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Abstract
Gut microbiota plays an essential role in host homeostasis. It is involved in several 
physiological processes such as nutrients digestion and absorption, maintenance 
of intestinal epithelial barrier integrity and immune system self-tolerance. 
Especially the gut microbiota is assumed to play a crucial role in many gastro-
intestinal, pancreatic and liver disorders. Its role in hepatic carcinogenesis is also 
gaining increasing interest, especially regarding the development of therapeutic 
strategies. Different studies are highlighting a link between some bacterial strains 
and liver disease, including hepatocellular carcinoma (HCC). Indeed, HCC 
represents an interesting field of research in this perspective, due to the gut-liver 
axis, to the implication of microbiota in the immune system and to the increasing 
number of immunotherapy agents investigated in this tumour. Thus, the 
assessment of the role of microbiota in influencing clinical outcome for patients 
treated with these drugs is becoming of increasing importance. Our review aims 
to give an overview on the relationship between microbiota and HCC develop-
ment/progression and treatment. We focus on potential implications on the 
available treatment strategies and those under study in the various stages of 
disease. We highlight the pathogenic mechanisms and investigate the underlying 
molecular pathways involved. Moreover, we investigate the potential prognostic 
and/or predictive role of microbiota for target therapies, immune checkpoint 
inhibitors and loco-regional treatment. Finally, given the limitation of current 
treatments, we analyze the gut microbiota-mediated therapies and its potential 
options for HCC treatment focusing on fecal microbiota transplantation.

Key Words: Hepatocellular carcinoma; Gut microbiota; Gut–liver axis; Fecal microbiota 
transplantation; Carcinogenesis; Immune checkpoint inhibitors
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Core Tip: The gut-liver axis plays an important role in the pathogenesis of liver diseases, including hepato-
cellular carcinoma (HCC). Growing evidence has supported the role of the gut microbiota in the 
development of HCC and as a prognostic and predictive factor. Thus, manipulation of the gut microbiota 
might represent a novel way to treat or prevent HCC.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is an aggressive malignancy and almost exclusively develops in 
patients with chronic liver disease and cirrhosis. While viral hepatitis, especially hepatitis B virus (HBV) 
infection and hepatitis C virus (HCV) infection represent one ofe the most important cause of cirrhosis 
and HCC in low-income countries and Asia, alcoholic liver disease (ALD) and nonalcoholic fatty liver 
disease (NAFLD) are the main cause for developing cirrhosis and HCC in high income countries. The 
pathogenesis of HCC is multi factorial, driven by a circle of liver injury, inflammation, and regeneration 
that typically spans decades. Next to predisposing factors, as already mentioned, increasing evidence 
points towards a key role of the bacterial microbiome and bacterial metabolites in the development of 
chronic liver disease (CLD).

The human gut is one of the most complex structures in the body and is colonized by trillions of 
microorganisms including bacteria, fungi, viruses and protists. Among them, bacteria are the main 
inhabitants[1]. In recent years there has been increasing attention to the possible relationship between 
the gut microbiota and the process of carcinogenesis. Increasing data have suggested that the gut 
microbiota is related to a variety of cancers, particularly of the gastrointestinal tract, and consequently it 
has been hypothesized that this link may lead to the development of targeted therapies against the gut 
microbiome[2,3].

Among the various types of cancer, hepatocellular carcinoma is also included. As is known, the liver 
does not contain a microbiome, but is closely connected to the gut via the portal venous system, consti-
tuting the intestine – microbiota – liver axis[4].

The balance of the intestinal microbiota is essential for a physiological and correct functioning of the 
metabolism and immunity and, even more importantly, of the intestinal barrier[5]. In fact, homeostasis 
between the host and the microbiota is maintained precisely by the multilayered intestinal barrier. A 
disruption in this balance can lead to a malfunction of the intestinal barrier, resulting in chronic inflam-
mation and dysbiosis. Although the mechanisms by which the microbiota is related to cancer are not yet 
fully understood, the above two are key factors in the carcinogenesis process[6] and several studies have 
observed significant alterations in the composition of gut microbiota in patients with chronic liver 
disease especially with a reduction in beneficial bacteria and an increase in pathogenic bacteria[7]. For 
this reason, numerous studies have investigated the potential use of therapies targeting the microbiota, 
such as prebiotics, probiotics and fecal microbiota transplantation (FMT). In particular, their potential 
role in the treatment of different liver diseases (such as hepatic encephalopathy, steatohepatitis and 
cirrhosis) and in different types of cancer (such as gastrointestinal cancers, breast cancer and melanoma) 
has been studied[8].

Indeed, in recent years, researchers have focused their attention on the possible prognostic and 
predictive role of gut microbiota composition, in particular in the response to therapy with immune 
checkpoint inhibitors (ICIs). It seems that a variation in the composition of the gut microbiota can 
influence the efficacy of treatments, in particular of immunotherapy, and the presence of specific gut 
microbes increases this efficacy[9].

IMPACT OF MICROBIOTA IN HCC DEVELOPMENT
Microbiome role in the development and growth of neoplastic lesions has assumed ever greater interest 
in recent studies. Human microbiota, defined as the population of microorganisms that colonize the 
body, has in fact been shown to play a crucial role both in physiological and pathological mechanisms. 
In addition to bacteria, the gut microbiota also contains eukaryotes as fungi, and some types of viruses.

https://www.wjgnet.com/1948-5182/full/v14/i7/1319.htm
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Bacterial gut microbiota promotes disease development and progression not only locally, such as 
inflammatory bowel disease (IBD)[10,11], but also in distant locations such as the brain, heart, 
hematopoietic system and liver[12-16].

Given its direct anatomical connection through the portal vein, the liver is closely connected to the 
intestine. This is called “intestine-microbiota-liver axis”[6,17]. In fact, the liver receives blood rich in 
nutrients absorbed by the intestine, but it is also the first "filter" organ for the intestinal microbiota, of 
the MAMP (microbe-associated molecular pattern), toxins and bacterial metabolites. These products can 
subsequently trigger inflammatory responses via pattern recognition receptors.

Damage to the intestinal barrier, associated with alterations of the intestinal microbiota in CLD 
contribute to the onset of chronic inflammation. The inflammation, in turn, progresses, leading to tissue 
reworking with fibrosis. The processes of rehashing on an inflammatory basis increase the risk of 
developing HCC as the last step of the entire pathological process[7,18-20].

Bile acids represent another factor that acts in this complex system. In fact, these have the function of 
regulating the intestinal epithelial barrier, the proliferation of epithelial cells of the mucosa via the 
farnesoid X-activated receptor - dependent and the epidermal growth factor receptor - dependent 
pathways and controlling the growth and adhesion of intestinal bacteria[21,22].

At the hepatic level, bacterial products activate toll-like receptors (TLRs), in particular TLR-4, which, 
in turn, activates the NF-kB pathway, which determines the constitutive initiation of a mitogenic signal 
that is associated with an inhibition of programmed cell death. Chronic damage exposes the liver to a 
prolonged action of several TLR ligands and other bacterial substances, which represent inflammatory 
mediators that promote the development of chronic liver disease as well as laying the foundations for 
the subsequent development of hepatocellular cancer[20] (Figure 1).

Most cases of HCC develop on a basis of fibrosis and cirrhosis, which is the most important risk factor 
for the development of liver cancer. However, the presence of underlying liver diseases of various 
etiologies may contribute to the increased specific risk for developing HCC on a cirrhotic basis[23] 
(Table 1).

NAFLD
Although the percentage of NAFLD patients who develop HCC is small, the high incidence carries a 
high risk of developing hepatocellular carcinoma. Several studies in animal models have shown that the 
microbiome of obese patients has the ability to extract more nutrients, and in mice deprived of bacterial 
flora there was a reduction in body weight despite an increased caloric intake[24,25].

In dysbiotic mice fed a high-fat diet, choline is converted to methylamine, which involves a reduction 
in circulating plasma levels of phosphatidilcholine. Subsequently, low phosphatidylcholine levels lead 
to impaired secretion of VLDL, reducing hepatic lipid export, inducing hepatic steatosis[26,27].

The contribution of gut microbiota to non alcoholic steatosis hepatitis, a progressive form of NAFLD, 
is not as well documented as its role in earlier disease stages. An high-fat diet (HFD) increases intestinal 
permeability in mice with a noticeable increase in LPS serum levels[28,29].

ALD
About half of the cases of cirrhosis are caused by alcohol consumption. Indeed, serum LPS levels are 
increased in patients who have made chronic use of alcohol. Ethanol and its metabolite acetaldehyde 
have the ability to interrupt the intercellular junctions in the intestine, allowing bacteria and their 
products to pass into the bloodstream[30].

The microbiota-TLR4 axis plays an important role in this process. In fact, in several studies conducted 
on animal models, TLR4 deprived mice, subjected to intestinal disinfection, have shown a reduction in 
inflammation and oxidative stress[31-33].

Liver fibrosis 
Fibrosis represents a risk factor for the development of HCC. Literature data highlight an important 
contribution of the microbiota-TLR4 axis to liver fibrosis[34].

Studies in knockout mice have shown a key role for TLR4 and other mediators in the TLR4 signaling 
pathway, such as CD14 and lipopolysaccharide binding protein, in experimental models of hepatic 
fibrosis.

Conversely, other studies have shown a protective role of bacterial flora against the development of 
liver inflammation and fibrosis[35,36].

Evidence supports the role of the commensal microbiota as a hepatoprotective, although an alteration 
in its internal balance can lead to the prevalence of harmful species that can cause liver damage.

Viral Hepatitis 
There is currently little data on the role of the microbiota in chronic viral hepatitis at the moment. 
Current data suggests that dysbiosis in patients with viral hepatitis cirrhosis is similar to that in patients 
with cirrhosis from other causes[37]. Further studies will be needed to investigate the close intercon-
nections between microbiome composition and tumor development and growth.
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Table 1 Human studies involving gut microbial composition in various hepatocellular carcinoma-related etiologies

Microbiota balance

Ponziani et al
[38]

Cirrhosis + HCC ↑ Bacteroides; ↑ Ruminococcus; ↑ Enterobacteriaceae ↓ Bifidobacterium; ↓ Akkermansia

Ren et al[41] HBV cirrhosis + HCC ↑ Actinobacteria ↓ Verrucomicrobia

Liu et al[97] NBNC cirrhosis + 
HCC

↑ Escherichia; ↑ Enterococcus ↓ Faecalibacterium;↓ Ruminococcus;↓ Rumino-
clostridium

Huang et al[39] HBV cirrhosis + HCC ↑ Bacteroides; ↑ Lachnospiracea incertae sedis; ↑ Clostridium 
XIVa

↑: Increased; ↓: Decreased; NBNC: Non-hepatitis B virus non- hepatitis C virus; HBV: Hepatitis B virus; HCC: Hepatocellular carcinoma.

Figure 1 Interaction between Bacterial Lipopolysaccharides and Toll-like receptor 4 signaling pathway in hepatocellular carcinoma 
development. LPS: Lipopolysaccharides; MyD88: Myeloid differentiation primary response protein 88; IRAK1/4: IL-1 receptor associated kinase 1/4; TRAF6: TNF 
receptor associated factor 6; TAK1: TGF-activated kinase 1; TAB2/3: TAK1-binding protein 2/3; NEMO: NF-kappa-B essential modulator; IKB: Inhibitor of nuclear 
factor kappa-B; NF-κB: Nuclear factor kappa B.

PREDICTIVE AND PROGNOSTIC ROLE OF MICROBIOTA 
Given the important role of the gut microbiota in liver carcinogenesis, growing attention towards using 
microbiome patterns as a predictive, prognostic or diagnostic biomarker of HCC is observed. The gut 
microbiome dysbiosis has been evaluated in NAFLD- and HBV/HCV-related HCC patients to find new 
clinical features and outcomes biomarkers in this setting[38,39]. In 2019, Ponziani et al[38] found that 
cirrhotic patients with NAFLD and HCC lack protective bacteria and have an enhanced intestinal 
inflammation with an increased level of IL8, IL13, CCL3, CCL4, CCL5, and faecal calprotectin concen-
tration. HCC was associated with increased abundance of Bacteroidetes together with a reduction of 
Verrucomicrobiaceae, Bifidobacteriaceae, Akkermansia, Bifidobacterium.

In a more recent study, HCC tumour burden was associated with the presence of specific gut 
microbes, distinguished by the enrichment of Bacteroides, Lachnospiracea incertae sedis, and 
Clostridium XIVa. Patients with these three genera mounted a weaker host liver anti-tumour inflam-
matory response[39]. Primary bile acids increased CXCL16 expression, which regulates NK cell accumu-
lation, whereas secondary bile acids showed the opposite effect. Feeding secondary bile acids or 
colonization of bile acid-metabolizing bacteria reversed both NK cell accumulation and inhibition of 
liver tumour growth in mice with altered gut commensal bacteria. Removing gram-positive bacteria by 
antibiotic treatment with vancomycin, which contains the bacteria mediating primary-to-secondary bile 
acid conversion, induced hepatic NK cell accumulation and decreased liver tumour growth in mice. 
These data suggest that Clostridium XIVa influences bile acid-controlled NK cell accumulation. In 
normal liver tissue from human HCC patients, primary bile acid cheno-deoxycholic acid levels 
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correlated with CXCL16 expression, whereas an inverse correlation was observed with secondary bile 
acid glycolithocholate[40]. Higher bile acid levels (≥ 16 μmol/L) indicated worse clinical outcomes 
among HBV-related HCC patients with enrichment of Bacteroides, Lachnospiracea incertae sedis, and 
Clostridium XIVa. These results show that correlation between gut microbiota and serum bile acids in 
tumour immune microenvironment could potentially influence tumour burden and clinical outcomes in 
HBV-related HCC[40].

In 2019, Ren et al[41] evaluated the potential role of microbiome as a non-invasive biomarker for 
HCC. The authors collected 486 faecal samples from East, Central, and Northwest China. Using 16S 
rRNA Miseq sequencing, 3 groups were identified: early HCC, cirrhosis, and healthy controls. 
Actinobacteria, 13 genera including Gemmiger and Parabacteroides were increased in HCC compared 
with cirrhosis. Additionally, butyrate-producing genera was decreased, and lipopolysaccharide-
producing was increased in HCC in comparison to healthy controls. Interestingly, 30 microbial markers 
were identified through a fivefold cross-validation on a random forest model between 75 early HCC and 
105 non-HCC samples. This was the first study characterizing the gut microbiome in early HCC as a 
non-invasive tool to diagnosed early stage of HCC.

In literature, three studies analysed the potential predictive and prognostic role of gut microbiota in 
HCC.

Zheng et al[42] analyzed the characteristics and changes in the gut microbiota during treatment with 
anti-PD-1 immunotherapy drugs in eight patients with HCC. Responders (R) had, during the entire 
treatment, a higher richness of taxa and a greater number of genes than the no-responder (NR). Before 
the start of treatment, Bacteroidetes was the most abundant phylum, followed by Firmicutes and 
Proteobacteria in both R and NR[41]. As treatment progressed, the microbial composition at the phylum 
level in R remained relatively stable, while proteobacteria often increased in NR, with a prevalence of 
Escherichia coli. Furthermore, the methanogenesis pathway was found to be correlated with R. obeum 
and Lactobacillus species, and furthermore the generated methane would appear to improve oxidative 
stress damage and suppress host inflammatory response. Other pathways with potential benefits 
include sulfate reduction and carbon fixing functions that were correlated with R. obeum, carotenoid 
biosynthesis correlated with B. cellulosilyticus and A. colihominis, and unsaturated fatty acid 
metabolism associated with C. comes[42].

Li et al[9] collected microbiome samples from 65 patients with metastatic HCC being treated with ICI 
therapy. The analyzes showed that patients with a high presence of Faecalibacterium had a significantly 
prolonged PFS compared to those with low presence (P = 0.006). In contrast, patients with a high 
presence of Bacteroidales had a reduced PFS compared with those with low presence (P = 0.002).

Chung et al[43] studied the effects of the gut microbiota in eight adult patients with HCC treated with 
nivolumab (anti PD-1). Reported data showed that responder patients had a significantly lower 
Firmicutes/Batteroidetes ratio (10% vs 66.7%, P <0.05) and a higher Prevotella/Batteroides ratio (22.99 
vs 2.312, P = 0.024 ) than non-responders. These results indicate that the F/B ratio and P/B ratio could 
serve as predictive markers of non-response to nivolumab therapy. Akkermansia species was also found 
in two responders, indicating that this could also be a useful prognostic marker of response to 
nivolumab therapy in patients with advanced HCC.

In the last decade, several research efforts have been made to identify potential prognostic and 
predictive biomarkers of response with target therapy[44-46]. In this perspective, interest in interaction 
between the gut microbiome and HCC targeted therapy is increasing, even if no data are available up to 
date. It has been shown that among anthocyanins, delphinidin possesses strong antitumor activity 
through various mechanisms such as downregulation of matrix metalloproteinase (MMP)[47], inhibition 
of angiogenesis and tumour cell migration[48], growth suppression of ERα-positive cancer both in vitro 
and in vivo[49] and apoptosis promotion[50,51].

These mechanisms are, in turn, the target of targeted therapies. Therefore, a possible implementation 
of the targeted therapies activity can be profoundly influenced by the composition of the intestinal 
microbiome. Furthermore, particular microbes could become a future therapeutic target to potentially 
improve the effectiveness of cancer treatment. However, further studies are needed to better understand 
the predictive and prognostic role of the gut microbiome in HCC and to investigate the potential 
benefits of microbiome modulation.

THE ROLE OF GUT MICROBIOTA IN PATIENTS WITH HEPATOCELLULAR CARCINOMA 
TREATED WITH IMMUNE CHECKPOINT INHIBITORS
Gut microbiota dysfunction is known to lead to dysfunction of local, locoregional, and systemic immune 
systems, causing the dissolution of epithelial barriers, and as a consequence, transfers biofilm microbes 
and their components into mesenteric lymph nodes and peripheral circulation. Furthermore, dysbiosis 
may induce a neutrophils gathering into the intestinal epithelium that modifies the profiles of inflam-
matory cytokine and chemokine, stimulates the T helper 17 and effector T-cells, resulting in a negative 
feedback control of the microbiota[52]. Aging, antibiotics, xenobiotics, smoking, hormones, and diet can 
be responsible for dysbiosis which is a risk factors for cancer onset and, on the other hand, influences 
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the therapeutic outcomes, as for chemotherapy or immunotherapy, interfering directly or indirectly 
with therapeutic mechanisms[53].

ICIs are promising anticancer agents and according to several recent studies, the gut micro-biome 
may play a critical role in regulating immunotherapy responses. Thus, the microbiome can influence the 
host response to ICIs (PD-1/ PD-L1 blockade, or CTLA-4 inhibition)[52,53] (Table 2).

CD152, well known as CTLA-4, a T-cell surface receptor activated by two ligands (CD80 or CD86) 
expressed on antigen-presenting cells, induces an inhibitory signal in the early activated T-cell[54,55]. 
The other immune checkpoint repressing T-cell response is PD-1 (programmed death cell 1) sided is on 
the surface of activated T-cells, whereas its ligand PD-L1 is expressed on tumor cells surfaces and 
antigen-presenting cells (macrophages and dendritic cells). Their bond induces T-cell inactivation[56].

Various studies have recently examinated the role of gut microbiota in melanoma patients treated 
with ICIs showing a strict correlation between gut microbiota and response to immunotherapy and how 
differences in microbiome composition could influence treatment efficacy[56-60].

Notably, Akkermansia muciniphila was associated with a better response to ICIs. In metastatic 
melanoma patients with a benefit from ICIs treatment, the so-called responders, several bacteria phyla 
were detected in abundance: Faecalibacterium, Ruminococcaceae, and Clostridiales. Nevertheless, non-
responder patients had a higher amount of Bacteroidales.

According to several studies, both preclinical and clinical, A. muciniphila, Alistipes indistinc-tus, 
Bacteroides, B. cepacia, D. formicigenerans, Parabacteroides merdae/distasonis, C. aerofa-ciens, 
Eubacterium spp., Veillonella parvula, Klebsiella pneumoni-ae, Bifidobacterium spp., Lactobacillus 
spp., Streptococcus parasanguinis, Blautia spp., E. hi-rae, E. faecium, H. filiformis, Faecalibacterium 
prausnitzii, Gemmiger formicilis, and Ruminococ-caceae family seems to improve the effectiveness of 
ICIs facilitating antitumor immunity.

Gut microbiota enhanced with B. thetaiotaomicron, Roseburia intestinalis, Anaerotruncus coli-
hominis, Blautia obeum, and some combination of antibiotics were associated with a compromised ICIs' 
efficacy[53].

Changes in the expression of cytokines and immune cells due to alterations in the gut microbiota 
induced distinct therapeutic responses[61].

As for HCC, ICIs are approved for clinical practice usage[62-64]. Up to now, programmed cell death 
(PD) ligand-1 (PD-L1) expression, tumor mutation burden, and microenvironmental immune cells have 
been associated with ICIs effectiveness. A previous study conducted by Shen et al[65] investigated the 
relationship between the gut microbiome, analyzed through 16S rRNA and shotgun whole-genome 
sequencing on stool samples collected at baseline and after eight weeks treatment, and the effectiveness 
of immunotherapy in patients with advanced HCC. The study enlisted thirty-six patients (31 males and 
5 females). There was no difference in the baseline gut microbiome between responders and non-
responders. Also, the composition of gut microbiota showed no difference induced by ICIs. The study 
failed to demonstrate an association between gut microbiota and ICI efficacy, maybe due to the size of 
the sample examined, the different treatment, and the host factors influencing and affecting the gut 
microbiota, along with a non-standardized method to collect and process the stool samples leading to 
poor reproducibility. Also, dysbiosis is common in patients with chronic liver diseases. Therefore, it 
may affect the response to ICIs treatment as the study results, too.

On the contrary, a study by Chung et al[43] enrolled eight patients with HCC who received nivol-
umab as second- or third-line treatment after sorafenib. At baseline and after three months of treatment, 
fecal samples to assess the microbiome were collected. Patients with Child-Pugh A were 87.5%. Various 
bacterial taxa, like Dialister pneumosintes, Lactobacillus reteri, Enterococcus faecium, Streptococcus 
Gordonii, Streptococcus mutans, Escherichia coli, Veillonella atypica, Granulicatella sp., and Trchuris 
trichiura, were detected in non-responders. Citrobacter freundii, Azospiril-lum sp., and Enterococcus 
durans were part of responders' microbiota. Yet, the bacteria detected didn’t match with the species 
found in previous studies. A skewed Firmicutes/Bacteroidetes ratio seems related to a scarcity of 
response to immunotherapy. Moreover, a high Prevotella/Bacteroides ratio seems associated with a 
better response to nivolumab as proved in a study that examined fecal samples in patients with 
advanced gastrointestinal cancer treated with ICIs[66]. However, the exiguity of the samples examined 
leads to low statistical power. Dysbiosis appears as an element that plays a critical role in the immuno-
therapy response in patients affected with hepatocellular carcinoma.

A retrospective study by Li et al[9] focused on the composition of gut microbiota in patients with 
HCC treated with ICIs. In particular, patients were gathered on the basis of the abundance of Bacter-
oidales in nonresponders and Faecalibacterium in responder patients. As a result, an abundance of 
Faecalibaterium correlated with an increased PFS, while a great amount of Bacteroidales is as-sociated 
with low PFS. However, the small size of the sample and the retrospective nature of this study limited 
the validity of the results observed.

Another study by Zheng et al[42] enlisted eight patients with HCC, an Eastern Cooperative Oncology 
Group (ECOG) performance status of 0 or 1, and a Child-Pugh Class A receiving camrelizumab, an anti-
PD-1 agent, after progression to sorafenib. Stool samples were collected and analyzed at baseline and 
week 3 and 12, respectively. In the responders patients the species that composed the gut microbiota 
were: Bacteroidetes, Firmicutes and Proteobacteria. In non-responder Proteobacteria were predominant. 
Oral intake of Bifidobacterium may promote antitumor growth induced by ICIs. A. Muciniphila and 



Spanu D et al. Microbiota in HCC menagement

WJH https://www.wjgnet.com 1325 July 27, 2022 Volume 14 Issue 7

Table 2 Correlation studies between intestinal microbial composition and response to immune checkpoint inhibitors

Treatment Responder Non responder

Zheng et 
al[42]

Anti-PD1 ↑ Akkermansia muciniphila; ↑ Ruminococcaceae ↑Proteobacteria

Li et al[9] Anti-PD1 ↑ Faecalibacterium ↑ Bacteroidales

Chung et 
al[43]

Anti-PD1 Dialister pneumosintes; Escherichia coli; Lactobacillus reteri; Streptococcus mutans; Enterococcus 
faecium; Streptococcus gordonii; Veillonella atypica; Granulicatella sp.; Trchuris trichiura; ↑ 
Firmicutes/Bacteroidetes ratio; ↓ Prevotella/Bacteroides ratio

Citrobacter freundii; Azospirillum 
sp.Enterococcus durans; ↑ 
Akkermansia species

↑: Increased; ↓: Decreased.

Ruminococcacaeae were observed in the intestinal microbiota and have a role in immunomodulatory 
functions. Oral A. Mucinophila could revive the effectiveness of ICIs.

A clinical trial was recently opened at the National Cancer Institute that aims to combine 
vancomycin-based antibiotic treatment with immune checkpoint inhibitors (NCT03785210). This study 
may attempt to answer the question of whether the combination of immunotherapy with microbiota 
selection could have a beneficial effect in HCC patients[67].

Summing up, evidence with low statistical power is available up to now. Further studies are war-
ranted for the time being. Also, a standardized method to collect and analyze fecal samples may help 
obtain reproducibility.

HCC AND MICROBIOTA TRANSPLANT
Curative options for advanced HCC are very limited, and driving the need to develop new therapeutics. 
Greater understanding about bacterial function, its impact on the host, its contribution to the loss of 
barrier function and the gut–liver immune system will lay the foundations for novel therapeutic 
approaches to the treatment of chronic liver disease that will attenuate progression to cirrhosis and 
HCC. To improve their efficacy, these therapies should focus on preventing the progression from 
chronic liver disease to cirrhosis and from compensated to decompensated cirrhosis. Bacteriotherapy 
could restore microbiome composition, reduce intestinal permeability (and thus reduce endotoxemia) 
and attenuate the chronic inflammatory environment in the liver; in this way, there is the potential that 
progression of disease and tumour development could be delayed or halted. Ideally, these therapeutic 
approaches would be more effective if they targeted earlier stages of disease and aimed to reduce 
chronic inflammation and cirrhosis, rather than directly reduce tumour mass[68].

Potential routes to target intestinal microbiota community include diet, probiotics, prebiotics, 
antibiotics[69-73] and FMT.

FMT aims to replenish the gut with a “physiological” microbiome taken from the stool of healthy 
subjects. Fecal donors are carefully selected[74], with exclusion criteria such as a low or high body mass 
index (new-onset obesity has been reported in a transplant recipient of fecal microbiota isolated from an 
overweight donor[75]), high risk behavior for infectious diseases, gastro-intestinal disease, recent 
microbiota-altering treatment (antibiotics, immunosuppressive medication, antineoplastic agents), 
presence of specific medical issues such as auto-immune, atopic or neurologic disorders, cancer, or 
chronic pain syndrome. The method for microbiota isolation is simple: fecal matter is collected from 
selected donors, suspended (usually in saline solution) and mixed in a blender; the resulting liquefied 
stool is filtered through a strainer to remove fibers, and thus ready for transplant[8]. Currently, FMT has 
been approved as a clinical method for treating recurrent Clostridium difficile infection by 2013 
guidelines[76] and its clinical effectiveness has reached approximately 90%[77]. Fecal microbiota can be 
delivered via endoscopy (e.g., colonoscopy or nasojejunal), enema or colonic transendoscopic enteral 
tubing[78-80]. Oral capsules has been developed showing efficacy comparable to delivery by 
colonoscopy regardless of whether fresh, frozen or lyophilised stools were used[81-83]. However, 
frequency of doses and optimal overall duration is still unclear as study parameters were not directly 
comparable across different studies.

There are several clinical studies regarding the use of probiotics as a novel and effective approach to 
treat or prevent chronic liver disease and HCC. Probiotic VSL#3, a combination of Bifidobacteria, 
Lactobacilli and Streptococcus thermophilus, could short inpatient time for patients with liver cirrhosis 
and hepatic encephalopathy[84]. A randomized controlled multicenter study investigates the role of 
probiotics in patients with alcoholic hepatitis (AH)[85]. The 117 patients were prospectively randomized 
to receive the 7 d of cultured Lactobacillus subtilis/Streptococcus faecium (1500 mg/d) or placebo 
(probiotics 60 and placebo 57). In the probiotics group albumin and TNFα showed significant difference. 
In addition, 7 d of oral supplementation with cultured L. subtilis/S. faecium was associated with 
restoration of bowel flora and improvement of microbial lipopolysaccharide in patients with AH. 
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Another study in mice aimed to evaluate the role of FMT in reducing HFD-induced steatohepatitis in 
mice. The analysis was conducted by examining the microbiota structure of the rodents, the butyrate 
present in the caecal content, the intrahepatic lipids and the liver pathological conditions 8 weeks after 
FMT. The results documented a reduction in the degree of steatohepatitis after FMT, as indicated by the 
finding of a decrease in intrahepatic lipids, NAS score and intrahepatic pro-inflammatory cytokines 
(INF-γ and IL-17), with an increase in Foxp3, IL -4 and IL-22 [86]. Another study investigate the role of 
FMT in patients with untreated sever alcoholic hepatitis (SAH). Philips et al[87] discovered that Indices 
of liver disease severity improved significantly within the first week after FMT compared to HC and 
even survival was better in patients treated with FMT (87.5% vs 33.3%, P = 0.018). Philips et al[88] 
reported a case of a young male patient with corticosteroid nonresponsive severe alcoholic hepatitis in 
2017. FMT led to rapid amelioration of appetite and hyperbilirubinemia. Notably, FMT was performed 
in 18 patients with persistent positive HBeAg[89]. FMT was effective for these patients via inducing 
HBeAg clearance, suggesting that regulating intestinal microbiota might be beneficial to chronic 
hepatitis B treatment. A Phase I clinical trial demonstrated that FMT restored antibiotic-induced 
microbial dysbiosis in patients with advanced liver cirrhosis[90]. Even more, the effect of FMT on 
hepatic encephalopathy has been confirmed in both animal models and human beings. FMT alleviated 
cognitive function and prevented hepatic necrosis in animal models, thereby triggering improvement of 
hepatic encephalopathy[91]. Kao et al[92] reported a significant improvement in serum ammonia and 
quality of life in a patient with hepatic encephalopathy after performing FMT. Bajaj et al[93] conducted a 
randomized clinical trial, which suggested that FMT has the potential to improve cognition and reduce 
hospitalizations in hepatic encephalopathy patients.

Recently, Baruch et al[94] reported the first-in-human clinical trials where they discovered how 
treatment with FMT was associated with favorable changes in immune cell infiltrates and gene 
expression profiles in both the gut lamina propria and the tumor microenvironment. These early 
findings have implications for modulating the gut microbiota in cancer treatment.

These results encourage further studies on the possible beneficial impact of gut microbiota “resetting” 
by FMT in HCC.

LIMITATIONS AND FUTURE PERSPECTIVES
Despite the abundance of studies in the literature, the understanding of the mechanisms of the alteration 
of the gut microbiota in HCC remains incomplete and inadequate. Most clinical studies have limitations 
due to the fact that they are single center studies with small population samples, which compromises 
the applicability of the results. Furthermore, it is often complex to analyze the various etiologies of the 
hepatic disease, the stage of cirrhosis, the diet, the use of antibiotics for other causes, the consumption of 
alcohol; all these elements represent confounding factors that can determine important variations in the 
intestinal microbiota. Therefore these factors should be considered in the design of future studies, which 
would involve multiple centers, on a large scale.

The characteristics of dysbiosis change among patients with hepatocellular carcinoma depending on 
the different etiologies. Despite this, some studies have shown that the different etiology of HCC is not 
related to a condition of intestinal microbial dysbiosis[95], while other studies are conflicting. Chen et al
[96] evaluated the differences in the gut microbiota in consideration of the etiology of liver disease. they 
found that the discriminant between HBV-related cirrhosis and primary biliary cirrhosis was indicated 
by two operative taxonomic units (OTU), OTU-23 (Neisseria) and OTU-36 (Gemella). Furthermore, the 
level of bacterial diversity and composition varied differently between patients with non-HBV and non-
HCV HCC (NBNC-HCC) and patients with HBV-HCC[97], and between patients with HBV-HCC and 
NAFLD-HCC[41,98]. Therefore, these data suggest that in designing future studies, the underlying 
etiology of liver disease should also be taken into account for identifying patterns of dysbiosis in HCC.

Currently, although several studies on the association between intestinal microbiota and HCC are 
emerging, data analyzing the causal relationship are still very limited[99]. From a methodological point 
of view, traditional sequencing technology and 16S rRNA sequencing (the most established genetic 
marker used for bacterial identification and classification), does not take into account rare eukaryotic 
cells and the absence of which could lead to loss of important information. Furthermore, it is necessary 
to consider that the use of low biomass samples, such as blood, can lead to contamination in the 
microbiome analysis[100].

Finally, despite extensive preclinical evidence, clinical trials focusing on the prevention and treatment 
of HCC by modulating the microbiota are still lacking. The greatest difficulties are found, in this sense, 
in the applicability of in vitro or in vivo studies to the human context.

To optimize the therapeutic response it could be useful to host protective intestinal bacteria 
depending on the type of treatment proposed. To confirm this, despite the current lack of clinical 
studies, the data obtained up to now with animal models have given interesting results in increasing the 
efficacy of treatments by modulating the bacterial flora. Some studies suggest that to increase the 
efficacy of the treatments it is necessary to keep intact the commensal microbiota which would mediate 
the cellular functions of the myeloid-derived cells present in the tumor microenvironment[101]. The 
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results obtained from the implantation of fecal material of patients with melanoma in germ-free mice, 
led to an improvement in tumor control, increased the response of T lymphocytes and obtained a 
greater efficacy of treatment with the anti programmed cell death protein 1 (PD-1)[59]. Among these, 
Bifidobacterium spp. has been identified. as a component of the microbiota that improved the efficacy of 
treatment with anti programmed death-ligand 1 (PD-L1)[58], while several species of Bacteroides 
appear to have an implication in the antitumor effect of antigen-blocking anti-cytotoxic T cells (CTLA ) -
4[57].

As regards hepatocarcinoma, a recent study has documented that the intestinal microbiota can 
increase the effectiveness of treatment with anti PD-1, increasing the sensitivity to immunotherapy[42,
102]. Given the important results obtained from immunotherapy treatment in patients with advanced 
HCC[103], it is important to explore the data relating to the microbiota and the bacterial species 
interested in contributing to the beneficial effects of the immunotherapy. Furthermore, in patients with 
NAFLD-HCC, given the immunosuppressive phenotype exerted in peripheral blood mononuclear cells 
from a bacterial extract of these patients, the possible modulation of the microbiota could help in 
overcoming any resistance to immunotherapy in HCC[98].

CONCLUSION
In recent years, enormous progress has been made in the characterization of the gut microbiota and its 
association with different etiologies and severity of cancer diseases; various hypotheses have also been 
advanced in chronic liver disease and in the development of HCC and studies have been launched to 
characterize it. Furthermore, the work in rodent models and the greater understanding of the etiology of 
bacterial pathogens affecting liver disease has established the contribution of the gut microbiome in the 
progression of liver disease and its potential role as predictive and prognostic biomarkers.

Considering that patients with HCC and other CLDs are prone to alterations in the intestinal 
microbiota, it is tempting to assume that dysbiosis affects the efficacy of anticancer treatments including 
ICI in some categories of patients and that consequently the modulation of components of the 
microbiota can be managed to increase the activity of available treatments. Despite the growing interest 
on the part of researchers on the subject, for now it remains to be clarified whether the recent data 
obtained through animal models on the interaction of the immune response and the microbiota in some 
types of tumors, can also be applied to patients with hepatocarcinoma. Therefore, the orientation of 
research towards the intestinal microbiota, in particular the use of probiotics or the transplantation 
technique of the fecal microbiota, will be able to better direct towards new paradigms and personalized 
treatments with the aim of improving the effectiveness of the treatments available for HCC.
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