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ABSTRACT 31 

Microbial-induced carbonate precipitation (MICP) is a promising bioremediation technology for heavy metal 32 

immobilisation. This review explores the applications and efficacy of MICP in environmental challenges. It 33 

provides a comprehensive overview of the mechanism, primarily through ureolysis, detailing the process from 34 

urea hydrolysis to heavy metal precipitation as carbonate minerals. Alternative pathways like photosynthesis and 35 

nitrate reduction are also discussed, highlighting the broad applicability of MICP. The review covers the historical 36 

evolution and advancements of MICP as a sustainable solution for heavy metal contamination. Recent studies 37 

demonstrate the efficiency of MICP in achieving high removal rates in diverse environments. The sustainable 38 

operation, precise targeting of heavy metal species, and versatility of MICP are examined. Challenges such as 39 

high copper concentrations, acidic conditions, and cost considerations are addressed. The article provides future 40 

directions and solutions to these challenges, including leveraging machine learning for optimal performance and 41 

enhancing cost considerations through detailed analyses. This review improves understanding of MICP’s 42 

potential, provides a valuable resource for researchers in environmental engineering and the built environment, 43 

and encourages innovative approaches within these fields. 44 

 45 
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1. Introduction 61 

The world faces an escalating challenge from environmental pollutants, including heavy metals contaminating 62 

soil, water, and ecosystems. Rapid industrialisation, human activities, and climate change have exacerbated this 63 

issue, resulting in significant health effects (Wang et al., 2021). The consequences of environmental pollution are 64 

profound and extensive (Zhou et al., 2022). Heavy metal contamination is a significant and pervasive 65 

environmental issue, posing a severe threat to environmental safety. These pollutants accumulate in soil, water, 66 

and air, entering the food chain and becoming more concentrated through biomagnification (Cui et al., 2023), 67 

leading to severe health risks, including cancer, neurological disorders, and reproductive problems (Goswami and 68 

Neog, 2023). Additionally, heavy metal pollution degrades agricultural soils, affecting food safety and quality. 69 

The proportion of heavy metal pollution varies by industry, with mining contributing approximately 20-70 

40%, manufacturing 30-50%, and agriculture 10-20% (Su et al., 2023). These estimates depend on industry type, 71 

location, and regulatory frameworks. For example, mining in developing nations may have higher pollution levels 72 

due to less stringent regulations, while agricultural pollution can vary with pesticide and fertiliser use (Mostafa et 73 

al., 2023; Vácha, 2021). Specific pollution sources include ore extraction and waste management in mining, 74 

smelting and electroplating in manufacturing, and pesticides, fertilisers, sewage sludge, and livestock manure in 75 

agriculture (Vácha, 2021; Wang et al., 2021; Zhou et al., 2022). While industrial and natural activities contribute 76 

significantly to heavy metal pollution, it is critical to evaluate the effectiveness of current regulatory frameworks 77 

and identify areas needing stricter enforcement or updated policies. 78 

Mercury (Hg), arsenic (As), lead (Pb), and chromium (Cr) pollution are primarily from industrial and 79 

natural sources, accounting for 71.99%, 51.57%, 67.39%, and 68.36% respectively (Cui et al., 2023). Cadmium 80 

(Cd) pollution is predominantly linked to agriculture, representing 84.12%. Reducing heavy metal pollution is 81 

essential to protect the environment and human health. Besides commercial sources and urban runoff, natural 82 

occurrences like volcanic eruptions, floods, and landslides can disperse heavy metals, contaminating the 83 

environment and posing risks to human health (Yaashikaa and Kumar, 2022; Zhang et al., 2021). In urban areas, 84 

sources include lead paint, lead pipes, industrial emissions, landfills, and sewage sludge. Improper management 85 

of wastewater effluent from industrial or municipal sources can exacerbate this issue (Figure 1). 86 

 87 

[INSERT FIGURE HERE] 88 

Figure 1: Improper drainage blockage issue in a commercial area, highlighting the presence of potential unwanted 89 

pollutants if not properly treated. 90 
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The cleanup and remediation of heavy metal pollution are costly. For instance, the estimated cost of 91 

addressing Pb contamination in Flint, Michigan, was US$2.1 billion (Mohammed et al., 2011). Healthcare costs 92 

for individuals exposed to heavy metals can be substantial, with the expense of treating a child with lead poisoning 93 

estimated at US$17,000 (Herath et al., 2022). Moreover, heavy metal pollution can result in lost productivity due 94 

to illness or disability, with annual costs reaching US$1.2 trillion (Wang et al., 2022a). Environmental damage 95 

from heavy metal pollution, impacting crop cultivation, livestock rearing, and fishing, is projected to cost 96 

approximately US$3.4 trillion annually. These figures underscore the need for cost-effective and efficient 97 

remediation methods to mitigate heavy metal pollution and its associated economic and health burdens. 98 

Several techniques have been developed to address heavy metal pollution, including physicochemical 99 

adsorption using biochar and natural zeolite ion exchangers (Bai et al., 2023; Widiastuti et al., 2011), and the 100 

decomposition of heavy metal complexes through advanced oxidation processes and biogranulation (Basri et al., 101 

2023; Nidheesh et al., 2022). However, these methods have significant limitations. Physicochemical adsorption 102 

may be constrained by the low availability of functional groups in biochar, reducing ion exchange (Hama Aziz et 103 

al., 2023). Advanced oxidation processes are costly and generate hazardous byproducts, requiring proper 104 

treatment and disposal (Panwar and Pawar, 2022). Biogranulation is limited by the extended setup time and is 105 

susceptible to environmental variations like temperature and pH (Omar et al., 2023) The limitations of these 106 

methods highlight the need for innovative approaches that enhance remediation efficiency while minimising 107 

secondary environmental impacts. 108 

Microbial-induced carbonate precipitation (MICP) is a biomineralisation process where microorganisms 109 

facilitate the formation of calcium carbonate (CaCO3) deposits. MICP holds significant promise in bioremediation 110 

due to its ability to immobilise heavy metals and contaminants. The CaCO3 crystals generated through MICP can 111 

encase contaminants, reducing their bioavailability and leaching into the environment (Yang et al., 2023). MICP 112 

is effective for remediating soil and water contaminated by heavy metals (i.e., Pb, As, and Cd). Despite its 113 

potential, the scalability and consistency of MICP applications in diverse environmental conditions require further 114 

research. Researchers have explored the use of MICP for restoring concrete structures affected by corrosion and 115 

chemical degradation (Achal et al., 2011a; Joshi et al., 2019). The potential of creating sustainable construction 116 

materials, such as self-healing concrete and bio-bricks, is also under investigation (Farajnia et al., 2022; Liu et 117 

al., 2021). applications in soil biocementation, slope stabilisation, soil liquefaction, erosion control, and dust 118 

mitigation offer eco-friendly alternatives to conventional methods, which often involve high-energy inputs and 119 

synthetic chemicals (Gowthaman et al., 2022; Mwandira et al., 2019; Omoregie et al., 2023; Sun et al., 2021; 120 
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Wang et al., 2022b). Compared to conventional grouting methods, microbial grouting using MICP techniques 121 

offers advantages like reduced calcium consumption while maintaining the same compressive strength (Naeimi 122 

and Haddad, 2020). These findings underscore the potential of eco-friendly alternatives in soil improvement. 123 

MICP has wide-ranging applications in bioremediation and construction, making substantial contributions 124 

to environmental and construction sustainability. Its efficacy has garnered significant attention, leading to a surge 125 

in research and recognition as shown in Table 1. The number of publications on MICP increased from 2 in 1990 126 

to 210 in 2023, with citations rising to 9,513 (see Figure S1). This growth reflects MICP’s expanding scope, 127 

potential to address environmental and construction challenges and significance in shaping innovative solutions. 128 

Researchers and professionals increasingly recognise the value of MICP for heavy metal removal, a trend expected 129 

to continue as MICP advances and proves its effectiveness in practical applications. MICP is particularly relevant 130 

for heavy metal contamination.  131 

This review provides a comprehensive overview of the mechanisms of MICP and factors influencing heavy 132 

metal removal. It investigates the conceptual evolution of MICP, covering historical aspects, advancements, and 133 

research hotspots. Additionally, the review addresses safety practices and sustainable approaches, such as 134 

environmental safety, optimising remediation performance, and sustainable soil improvement. Challenges in 135 

MICP efficiency, including high copper (Cu) concentration, acidic conditions, environmental impact assessment, 136 

and cost considerations are discussed. Furthermore, the review offers potential future directions for MICP 137 

research, including reducing Cu toxicity, utilising acid-tolerant microbes, ensuring long-term stability, enhancing 138 

cost considerations, and leveraging machine learning.  139 

[INSERT TABLE HERE] 140 

Table 1: list of various heavy metals immobilised using MICP techniques. 141 

 142 

 143 

2. MICP Mechanism for Heavy Metal Removal 144 

2.1. Overview of MICP 145 

MICP is a biogeochemical process where microorganisms produce minerals at low energy costs, offering 146 

innovative possibilities in engineering applications (Murugan et al., 2021). Among various types of 147 

biomineralisation, MICP is classified as biologically induced mineralisation, where microorganisms alter the pH 148 

of their surroundings, leading to carbonate precipitates (Bisht et al., 2020; Power et al., 2007; Zhi et al., 2014). 149 

While microorganisms do not directly control mineral deposit formation, they influence the process indirectly 150 
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through environmental pH changes. Understanding the interplay of physicochemical and biological factors is 151 

crucial for optimising MICP efficiency, with bacterial cell concentration being a key factor (Murugan et al., 2021).  152 

In the MICP endeavours for heavy metal removal, the typical procedure encompasses several key steps. It 153 

commences with the preparation of ureolytic bacterial cultures and the necessary sterilisation of reagents, 154 

chemicals, and media. While conventional factors like biomass concentration/viability, pH, and urease activity 155 

are monitored, precipitation tests are routinely executed to gauge the formation of carbonate precipitates and 156 

appraise the resilience of bacterial cells against heavy metal ions present in the solution or medium (Xiao et al., 157 

2021). To showcase the transformative potential of soil biocementation, the MICP process is applied, occasionally 158 

even in a liquid solution. Advanced analytical techniques are employed to scrutinise the MICP process and its 159 

impact on the treated materials. Furthermore, the structural integrity and durability of materials treated through 160 

MICP are evaluated using an unconfined compressive strength machine. Understanding MICP mechanisms is 161 

essential for leveraging its potential in heavy metal immobilisation (Figure 2). This includes exploring the 162 

preferred ureolysis pathway and alternative MICP pathways, highlighting their significant potential for heavy 163 

metal remediation. 164 

 165 

[INSERT FIGURE HERE] 166 

Figure 2: MICP treatment for heavy metal sequestration. (a-d) MICP setup and preparation of ureolytic bacterial 167 

cultures; (e-g) precipitation tests, including the quantification of carbonate precipitates and bacterial cells 168 

undergoing tolerance tests in the presence of heavy metals; (h-i) process of soil biocementation via MICP, both 169 

before and after curing; (j-m) various analytical methods for material characterisation; and (n) the strength testing 170 

procedure using an unconfined compressive strength machine. 171 

2.2. Ureolysis pathway for MICP 172 

Ureolysis, or urea hydrolysis, is the most common pathway for MICP, primarily facilitated by urease-producing 173 

bacteria such as Sporosarcina pasteurii and Lysinibacillus sphaericus. These bacteria hydrolyse urea using the 174 

extracellular urease enzyme (Meier et al., 2017). The hydrolysis process elevates the pH, promoting CaCO3 175 

precipitation from calcium and bicarbonate ions in solution. This pH elevation results from the consumption of 176 

organic compounds, producing carbonate ions (𝐶𝐶𝐶𝐶32−) and hydroxide ions (𝐶𝐶𝑂𝑂−) as byproducts (Omoregie et al., 177 

2022). The resulting alkaline environment is essential for the subsequent precipitation of CaCO3. 178 

Microorganisms play a dual role in biomineralisation. First, they create an environment conducive to 179 

carbonate mineral formation by elevating the local pH through their metabolic processes (Xiao et al., 2021). 180 
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Secondly, they produce extracellular polymeric substances (EPS), complex molecules serving as a matrix for 𝐶𝐶𝐶𝐶2+ 181 

and 𝐶𝐶𝐶𝐶32− ions to aggregate, forming initial mineral nuclei (Li et al., 2017). EPS not only initiate mineral formation 182 

but also acts as an effective immobilising agent for heavy metals. Heavy metal ions bind to the EPS and integrate 183 

into the CaCO3 structure, significantly reducing their mobility and bioavailability (Huang et al., 2018). 184 

The chemical reactions involved in heavy metal removal through MICP include actions by urease and 185 

carbonic anhydrase enzymes. The process starts with urea (CO(NH2)2) reacting with water (H2O) in the presence 186 

of urease, producing ammonia (NH3) and carbamic acid (NH2COOH) (Jing et al., 2023; Qiao et al., 2021). Urease 187 

catalyses this hydrolysis, breaking down urea (Eqn. 1). The produced NH2COOH further reacts with H2O to form 188 

carbonic acid (H2CO3) and additional NH3 (Eqn. 2). H2CO3 then dissociates into (H+) and bicarbonate ion (𝑂𝑂𝐶𝐶𝐶𝐶3−), 189 

facilitated by carbonic anhydrase, increasing bicarbonate ion concentration (Eqn. 3). 190 

Next, NH3 reacts with H2O to generate 𝐶𝐶𝑂𝑂− and ammonium ions (NH4
+) (Eqn. 4), contributing to the pH 191 

increase around the microbial cells. The 𝑂𝑂𝐶𝐶𝐶𝐶3−, generated in Eqn. 3 interacts with 𝑂𝑂+ and additional 𝐶𝐶𝑂𝑂− to 192 

produce 𝐶𝐶𝐶𝐶32− (Eqn. 5). These carbonate ions precipitate from the solution when exposed to divalent cations. 193 

Calcium ions (Ca2+) in the microbial environment can react with 𝐶𝐶𝐶𝐶32− to form solid CaCO3 precipitates (Eqn. 6). 194 

Similarly, heavy metal ions (HM2+), present in the solution can react with 𝐶𝐶𝐶𝐶32− to produce solid heavy metal 195 

carbonates (HMCO3) (Eqn. 7). In certain scenarios, HMCO3 co-precipitates with CaCO3 to form mixed carbonate 196 

minerals, where “x” represents the proportion of heavy metal ions in the precipitate (Eqn. 8). Figure 3 provides a 197 

schematic representation of MICP, leading to the removal of heavy metals and the simultaneous co-precipitation 198 

of CaCO3. The corresponding reaction equations are presented below: 199 

CO(NH2)2  +     H2O    →     NH3   +  NH2COOH                                                                                                            (1) 200 

 NH2COOH  +     H2O    →     H2CO3  +  NH3                                                                                                                  (2) 201 

 H2CO3    ↔      H+   +  HCO3
−                                                                                                                                                (3) 202 

2NH3   +     2H2O    ↔      2OH−   +   2NH4
+                                                                                                                     (4) 203 

HCO3
−   +   H+ + 2OH−  →     CO3

2−      +   2H2O                                                                                                             (5) 204 

  Ca2+ +   CO3
2−    →    CaCO3(g)                                                                                                                                            (6) 205 

 HM2+ +   CO3
2−    →    HMCO3(g)                                                                                                                                          (7) 206 

xHM2+ + (1 − x)Ca2+ +  CO3
2−    →    Ca(1−X)Mx CO3(g)                                                                                       (8 ) 207 

 208 

 209 

 210 
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[INSERT FIGURE HERE] 211 

Figure 3: Schematic illustration showing the MICP mechanism for heavy metal immobilisation and co-212 

precipitation of CaCO3. 213 

Urease, a large enzyme complex with a molecular mass exceeding 500 kDa, contains two nickel (Ni) ions 214 

vital for its catalytic function (Zhu et al., 2021). This enzyme is essential for breaking down urea into carbonate 215 

ions, which then react with calcium ions to form CaCO3 precipitates, effectively trapping and immobilising heavy 216 

metals. The Ni ions within the enzyme’s active site are indispensable for catalytic activity, a prerequisite for 217 

carbonate ion production. Carbonate ions subsequently react with calcium ions to generate CaCO3 precipitates, 218 

effectively trapping and immobilising heavy metals as demonstrated in Figure 3. The intricate molecular 219 

mechanism governing urease catalysis is yet to be fully elucidated, but it has played a fundamental inspiration in 220 

heavy metal immobilisation.  221 

Ureolysis is preferred in MICP due to its simplicity, the abundance of urease-producing bacteria, and the 222 

rapid pH elevation from liberated ammonia (Lauchnor et al., 2015). These bacteria, such as Sporosarcina 223 

aquimarina, Sporosarcina pasteurii, and Exiguobacterium undae, adapt well to various environmental conditions, 224 

including alkaline pH and high calcium concentrations (Keykha et al., 2019; Kumari et al., 2014). This knowledge 225 

forms a solid foundation for enhanced control and predictability within MICP processes. The accessibility and 226 

affordability of urea also make MICP economically viable and scalable (Chen et al., 2019, 2018; Omoregie et al., 227 

2019a). The extensive knowledge of urea hydrolysis and CaCO3 precipitation by these bacteria provides valuable 228 

insights for optimising the MICP process 229 

2.3. Other MICP pathways 230 

MICP can occur through various metabolic pathways (apart from ureolysis) through microorganisms, each 231 

contributing to mineral precipitation. These distinct mechanisms include (i) photosynthesis, (ii) ammonification, 232 

(iii) nitrate reduction (denitrification), (iv) sulfate reduction, and (v) iron reduction. Each of these pathways 233 

contributes to mineral precipitation through different mechanisms. 234 

Firstly, oxygenic photosynthesis unfolds as a captivating process. Specific microorganisms, exemplified 235 

by cyanobacteria (i.e., Synechococcus elongatus), and algae (i.e., Dinoflagellates) harness the radiant energy of 236 

sunlight to orchestrate a transformation (Bundeleva et al., 2014; Frommlet et al., 2015). This transformation sees 237 

carbon dioxide (CO2) and water metamorphose into organic matter while simultaneously liberating oxygen as a 238 

noteworthy byproduct (Eqn. 9). The exchange of 𝑂𝑂𝐶𝐶𝐶𝐶3− or OH- ions lead to an elevation in alkalinity across 239 

microbial cells (Lamérand et al., 2022). What makes this process especially intriguing is the ability of these 240 
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microorganisms to influence their immediate surroundings. Through the consumption of CO2, they manipulate 241 

pH levels, setting the stage for the precipitation of CaCO3 (Kawaguchi and Decho, 2002). This biomineralisation 242 

process is set into motion as conditions shift to favour CaCO3 formation. As long there is increased alkalinity from 243 

the photosynthesis process facilitates the reaction between 𝐶𝐶𝐶𝐶2+and 𝑂𝑂𝐶𝐶𝐶𝐶3− , CaCO3 minerals will form (Eqn. 10). 244 

𝐶𝐶𝐶𝐶2  +     𝑂𝑂2𝐶𝐶   →     𝐶𝐶𝑂𝑂𝑂𝑂𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂 𝑚𝑚𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑂𝑂    +   𝐶𝐶2                                                                                                              (9) 245 

𝐶𝐶𝐶𝐶2+  +     2𝑂𝑂𝐶𝐶𝐶𝐶3−     →     𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3     +   𝐶𝐶𝐶𝐶2      +   𝐶𝐶2                                                                                                  (10) 246 

During ammonification microorganisms convert organic nitrogen-containing compounds, such as proteins 247 

and amino acids, into NH3 (Eqn. 11). The generated NH3 elevates the pH levels in the vicinity. The generated NH3 248 

exhibits the remarkable capability to elevate the pH levels in the vicinity. Then, NH3 react with 𝑂𝑂𝐶𝐶𝐶𝐶3− to form 249 

𝑁𝑁𝑂𝑂4+ and CO2 (Eqn. 12). The subsequent reactions with calcium ions lead to the precipitation of CaCO3 (Eqn. 13), 250 

a key development in the MICP journey. While some bacteria, like Virgibacillus marismortui, acidify their 251 

environment (Zhao Z. et al., 2020), others, like Brevibacillus laterosporus, raise the pH through ammonification 252 

(Gunes and Balci, 2021). This increase in pH, observed in various species (i.e., Rheinheimera texasensis, 253 

Paeniglutamicibacter kerguelensis, Ensifer adhaerens, Microbacterium testaceum, and Pseudomonas protegens) 254 

(Hatayama and Saito, 2019) promotes the precipitation of CaCO3, a key step in MICP. 255 

𝑃𝑃𝑂𝑂𝑃𝑃𝑚𝑚𝑚𝑚𝑂𝑂𝑂𝑂 𝑃𝑃𝑂𝑂 𝐶𝐶𝑚𝑚𝑂𝑂𝑂𝑂𝑃𝑃 𝐶𝐶𝑂𝑂𝑂𝑂𝑎𝑎       →      𝑁𝑁𝑂𝑂3                                                                                                                            (11) 256 

𝑁𝑁𝑂𝑂3  +     𝑂𝑂𝐶𝐶𝐶𝐶3−     →     𝑁𝑁𝑂𝑂4+     +   𝐶𝐶𝐶𝐶2                                                                                                                          (12) 257 

𝑁𝑁𝑂𝑂4+     +      𝐶𝐶𝐶𝐶2+ +     2𝑂𝑂𝐶𝐶𝐶𝐶3− →     𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3    +   2𝑂𝑂2𝐶𝐶   +    𝑁𝑁𝑂𝑂3                                                                         (13) 258 

Denitrifying bacteria contribute to MICP through a distinctive pathway. These bacteria use nitrate (𝑁𝑁𝐶𝐶3−) 259 

as a terminal electron acceptor, and in the process, they generate nitric oxide (NO) (Eqn. 14). NO, in turn, can 260 

react with calcium ions, forming calcium nitrate (Ca(NO3)2) (Liu et al., 2022a). This metabolic feat leads to an 261 

intriguing pH elevation outcome. As the pH undergoes this shift, it lays the foundation for the precipitation of 262 

CaCO3, an essential aspect of MICP. For instance, calcium nitrate is hydrolysed, leading to the precipitation of 263 

CaCO3 and the release of nitric acid (Eqn. 15-16).  264 

𝑁𝑁𝐶𝐶3−                 →           𝑁𝑁𝐶𝐶                                                                                                                                                  (14) 265 

𝐶𝐶𝐶𝐶2+  +     2𝑁𝑁𝐶𝐶3     →     𝐶𝐶𝐶𝐶(𝑁𝑁𝐶𝐶3)2                                                                                                                                  (15) 266 

𝐶𝐶𝐶𝐶(𝑁𝑁𝐶𝐶3)2  +     2𝑂𝑂2𝐶𝐶    →     𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3   + 2𝑁𝑁𝐶𝐶3−  +   𝑂𝑂2𝐶𝐶2                                                                                         (16) 267 
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Halomonas sp and Thauera sp are reported microbial species known for their versatile metabolism and 268 

ability to form biofilms (Chetty et al., 2022). This process is not well understood, especially at alkaline pH levels. 269 

Researchers observed a decrease in nitrate reduction rates from 0.72 mM/h at pH 9.5 to 0.17 mM/h at pH 270 

exceeding 11, while the concentration of nitrite increased (Chetty et al., 2022). The pH shift sets the stage for the 271 

precipitation of CaCO3, which plays a key role in MICP. The denitrification-driven pathway demonstrates the 272 

adaptability of the process (Pham et al., 2018).  273 

Sulfate reduction is a pivotal process contributing to sulfide generation in environments with high sulfate 274 

concentrations and low oxygen levels, both in natural and industrial contexts (Ren et al., 2022). Certain sulfate-275 

reducing microorganisms (i.e., Desulfovibrio sp) induce MICP by producing sulfide ions (𝑆𝑆2−). In this metabolic 276 

pathway, microorganisms pivot towards sulfate (𝑆𝑆𝐶𝐶42−) as a terminal electron acceptor during anaerobic 277 

respiration (Karnachuk et al., 2021). Then, sulfate later converts into 𝑆𝑆2− via a transformational phase (Eqn. 17). 278 

These sulfide ions then react with 𝐶𝐶𝐶𝐶2+  in the environment, resulting in the formation of calcium sulfide (CaS) 279 

(Chetty et al., 2022; Gao et al., 2023). Subsequently, this calcium sulfide can be oxidised, typically by atmospheric 280 

oxygen or other oxidants, leading to the conversion of CaS into CaCO3 and elemental sulfur (S) (Eqn. 18-19). 281 

𝑆𝑆𝐶𝐶42−     →      𝑆𝑆2−                                                                                                                                                                   (17) 282 

𝐶𝐶𝐶𝐶2+  +     𝑆𝑆2−    →     𝐶𝐶𝐶𝐶𝑆𝑆                                                                                                                                                    (18) 283 

𝐶𝐶𝐶𝐶𝑆𝑆 +  𝐶𝐶2         →     𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3      +        𝑆𝑆                                                                                                                            (19) 284 

Iron reduction unfolds as a fascinating metabolic pathway where microorganisms channel the potential of 285 

ferric iron (𝐹𝐹𝑚𝑚3+) as an electron acceptor during anaerobic respiration. Iron-oxidising bacteria such as 286 

Sideroxydans sp, Gallionella sp, and Azoarcus sp play a role in MICP by reducing (𝐹𝐹𝑚𝑚3+) to ferric iron (𝐹𝐹𝑚𝑚2+) 287 

(Eqn. 20) (Levett et al., 2020). The produced ferric iron interacts with 𝑂𝑂𝐶𝐶𝐶𝐶3−  in the environment, forming ferric 288 

hydroxide (Fe(OH)3) and CO2 (Eqn. 21) (Yang et al., 2022). This ferric hydroxide subsequent transformation 289 

leads to the precipitation of FeCO3 and H2O (Eqn. 22). The iron-mediated pathway adds another layer of 290 

complexity to the MICP process (Ning et al., 2022). Meanwhile, the release of CO2 occurs during the initial 291 

reaction. The precipitation of CaCO3 is not explicitly shown in this pathway, as FeCO3 is the primary product in 292 

this case. Microbial iron reduction influences pH by balancing proton (𝑂𝑂+) consumption during iron reduction 293 

and (𝑂𝑂+) generation from organic substrate oxidation (Li et al., 2022a). In 𝐹𝐹𝑚𝑚3+ rich conditions, it increases pH, 294 

converting dissolved CO2 into bicarbonate. Beyond urea hydrolysis, MICP pathways can immobilise heavy metals 295 
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like Pb, Cd, and Cu by forming less soluble compounds. This adds complexity to MICP, which influences the pH 296 

and contributes to FeCO3 formation. 297 

𝐹𝐹𝑚𝑚3+  +    𝑚𝑚−   →    𝐹𝐹𝑚𝑚2+                                                                                                                                                       (20) 298 

𝐹𝐹𝑚𝑚2+ +   𝑂𝑂𝐶𝐶𝐶𝐶3−     →    𝐹𝐹𝑚𝑚(𝐶𝐶𝑂𝑂)3                                                                                                                                     (21) 299 

𝐹𝐹𝑚𝑚(𝐶𝐶𝑂𝑂)3  →     𝐹𝐹𝑚𝑚𝐶𝐶𝐶𝐶3      +      𝑂𝑂2𝐶𝐶                                                                                                                                (22) 300 

 301 

 302 

3. Factors Influencing MICP Effectiveness 303 

The effectiveness of heavy metal immobilisation through MICP is governed by a multitude of factors. 304 

Understanding these factors is essential for optimising this bioremediation strategy. By critically analysing these 305 

elements, the application of MICP can be enhanced in diverse contaminated environments, ensuring effective and 306 

sustainable remediation. 307 

3.1. Formation of Metal Carbonates 308 

The integration of heavy metal ions into the evolving CaCO3 structure is pivotal to the effectiveness of MICP. 309 

Heavy metal stabilisation is linked to the formation of metal carbonates, which render the metals less soluble and 310 

more stable. This process involves mechanisms such as isomorphic substitution of Ca2+ or incorporation into the 311 

crystal lattice interstices or defects (Tamayo-Figueroa et al., 2019). The efficiency of this incorporation depends 312 

on the ionic radius and charge of the heavy metal ions, which influence their ability to substitute for Ca2+ in the 313 

lattice. Additionally, the presence of other ions can affect the formation and stability of metal carbonates, thereby 314 

influencing the overall stabilisation process. The saturation state of CaCO3 in the environment also plays a role. 315 

High saturation levels promote nucleation and growth of CaCO3 crystals, enhancing the entrapment of heavy 316 

metals. Conversely, low saturation levels may inhibit these processes, reducing immobilisation efficiency. The 317 

role of isomorphic substitution and incorporation into lattice defects is crucial but often complicated by the 318 

specific characteristics of each heavy metal ion (Eltarahony et al., 2021). For instance, the substitution of Ca2+ by 319 

comparable ionic radii such as Pb2+, Cd2+, or Zn2+ tends to be more efficient compared to metals with significantly 320 

different ionic radii or charges (e.g., Cr3+, Cr6+) (Mitra et al., 2022). Additionally, the presence of competing ions 321 

such as Mg2+ and 𝑆𝑆𝐶𝐶42− can interfere with the formation of CaCO3, necessitating a careful balance of ion 322 

concentrations in the treatment environment. 323 

 324 

 325 
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3.2. Microbial Activity and Metabolic Processes 326 

Microbial activity is a cornerstone of MICP, as the metabolic processes of microorganisms drive the precipitation 327 

of CaCO3. Under adverse conditions, such as high heavy metal concentrations, microorganisms employ survival 328 

strategies like the buildup and expulsion of calcium ions and the maintenance of a conducive microenvironment. 329 

The metabolic activities that lead to the release of carbonate ions and subsequent CaCO3 precipitation are 330 

influenced by factors such as exopolymers, biofilms, and dormant spores (Kim et al., 2021; Zhang et al., 2020). 331 

EPS produced by microbes bind heavy metals and serve as nucleation sites for CaCO3 precipitation, enhancing 332 

the immobilisation process. Biofilms, which are complex microbial communities embedded in EPS, provide a 333 

protective environment for microbes and facilitate sustained metabolic activity and CaCO3 production, even in 334 

the presence of toxic heavy metals (Crane et al., 2022; Zhao et al., 2020a). The protective nature of biofilms 335 

allows MICP microorganisms to survive and function under suboptimal conditions, which is advantageous in 336 

harsh environments. However, the heterogeneity of biofilms can result in uneven CaCO3 precipitation and 337 

potential weak spots in the immobilisation matrix. Dormant spores add resilience to the microbial community, but 338 

their germination and subsequent metabolic activity are highly dependent on environmental triggers, which may 339 

not always be predictable or controllable. The complexity and variability of EPS composition can lead to 340 

inconsistent results, posing a challenge to the uniformity of CaCO3 precipitation and the stability of the 341 

immobilisation matrix (Dong et al., 2023). 342 

3.3. pH Alterations and Adenosine triphosphate (ATP) Production 343 

The interplay between ATP production and pH changes is critical in MICP. Proton flow through ATP synthase 344 

during cellular respiration causes pH shifts within the microenvironment, which are necessary for carbonate ion 345 

formation and CaCO3 precipitation. These pH changes also significantly impact heavy metal stabilisation, as 346 

heavy metal ions co-precipitate with CaCO3, rendering them insoluble (Zhang et al., 2022c). The production of 347 

ATP during cellular respiration is closely linked to pH modulation. Protons are shuttled during ATP synthesis, 348 

leading to pH changes that influence the solubility and speciation of heavy metals and carbonate ions (Jing et al., 349 

2023; Qiao et al., 2021). These pH changes create a favourable environment for CaCO3 precipitation and heavy 350 

metal stabilisation. Furthermore, the efficiency of ATP production and pH regulation is influenced by 351 

environmental factors such as temperature, oxygen availability, and nutrient concentration processes (Zhang et 352 

al., 2022a). Optimal conditions for microbial metabolism and ATP synthesis can enhance MICP processes, while 353 

suboptimal conditions can hinder these processes and reduce stabilisation efficiency. The correlation between ATP 354 

production and pH modulation is highly sensitive to environmental fluctuations. Temperature variations can 355 
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significantly impact microbial respiration rates and, consequently, ATP production and pH changes. Oxygen 356 

availability is another critical factor; anaerobic conditions can limit the efficiency of aerobic microbes, leading to 357 

reduced ATP production and less effective pH modulation (Kang et al., 2022; Sharma et al., 2022b). Nutrient 358 

limitations can also hamper microbial growth and metabolic activity, necessitating the provision of a balanced 359 

nutrient supply to sustain effective MICP. 360 

 361 

 362 

4. Conceptual Evolution of the Research Field 363 

Researchers can be enlightened about the historical perspective and the remarkable developmental milestones that 364 

have intricately shaped the trajectory of this field. Visual representation depicting the chronological evolution of 365 

MICP strategies for heavy metal removal, spanning from the 1970s to the 2020s is shown in Figure 4. 366 

Understanding the historical perspective, key research milestones and hotspots of research themes and areas is 367 

vital for scholars in the field as it provides essential context, and a roadmap of progress, and identifies current 368 

areas of significance, enabling them to make informed contributions and advancements in their research 369 

[INSERT FIGURE HERE] 370 

Figure 4: Chronological evolution of MICP strategies for heavy metal removal (the 1970s-2020s). 371 

 372 

4.1. Early Research (1975-1998) on MICP for Heavy Metal Removal 373 

Early research (1975-1998) laid the groundwork for understanding MICP’s potential in heavy metal removal. 374 

Brown et al., (1975) introduced ureolysis, a key process in MICP, while Nannipieri et al., (1983, 1990) 375 

demonstrated ureolysis-driven ammonium release in soils. Bihari and Basu (1984) highlighted the industrial 376 

applications of immobilised urease, and Perucci (1990) and García et al., (1994) emphasised microbial influences 377 

on soil conditions and enzymatic activities. Goldstein (1994) extended the potential of MICP by uncovering 378 

microbial roles in marine carbon cycling. Benini et al., (1996) advanced the understanding of urease structure in 379 

Sporosarcina pasteurii, crucial for ureolysis in MICP. Xu and Johnson (1997) accentuated the importance of 380 

microbial processes in soil nitrogen cycling in hydrocarbon-contaminated soils. Nielsen et al., (1998) revealed 381 

rapid soil urea turnover’s importance in nitrogen cycling. Ejechi and Akpomedaye (1998) showed how ureolytic 382 

microorganisms limited wood-rot fungi growth, indicating their ecological significance. Early studies provided 383 

foundational insights into the mechanisms of MICP, particularly ureolysis. However, the focus was predominantly 384 

on understanding basic microbial processes rather than direct applications for heavy metal removal. This period 385 
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was crucial for setting the stage for future applied research but lacked targeted strategies for environmental 386 

remediation. 387 

4.2. Advancements (1999-2008) in MICP for Environmental Remediation 388 

Advancements (1999-2008) showcased MICP’s efficacy in environmental remediation. Stocks-Fischer et al., 389 

(1999) and Fujita et al., (Fujita et al., 2000) placed the foundation for bacterial mineral precipitation and the ability 390 

to capture inorganic contaminants. Other important early studies underscored MICP’s potential for environmental 391 

remediation, particularly in capturing inorganic contaminants (Bachmeier et al., 2002; Stuczynski et al., 2003; 392 

Warren et al., 2001). Hammes et al., (2003), explored industrial wastewater treatment through MICP, while Amos 393 

et al., (2004) and Rekha et al., (2005) demonstrated MICP’s applicability in acid mine drainage and lake sediment 394 

remediation, respectively. Mitchell and Ferris (2006) studied Sporosarcina pasteurii's impact on metal 395 

immobilisation, and Garau et al., (2007) investigated metal solubility reduction through amendments. Lee et al., 396 

(2008) studied metal removal in acid mine drainage, focusing on adsorption and showing sustained capacity of 397 

MICP over time. This period marked significant progress in applying MICP for environmental remediation. The 398 

research expanded beyond basic mechanisms to practical applications, demonstrating MICP’s potential in diverse 399 

environmental contexts. However, these studies are still largely experimental and face challenges in scalability 400 

and field application. 401 

4.3. Progress (2009-2018) in MICP for Heavy Metal Immobilisation 402 

Between 2009 and 2018, significant progress was made in the field. Researchers like Sarda et al., (2009) showed 403 

MICP’s potential in reducing water absorption in bricks, extending its use to heavy metal immobilisation. Li et 404 

al., (2010) demonstrated that ureolytic bacteria could immobilise Cd in contaminated soil with a 92% removal 405 

rate. Achal et al., (2011; 2012b; 2012c; 2012a) successfully removed Cu from contaminated soil and extended the 406 

method to remediate Pb, Sr, and As-contaminated soil with up to 95% immobilisation efficiency. Li et al., (2013) 407 

explored biomineralisation of heavy metals (Ni, Cu, Pb, Co, Zn, Cd) by metal-resistant bacterial strains, achieving 408 

high removal rates (88% to 99%). Achal et al., (2013) demonstrated the use of Bacillus sp. strain CS8 for the 409 

bioremediation of chromate (Cr (VI)) from chromium slag. Lauchnor et al., (2013) addressed Sr-contamination 410 

via ureolysis, suggesting a viable strategy for field-scale applications. Kang et al., (2014) investigated the 411 

biomineralisation of Cd, achieving a 99.95% removal rate. Kumari et al., (2014) explored MICP at low 412 

temperatures for Cd immobilisation in soil, showing a 90% removal rate. Kang et al., (2015) tackled Pb 413 

contamination, successfully immobilised Pb ions and achieved a 60% removal rate after 48 hours of incubation. 414 

Kang et al., (2016) isolated bacteria from abandoned mines and used them for MICP to sequestrate Cu2+, resulting 415 
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in a 61.8% Cu immobilisation rate. Mwandira et al., (2017) addressed Pb-contaminated mine waste 416 

bioremediation using MICP, offering an eco-friendly method. Gui et al., (2018) reinforced fine-grained uranium 417 

tailings effectively through MICP, indicating its potential for tailings dam reinforcement. This period saw 418 

substantial advancements in applying MICP for heavy metal immobilisation. Studies demonstrated high removal 419 

rates and expanded the range of heavy metals addressed. However, while lab-scale experiments were successful, 420 

there were still significant challenges in translating these results to field-scale applications. Issues such as 421 

microbial survival in different environments, the consistency of ureolysis, and cost-effectiveness remained 422 

barriers. 423 

4.4. Recent Advances (2019-Present) in MICP for Heavy Metal Remediation 424 

From 2019 onwards, MICP research for heavy metal removal has advanced significantly, demonstrating its 425 

potential in various environmental contexts. Zhang et al., (2019) introduced biochar to remediate Ni via MICP, 426 

finding that it inhibited calcite formation by Bacillus cereus, impacting Ni remediation. Khadim et al., (2019) 427 

used ureolytic bacteria from barn horse soil for Ni and Cd remediation, achieving up to 96% removal for Cd and 428 

89% for Ni. Wang et al., (2020) isolated urease-producing bacteria from lettuce rhizosphere soil, effectively 429 

reducing Cd and Pb accumulation in lettuce. Peng et al., (2020) used a Cd-resistant ureolytic bacterium for MICP, 430 

achieving 99.50% Cd removal in solution and 56.10% in soil. Qiao et al., (2021) demonstrated that Sporosarcina 431 

sp. could remove multiple heavy metals, with removal rates of 75-98% within two hours. Bai et al., (2021) 432 

employed a halophilic ureolytic bacterium to remediate heavy metal-contaminated saline environments, achieving 433 

around 89% Pb removal under high salinity. He et al., (2022) used Lysinibacillus fusiformis for in-situ 434 

biomineralisation of Cu-Ni-tailings, significantly reducing heavy metal leaching. Disi et al., (2022) achieved 435 

100% removal of Cr and zinc (Zn) using hydrocarbon-degrading ureolytic bacteria. Li et al., (2022) reported high 436 

removal rates for Cd, Cu, and Pb with Sporosarcina pasteurii. He et al., (2023) enhanced Pb immobilisation using 437 

ureolytic Staphylococcus epidermidis with poly-Lysine, achieving a 92% immobilisation rate. Zeng et al., (2023) 438 

demonstrated 98.46% Cd immobilisation in sludge, with significant increases in urease metabolism genes. He et 439 

al., (2023) reported that adding calcium oxide (CaO) to MICP improved passivation rates for Cu, Ni, Pb, and Cr. 440 

Zhang et al., (2023) showed the potential of ureolytic microorganisms in detoxifying heavy metals from intensive 441 

Cu production, identifying mechanisms in areas with varying heavy metal content. Recent advancements in MICP 442 

research have shown its potential in various environmental contexts and achieved high removal rates for multiple 443 

heavy metals. Innovations such as the use of biochar, halophilic bacteria, and poly-lysine have enhanced the 444 

efficiency and applicability of MICP. However, challenges remain in scaling up these methods for practical, field-445 
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scale applications. Variability in microbial activity, environmental conditions, and cost-effectiveness are critical 446 

issues that need to be addressed to fully harness MICP’s potential for heavy metal remediation. 447 

4.5. Hotspots of Research Themes and Areas 448 

VOSviewer is an invaluable tool for identifying research hotspots and trends, helping researchers understand 449 

current dynamics and emerging areas of interest. Leading keywords based on frequency offer valuable insights 450 

into prominent research areas. The density visualisation of the author keyword using VOSviewer software displays 451 

the hotspot of the field as shown in Figure 5. “MICP” underscores its central role, followed closely by “urease” 452 

and “heavy metals”, highlighting the significance of this enzyme in the MICP process for heavy metal removal. 453 

Other dominant keywords include “soil enzyme activities”, “bio-mineralisation”, “microbial communities”, 454 

“bacterial community”, “cadmium”, “Sporosarcina pasteurii”, and “calcium carbonate”, signifying specific 455 

elements and compounds that researchers are actively investigating. Keywords such as “bio-cementation”, 456 

“enzymatic activities”, “rhizosphere microenvironment”, “microorganisms”, “constructed wetlands”, and “bio-457 

remediation” emphasise the importance of these areas in current research. These keywords represent the focal 458 

points of extensive academic literature and are instrumental in understanding the research landscape. Additionally, 459 

less common but noteworthy keywords such as “coal combustion fly ashes”, “environmental scanning electron 460 

microscope”, “ecophysiological index”, and “sustainable technology” offer a glimpse into the diverse and 461 

evolving research areas that researchers are exploring. 462 

 463 

[INSERT FIGURE HERE] 464 

Figure 5: Density visualisation of author keyword hotspots using VOSviewer software. 465 

 466 

Data from the VOSviewer co-occurrence analysis of author keywords, illustrated in Figure S2, revealed 467 

key trends and focal points within the MICP field for heavy metal removal. The analysis shows “Cd” as the most 468 

researched heavy metal, followed by “Pb” and “Cu”, highlighting their significance as environmental pollutants 469 

and targets for MICP research. There is strong interest in terms like “biochar” and “carbon”, which enhance 470 

microbial activity and facilitate CaCO3 precipitation. Enzymatic activities (e.g., “catalase”, “glucosidase”, “acid 471 

phosphatase”) and techniques (e.g., “scanning electron microscopy”, “X-ray diffraction”) are crucial in optimising 472 

MICP. The central role of microorganisms is emphasised with terms like “dehydrogenase”, “microbial community 473 

structure”, and “Sporosarcina pasteurii”. Key terms such as “absorption”, “accumulation”, “bioavailability”, 474 

“contaminated soil”, and “toxicity” underline the focus on heavy metal absorption and immobilisation. References 475 
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to “bioremediation”, “surface treatment”, and “cementitious material” highlight their importance, while terms like 476 

“biocementation”, “stabilisation”, and “carbon sequestration” suggest an emerging interest in broader 477 

environmental applications, such as soil strengthening and carbon capture. Different subgroups within these 478 

research themes are detailed in Figure S2. 479 

 480 

 481 

5. Safety Practices and Sustainable Approaches  482 

MICP offers a promising and sustainable approach for heavy metal immobilisation, provided that safety practices 483 

are rigorously followed and continuously improved. To ensure the long-term safety and efficacy of MICP, further 484 

research is needed in several areas. Developing standardised protocols for monitoring and evaluating MICP 485 

performance in different contexts is essential. Additionally, understanding the long-term durability of MICP-based 486 

structures and materials is crucial. While biomineralisation offers advantages, comprehending how these 487 

structures weather and degrade over time is vital for ensuring safety and sustainability. Understanding microbial 488 

processes, utilising waste materials, and incorporating machine learning are all crucial for enhancing the safety, 489 

efficiency, and environmental benefits of MICP. By focusing on these themes, MICP can be developed into a 490 

reliable and eco-friendly technique for environmental remediation. 491 

5.1. Environmental Safety 492 

MICP holds the potential for reduced environmental impact compared to conventional techniques. Studies by 493 

Ivanov et al., (2019) and El Enshasy et al., (2020) highlight the importance of environmentally safe construction 494 

practices, noting that MICP avoids the release of harmful substances like ammonia associated with traditional 495 

methods. This is critical, as ammonia can contribute to groundwater contamination and air pollution. Additionally, 496 

Ivanov and Stabnikov (2020) demonstrate how MICP aligns with sustainable practices by promoting 497 

biomineralisation, which enhances the durability of structures while reducing the environmental footprint 498 

compared to traditional cement production. This biomineralisation process not only sequesters carbon dioxide but 499 

also produces less waste and consumes fewer natural resources. 500 

5.2. Optimising Safety and Remediation Performance 501 

Safety practices can be improved by understanding the metabolic pathways of microorganisms used in MICP 502 

(Porter et al., 2021). This understanding is vital for controlling the process and preventing unintended 503 

environmental consequences. Ensuring the purity of input chemicals and byproducts is also crucial, as 504 

contaminants could undermine the safety and effectiveness of MICP. Furthermore, scholars have showcased how 505 
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machine learning can predict alternative stabilising materials that minimise environmental impact (Liu et al., 506 

2022b; Raza and Khushnood, 2022; Zhang et al., 2022b). Machine learning can optimise the selection and 507 

combination of materials to enhance the efficacy and safety of MICP processes, thus making the approach more 508 

reliable and environmentally friendly. Studies have shown that MICP is a cleaner production approach for 509 

remediating contaminated soil and industrial materials, offering a sustainable alternative for construction materials 510 

(Mokhtar et al., 2021; Yu et al., 2021). This is particularly relevant for heavy metal immobilisation, as MICP can 511 

stabilise heavy metals in soils, preventing their leaching and reducing their bioavailability. Additionally, 512 

researchers have investigated using waste materials like kitchen waste in bioremediation processes (Sharma et al., 513 

2022a). This approach not only provides a sustainable method for waste disposal but also adds value to waste 514 

materials, transforming them into useful inputs for MICP. Such practices highlight MICP’s potential for 515 

sustainable building material production while addressing waste disposal concerns. 516 

 517 

5.3. Sustainable Soil Improvement 518 

Suriya and Sangeetha, (2023) demonstrated how MICP can improve the erosive resistance of dispersive soil 519 

through the incorporation of jute fibres. This aligns with sustainable practices in geotechnical engineering by 520 

enhancing soil strength while mitigating erosion. The use of natural fibres like jute not only reinforces soil but 521 

also promotes biodegradability and reduces reliance on synthetic materials. This approach exemplifies how MICP 522 

can be integrated with other sustainable practices to achieve multiple environmental benefits. Studies exploring 523 

industrial waste materials represent a breakthrough in heavy metal remediation methodologies Bioaugmentation 524 

and biostimulation approaches utilise unconventional yet abundant resources like waste materials (such as food 525 

scraps, agricultural residues, construction debris or mining waste) to cultivate bacteria essential for MICP 526 

processes (Gomez et al., 2017; Raveh-Amit and Tsesarsky, 2020; Wang et al., 2014). This highlights the potential 527 

for safe and sustainable MICP implementation. This not only reduces the need for expensive commercial bacterial 528 

cultures but also promotes sustainability by diverting waste materials from landfills and potentially lowering the 529 

environmental impact of MICP. Moreover, these waste-derived microbial communities may be more adaptable to 530 

various environmental conditions, harbouring a wider diversity of metal-resistant bacteria that can enhance heavy 531 

metal immobilisation through carbonate precipitation. 532 

 533 

 534 

 535 
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6. Challenges in MICP Efficiency 536 

6.1. High Copper Concentrations and Acidic Conditions 537 

Cu is a crucial but toxic heavy metal, with soil levels often exceeding safety thresholds globally. This has led to 538 

bans in many countries due to heightened health and environmental risks. While MICP shows promise in 539 

controlled laboratory settings, its application in the field is challenging due to the need for controlled conditions 540 

(Chen and Achal, 2019). In addition, MICP is effective on numerous heavy metals including Cu. However, high 541 

Cu concentrations can inactivate the ureolytic bacteria crucial for the process (Xue et al., 2022). More so, social 542 

acceptance of using bacteria for bioremediation also varies by region. The United States Environmental Protection 543 

Agency sets an action level of 1.3 mg/L for Cu in drinking water, while the World Health Organisation suggests 544 

a median value of 1.5 mg/L (Taylor et al., 2020; WHO, 2018). 545 

Chen & Achal (2019) explored biostimulation to enhance MICP for Cu immobilisation in soil by spiking 546 

it with 100 mg/kg of Cu. Despite promising results, the study’s short one-month duration and controlled lab setting 547 

raise questions about long-term effectiveness and field applicability. The impact of biostimulation on Cu-resistant 548 

bacteria versus the general ureolytic population remains unclear, and the long-term effects on soil chemistry need 549 

further investigation. Sepúlveda et al., (2021) investigated Staphylococcus equorum and Sporosarcina pasteurii 550 

for Cu removal using MICP, finding low removal rates (around 10%) insufficient for practical use. The formation 551 

of Cu-NH3 complexes could prevent CuCO3 precipitation, requiring additional measures to optimise Ca 552 

precipitation. 553 

Heavy metal contamination from mine tailings poses serious environmental problems. Current treatment 554 

methods are often costly and ineffective. Yang et al., (2016) proposed using Bacillus firmus to remediate acidic 555 

Cu mine tailing soils, demonstrating that MICP could reduce heavy metal mobility. Oliveira et al., (2021) 556 

examined MICP for treating Cu mine tailings, finding that Sporosarcina pasteurii’s sensitivity to Cu (inhibited 557 

growth at 0.2-1 mM) limits its suitability. Anaerobic ureolytic bacteria may address oxygen transfer issues. L 558 

Wang et al., (2023) studied purified urease enzyme from Jack bean seeds for Cu removal (5 to 50 mM). They 559 

found chitosan protects urease from Cu toxicity but increases NH4
+ concentration, creating an alkaline 560 

environment where Cu forms complexes with NH3, hindering immobilisation. Further research should focus on 561 

reducing Cu-ammonia complex formation and understanding carbonate-type effects on Cu immobilisation 562 

efficiency. The authors later compared urease from S. pasteurii and Canavalia ensiformis for Cu and Pb removal 563 

in water, achieving near 100% Pb removal but lower Cu removal (Wang et al., 2023a). They identified less stable 564 

carbonate precipitates (cotunnite and atacamite) under extreme conditions, potentially reducing remediation 565 
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efficiency. High NH4
+ concentrations in MICP can raise pH, promoting Cu-NH3 complex formation that hinders 566 

Cu removal. Hu et al., (2024) reported that Brucella intermedia effectively removes heavy metals, including Cu, 567 

from water. This bacterium has a complete urease gene cluster and efficiently uptakes urea, but the study’s low 568 

Cu concentration (1 mmol/L) limits its generalisability. Further research with a broader range of Cu concentrations 569 

is needed. X Hu et al., (2024) also found B. intermedia highly resistant to Cu, with an IC50 value of 1.901 mmol/L. 570 

The bacteria effectively remove Cu through MICP, enhanced by Ca2+ co-precipitation with vaterite, facilitating 571 

Cu compound adhesion and precipitation. This study used a higher Cu concentration (1.6 mmol/L) compared to 572 

natural water levels (0.1 ppb to 30 ppb), relevant for studying bioremediation in contaminated environments. 573 

Further research should focus on efficiency at varying contamination levels to develop practical strategies. 574 

Heavy metal contamination in soil poses significant ecological and environmental threats, particularly in 575 

acidic soils prevalent in certain regions. These acidic conditions present unique challenges for remediation because 576 

they increase the mobility and bioavailability of heavy metals, making them more toxic (Yang et al., 2016). 577 

Additionally, they limit the effectiveness of existing bioremediation methods that rely on carbonate-producing 578 

bacteria, as these bacteria often struggle in acidic environments (Saad et al., 2021). Therefore, novel 579 

bioremediation solutions are critically needed to effectively address heavy metal contamination in acidic soils. 580 

Hu, et al., (2024) explored the potential of Lysinibacillus capsica for bioremediating Cu in acidic soil (initial pH 581 

5.16). The bacteria significantly increased the carbonate-bound state of the soil after 30 days, reducing metal 582 

mobility and bioavailability. Additionally, L. capsica raised the soil pH during remediation, further reducing 583 

acidity and stabilising the heavy metals. However, large-scale field application effectiveness remains untested, 584 

requiring further research to evaluate long-term survival and effectiveness in acidic soils. Huang et al., (2024) 585 

studied a two-step MICP method for remediating high Cd concentration solutions. Direct exposure of 586 

Sporosarcina pasteurii to Cd (10-40 mM) decreased urease activity, lowering Cd immobilisation efficiency. 587 

Simulations suggested nearly complete Cd removal when the carbonate to Cd concentration ratio was greater than 588 

1:1. However, higher Cd concentrations limited carbonate production, resulting in incomplete Cd precipitation 589 

and decreased pH solution. Wang et al., (2023) investigated a novel EK-PRB (Electrokinetic-Permeable Reactive 590 

Barrier) technology for removing Cu and Pb from soil. The bio-PRB (containing urease enzyme) in the EK reactor 591 

enhanced Cu and Pb removal. Acidic conditions near the anode promoted Cu and Pb desorption from the soil, 592 

allowing them to migrate towards the bio-PRB. There, they combined with CO3²⁻ ions produced by urease to form 593 

precipitates like malachite (for Cu) and cerussite (for Pb), effectively removing them from the soil. However, 594 
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acidic conditions could lead to competition, as some Cu and Pb might combine with CO3²⁻ ions migrating towards 595 

the anode, reducing their removal by the bio-PRB itself. 596 

Hu et al., (2023) addressed the challenge of acidic environments releasing Pb captured by biochar. They 597 

proposed using MICP to create a CaCO3-surface barrier around the biochar after Pb capture. This barrier 598 

physically blocks contact between acids and Pb and chemically buffers against acidic attacks. The study 599 

demonstrated that MICP treatment significantly increased the stable fraction of Pb immobilised by biochar, with 600 

optimised conditions raising the stable Pb fraction from 4.8% to 92.5% compared to biochar alone. Further 601 

investigation is needed to validate its effectiveness in real-world soil settings. Xue et al., (2022) proposed a method 602 

to improve Cu immobilisation using MICP in acidic environments (pH < 4). They cultivated ureolytic microbes 603 

separately (without Cu) to produce NH4
+ and OH- ions, then added the culture solution to Cu-rich water. The OH- 604 

ions reacted with CO2 to form CO3²⁻ for Cu immobilisation (as azurite or malachite, depending on final pH). This 605 

approach avoided exposing bacteria to high Cu concentrations, protecting their activity and promoting efficient 606 

Cu immobilisation even in Cu-rich environments. However, very high Cu concentrations (above 50 mM) could 607 

still affect the bacteria. Further research is needed to determine the ideal ratio of bacteria to Cu solution to avoid 608 

overly alkaline environments that hinder Cu immobilisation. Additionally, the long-term stability of immobilised 609 

Cu and the potential for Cu release over time require further investigation. 610 

6.2. Environmental Impact  611 

Despite the eco-friendliness of MICP as a bio-mediated, nature-based approach, certain environmental concerns 612 

necessitate further research and development to optimise its benefits. Key areas for optimisation include materials, 613 

processes, and performance of MICP applications. Jiang et al., (2022) highlighted that bio-stimulation could 614 

address the drawbacks of bio-augmentation, such as higher costs, unpredictable environmental risks, and labour-615 

intensive procedures. Additionally, MICP’s engineering performance can be compromised by environmental 616 

factors like wet-dry cycles, freeze-thaw cycles, and acid rain infiltration, which necessitates robust experimental 617 

approaches to characterise the durability of MICP-treated soils. Porter et al., (2021) reported that the ureolytic 618 

pathway, the most commonly used metabolic route for engineered MICP, has poor sustainability due to the high 619 

carbon footprint and energy demand of supplied urea, as well as the eutrophication potential of ammonium waste. 620 

They noted that MICP using ureolytic bacteria has the highest embodied energy (28.4 MJ), while MICP with 621 

carbonic anhydrase-producing bacteria has the lowest (12.9 MJ). The high embodied energy is predominantly due 622 

to laboratory-grade calcium chloride, which accounts for 44-98% of the total energy. Wang et al., (2024) observed 623 

that the ammonia/ammonium by-products of ureolysis-driven MICP/EICP processes pose environmental risks 624 
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such as eutrophication, oxygen depletion, and increased toxicity when released in excess. They emphasised 625 

optimising MICP/EICP solution dosages to avoid adverse effects on local flora and fauna, prevent root penetration 626 

issues, and manage residual chemicals like unreacted CaCl2 and urea that can alter soil salinity and affect plant 627 

growth. 628 

Sun et al., (2024) evaluated the concentration of heavy metals and other pollutants in the waste slurry 629 

supernatant, comparing them to national standards to identify potential environmental hazards. They investigated 630 

the impact of waste slurry on soil chemistry and plant growth, finding that while MICP is effective for some heavy 631 

metals, it has limitations for others, such as arsenic. However, the study lacked a comprehensive analysis of the 632 

broader environmental impact of the entire MICP process, including air pollution, energy consumption, and 633 

mitigation strategies beyond MICP optimisation. Justo-Reinoso et al., (2023) conducted a Life Cycle Assessment 634 

(LCA) of bacteria-based self-healing concretes (BBSHC), offering insights relevant to an Environmental Impact 635 

Assessment (EIA). The LCA compared the environmental impact of producing 1 cubic meter of BBSHC with 636 

conventional concrete of similar strength and assessed the potential reduction in steel reinforcement needs. The 637 

study provided a basis for understanding BBSHC’s environmental footprint by analysing factors like energy 638 

consumption and material requirements. However, it did not explicitly state the environmental benefits or 639 

drawbacks compared to conventional concrete, nor did it provide a complete EIA. Future research should aim to 640 

bridge these gaps by developing more sustainable MICP methods, thoroughly evaluating long-term environmental 641 

impacts, and expanding the scope of EIAs to encompass the full lifecycle and broader ecological consequences 642 

of MICP applications. 643 

 644 

6.3. Cost Considerations 645 

Among the numerous studies on MICP for heavy metal abatement, only a few have explicitly projected MICP as 646 

a low-cost and eco-friendly method. However, the application of MICP in other fields, such as soil stabilisation, 647 

has a wealth of well-documented reports on the cost-effectiveness of the technique (Gowthaman et al., 2023; 648 

Omoregie et al., 2019b). This discrepancy highlights the need for more research focusing on the economic aspects 649 

of MICP for heavy metal immobilisation. For instance, Huang et al., (2024) proposed a two-step MICP method 650 

as a more cost-effective alternative. While the authors suggest a potentially more cost-effective method for Cd 651 

remediation, a comprehensive cost analysis is necessary to determine its true feasibility and widespread 652 

applicability. Xing et al., (2023) demonstrated the potential of MICP for Zn-contaminated soil remediation, but a 653 

crucial aspect, cost analysis, is missing. Without a comprehensive cost analysis considering scale-up, it is 654 
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challenging to assess MICP's economic viability for extensive remediation projects. Furthermore, a comparison 655 

of MICP’s costs with established Zn remediation techniques is lacking, which is essential to demonstrate its 656 

economic advantage. 657 

Zeng et al., (2021) investigated MICP for remediating toxic metals in landfill leachate, mentioning its cost-658 

effectiveness without providing a detailed cost breakdown. The economic viability for large-scale applications 659 

remains unclear without a thorough cost analysis considering the material, labour, equipment costs, and scalability 660 

challenges. Furthermore, the study does not account for all potential expenses, such as optimising urea dosage 661 

and recovering ammonium, which could impact its cost-effectiveness. Hu et al., (2021) explored MICP for 662 

removing calcium and contaminants from hypersaline-produced water, highlighting its potential for low cost due 663 

to the efficient use of urea and the possibility of ammonium recovery. However, a complete cost breakdown and 664 

comparison with other treatment methods are needed to assess MICP’s relative cost-effectiveness accurately. 665 

Mwandira et al., (2017) investigated the use of Pararhodobacter sp. for Pb removal from contaminated sites, 666 

noting its effectiveness in lab studies. However, further investigation is needed for real-world applications, 667 

including a cost-effectiveness assessment. 668 

 669 

 670 

7. Potential Future Directions for MICP to Address Challenges 671 

7.1. Reducing Copper Toxicity 672 

To improve MICP’s effectiveness, scholars can explore genetic modification to develop bacteria with higher Cu 673 

tolerance. Utilising CRISPR-Cas9 or other gene-editing technologies (Hu et al., 2024a), researchers can 674 

insert/modify Cu-resistance genes in ureolytic bacteria. Alternatively, exposing bacteria to gradually increasing 675 

Cu concentrations can help select naturally occurring Cu-resistant strains. Investigating culture conditions that 676 

enhance ureolytic activity and CO3 precipitation in the presence of Cu is crucial. Scholars can experiment with 677 

growth media formulations in MICP studies, such as adding chelating agents like EDTA or specific amino acids, 678 

and phosphate that bind Cu ions. Screening urease from extremophiles or Cu-tolerant plants can identify enzymes 679 

with high activity and stability in the presence of Cu ions. Investigating methods to immobilise urease on various 680 

substrates, like silica gel, alginate beads, or polyurethane foams, can enhance their stability and reusability in 681 

MICP processes. 682 

 683 
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7.2. Acid-Tolerant Ureolytic Bacteria 684 

To enhance MICP in acidic soils, the identification or engineering of acid-tolerant ureolytic bacteria which can 685 

thrive in low-pH environments should be explored. Researchers in this area could also focus more on isolating 686 

new novel bacteria from underexplored acidic environments. Subsequent lab and field trials can assess the survival 687 

and efficacy of these engineered bacteria in acidic soils. Another approach to enhance MICP in acidic soils is soil 688 

pre-conditioning, which involves modifying soil properties before MICP application to create a more favourable 689 

environment for ureolytic bacteria and CO3 precipitation. This could include the addition of buffering agents such 690 

as lime to raise soil pH to a level conducive to bacterial activity. Testing different application methods and 691 

monitoring soil pH changes over time can help optimise this pre-conditioning process. Comparing the 692 

effectiveness of two-stage approaches with traditional single-stage methods can provide insights into the optimal 693 

treatment strategy for acidic soils in terms of heavy metal immobilisation and soil pH stabilisation.  694 

7.3. Long-term Stability and Monitoring 695 

Investigating the long-term stability of MICP is crucial for assessing its effectiveness in immobilising heavy 696 

metals and preventing their release over time. Conducting field trials over several years can provide insights into 697 

the durability of the CO3 precipitates formed and their resistance to environmental changes. Establishing methods 698 

to monitor changes in metal mobility, soil chemistry, and microbial communities over time can help identify 699 

potential issues early and guide adjustments to the treatment process. Continuous monitoring of soil parameters 700 

can provide valuable data on the long-term impact of MICP on the environment and help researchers refine their 701 

approach for optimal remediation outcomes. Field trials and environmental monitoring can provide valuable 702 

insights into the long-term effectiveness and environmental impact of MICP, ultimately enhancing its applicability 703 

as a sustainable remediation technique. 704 

7.4. Minimising Ammonia Production 705 

Mitigating the effects of NH4
+ production in MICP is crucial for improving the efficiency and sustainability of the 706 

process. Future scholars can minimise ammonia production by focusing on manipulating bacterial urease genes 707 

to reduce the enzyme’s activity without affecting its ureolytic function. Another avenue is metabolic engineering, 708 

which involves modifying bacterial metabolic pathways to divert the carbon and nitrogen fluxes towards carbonate 709 

precipitation instead of ammonia formation. This can be achieved by enhancing the activity of enzymes involved 710 

in CO3 precipitation pathways while reducing those involved in ammonia production. Enhancing Cu-CO3 711 

precipitation is another key area for future research such as using additives (i.e., organic ligands or polymers). 712 
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This can also prevent their dissolution in the presence of ammonia. Additionally, optimising the concentrations of 713 

reactants involved in carbonate precipitation can promote the formation of stable Cu-CO3 precipitates.  714 

7.5. Enhancing Cost Consideration in MICP for Heavy Metal Immobilisation 715 

Addressing the limitation of cost consideration in MICP for heavy metal immobilisation is crucial for several 716 

reasons. Firstly, understanding the economic feasibility of MICP is essential for its widespread adoption and 717 

application in remediation projects. Without a comprehensive cost analysis, decision-makers may be hesitant to 718 

invest in MICP, opting for more traditional but potentially less sustainable remediation methods. Secondly, cost 719 

consideration is vital for optimising MICP processes and making them more efficient and affordable. By 720 

identifying cost-effective strategies and materials, researchers can enhance the viability and scalability of MICP 721 

for heavy metal immobilisation. Future research should focus on conducting detailed cost analyses that include 722 

all relevant expenses, such as material costs, labour costs, equipment costs, and waste management costs. 723 

Additionally, comparisons with other remediation techniques should be made to demonstrate the economic 724 

advantages of MICP. Moreover, studies should explore innovative approaches to reduce costs, such as using 725 

alternative materials, optimising process parameters, and integrating MICP with other remediation technologies. 726 

By addressing these aspects, future research can provide valuable insights into the cost-effectiveness of MICP for 727 

heavy metal immobilisation and pave the way for its wider application in environmental remediation. 728 

7.6. Leveraging Machine Learning for Optimal Performance 729 

Future research should increasingly leverage machine learning to improve MICP processes for cost-effective 730 

heavy metal remediation. By analysing data from experiments and field trials, machine learning algorithms can 731 

identify patterns and relationships to optimise various aspects of MICP, including culture conditions, additive 732 

formulations, and long-term stability predictions. For example, machine learning can predict optimal culture 733 

conditions for ureolytic bacteria and identify bacteria with high heavy metal resistance. Additionally, it can 734 

enhance additive usage to reduce heavy metal toxicity and enhance co-precipitation. Furthermore, machine 735 

learning can model the effects of different interventions, aiding in the design of efficient and sustainable 736 

remediation strategies. By optimising reagent usage, improving microbial scalability, and assessing environmental 737 

impacts, machine learning enhances the viability and affordability of MICP as a remediation method. Future 738 

research should prioritise the integration of machine learning techniques to advance the field of MICP and its 739 

applications in heavy metal remediation. 740 

 741 
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7.7. Incorporating Comprehensive Environmental Impact Assessment 742 

To advance the field of MICP for heavy metal removal, it is crucial to incorporate comprehensive EIA. Thorough 743 

environmental risk assessments for bacterial strains used in MICP are vital, including their potential to disrupt 744 

native microbial communities, become invasive, or introduce antibiotic resistance. Enhancing bacterial specificity 745 

and developing control mechanisms to prevent accidental release or uncontrolled growth will mitigate risks. 746 

Implementing life cycle monitoring programmes to track the long-term effects of bacterial processes on soil and 747 

concrete is necessary. This includes monitoring potential degradation, chemical leaching, and impacts on 748 

structural integrity and soil health. Exploring novel or engineered bacterial strains that produce less harmful 749 

metabolites can improve both environmental and material outcomes. Developing sustainable methods for large-750 

scale production of bacterial spores used in MICP is important. This could involve exploring alternative growth 751 

substrates, optimising culturing processes to reduce waste, and investigating renewable energy sources. 752 

Expanding LCA studies to cover the entire MICP process, including resource extraction, spore production, 753 

transportation, and waste disposal, will provide a comprehensive understanding of the environmental footprint 754 

and identify areas for improvement. Investigating potential air quality impacts, including emissions from bacterial 755 

growth processes or dust generation, is essential. Developing mitigation strategies to minimise negative effects 756 

on air quality and optimising MICP processes to reduce energy consumption is crucial. Future research should 757 

focus on understanding the speciation and bioavailability of heavy metals immobilised by MICP and their long-758 

term stability and mobility under different environmental conditions. Figure 6 provides a concise visual summary 759 

of the diverse and promising future directions, and opinions, reflecting the collective efforts aimed at promoting 760 

MICP as a sustainable and efficient solution for mitigating heavy metal contamination across various industries 761 

and disciplines. 762 

[INSERT FIGURE HERE] 763 

Figure 6: Pie chart representing the future directions of MICP applications for heavy metal removal. 764 

 765 

 766 

8. Conclusion 767 

This review highlights the substantial potential of MICP as a versatile bioremediation technology, extending 768 

beyond heavy metal removal to contribute to sustainable construction practices. The growing body of research 769 

underscores its effectiveness and adaptability. MICP’s biogeochemical prowess, particularly through ureolysis, 770 
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offers a scalable solution for the remediation of heavy metals, including Cu, Pb, Cd, Ni, and Zn. Additionally, 771 

alternative pathways like photosynthesis and nitrate reduction demonstrate its broad applicability in environmental 772 

cleanup. Looking ahead, continuous exploration and interdisciplinary collaboration are crucial to unlock MICP’s 773 

full potential. Future advancements in nanomaterials and genetic engineering hold significant promise for further 774 

optimisation. A key area of focus is overcoming challenges associated with high Cu concentrations and highly 775 

acidic soils or tailings, which can inhibit the urease enzyme critical to MICP processes. Addressing these 776 

limitations and prioritising safety practices are essential for MICP to become a cornerstone of sustainable solutions 777 

for heavy metal contamination. Furthermore, enhancing cost considerations through detailed analyses and 778 

innovative approaches will be vital for the practical application and scalability of MICP. Leveraging machine 779 

learning to optimise MICP processes can also play a significant role in improving efficiency and cost-780 

effectiveness. This review paves the way for researchers and industry experts to shape the future of MICP. 781 

Embracing collaboration and cutting-edge technologies can ensure MICP plays a critical role in achieving a 782 

cleaner and healthier environment, cementing its place as a key tool in environmental remediation and sustainable 783 

construction. 784 

 785 

 786 
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