure of the loop, our procedure requires us to first compute a basis

for lattice of multiplicity relations between the eigenvalues.

Example 4.2. We run our procedure on the loop ⟨𝑀,𝜶 ⟩, given below. The eigenvalues of𝑀 are

all primitive third and fourth roots of unity.

Input: (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) ← (2,-1,1,1,0,-1)

while true do

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

Simple Linear Loops: Algebraic Invariants and Applications 26:17

©«

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

ª®®®®®®®¬
←

©«

0 0 0 0 0 −1
1 0 0 0 0 −2
0 1 0 0 0 −4
0 0 1 0 0 −4
0 0 0 1 0 −4
0 0 0 0 1 −2

ª®®®®®®®¬

©«

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

ª®®®®®®®¬
end while

Loop 2. Loop defined by the tuple ⟨𝑀,𝜶 ⟩

Since all the eigenvalues of update matrix𝑀 are nonzero, there are no isolated points in the orbit

closure of the loop. Fix 𝜔 B − 1

2
+
√
3

2
i. The tuple (𝑃, 𝐽) is a Jordan decomposition of𝑀 , where

𝑃 =

©«

−i i −𝜔 𝜔2 −𝜔2 𝜔

1 − 2i 1 + 2i 𝜔2 + 2 −2𝜔 𝜔 + 2 −2𝜔2

2 − 3i 2 + 3i 2𝜔2 + 3 𝜔2 + 1 2𝜔 + 3 𝜔 + 1
3 − 2i 3 + 2i 𝜔2 + 3 −2𝜔 𝜔 + 3 −2𝜔2

2 − i 2 + i 𝜔2 + 2 1 𝜔 + 2 1

1 1 1 0 1 0

ª®®®®®®®¬
and 𝐽 =

©«

−i 0 0 0 0 0

0 i 0 0 0 0

0 0 𝜔2
1 0 0

0 0 0 𝜔2
0 0

0 0 0 0 𝜔 1

0 0 0 0 0 𝜔

ª®®®®®®®¬
.

The spectrum of 𝐽 (and hence 𝑀) is {±i, 𝜔, 𝜔2}. We next transform our decomposition into a

convenient one with a change-of-basis matrix (following Lemma 3.1). We compute an invertible

matrix𝑈 for which𝑈𝑃−1𝜶 = (1, 1, 0, 1, 0, 1)T. Recall that𝑈 admits a block diagonal decomposition

𝑈 B 𝑈1 ⊕ 𝑈2 ⊕ 𝑈3 ⊕ 𝑈4

where blocks 𝑈1 and 𝑈2 are size-1 and blocks 𝑈3 and 𝑈4 are size-2. For this computation, we

pre-compute the inverse matrix

𝑃−1 =
1

18

©«

−9i −9 9i 9 −9i −9
9i −9 −9i 9 9i −9

8(𝜔 − 𝜔2) 8 − 2𝜔 4(𝜔2 − 𝜔) 2𝜔2 − 8 8(𝜔 − 𝜔2) 14 − 8𝜔
6𝜔 6 6𝜔2

6𝜔 6 6𝜔2

8(𝜔2 − 𝜔) 8 − 2𝜔2
4(𝜔 − 𝜔2) 2𝜔 − 8 8(𝜔2 − 𝜔) 14 − 8𝜔2

6𝜔2
6 6𝜔 6𝜔2

6 6𝜔

ª®®®®®®®¬
and the vector 𝑃−1𝜶 = 𝛼1 ⊕ 𝛼2 ⊕ 𝜶3 ⊕ 𝜶4 where

𝛼1 =
3

2

− i

2

, 𝛼2 =
3

2

+ i

2

,

𝜶3 =
1

9

(16𝜔 − 10, 9𝜔 − 3) , and 𝜶4 =
1

9

(
16𝜔2 − 10, 9𝜔2 − 3

)
.

By solving the system of linear equations𝑈𝑃−1𝜶 = (1, 1, 0, 1, 0, 1)T in terms of the entries of 𝑈 , we

obtain𝑈𝑖 = 𝛼−1𝑖 for 𝑖 ∈ {1, 2}, and

𝑈3 =

(
3

3𝜔−1
10−16𝜔
(3𝜔−1)2

0
3

3𝜔−1

)
, and 𝑈4 =

(
3

3𝜔2−1
10−16𝜔2

(3𝜔2−1)2
0

3

3𝜔2−1

)
,

which completes the computation of the block matrix 𝑈 . From Lemma 3.1, we conclude that(
𝑃𝑈 −1𝜶 , 𝐽

)
is a convenient Jordan decomposition for ⟨𝑀,𝜶 ⟩.

Let 𝜷 B 𝑈𝑃−1𝜶 . The next step is to compute a blockmatrix𝑅 = 𝑅1⊕𝑅2⊕𝑅3⊕𝑅4 such that the blocks
of 𝑅𝐽𝑛𝜷 have the form presented in (6). Since each 𝑅𝑖 has size at most 2, the matrix 𝑅 is diagonal

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

26:18 Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and Anton Varonka

(see the general form given in (8)). Observe that 𝑅 = diag(1, 1, 𝜔2, 1, 𝜔, 1). We now construct a

generating set of the ideal 𝐼𝑅 defining the variety𝑉 (𝐼𝑅) = 𝑅 · {𝐽𝑛 𝜷 : 𝑛 ∈ N}, as described in (9). We

consider each of the sets 𝑆1, 𝑆2, 𝑆3, and 𝑆4 of possible polynomial relations amongst the variables in

turn.

First, we consider the set 𝑆1 of multiplicative relations between the eigenvalues. This step constructs

the exponent lattice 𝐿exp of {−i, i, 𝜔2, 𝜔} defined by

𝐿exp =

{
(𝑎, 𝑏, 𝑐, 𝑑) ∈ Z4 : (−i)𝑎i𝑏 (𝜔2)𝑐𝜔𝑑 = 1

}
.

We invoke a standard subroutine to compute a basis for this lattice (see Appendix A in [1] for the

details). An example of such a basis is 𝐿exp (−i, i, 𝜔2, 𝜔) is {(4, 0, 0, 0), (1, 1, 0, 0), (0, 0, 3, 0), (0, 0, 1, 1)}
and so we deduce that the polynomials

𝑝11 (𝒙) = 𝑥4
1
− 1, 𝑝12 (𝒙) = 𝑥1𝑥2 − 1, 𝑝13 (𝒙) = 𝑥3

4
− 1, 𝑝14 (𝒙) = 𝑥4𝑥6 − 1

define the set 𝑆1.

We next consider each of the sets 𝑆2,𝑖 that characterise the polynomial relations amongst the

nonzero entries of the 𝑖th Jordan block. We note that in this example each set 𝑆2,𝑖 is empty because

each of the four Jordan blocks has size at most 2. Similarly, the set of polynomial relations 𝑆4 is

empty.

Finally, in this example the only non-empty set amongst the 𝑆3,𝑖, 𝑗 ’s is 𝑆3,3,4, as the 𝑆3,𝑖, 𝑗 relations

require Jordan blocks 𝐽𝑖 and 𝐽 𝑗 of size at least 2. The single polynomial relation we infer is

𝑝3 (𝒙) = 𝑥3𝑥6 − 𝑥4𝑥5 .

From Claim 3.2, we have 𝐼𝑅 = ⟨𝑝11, 𝑝12, 𝑝13, 𝑝14, 𝑝3⟩, or

𝑅 · {𝐽𝑛 𝜷 : 𝑛 ∈ N} = 𝑉 (𝐼𝑅).

In order to compute the polynomials that define the algebraic set O = {𝑀𝑛𝜶 : 𝑛 ∈ N}, we need to

apply the transformation 𝑃𝑈 −1𝑅−1 to each of the generators of 𝐼𝑅 . For example, we obtain

𝑝′
12
(𝒙) B 𝑝12 (𝑅𝑈𝑃−1𝒙) = 1

10

(𝑥1 − i𝑥2 − 𝑥3 + i𝑥4 + 𝑥5 − i𝑥6) (𝑥1 + i𝑥2 − 𝑥3 − i𝑥4 + 𝑥5 + i𝑥6) − 1.

The polynomials 𝑝′
11
, 𝑝′

13
, 𝑝′

14
, and 𝑝′

3
are obtained similarly. Thus the algebraic set O is characterised

by the variety 𝑉 (⟨𝑝′
11
, 𝑝′

12
, 𝑝′

13
, 𝑝′

14
, 𝑝′

3
⟩) and we have completed the task of invariant generation, as

desired. ◀

Recall that the degree of the splitting field associated with the eigenvalues of a rational matrix

may exhibit exponential growth in the dimension of the matrix. In Example 4.3, we consider a loop

whose linear update is given by the companion matrix of (𝑥2 − 2) (𝑥2 − 3) (𝑥2 − 5). This matrix

has spectrum {±
√
2,±
√
3,±
√
5}, and the splitting field of its eigenvalues has degree 2

3
over Q.

Extending this example, we can construct a matrix with spectrum {±√𝑝1, . . . ,±
√
𝑝𝑘 } where 𝑝𝑖 is

the 𝑖th prime number. The degree of the splitting field Q(√𝑝1, . . . ,
√
𝑝𝑘) over Q is 2

𝑘
, while the

dimension of the matrix is 2𝑘 .

Example 4.3. We apply our invariant generation procedure for the following loop.

Input: (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) ← (6,0,-62/15,0,2/3,0)

while true do

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

Simple Linear Loops: Algebraic Invariants and Applications 26:19

©«

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

ª®®®®®®®¬
←

©«

0 0 0 0 0 30

1 0 0 0 0 0

0 1 0 0 0 −31
0 0 1 0 0 0

0 0 0 1 0 10

0 0 0 0 1 0

ª®®®®®®®¬

©«

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

ª®®®®®®®¬
end while

Loop 3. Loop defined by the tuple ⟨𝑀,𝜶 ⟩

A Jordan decomposition (𝑃, 𝐽) of the update matrix𝑀 is given by the matrices

𝑃 =
1

30

©«

30 30 30 30 30 30

15

√
2 −15

√
2 10

√
3 −10

√
3 6

√
5 −6

√
5

−16 −16 −21 −21 −25 −25
−8
√
2 8

√
2 −7

√
3 7

√
3 −5

√
5 5

√
5

2 2 3 3 5 5√
2 −

√
2

√
3 −

√
3

√
5 −

√
5

ª®®®®®®®¬
and

𝐽 = diag(
√
2,−
√
2,
√
3,−
√
3,
√
5,−
√
5) .

Since 𝑃−1𝜶 = (1, 1, 1, 1, 1, 1)T, the tuple (𝑃, 𝐽) is a convenient form for the pair ⟨𝑀,𝜶 ⟩. We now

compute the polynomials that define the orbit closure O. Since each eigenvalue of𝑀 is simple, the

convenient form immediately leads us to

O = 𝑃 ·
{(
(
√
2)𝑛,

(
−
√
2

)𝑛
, (
√
3)𝑛,

(
−
√
3

)𝑛
, (
√
5)𝑛,

(
−
√
5

)𝑛)T
: 𝑛 ∈ N

}
.

Then the ideal defining 𝑃−1O is

𝐼 = ⟨𝑥2
1
− 𝑥2

2
, 𝑥2

3
− 𝑥2

4
, 𝑥2

5
− 𝑥2

6
⟩,

and after applying matrix 𝑃 , we obtain

O = 𝑉
©«
〈
𝑥3𝑥4 + 𝑥2𝑥5 + 10𝑥4𝑥5 + 𝑥1𝑥6 + 10𝑥3𝑥6 + 69𝑥5𝑥6,

𝑥2𝑥3 + 𝑥1𝑥4 − 31𝑥4𝑥5 − 31𝑥3𝑥6 − 280𝑥5𝑥6,
𝑥1𝑥2 + 30𝑥4𝑥5 + 30𝑥3𝑥6 + 300𝑥5𝑥6

〉ª®¬ .
◀

The complexity of our algorithm for computing the orbit closure of simple linear loops primarily

depends on finding a basis for the lattice of multiplicity relations between the eigenvalues of

matrices. In particular, as argued in the proof of Theorem 1.1, all other steps in our algorithm run

in polynomial time. Ge’s algorithm [33] computes such a basis in polynomial time in the degree of

the splitting field of the input algebraic numbers (i.e., the update matrix eigenvalues). For rational

matrices, while the degree of the eigenvalues is bounded by the matrix dimension, the degree

of the splitting field can grow exponentially with the dimension. We observed this in the earlier

extension of Example 4.3 to a family of 2𝑘-dimensional matrices, where the degree of the splitting

field becomes 2
𝑘
. Therefore, Ge’s algorithm, in its current form, does not allow us to reduce the

complexity from PSPACE to polynomial time.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

26:20 Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and Anton Varonka

5 Invariant Verification
Recall that the invariant verification problem checks whether the algebraic set defined by a given set

of input polynomials is an invariant for an input loop, though it may not be an inductive invariant.

The study and motivation behind such non-inductive invariants have been explored previously [11,

42, 51, 54, 61, 67].

As discussed in Section 2, a standard backward algorithm, used in similar settings in [11, 13, 47,

48], provides a conceptually simple procedure for invariant verification. Let ⟨𝑀,𝜶 ⟩ be a simple linear

loop. Let 𝑆 ⊆ Q[𝒙] be a set of polynomials, written in the dense representation, with the description

size 𝑠 . Define the sequence of nested ideals (𝐼𝑖)𝑖∈N by 𝐼0 = ⟨𝑆⟩ and 𝐼𝑖 = ⟨𝑃 (𝑀 𝑗𝒙) : 𝑃 ∈ 𝑆, 𝑗 ≤ 𝑖⟩,
as defined in (2). Since Q[𝒙] is Noetherian, this ascending sequence 𝐼0 ⊆ 𝐼1 ⊆ 𝐼2 ⊆ · · · of ideals
stabilises: there exists 𝑘 such that 𝐼𝑘 = 𝐼𝑘+𝑗 for all 𝑗 ∈ N. Denote by 𝐼∞ the stabilising value of the

sequence. The algorithm tests whether 𝜶 ∈ 𝑉 (𝐼∞). If yes, then 𝑉 (𝑆) is an algebraic invariant for

⟨𝑀,𝜶 ⟩; otherwise, it is not.
Since𝑀𝒙 is a linear transformation, the degree of 𝑃 (𝑀𝑖𝒙) is at most the degree of 𝑃 (𝒙). From

this observation we prove that if 𝜶 ∉ 𝑉 (𝐼∞) holds then there exists 𝑘 = 𝑂 (2𝑠) such that 𝜶 ∉ 𝑉 (𝐼𝑘).
Below, we use this bound to obtain a coNP upper bound for invariant verification with the input

ideal given in dense representation.

Proposition 2.1. Given 𝑆 ⊆ Q[𝒙] in dense representation and a loop with orbit O, verifying
whether O ⊆ 𝑉 (𝑆) is coNP-complete.

Proof. Recall that 𝑠 denotes the description size of 𝑆 , and recall the chain of nested ideals (𝐼𝑖)𝑖∈N,
defined above (and in (2)). To show the coNP membership, it suffices to provide a polynomial-time

verifiable certificate showing that 𝜶 ∉ 𝑉 (𝐼∞) for negative instances of the problem. We first prove

that

Claim 5.1. Suppose that 𝜶 ∉ 𝑉 (𝐼∞). There exists 𝑘 = 𝑂 (2𝑠) such that 𝜶 ∉ 𝑉 (𝐼𝑘).
Proof. By definition, the maximal degree 𝐷 of polynomials in 𝑆 and the number 𝑑 of variables

are both bounded by 𝑠 . For all 𝑛 ∈ N and all polynomials 𝑃 ∈ 𝑆 , the degree of 𝑃 (𝑀𝑛𝒙) is at most 𝐷 ,

meaning that the ideal 𝐼𝑛 is generated by polynomials of degree at most 𝐷 .

Let 𝑁 ∈ N be such that 𝐼𝑁 = 𝐼𝑁+1. This implies that 𝑄 (𝑀𝑁+1𝒙) ∈ ⟨𝑃 (𝑀 𝑗𝒙) : 𝑃 ∈ 𝑆, 𝑗 ≤ 𝑁 ⟩ for
all 𝑄 ∈ 𝑆 . But then 𝑄 (𝑀𝑁+2𝒙) ∈ {𝑃 (𝑀 𝑗𝒙) : 𝑃 ∈ 𝑆, 𝑗 ≤ 𝑁 + 1} = 𝐼𝑁+1 = 𝐼𝑁 for all 𝑄 ∈ 𝑆 . Hence,
using an inductive argument we can show 𝐼𝑁+𝑗 = 𝐼𝑁 for all 𝑗 ∈ N. Let 𝑘 be the smallest integer such

that 𝐼𝑘 = 𝐼𝑘+1, which implies 𝐼𝑘 = 𝐼∞. Since 𝐼0 ⊊ 𝐼1 ⊊ · · · ⊊ 𝐼𝑘 , at each step 𝑖 we introduce at least

one generator of 𝐼𝑖 that can not be expressed as a linear combination of the generators of 𝐼𝑖−1. The

generators of 𝐼𝑖 lie in the vector space of polynomials of degree at most 𝐷 with dimension

(
𝐷+𝑑
𝑑

)
.

Therefore, 𝑘 ≤
(
𝐷+𝑑
𝑑

)
which completes the proof of the claim. □

This claim implies that there exists 𝑃 ∈ 𝑆 such that 𝑃 (𝑀𝑘𝒙) (𝜶) ≠ 0. A coNP algorithm guesses

𝑃 (𝒙) ∈ 𝑆 , an index 𝑘 = 𝑂 (2𝑠) and a prime 𝑝 with bitsize 𝑠 such that 𝑃 (𝑀𝑘𝒙) (𝜶) ≠ 0. Taking

the binary representation of 𝑘 into account and, by standard doubling techniques, the algorithm

constructs a small circuit for 𝑃 (𝑀𝑘𝒙) and checks whether 𝑃 (𝑀𝑘𝒙) . 0 (mod 𝑝) in polynomial time.

We borrow the correctness of the latter test from the well-known fingerprinting procedure for the

ACIT problem [3].

The proof of coNP-hardness is by a reduction from 3SAT to the complement of the invariant

verification problem. Given a 3SAT formula Φ, we construct a loop ⟨𝑀,𝜶 ⟩ with orbit O and a

polynomial 𝑄 (𝒙) such that Φ is satisfiable if and only if O ⊈ 𝑉 (⟨𝑄⟩).
Let Φ =

∧𝑚
𝑖=1𝐶𝑚 be in CNF over variables {𝑦1, . . . , 𝑦𝑘 }. Let 𝑝1 < · · · < 𝑝𝑘 be the first 𝑘 primes.

Define 𝐷 (𝑖) B 1 +∑𝑖−1
𝑗=1 𝑝 𝑗 for 𝑖 ∈ {1, . . . , 𝑘} and 𝑑 B

∑𝑘
𝑗=1 𝑝 𝑗 . Construct 𝑀 ∈ {0, 1}𝑑×𝑑 and 𝜶 ∈

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

Simple Linear Loops: Algebraic Invariants and Applications 26:21

{0, 1}𝑑 as follows: the entry 𝛼ℓ of 𝜶 is 1 if, and only if, ℓ = 𝐷 (𝑖) for some 𝑖 ∈ {1, . . . , 𝑘}. The
matrix𝑀 is a block-diagonal matrix𝑀1 ⊕ · · · ⊕ 𝑀𝑘 , where𝑀 𝑗 is a permutation matrix of size 𝑝 𝑗 .

Intuitively speaking, for any 𝑛 ∈ N the vector𝑀𝑛𝜶 splits into 𝑘 blocks of prime size, and exactly

one entry in each block is set to 1. By the Chinese remainder theorem, for every 𝜷 ∈ {0, 1}𝑑 with

exactly one 1 entry in each block, there exists 𝑛 ∈ N such that 𝜷 = 𝑀𝑛𝜶 .

We construct the polynomial 𝑄 over the vector 𝒙 = (𝑥1, · · · , 𝑥𝑑) of variables. For each 1 ≤ 𝑖 ≤ 𝑘 ,

we interpret the variables 𝑥𝐷 (𝑖) and 𝑥𝐷 (𝑖)+1 as literals 𝑦𝑖 and ¬𝑦𝑖 . The other variables are called
non-literal. Define 𝑄 ∈ Q[𝒙] as follows

𝑄 (𝒙) B
(∏
𝑥𝑖 non-literal

(1 − 𝑥𝑖)
)
·

𝑚∏
𝑖=1

𝑄𝑖 (𝒙),

where 𝑄𝑖 B
∑𝑘

𝑗=1 𝑡
2

𝑖 𝑗 with

𝑡𝑖 𝑗 =

𝑥𝐷 (𝑗)+1 if 𝑦 𝑗 appears in 𝐶𝑖 ,

𝑥𝐷 (𝑗)+2 if ¬𝑦 𝑗 appears in 𝐶𝑖 ,

0 otherwise.

The correctness of reduction follows from two simple observations:𝑄 (𝒙) vanishes on 𝜷 ∈ {0, 1}𝑑
if 𝛽𝑖 = 1 for some non-literal entry 𝑖 . Furthermore, provided that all non-literal entries are zero, the

point 𝜷 is a zero of 𝑄 (𝒙) if and only if it corresponds to an unsatisfying assignment of Φ. □

The backward algorithm employed in Proposition 2.1 results in an inefficient EXPSPACE upper

bound when the input polynomials have sparse representation. Here our route to obtaining a

tighter complexity bound is through invariant generation, specifically computing the strongest

(inductive) algebraic invariant O. By Theorem 1.1, we can construct a set {𝐼1, . . . , 𝐼𝑘 } of ideals such
that O = 𝑉 (𝐼1 ∩ · · · ∩ 𝐼𝑘). The generating set of each ideal 𝐼𝑖 has a small cardinality, and comprises

of polynomials in Q[𝒙] written in sparse representation with size polynomial in the input loop

description. We perform several radical membership tests to determine the relation of O with𝑉 (𝑆).

Proposition 2.2. Given 𝑆 ⊆ Q[𝒙] and a loop with the orbit O, verifying whether O ⊆ 𝑉 (𝑆) holds
is in PSPACE, and is coNP-hard. Similarly, the test O = 𝑉 (𝑆) can be performed in PSPACE. For all fixed
𝑑 ∈ N, both problems for 𝑑-dimensional loops are decidable in polynomial time.

Proof. Let ⟨𝑀,𝜶 ⟩ be the input loop with orbit O. With Theorem 1.1 at our disposal, we construct

the list of generators for the ideals I0, . . . ,I𝑛0−1 ⊆ Q[𝒙] andY ⊆ Q[𝒙, 𝑦1, . . . , 𝑦𝑠]. Our construction
is such that, for all 𝑖 ∈ {0, . . . , 𝑛0 − 1}, we have {𝑀𝑖𝜶 } = 𝑉 (I𝑖). Moreover, (𝒗, 𝜆1, . . . , 𝜆𝑠) ∈ 𝑉 (Y) if
and only if 𝒗 ∈ {𝑀𝑛𝜶 : 𝑛 ≥ 𝑛0}.
We now demonstrate how to check in PSPACE whether

𝑉 (I0 ∩ · · · ∩ I𝑛0−1 ∩ Y) ∼ 𝑉 (𝑆)

holds for ∼∈ {=, ⊆}. SinceY is defined with extra variables 𝑦𝑖 ’s, we add the relations between these

extra variables to 𝑆 . (More precisely, for each 𝜆𝑖 , 1 ≤ 𝑖 ≤ 𝑠 , we add the set of polynomials defined

in (13), together with 𝜏 (𝑆1), 𝜏 (𝑃 𝐽𝑃−1) −𝑀 and 𝜏 (𝑈𝑃−1)𝜶 − 𝜷 used in definition ofY from J .) We

first explain how to check O ⊆ 𝑉 (𝑆) in PSPACE. Towards this, we first check if the rational points

𝑀𝑖𝜶 with 𝑖 ∈ {0, . . . , 𝑛0 − 1} lie in 𝑉 (𝑆), this reduces to the ACIT and can be tested in randomised

polynomial time [3]. It remains to check whether 𝑉 (J) ⊆ 𝑉 (𝑆); we verify this through testing

whether 𝑃 ∈
√
J for each polynomial 𝑃 ∈ 𝑆 , which reduces to radical membership testing. As

explained in Section 2, the latter task is in AM under GRH and in PSPACE unconditionally.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

26:22 Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and Anton Varonka

To conclude, we explain how to test𝑉 (𝑆) ⊆ O in PSPACE. We test whether every polynomial 𝑃 ∈
I0 ∩ · · · ∩ I𝑛0−1 ∩ J is a member of

√
𝑆 . This test could be algorithmically expensive due to the

intersection, as a generating set for the intersection of these ideals can face an exponential blow-up

in size. We instead test the complement of this question, by guessing one generator from each I𝑖
and one from J and checking whether the product is not a member of

√
𝑆 . Here again we rely on

the AM protocol of radical membership testing.

The hardness follows from the construction given in Proposition 2.1. □

6 Bit-bounded Synthesis
The results in this section are motivated by the HTP-hardness results in Lemma 2.3. Herein we

consider complexity bounds for variants of the loop synthesis problem where one bounds the

bitsizes of the loop components (Propositions 2.4 and 2.5). In Proposition 2.5, we obtain tighter

bounds by placing an additional dimension specification on the loop.

Proposition 2.4. The strong and weak bit-bounded synthesis problems over {Q,Z} lie in PSPACE.
The weak variant is NP-hard; and the strong variant is NP-hard under randomised reductions.

Proof. The PSPACE bound follows by guessing𝑀 and 𝜶 with entries respecting the required

bit bounds, and using the invariant verification subroutine in Proposition 2.2 applied to ⟨𝑀,𝜶 ⟩ and
the input ideal. Thus all that remains is to prove the claimed lower bounds.

Our lower bounds are obtained by reductions from 3SAT, andUnique 3SAT, following the folklore
encoding of 3SAT in HN [53]. The following encoding is the main building block for both reductions.

Let Φ :=
∧𝑚

𝑖=1𝐶𝑚 be in CNF over variables {𝑦1, . . . , 𝑦𝑑 }. From Φ we construct a set of polynomials

𝑆 ⊆ Q[𝒙] with vector 𝒙 = (𝑥1, . . . , 𝑥𝑑+2) of variables. We initialise 𝑆 with polynomial 𝑥𝑑+1 − 𝑥𝑑+2.
For each boolean variable 𝑦𝑖 , with 𝑖 ∈ {1, . . . , 𝑑}, we add the polynomial 𝑥𝑖 (1 − 𝑥𝑖) to 𝑆 . For each
clause 𝐶 𝑗 , with 𝑗 ∈ {1, . . . ,𝑚}, we add 𝑃𝑖 :=

∏𝑑
𝑗=1 𝑡𝑖 𝑗 to 𝑆 , where

𝑡𝑖 𝑗 =

1 − 𝑥 𝑗 if 𝑦 𝑗 appears in 𝐶𝑖 ,

𝑥 𝑗 if ¬𝑦 𝑗 appears in 𝐶𝑖 ,

1 otherwise.

(15)

Weak bit-bounded synthesis over {Q,Z} is NP-hard:
The proof is by a reduction from 3SAT. Given an instance Φ of 3SAT, construct the set 𝑆 of polyno-

mials, as described above.

Assume that Φ is satisfiable. Given a satisfying assignment, define 𝜶 such that 𝛼𝑖 = 1 if and only

if 𝑦𝑖 is true in the assignment, and set 𝛼𝑑+1 = 𝛼𝑑+2 = 1. Clearly, the infinite orbit of the point 𝜶
under the matrix 𝑀 := diag(1, . . . , 1, 2, 2) lies in 𝑉 (⟨𝑆⟩). Conversely, if Φ is unsatisfiable, the set

𝑉 (⟨𝑆⟩) is empty and, a fortiori, no loop exists for ⟨𝑆⟩.
We note in passing that that the entries of such𝑀 and 𝜶 have constant bitsize.

Strong bit-bounded synthesis is NP-hard under randomised reductions:
Recall that Unique 3SAT is NP-hard under randomised polynomial-time reductions [71]. It is a

promised version of 3SAT, where the input formula is promised to have at most one satisfying
assignment.

Given an instance Φ of Unique 3SAT, construct again the set 𝑆 of polynomials, as described

above. By the promise on Φ, the projection of 𝑉 (⟨𝑆⟩) into the first 𝑑 coordinates is either empty

or a singleton. The proof is immediate from the previous case, and by the observation that if Φ is

satisfiable, the projection of {𝑀𝑛𝜶 : 𝑛 ∈ N} into the last two coordinates is 𝑉 (⟨𝑥𝑑+1 − 𝑥𝑑+2⟩). □

We now improve the complexity lower bounds under an additional dimensionality assumption.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

Simple Linear Loops: Algebraic Invariants and Applications 26:23

Proposition 2.5. For all fixed 𝑑 ∈ N, the strong and weak bit-bounded synthesis problems in
dimension 𝑑 over {Q,Z} are in NP. Moreover, weak bit-bounded synthesis over Z is NP-complete.

Proof. The NP bound follows by guessing 𝑀 and 𝜶 with entries respecting the required bit

bounds, and using the invariant verification subroutine in Proposition 2.2 applied to ⟨𝑀,𝜶 ⟩ and
the input ideal.

TheNP lower bound is by reduction from the quadratic Diophantine equations problem, known to

be NP-complete [32, 56]: it asks, given natural numbers 𝑎, 𝑏, 𝑐 , whether there a solution (𝑥,𝑦) ∈ N2

to the equation 𝑎𝑥2 + 𝑏𝑦 = 𝑐 . Given an instance (𝑎, 𝑏, 𝑐) of the quadratic Diophantine equations
problem (𝑎, 𝑏, 𝑐), we construct polynomials 𝐿, 𝑃,𝑄 ∈ Z[𝒙] with vector 𝒙 = (𝑥,𝑦,𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑧1, 𝑧2)
of variables such that there is an integer point in the variety 𝑉 (⟨𝐿, 𝑃⟩) ⊆ Q6

if and only if the

original equation 𝑎𝑥2 + 𝑏𝑦 = 𝑐 has a solution (𝑥,𝑦) ∈ N2
. Define

𝐿(𝒙) := 𝑦 − 𝑦2
1
− 𝑦2

2
− 𝑦2

3
− 𝑦2

4
,

𝑃 (𝒙) := 𝑎𝑥2 + 𝑏𝑦 − 𝑐,
𝑄 (𝒙) := 𝑧1 − 𝑧2.

By Lagrange’s four-squares theorem, every positive integer 𝑦 can be expressed as a sum of

four integer squares; thus polynomial 𝐿 ensures that variable 𝑦 can attain only non-negative

integer values. Suppose the intersection 𝑉 (⟨𝐿, 𝑃,𝑄⟩) ∩ Z8 is non-empty. Observe that for 𝜶 ∈
𝑉 (⟨𝐿, 𝑃,𝑄⟩) ∩Z8, the orbit under𝑀 := diag(1, . . . , 1, 2, 2) is infinite, and thus⟨𝑀,𝜶 ⟩ is a non-trivial
loop. The converse direction is immediate. □

7 Further Discussion
We suggest several directions for further research inspired by our contributions to invariant

generation for simple linear loops and loop synthesis presented herein.

Invariant Generation for Affine Programs. A program is considered affine if it exclusively

features nondeterministic branching (as opposed to conditional branching) and all its assignments

are defined by affine expressions. The invariant generation problem for affine programs is addressed

by the algorithm in [39] through the group-closure problem. This problem entails computing a

generating set of polynomials for the Zariski closure ⟨𝑀1, . . . , 𝑀𝑘⟩ for a given set {𝑀1, . . . , 𝑀𝑘 } of
invertible rational matrices. The tightest complexity bound for solving the group-closure problem

is severalfold exponential time [63].

The main result in this paper, Theorem 1.1, presents a PSPACE algorithm for generating the

invariants of a simple linear loop (the class corresponding to branch-free loops with a single linear

update). To extend our technique to the general case of affine programs, we may first consider the

setting with multiple linear updates𝑀1, . . . , 𝑀𝑘 where the matrices are commutative and invertible.

Since the 𝑀𝑖 commute, the orbit of the loop is defined by O = {𝑀𝑛1

1
· · ·𝑀𝑛𝑘

𝑘
𝜶 : 𝑛1, . . . , 𝑛𝑘 ∈ N}

where 𝜶 is the initial vector.

Recall that a matrix 𝑀 ∈ Q𝑑×𝑑 is unipotent if there exists 𝑛 ∈ N such that (𝑀 − Id𝑑)𝑛 = 0𝑑

(here Id𝑑 and 0𝑑 are the 𝑑 × 𝑑 identity and zero matrices, respectively) and𝑀 is semisimple if it is
diagonalisable over Q. Define 𝐺 B ⟨𝑀1, . . . , 𝑀𝑘⟩ so that O = 𝐺𝜶 . It is known that the subset of

semisimple matrices in𝐺 , denoted by𝐺𝑠 , forms an algebraic subgroup; likewise the set of unipotent

matrices in𝐺 , denoted by𝐺𝑢 , forms an algebraic subgroup. By the Jordan–Chevalley decomposition,

we have O = 𝐺𝑢𝐺𝑠𝜶 .

In the case that 𝐺 = 𝐺𝑠 we have the following.

Lemma 7.1. Let 𝐺 be a semisimple commutative group. A set of polynomials defining 𝐺𝜶 is
computable in PSPACE.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

26:24 Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and Anton Varonka

Proof. Since𝐺 is a semisimple commutative group, there exists 𝑃 ∈ GL𝑑 (Q) such that for all 𝑖 ∈
{1, . . . , 𝑘}, the matrix 𝐷𝑖 B 𝑃−1𝑀𝑖𝑃 is diagonal. Following Lemma 3.1, we can choose 𝑃 in such a

way that 𝑃−1𝜶 ∈ {0, 1}𝑑 . Writing O = 𝑃 ⟨𝐷1, . . . , 𝐷𝑘⟩𝑃−1𝜶 , we observe that ⟨𝐷1, . . . , 𝐷𝑘⟩𝑃−1𝜶 is

the closure of a group of diagonal matrices of dimension at most 𝑑 . To obtain a PSPACE procedure it

suffices to closely follow our construction in Theorem 1.1. The sole difference from that construction

lies in the set 𝑆1 of polynomial equations, which is now defined by the intersection of lattices 𝐿𝑖 of

multiplicity relations between the entries of 𝐷𝑖𝑃
−1𝜶 [16, Chapter 3]. □

A natural direction for future research involves extending our PSPACE procedure to apply to

commutative matrices more broadly. This requires a better understanding of the polynomial map

𝐺𝑢 ×𝐺𝑠𝜶 → 𝐺𝜶 ,

(𝑔, 𝒗) ↦→ 𝑔𝒗 .

Subsequently, an ambitious objective is to develop a procedure with improved complexity bounds

for the invariant generation problem in affine programs.

Loop Synthesis. Our results for bit-bounded synthesis over the rationals (Propositions 2.4 and 2.5)
demonstrate an inherent source of hardness (Hilbert’s Tenth problem). A first direction for future

research might consider circumventing such obstacles by focusing on classes of ideals with an

abundance of rational solutions. A small initial step in this direction, the synthesis of loops for

pure-difference binomials, was shown in [50]. An ultimate goal is the synthesis of loops for the

larger class of binomial ideals.

Acknowledgments
The authors thank JamesWorrell for his valuable comments and feedback. G. Kenison andA. Varonka

are grateful for their financially supported travel (UKRI Frontier Research Grant EP/X033813/1).

M. Shirmohammadi and R. Ait El Manssour are supported by the International Emerging Actions

grant (IEA’22), and by ANR grant VeSyAM (ANR-22-CE48-0005).

This paper is part of a project that has received funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant

agreement No. 10103444). A. Varonka gratefully acknowledges the support of the ERC consolidator

grant ARTIST 101002685 and the Vienna Science and Technology Fund (WWTF) 10.47379/ICT19018.

We thank the hosts of Autobóz 2023 in Kassel, Germany for providing the space where initial

discussions for this paper took place.

References
[1] Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and Anton Varonka. 2024. Simple linear loops:

algebraic invariants and applications. (2024). arXiv: 2407.09154v2 [cs.CC].
[2] Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and James Worrell. 2024. Determination problems

for orbit closures and matrix groups. (2024). arXiv: 2407.04626 [cs.CC].
[3] Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. 2009. On the complexity of

numerical analysis. SIAM Journal on Computing, 38, 5, 1987–2006.
[4] Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-Lezama. 2018. Search-based program synthesis.

Communications of the ACM, 61, 12, 84–93.

[5] Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel Moosbrugger, and Miroslav Stankovič.

2024. (Un)Solvable loop analysis. Formal Methods in System Design. https://doi.org/10.1007/s10703-024-00455-0.
[6] Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel Moosbrugger, and Miroslav Stankovič.

2022. Solving Invariant Generation for Unsolvable Loops. In Static Analysis, 19–43. https://doi.org/10.1007/978-3-031
-22308-2_3.

[7] Sanjeev Arora and Boaz Barak. 2009. Computational complexity: a modern approach. Cambridge University Press.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

https://arxiv.org/abs/2407.09154v2
https://arxiv.org/abs/2407.04626
https://doi.org/10.1007/s10703-024-00455-0
https://doi.org/10.1007/978-3-031-22308-2_3
https://doi.org/10.1007/978-3-031-22308-2_3

Simple Linear Loops: Algebraic Invariants and Applications 26:25

[8] László Babai and Shlomo Moran. 1988. Arthur–Merlin games: A randomized proof system, and a hierarchy of

complexity classes. Journal of Computer and System Sciences, 36, 2, 254–276. https://doi.org/10.1016/0022-0000(88)900
28-1.

[9] Nikhil Balaji, Klara Nosan, Mahsa Shirmohammadi, and James Worrell. 2022. Identity testing for radical expressions.

In LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, 8:1–8:11.
[10] Nikhil Balaji, Sylvain Perifel, Mahsa Shirmohammadi, and James Worrell. 2021. Cyclotomic identity testing and

applications. In ISSAC ’21: International Symposium on Symbolic and Algebraic Computation, Virtual Event, Russia,
July 18-23, 2021, 35–42. https://doi.org/10.1145/3452143.3465530.

[11] Erdenebayar Bayarmagnai, Fatemeh Mohammadi, and Rémi Prébet. 2024. Algebraic tools for computing polynomial

loop invariants. In Proceedings of the 2024 International Symposium on Symbolic and Algebraic Computation, ISSAC
2024, (To Appear). https://doi.org/10.1145/3666000.3669710.

[12] Robert Benedetto, Patrick Ingram, Rafe Jones, Michelle Manes, Joseph H. Silverman, and Thomas J. Tucker. 2019.

Current trends and open problems in arithmetic dynamics. Bull. Amer. Math. Soc. (N.S.), 56, 4, 611–685. https://doi.or
g/10.1090/bull/1665.

[13] Michael Benedikt, Timothy Duff, Aditya Sharad, and James Worrell. 2017. Polynomial automata: zeroness and

applications. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 1–12.
[14] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. 2007. Invariant synthesis for combined theories. In

International Workshop on Verification, Model Checking, and Abstract Interpretation. Springer, 378–394.
[15] Markus Bläser, Christian Ikenmeyer, Vladimir Lysikov, Anurag Pandey, and Frank-Olaf Schreyer. 2021. On the orbit

closure containment problem and slice rank of tensors. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, 2565–2584. https://doi.org/10.1137/1.9781611976465
.152.

[16] Enrico Bombieri and Walter Gubler. 2006. Heights in Diophantine geometry. Number 4. Cambridge university press.

[17] Peter Bürgisser. 2024. Completeness classes in algebraic complexity theory. arXiv preprint arXiv:2406.06217.
[18] Peter Bürgisser, Joseph M Landsberg, Laurent Manivel, and Jerzy Weyman. 2011. An overview of mathematical

issues arising in the geometric complexity theory approach to vp≠vnp. SIAM Journal on Computing, 40, 4, 1179–1209.
[19] Jin-Yi Cai. 1994. Computing jordan normal forms exactly for commuting matrices in polynomial time. International

Journal of Foundations of Computer Science, 05, 03n04, 293–302. https://doi.org/10.1142/S0129054194000165.
[20] Jin-yi Cai, Richard J. Lipton, and Yechezkel Zalcstein. 2000. The Complexity of the A B C Problem. SIAM Journal on

Computing, 29, 6, 1878–1888. https://doi.org/10.1137/S0097539794276853.
[21] Emmanuel J. Candes and Terence Tao. 2010. The power of convex relaxation: near-optimal matrix completion. IEEE

Transactions on Information Theory, 56, 5, 2053–2080. https://doi.org/10.1109/tit.2010.2044061.
[22] Henri Cohen. 2013. A course in computational algebraic number theory. Vol. 138. Springer Science & Business Media.

[23] David A. Cox, John B. Little, and Donal O’Shea. 2015. Ideals, varieties, and algorithms. (Fourth ed.). An introduction

to computational algebraic geometry and commutative algebra. Springer, Cham, xvi+646. https://doi.org/10.1007/978

-3-319-16721-3.

[24] John Cyphert and Zachary Kincaid. 2024. Solvable polynomial ideals: the ideal reflection for program analysis. Proc.
ACM Program. Lang., 8, POPL, Article 25, 29 pages. https://doi.org/10.1145/3632867.

[25] James H. Davenport and Joos Heintz. 1988. Real quantifier elimination is doubly exponential. Journal of Symbolic
Computation, 5, 1, 29–35. https://doi.org/10.1016/S0747-7171(88)80004-X.

[26] Martin Davis. 1972. On the Number of Solutions of Diophantine Equations. Proceedings of the American Mathematical
Society, 35, 2, 552–554.

[27] W. A. de Graaf. 2017. Computation with Linear Algebraic Groups. CRC Press.

[28] H. Derksen, E. Jeandel, and P. Koiran. 2005. Quantum automata and algebraic groups. J. Symb. Comput., 39, 3-4,
357–371.

[29] Klaus Dräger. 2016. The invariance problem formatrix semigroups. In Foundations of Software Science and Computation
Structures, 479–492.

[30] Michael A Forbes and Amir Shpilka. 2013. Explicit noether normalization for simultaneous conjugation via polynomial

identity testing. In International Workshop on Approximation Algorithms for Combinatorial Optimization. Springer,
527–542.

[31] Francesco Galuppi and Mima Stanojkovski. 2021. Toric varieties from cyclic matrix semigroups. Rend. Istit. Mat. Univ.
Trieste. https://doi.org/10.13137/2464-8728/33099.

[32] M. R. Garey and D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness (Series
of Books in the Mathematical Sciences). (First Edition ed.). W. H. Freeman.

[33] Guoqiang Ge. 1993. Algorithms Related to Multiplicative Representations of Algebraic Numbers. Ph.D. Dissertation.
U.C. Berkeley.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

https://doi.org/10.1016/0022-0000(88)90028-1
https://doi.org/10.1016/0022-0000(88)90028-1
https://doi.org/10.1145/3452143.3465530
https://doi.org/10.1145/3666000.3669710
https://doi.org/10.1090/bull/1665
https://doi.org/10.1090/bull/1665
https://doi.org/10.1137/1.9781611976465.152
https://doi.org/10.1137/1.9781611976465.152
https://doi.org/10.1142/S0129054194000165
https://doi.org/10.1137/S0097539794276853
https://doi.org/10.1109/tit.2010.2044061
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1145/3632867
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.13137/2464-8728/33099

26:26 Rida Ait El Manssour, George Kenison, Mahsa Shirmohammadi, and Anton Varonka

[34] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. 1992. Using collaborative filtering to weave an

information tapestry. Commun. ACM, 35, 12, 61–70. https://doi.org/10.1145/138859.138867.

[35] Daniel R. Grayson and Michael E. Stillman. 2002. Macaulay2, a software system for research in algebraic geometry.

Available at http://www2.macaulay2.com. (2002).

[36] Sumit Gulwani, Oleksandr Polozov, and Rishab Singh. 2017. Program synthesis. Foundations and Trends® in Program-
ming Languages, 4, 1-2, 1–119.

[37] S. Hitarth, George Kenison, Laura Kovács, and Anton Varonka. 2024. Linear Loop Synthesis for Quadratic Invariants.

In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Vol. 289, 41:1–41:18.
https://doi.org/10.4230/LIPIcs.STACS.2024.41.

[38] Mehran Hosseini, Joël Ouaknine, and James Worrell. 2019. Termination of linear loops over the integers. In 46th
International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece.
Vol. 132, 118:1–118:13.

[39] Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and JamesWorrell. 2023. On Strongest Algebraic Program Invariants.

J. ACM, 70, 5, Article 29, 22 pages. https://doi.org/10.1145/3614319.

[40] Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. 2018. Polynomial invariants for affine programs.

In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July
09-12, 2018, 530–539.

[41] Andreas Humenberger, Daneshvar Amrollahi, Nikolaj Bjørner, and Laura Kovács. 2022. Algebra-Based Reasoning

for Loop Synthesis. Form. Asp. Comput., 34, 1, Article 4, 31 pages. https://doi.org/10.1145/3527458.
[42] Andreas Humenberger, Nikolaj S. Bjørner, and Laura Kovács. 2020. Algebra-Based Loop Synthesis. In Integrated

Formal Methods - 16th International Conference, IFM 2020, Lugano, Switzerland, November 16-20, 2020, Proceedings.
Vol. 12546, 440–459. https://doi.org/10.1007/978-3-030-63461-2_24.

[43] Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács. 2017. Automated generation of non-linear loop

invariants utilizing hypergeometric sequences. In Proceedings of the 2017 ACM on International Symposium on
Symbolic and Algebraic Computation, 221–228. https://doi.org/10.1145/3087604.3087623.

[44] Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács. 2018. Invariant generation for multi-path loops

with polynomial assignments. In Verification, Model Checking, and Abstract Interpretation, 226–246.
[45] Charles R Johnson. 1990. Matrix completion problems: a survey. In Matrix theory and applications. Vol. 40, 171–198.
[46] Michael Karr. 1976. Affine relationships among variables of a program. Acta Informatica, 6, 133–151.
[47] Manuel Kauers. 2007. An algorithm for deciding zero equivalence of nested polynomially recurrent sequences. ACM

Trans. Algorithms, 3, 2, Art. 18, 14. https://doi.org/10.1145/1240233.1240241.
[48] Manuel Kauers. 2008. Solving difference equations whose coefficients are not transcendental. Theoret. Comput. Sci.,

401, 1-3, 217–227. https://doi.org/10.1016/j.tcs.2008.05.001.

[49] Manuel Kauers and Burkhard Zimmermann. 2008. Computing the algebraic relations of C-finite sequences and

multisequences. Journal of Symbolic Computation, 43, 11, 787–803. https://doi.org/10.1016/j.jsc.2008.03.002.
[50] George Kenison, Laura Kovács, and Anton Varonka. 2023. From Polynomial Invariants to Linear Loops. In Proceedings

of the 2023 International Symposium on Symbolic and Algebraic Computation, ISSAC 2023, Tromsø, Norway, July 24-27,
2023, 398–406. https://doi.org/10.1145/3597066.3597109.

[51] Zachary Kincaid, John Cyphert, Jason Breck, and Thomas Reps. 2017. Non-linear reasoning for invariant synthesis.

Proc. ACM Program. Lang., 2, POPL, Article 54, 33 pages. https://doi.org/10.1145/3158142.
[52] P. Koiran. 1997. Randomized and deterministic algorithms for the dimension of algebraic varieties. In 38th Annual

Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, 36–45.
[53] Pascal Koiran. 1996. Hilbert’s Nullstellensatz Is in the Polynomial Hierarchy. J. Complex., 12, 4, 273–286. long version,

DIMACS report 96-27. https://doi.org/10.1006/jcom.1996.0019.

[54] Laura Kovács. 2008. Reasoning algebraically about p-solvable loops. In Tools and Algorithms for the Construction and
Analysis of Systems, 249–264.

[55] Rupak Majumdar, Joël Ouaknine, Amaury Pouly, and James Worrell. 2020. Algebraic Invariants for Linear Hybrid

Automata. In 31st International Conference on Concurrency Theory (CONCUR 2020). Vol. 171, 32:1–32:17. https://doi.or
g/10.4230/LIPIcs.CONCUR.2020.32.

[56] Kenneth L. Manders and Leonard Adleman. 1978. NP-Complete decision problems for binary quadratics. Journal of
Computer and System Sciences, 16, 2, 168–184. https://doi.org/10.1016/0022-0000(78)90044-2.

[57] D. W. Masser. 1988. Linear relations on algebraic groups. In New Advances in Transcendence Theory, 248–262.
https://doi.org/10.1017/CBO9780511897184.016.

[58] Yuri Matiyasevich. 1970. Enumerable sets are Diophantine. Soviet Math. Dokl., 11, 354–358.
[59] B. Mishra. 2012. Algorithmic Algebra. Springer New York.

[60] Markus Müller-Olm and Helmut Seidl. 2004. A note on Karr’s algorithm. In International Colloquium on Automata,
Languages, and Programming. Springer, 1016–1028.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

https://doi.org/10.1145/138859.138867
http://www2.macaulay2.com
https://doi.org/10.4230/LIPIcs.STACS.2024.41
https://doi.org/10.1145/3614319
https://doi.org/10.1145/3527458
https://doi.org/10.1007/978-3-030-63461-2_24
https://doi.org/10.1145/3087604.3087623
https://doi.org/10.1145/1240233.1240241
https://doi.org/10.1016/j.tcs.2008.05.001
https://doi.org/10.1016/j.jsc.2008.03.002
https://doi.org/10.1145/3597066.3597109
https://doi.org/10.1145/3158142
https://doi.org/10.1006/jcom.1996.0019
https://doi.org/10.4230/LIPIcs.CONCUR.2020.32
https://doi.org/10.4230/LIPIcs.CONCUR.2020.32
https://doi.org/10.1016/0022-0000(78)90044-2
https://doi.org/10.1017/CBO9780511897184.016

Simple Linear Loops: Algebraic Invariants and Applications 26:27

[61] Markus Müller-Olm and Helmut Seidl. 2004. Computing polynomial program invariants. Inf. Process. Lett., 91, 5,
233–244. https://doi.org/10.1016/J.IPL.2004.05.004.

[62] Julian Müllner, Marcel Moosbrugger, and Laura Kovács. 2024. Strong invariants are hard: on the hardness of

strongest polynomial invariants for (probabilistic) programs. Proc. ACM Program. Lang., 8, POPL, Article 30, 29 pages.
https://doi.org/10.1145/3632872.

[63] K. Nosan, A. Pouly, S. Schmitz, M. Shirmohammadi, and J. Worrell. 2022. On the Computation of the Zariski Closure of

Finitely Generated Groups of Matrices. In Proceedings of the 2022 International Symposium on Symbolic and Algebraic
Computation, 129–138.

[64] Joël Ouaknine and James Worrell. 2015. On linear recurrence sequences and loop termination. ACM SIGLOG News, 2,
2, 4–13. https://doi.org/10.1145/2766189.2766191.

[65] Joël Ouaknine and James Worrell. 2014. Positivity problems for low-order linear recurrence sequences. In Proceedings
of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 366–379. https://doi.org/10.1137/1.9781611
973402.27.

[66] Bjorn Poonen. 2008. Undecidability in number theory. Notices of the AMS, 55, 3.
[67] Enric Rodríguez-Carbonell and Deepak Kapur. 2004. Automatic Generation of Polynomial Loop Invariants: Algebraic

Foundations. In Proc. of ISSAC, 266–273.
[68] Alexandra Shlapentokh. 2011. Defining integers. The Bulletin of Symbolic Logic, 17, 2, 230–251.
[69] Joseph H. Silverman. 2007. The arithmetic of dynamical systems. Vol. 241. Springer, New York, x+511. https://doi.org

/10.1007/978-0-387-69904-2.

[70] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S Foster. 2013. Template-based program verification and program

synthesis. International Journal on Software Tools for Technology Transfer, 15, 497–518.
[71] L. G. Valiant and V. V. Vazirani. 1986. NP is as Easy as Detecting Unique Solutions. Theor. Comput. Sci., 47, 1, 85–93.

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 26. Publication date: January 2025.

https://doi.org/10.1016/J.IPL.2004.05.004
https://doi.org/10.1145/3632872
https://doi.org/10.1145/2766189.2766191
https://doi.org/10.1137/1.9781611973402.27
https://doi.org/10.1137/1.9781611973402.27
https://doi.org/10.1007/978-0-387-69904-2
https://doi.org/10.1007/978-0-387-69904-2

	Abstract
	1 Introduction
	2 Overview of Main Results
	2.1 Algebraic Invariant Generation
	2.2 Invariant Verification
	2.3 Weak and Strong Loop Synthesis

	3 Algebraic Closure of Linear Loops
	3.1 A Convenient Jordan Block Decomposition
	3.2 Computing the Strongest Algebraic Invariant
	3.3 Computational Complexity

	4 Worked Examples
	5 Invariant Verification
	6 Bit-bounded Synthesis
	7 Further Discussion
	Acknowledgments

