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A B S T R A C T

Quantitative structure–activity relationships (QSARs) are invaluable computational tools for the prediction of the 
biological effects and physico-chemical properties of molecules. For chemical safety assessment they are used 
frequently to make predictions of toxic or adverse effects, as well as other activities related to toxicokinetics. 
QSARs and their predictions can be assessed against a number of criteria for their potential use as surrogates for 
animal, or other, tests. A recent exercise by the Division of Genetics and Mutagenesis, National Institute of Health 
Sciences, Japan, assessed QSARs to predict the outcome of the Ames test. The predictive performance of models 
was scrutinised with full disclosure of results. The authors of this publication developed one such model, which 
had disappointing performance in this predictive exercise. In order to understand why the QSAR had poor 
performance metrics, this paper reflects on factors that affect a QSAR model. There is no one reason for poor 
performance of a QSAR model, rather it is likely to be a combination of factors. Reasons for poor performance 
included inadequate consideration of the underlying data quality, consistency and relevance; lack of appropriate 
descriptors relating to the endpoint and mechanism of action; not selecting a model correctly in terms of its 
structure (i.e., complexity) and number of descriptors; not addressing metabolism adequately in the modelling 
process; ill-defined assessment of the uncertainties within a model; and not ensuring predictions are within the 
applicability domain of the model. Whilst this paper draws on examples for the prediction of mutagenicity, the 
findings are applicable to all toxicological activities and physico-chemical properties.

1. Introduction

“To err is human; to really foul things up requires a computer.” Attrib
uted to Paul Ehrlich and others….

A quantitative structure–activity relationship (QSAR) attempts to 
model how changes in chemical structure affect the biological activities, 
or physico-chemical properties, that a molecule may elicit or possess. 
The types of activities and properties that QSARs have attempted to 
model are very broad and represent almost every measured effect 
including, but not limited to, pharmacological activities, toxicological 

effects, biokinetic properties and physico-chemical properties. Mostly, 
QSARs attempt to produce a generalist model across a number of mol
ecules (which may range from a small number e.g. 5 or 10, to many 
thousands), the model is then applied to a specific situation, such as 
hazard identification in chemical safety assessment [1]. The number of 
molecules reflects the type of model, e.g. localised in chemical and 
mechanistic space or globally applied across a wide range of chemistries 
and mechanisms [2].

The modelling of toxicity and biokinetics data has been attempted 
across the broad range of human health and environmental effects. 
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There are various objectives to this activity which generally aim to 
support chemical safety assessment. The specific purposes of creating 
predictive models range from the detailed assessment of hazard and 
exposure to support risk assessment of a single compound – which may 
include the possibility to replace animal testing – through to the 
assessment of a large inventory of compounds to prioritise those for 
further assessment [3]. Whilst founded in the 1960s using linear 
regression, the modelling and statistical approaches applied to QSAR 
have expanded to be more multivariate and non-linear, with neural 
networks being applied since the 1990s and the opportunity of artificial 
intelligence recently becoming a reality [4].

Providing certain criteria are met, the expectation is that predictions 
from QSARs will be justifiable and correct. With regard to predicting the 
toxic effects, fate and properties of a substance, particularly with a 
regulatory focus such as the European Union (EU) Registration, Evalu
ation, Authorisation and restriction of Chemicals (REACH) regulation, 
we have many decades of experience to call upon [5–7]. The general 
principles are that a prediction from a QSAR model may be considered 
acceptable for regulatory purposes providing i) the scientific validity of 
the model can be demonstrated and ii) the compound for which the 
prediction is made is within the applicability domain of the model [8]. In 
order to demonstrate “validity” we can apply the Organisation for 
Economic Cooperation and Development (OECD) QSAR Principles [9] to 
QSAR models; for read-across and grouping the European Chemicals 
Agency (ECHA) Read-Across Assessment Framework (RAAF) [10], 
assessment of uncertainties [11], or other methods can be applied. 
Copious guidance is provided [8,12] to support these approaches, and 
recently the overall assessment of predictions has been updated through 
the OECD QSAR Assessment Framework (QAF) [8,13].

In addition to the formal guidance on using QSARs to predict 
toxicity, there is considerable anecdotal knowledge on good practice in 
toxicity prediction [14–17]. Many aspects of modelling, and the use and 
application of models, have been stressed including, but not limited to, a 
clear definition of the problem to be addressed using a modelling 
approach, understanding the quality and type of data to be modelled, 
the role and value of mechanistic interpretation, appropriate goals for 
the statistical modelling and its assessment etc. Many of these aspects 
are captured under the auspices of the OECD QSAR Principles and QAF, 
but are reliant on expert knowledge (in both toxicology and modelling) 
and are often open to interpretation.

The practical assessment of the performance of QSARs to predict 
toxicity has been undertaken through a number of exploratory exercises. 
They include the United States (US) National Toxicology Program (NTP) 
comparative exercises on the prediction of a relative small number of 
compounds for rodent carcinogenicity, which went some way to illus
trating the issues behind the in silico prediction of complex endpoints 
[18,19]. Worth et al. [20] assessed a variety of QSAR software to predict 
the genotoxicity and carcinogenicity of pesticides. More recently, the 
Tox21 Challenge addressed a much larger data set of high throughput 
screening (HTS) data for nuclear receptor and stress response pathways. 
Typically, predictive models were provided, with a strong emphasis on 
machine learning approaches [21]. There have also been collaborative 
modelling projects where the purpose was less to assess predictive 
performance, but rather to create a selection of models, based on 
different approaches, to develop consensus models. These latter ap
proaches were co-ordinated by the US Environmental Protection Agency 
(EPA) and the NTP Interagency Centre for the Evaluation of Alternative 
Toxicological Methods (NICEATM), amongst others, and included ap
proaches to predict oestrogen receptor activity (CERAPP – Mansouri 
et al. [22]), androgen receptor activity (CoMPARA – Mansouri et al. 
[23]) and acute oral rodent toxicity (Mansouri et al. [24]). The EPA/ 
NICEATM approaches ensured that all data and models were freely 
available.

Another “blind trial” was undertaken recently by the Division of 
Genetics and Mutagenesis, National Institute of Health Sciences, Japan 
(DGM/NIHS). From 2020 to 2022 the DGM/NIHS conducted the Second 

Ames/QSAR International Challenge Project [25], extending the find
ings of the First Ames/QSAR International Challenge Project [26]. The 
purpose of the Second Challenge Project was to extend the First Chal
lenge Project with more model developers, as well as the implementa
tion of machine learning. The Second Challenge Project had an 
improved test set which allowed QSAR developers to make predictions 
for a dataset of approximately 1,600 chemicals, with the opportunity to 
develop models from a training set of approximately 12,000 chemicals. 
The endpoint selected for model development and predictions was the 
Ames test with data being made available that had been submitted to the 
Ministry of Health, Labour and Welfare (MHLW) in Japan since 1979. 
Full details of the data are provided by Honma et al. [26] and Furuhama 
et al. [25]. In total, predictions were submitted from more than 50 
models created by 21 model developers from eleven countries. Fur
uhama et al. [25] describe the breadth of modelling approaches which 
represent a variety of rule-based and statistical approaches. Predictions 
for the test set were submitted to DGM/NIHS with the performance 
assessed by Furuhama et al. [25], who also made general observations 
regarding model performance.

The overall predictive performance metrics of selected models in the 
DGM/NIHS exercise are detailed in two tables (Tables 9 and 10) pub
lished in Furuhama et al. [25] and the supplementary information of 
Uesawa [27], with balanced accuracy of the models ranging from 49.6 % 
to 78.5 %. The authors of this publication (from Liverpool John Moores 
University (LJMU), UK) submitted predictions from two modelling ap
proaches: Deep Learning (DL) and Random Forest (RF). The perfor
mance of the models was variable with, perhaps surprisingly, the DL 
model having the lowest balanced accuracy of any model reported (49.6 
%). Thus, whilst the performance could be considered disappointing, it 
provided an opportunity to reflect on reasons why the QSARs may have 
performed badly and what could be learned. Thus, the aim of this 
manuscript was to identify areas that are vital (and often overlooked) in 
QSAR development, and so provide guidance for the further develop
ment and application of QSARs. The findings are illustrated, where 
possible, with reference to the LJMU DL model reported in Furuhama 
et al. [25] in particular. Further, new technologies which may support 
QSAR modelling are identified.

2. Methods

2.1. Details of the LJMU models published in Furuhama et al. [25]

2.1.1. Ames test data provided and assessment of the performance of 
models

Ames test data in the training and test sets were derived from sub
missions to the MHLW in Japan. Data were used as provided, namely the 
chemical name and SMILES string, and Ames Class for the training set: 
induction of more than 1,000 revertant colonies per milligram, in at 
least one Ames test strain, with or without of metabolic activation, is 
termed Class A (strong positive). Induction of a minimum of a 2-fold 
increase in revertant colonies, (fewer than class A) in at least one 
Ames strain, with or without metabolic activation, is termed Class B. 
‘Negative’ or Class C was determined by a less than 2-fold increase in 
revertant colonies. No further information on the test was provided and 
the data were used as provided. In total, information on 12,134 chem
icals was provided for the training set and 1,589 for the test set. No 
molecular descriptors or advice on modelling was provided with Ames 
test data.

LJMU proceeded to develop two models, described in Sections 2.1.2 
and 2.1.3, from the training set data provided, no additional Ames test 
data being added. The models were subsequently utilised to make pre
dictions for the test set following calculation of descriptors from the 
SMILES strings in a similar manner to that for the training set. The 
predictions for the test set from the models were provided to the Chal
lenge co-ordinators without knowledge of the activity of the com
pounds. The co-ordinators assessed the performance of the models 
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according to set of metrics commonly utilised to assess predictivity 
(summarised in Table 1). This investigation draws upon the perfor
mance of the LJMU DL model, in particular, which was provided initially 
to the modellers and subsequently published in Furuhama et al. [25].

2.1.2. LJMU deep learning (DL) model
For the LJMU DL model, the complete training set as provided by 

Furuhama et al. [25] was utilised. For each compound in the training 
and test sets, 1,343 one-dimensional and two-dimensional molecular 
descriptors were generated using the PaDEL software (version 2.2.1) 
[28]. Following the exclusion of those features possessing either no in
ternal variance (i.e., complete uniformity in output), or excessive 
collinearity (dropping one from each pair with correlation greater than 
0.80), a pool of 283 PaDEL descriptors remained. The PaDEL descriptors 
were supplemented by 1,227 PubChem Substructure Fingerprints 
(version 1.3) [29] and ToxPrint Fingerprints (version 2.0 r1520) [30]
and the complete data set was utilised as the input. Classifications of 
mutagenicity activity were provided as the output. Chemical descriptors 
or features with a unique value (0 or 1) in the training set were excluded. 
The list of training chemicals was split into training and test sets to train 
and evaluate the performance of the models, prior to the application to 
the Furuhama et al. [25] test set. Numerical variables were normalised. 
Pre-processing layers were set for categorical and numerical input data. 
Given the imbalanced list of training chemicals, the classes of positive 
and strong positive were weighted. Classes utilised were: strong positive 
(A), positive (B), and negative (C).

Three approaches were investigated to evaluate which performed 
best on the training set. The models included: 

• A deep learning model for the problem of allocating to three classes.
• A wide and deep learning model for the three-classification problem. 

This model is a combination of the deep neural network developed 
above and an addition of a wide linear model to capture the feature 
pair correlations and to generalise better for unseen features com
binations [31].

• A wide and deep learning model for the two-classification problem. 
The model predicts if a compound is mutagenic or non-mutagenic 
compared to the previous two models.

The optimizer used was Adam. One dense layer with one dropout 
layer was applied. Three hidden layers were included. Rectified linear 
activation function was used to provide non-linearity to the model for 
fast convergence. Keras and TensorFlow in Python 3 were used to 

construct and train the models. Even though the two-classification DL 
model showed better performance, the three-classification model was 
submitted to allow for the external validation to be performed, and is 
summarised in Table 1. Further details of the LJMU DL methodology are 
provided in the Supplementary Material of Furuhama et al. [25].

2.1.3. LJMU random forest (RF) model
Using the 283 PaDEL descriptors as defined in Section 2.1.2, the 

RandomForest package (present within RStudio) was applied. Two 
distinct random forest models were trained: one employing the classi
fication system as provided with the training data (categories A, B and 
C), and another adopting a simplified binary scheme (with A and B 
pooled as “active”, C as “inactive”). These shall henceforth be referred 
to, respectively, as Models RF1 and RF2.

In each instance, it was necessary to address the imbalance in dis
tribution of categories present within the dataset (5.35 % of compounds 
labelled A, 9.02 % B and 85.6 % C). For Model RF1, this was achieved 
through means of the random undersampling of chemicals falling within 
categories B and C, so that their numbers were each equal to those 
within category A. The result was a working list comprising 1,935 
compounds. A similar methodology was applied in the construction of 
Model RF2, where the quantity of “inactives” (C) were reduced to match 
the combined sum of A and B (“actives”). A training set of 3,466 
chemicals resulted.

Both RF1 and RF2 were optimised by way of manual tuning, with 
adjustment of the hyperparameters ntree (i.e., quantity of decision trees 
constituting the “forest”) and mtry (i.e., number of descriptors drawn 
upon for the purposes of tree splitting). Performances were evaluated 
following the 70:30 division of the aforementioned working lists into 
training and test sets. It was observed that, within each, combination of 
ntree = 250 and mtry = 35 provided superior outcomes. Further details 
of the LJMU RF methodology are provided in the Supplementary Ma
terial of Furuhama et al. [25].

2.2. Reflection on the performance of the models

The DL and RF QSAR models developed by LJMU for the prediction 
of Ames test data, as described in Section 2.1 and Furuhama et al. [25]
were critically evaluated with their performance. The performance of 
the LJMU DL and RF models is summarised in Table 1. Since the per
formance of the LJMU DL model was poor, with a balanced accuracy of 
49.6 % (less than chance), this was used as the subject of the evaluation 
and reflection. The evaluation was not a formal process, i.e. the OECD 
Principles were not applied, rather the evaluation attempted to consider 
the models in the light of the performance of the blind predictions re
ported in Furuhama et al. [25]. In particular, the consequence of the 
data type, model structure and descriptors, as well as the predictions 
themselves were considered. In addition to the reflection on why the 
models performed sub-optimally, other aspects were considered relating 
to the use of the predictions.

3. Reasons for poor model performance

The QSARs for the prediction of Ames test results, developed by 
LJMU, as reported in Furuhama et al. [25], were evaluated with refer
ence to their performance in predicting a blinded test set and are sum
marised in Table 1. The purpose of this exercise was not to validate the 
QSARs, but rather to identify reasons for potential poor performance, 
such that they could inform the QSAR community for the creation of 
better models − regardless of endpoint. The evaluation identified 
various reasons for poor model performance (Sections 3.1 – 3.3) as well 
as more general issues related to the use of the models in (non-animal) 
chemical safety assessment (Section 3.4).

There is no doubt Ames test data are amenable to QSAR modelling 
[32], with many modelling approaches reported in Furuhama et al. [25]. 
A reflection on the performance of the LJMU DL model should also 

Table 1 
Summary of the performance of the LJMU models on the external test set as 
described in Furuhama et al. [25].

Performance metric Average 
(min–max)

LJMU DL 
Model

LJMU RF 
Model 1

LJMU RF 
Model 2

A-Sensitivity (%) 65.1 (5–95.7) 19.0 79.7 75.9
Sensitivity (%) 49.5 (2.5–80.5) 20.0 74.5 64.7
Specificity (%) 84.9 

(55.3–99.6)
79.3 55.3 72.7

Accuracy (%) 79.7 
(58.1–86.8)

70.5 58.1 71.5

Balanced Accuracy 
(%)

67.2 
(49.6–78.5)

49.6 64.9 68.7

Positive Prediction 
Value (%)

40.3 
(14.4–60.3)

14.4 22.5 29.2

Negative Prediction 
Value (%)

90.9 (85–95) 85.0 92.5 92.2

Mathews 
Correlation 
Coefficient

0.32 
(− 0.01–0.45)

− 0.01 0.21 0.28

Coverage (%) 95.4 
(35.9–100)

99.5 99.5 99.5

A-F1 score (%) 46.9 (9.1–63.1) 16.4 35.1 42.2
F1 score (%) 41.3 (4.8–53.8) 16.8 34.6 40.3
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consider the other models in the investigation. There is a very broad 
range of modelling approaches including knowledge-based approaches, 
i.e., the application of structural alerts in expert systems through to 
multiple types of statistical analyses including machine learning, with 
complexity up to the deep learning technologies. A wide range of mo
lecular and structural descriptors are applied in the models. Nearly all, if 
not all, descriptors are calculated directly from 2D chemical structure 
using freely available software or the model developers’ own software. 
Lastly, and potentially most significant, are the data that are modelled. 
The LJMU models were based solely on the data provided by NIHS, with 
no attempt to supplement the data. A number of model developers uti
lised their own existing models and enriched them with the NIHS data, 
thus providing a potentially more robust dataset and model. Further 
assessment of these factors could be achieved by greater analysis of the 
findings provided to NIHS and reported in Furuhama et al. [25], 
regrettably it is not possible in terms of this investigation.

Full statistical analysis of the findings, in terms of predictivity of the 
blind test set is reported by Furuhama et al. [25], and summarised with 
regard to the LJMU DL model in Table 1. The analysis was latterly 
extended by Uesawa [26]. The assessment as to what may be considered 
the best model is complex and is based not only on balanced accuracy 
alone. Furuhama et al. [25] state that high sensitivity, low false-negative 
rate and wide coverage of chemical space are needed for QSAR models 
in the regulatory setting. Thus, these criteria should also be borne in 
mind when assessing overall model performance.

A number of reasons why a model may perform poorly were iden
tified and are summarised below. These are a compilation of many issues 
previously identified as pitfalls and good practice [14,16,33], associated 
with known uncertainties [11,34] as well as being part of the accepted 
processes for the assessment of QSARs [9] and their predictions [8,13]
for regulatory purposes. The factors discussed below reflect the three 
main elements of a QSAR, namely the data modelled (Section 3.1), the 
independent variables describing molecular structure and properties 
(Section 3.2), the modelling approach (Section 3.3) as well as elements 
of how the model is developed and can be applied (Section 3.4). The 
assessment of the impact of these factors on the performance of the 
LJMU DL model for mutagenicity is provided where appropriate.

3.1. Reasons for poor QSAR model performance: Endpoint data being 
modelled

The data to be modelled, as well as their description and curation, are 
fundamental to the modelling process and the performance of the model 
[7]. There are numerous criteria regarding the data that will affect 
model performance. The overriding principle is that the quality of the 
data (both the values and their description/curation) will reflect the 
quality of the model. Section 3.1 reflects on some issues that, in the first 
instance, should be borne in mind by the model developer. Whilst there 
is no strict definition of “high quality” data, with regard to toxicological 
evaluation, e.g. for regulatory purposes, this would normally be asso
ciated with a test being performed to a standard Test Guideline and 
under Good Laboratory Practice (GLP) conditions. However, other 
useful and usable QSARs may be developed from non-standardised data, 
such as those from receptor binding assays. It is noted that models from 
non-standardised (non-validated) data have to overcome greater scru
tiny before acceptance for regulatory purposes.

In this Section, it is assumed that the data to be modelled are from an 
experimental measurement, usually from a standardised and recognised 
toxicological assay (the same criteria will apply to other endpoints 
modelled, such as toxicokinetics and physico-chemical properties how
ever). The data modelled in the LJMU DL neural network for mutage
nicity were from the Ames test and supplied by DGM/NIHS. Therefore, 
they were equivalent for all models/modellers so will not explain poor 
inter-model performance.

3.1.1. Inadequate/incomplete or non-existent data curation
The data on which a model should be developed should be curated. 

Specifically, a biological activity should be associated with an identifier 
for a defined chemical structure, or substance. A number of reports (for 
instance Tropsha [33]; Alves et al. [35]) have emphasised the need for 
unique and unambiguous identifiers, as well as consistency in address
ing the representation of entities such as salts or ionised molecules, 
stereoisomers and tautomers.

The fundamental need to capture substance identity correctly, as the 
starting place for data curation and association of biological data with 
chemical structure, is vital. Consistency is required in the recording of 
chemical structures for model development. There is a need to ensure 
accurate mapping from chemical name (especially if not in IUPAC 
nomenclature), CAS number through to SMILES strings or InChi/ 
InChiKeys. Automated processes of structure generation should be 
checked and verified manually, where possible, against known stan
dards. An example of where issues from incorrect generation of SMILES 
strings or InChiKeys may arise is with descriptor-generating software 
which is liable to vary in its handling of alternative substance forms (for 
example, a free carboxylic acid, its carboxylate anion and its sodium 
salt). Although these entries might well exhibit near-identical toxic 
potencies, it is the case that substantially different feature values may 
nevertheless be attributed to each. Conversely, such calculations typi
cally draw no distinctions between stereoisomers – the activities of 
which have the potential to contrast greatly. Combined, these factors 
serve to confound the establishment of statistical association between 
structure and activity. For this reason, salts (and similar) should ideally 
be represented as neutral, mono-constituent organic compounds. 
Duplicate molecules or substances should be removed altogether, 
alongside all non-discrete or ill-defined entries such as polymers and 
mixtures. A further issue with the correct reporting of biological data is 
the accuracy in the transfer of the data from the original source. Errors 
have been observed in data transference, with the ideal requirement 
being checking against the original study report [15].

3.1.2. Variability in biological data
The data on which the model is developed are fundamental to the 

quality of the model, and hence should temper what may be expected, or 
feasible, in model performance. Poor quality data should, inevitably, 
lead to lower expectations in the overall model. Due to the variability in 
the biological measurements on which they are based, no QSAR model 
will ever achieve consistent 100% accuracy. Whilst not explaining poor 
performance of models, it should be borne in mind that even low quality 
models may provide useful information within a consensus approach 
(see Section 3.4.4).

In the study reported by Furuhama et al. [25], the data have been 
provided from regulatory submissions to DGM/NIHS. During the study 
and model development, no attempt was made to evaluate data quality. 
This is not to be considered as a criticism, but rather an uncertainty 
within the modelling process (refer to Section 3.4.2 below). Whilst there 
are no definitive statistics for the reproducibility of the Ames test, a 
recent study [36] indicated that intra-laboratory reproducibility of 
negative and positive results (with and without S9 mixes) was high – 
often over 90%. It is likely that strong positives and negatives will be 
highly reproducible and it was noted that there is lower reproducibility 
for equivocal results [36]. Whilst Zeiger et al. [36] focussed on within 
laboratory reproducibility, much less is known about between labora
tory reproducibility, which is likely to be lower. There are many po
tential reasons for poorer inter-laboratory variability including, but not 
limited to, local variations in methodology and differences in doses 
tested. The doses tested are of particular relevance, should only low 
doses be tested then a weak mutagen may not be identified. In addition, 
the Ames test is valid only up to the level of cytotoxicity, hence a weak 
mutagen that may promote cytotoxicity will not be identified. The 
interpretation of the findings by the toxicologist should also be borne in 
mind. Whilst the Ames test is highly standardised, there are always 
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elements of interpretation of the results of any experimental findings. 
Since the Ames test data prepared by DGM/NIHS were from multiple 
sources, and potentially methodologies, it is difficult to assign any sta
tistic for reliability. What may be concluded is that the DGM/NIHS data 
set will have lower reproducibility than for the 90% inter-laboratory 
reproducibility reported by Zeiger et al. [36]. As such, an educated es
timate of reliability of the data set, in terms of reproducibility, is likely to 
be in the region of 70%, with a realisation that it may be 10% higher or 
lower. Very broadly speaking, this is reflected in the balanced accuracy 
of the predictions reported for all the models in Furuhama et al. [25], 
with a range of 49.6–78.5%. As such, it may be that the models have 
reached, or possibly surpassed, the acceptable experimental limits of 
data.

The reproducibility of the Ames test should not be confused with its 
performance to predict carcinogenicity – a positive Ames test is highly 
indicative of carcinogenicity but a negative result less predictive (in part 
due to the issue of non-genotoxic carcinogens) [37]. The lack of rele
vance of the concordance of the Ames test with carcinogenicity is an 
issue for the application of the data in risk assessment, but not the 
modelling process.

It is noted that not knowing data quality does not explain poor model 
performance in this exercise. However, it will guide what may be 
considered to be acceptable model performance. It is our opinion that a 
model is not capable of making predictions better than the data on which 
it is built. Therefore, low quality data should only be considered to 
create a low quality model. Since there is variability in all biological 
measurements, however well standardised the test, this must be factored 
in to how they are used.

3.1.3. Lack of toxicological mechanistic insight and relevance
The ability to relate or develop a model in an appropriate manner to 

account for mechanism of action is fundamental to modelling of toxi
cological activity. This is also an essential aspect of the validation of 
QSAR models, being enshrined in the fifth OECD principle, which im
plies a QSAR should be associated with “mechanistic interpretation, if 
possible” [9]. In the development of the models for Ames test data, the 
chemical structures and activities were provided, but no mechanistic 
information was available or assumed. It should, of course, be hypoth
esised that the mechanism in the Ames test relates to the ability of 
chemicals to induce mutations in DNA [38].

The molecular initiating event (MIE) associated with the Ames test, 
which would promote the reverse mutations, is undoubtedly the inter
action of the chemical with bacterial DNA. However, it is probable, 
although not documented for this data set, that there may be a variety of 
mechanisms that underpin the interaction with DNA, e.g. various elec
trophilic mechanisms, formation of reactive oxygen species, production 
of reactive metabolites etc. [39]. This information would be highly 
valuable to direct modelling in terms of the appropriate molecular de
scriptors (Section 3.2.1), accounting for metabolism (Section 3.2.2) and 
the appropriate structure for the model (Section 3.3.1).

As is common with the use of machine learning in QSAR, the LJMU 
DL Model was created without implicit reference to mechanism of ac
tion. Therefore, greater insight into the mechanism of action would have 
been likely to improve the models for Ames test data. This could have 
been improved by restricting the descriptor pool to only those of 
mechanistic relevance, or adding in more relevant descriptors.

3.1.4. QSAR models are simplifications of biological data which are based 
on complex processes or outcomes

It is trivial to state that all biological processes are immensely com
plex, especially at the in vivo level. By implication, QSAR attempts to 
create a simplified generic model of biology, encoding physiology, 
biochemistry, toxicodynamics and toxicokinetics into a small number of 
chemistry-based descriptors. Again, using a simplistic analogy, machine 
learning has the potential to utilise non-linear models to obtain the 
maximal fit to the data. It is therefore essential that there is an 

appreciation of the simplification of biology within the model. Such 
oversimplification may, inevitably, lead to the model not capturing all 
elements of biology.

The data reported by Furuhama et al. [25] are for the Ames test, or in 
vitro, in nature. Whilst in vitro tests may be considered themselves as a 
simplification of the more complex in vivo system, there remains 
complexity in the process. With regard to the Ames test, any model of the 
molecule should accommodate complexity of uptake of the molecule 
into the cell, reactivity and potentially metabolism. Not capturing these 
issues will inevitably lead to poor performance of the model.

3.2. Reasons for poor QSAR model performance: Descriptors of chemical 
structure and/or properties

Following the collection and curation of experimental data for 
modelling, the subsequent task in QSAR development is to obtain 
appropriate descriptors (the so-called independent variables) of molec
ular structure and properties. Descriptors may, on occasions, be derived 
experimentally, e.g., the logarithm of the octanol–water partition coef
ficient (log P), but are usually calculated directly from a representation 
of molecular structure. The exact number of molecular descriptors 
calculable is not known, but is likely to be in the region of 5,000 – 
10,000 for each molecule, more if molecular fingerprints are included. 
The reader is referred to excellent reviews of molecular descriptors for 
more details; the fundamentals are described by Dearden [40] with 
detailed analysis by Todeschini and Consonni [41]. The task of the 
modeller is to obtain and utilise molecular properties and descriptors 
that are appropriate to the chemicals in the data set as well as the 
complexity and variability of the endpoint being modelled. Inappro
priate or inadequate descriptors will result in poor model performance 
as they do not account for the influence of the variability of chemical 
structure on activity. With the advent of machine learning there has, 
therefore, been a trend to calculate large numbers of descriptors 
allowing the model to select those appropriate to fit the relationship 
between biological activity and chemical structure/properties. There are 
many advantages to this process, such as it being rapid and not informed 
by modeller bias. However, there are also many issues with the inap
propriate or inadequate use of molecular descriptors, some of which are 
accounted for in this Section.

Recently, a combination of various molecular representation 
methods based on chemical sequence e.g., as defined by a SMILES string, 
molecular images and graphs have been explored to capture the chem
ical space potentially better [42]. This aligns perfectly with the need for 
larger datasets for deep learning methods. However, more efforts are 
still required for the causal interpretation of these multimodal data 
integration approaches.

3.2.1. Models need relevant molecular descriptors
It is obvious that the inputs into a model need to be relevant and of 

high, or known, quality. With regard to the descriptors of chemical 
structure and properties, these must be related to the activity that is 
being modelled. This is best achieved by an understanding of the 
mechanism of action of the effect being modelled. This implies that the 
descriptors in a model are related directly to biological outcome, 
whether this is the ability to get to the site of action, or the interaction of 
the molecule with the target site (sometimes referred to as the MIE) 
[43]. It is well established that fundamental high quality QSARs are 
likely to be developed for smaller datasets, where a single mechanism is 
known and only one, or a small number of descriptors may be required 
[44]. Modelling datasets with multiple, or unknown, mechanisms 
greatly increases the required complexity of the model [2].

A positive outcome in the Ames test is predominantly a result of the 
covalent interaction of the molecule, or its reactive metabolite, with the 
DNA within the bacterial cells. Early QSAR studies of mutagenicity 
demonstrated some reliance of the potency in the Ames test with hy
drophobicity for restricted groupings of amines [45] and nitro 
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compounds [46]. However, the overwhelming property that needs to be 
incorporated into the model is electrophilic reactivity.

Modelling of electrophilic reactivity is best achieved using quantum 
chemical descriptors, such as the energy of the lowest unoccupied mo
lecular orbital or atomic superdelocalisability [47,48]. These require 
calculation of an appropriate 3-dimensional structure followed by often 
complex, time-consuming and costly quantum chemical (or higher level) 
properties [49]. Given the challenges of a training set comprising over 
12,000 molecules, quantum chemical calculations were not feasible. 
Therefore, modelling of mutagenicity utilised 2-dimensional descriptors 
from the PaDEL software. These are based on various aspects of chemical 
structure and, whilst some descriptors may be representative of elec
trophilic functional groups, these descriptors do not implicitly encode 
electrophilic reactivity.

Thus, to improve the performance of QSARs, descriptors relevant to 
the endpoint being modelled, as well as the mechanism(s) of action, 
should be included. In order to achieve this, greater cognisance of 
mechanisms of action is required, which is discussed in Section 3.1.3. 
Descriptor selection should, if possible, also be related to the chemical 
space and characteristics of the data set which is being modelled. Thus, if 
there is only one reactive feature in a data set, as may be found, for 
instance, with a group of nitrosamines, then descriptors need not focus 
on alerts for mutagenicity but rather factors that modulate the reactivity 
of the nitrosamine group and its bioavailability. The data modelled in 
Furuhama et al. [25] were chemically heterogeneous, thus needing a 
broader range of descriptors to capture intrinsic reactivity with DNA.

3.2.2. QSAR models do not explicitly account for metabolism (or other 
toxicokinetic factors)

Metabolism of xenobiotics is a fundamental physiological and 
biochemical process that assists in their detoxification and clearance. 
Conversely, some of the same metabolic process may elicit a more active 
molecule, or a more reactive intermediate. This is a crucial mechanistic 
step in many adverse outcomes and is dependent on the chemistry and 
the metabolic capability of the species and/or individual [50,51].

For some chemicals, metabolism is an essential process to promote 
mutagenicity and is captured through the inclusion of an S9 mix in the 
Ames test. Since the activity data were modelled as positive and nega
tive, the effect of metabolism was not known, but captured in the overall 
biological activity. This will cause problems as the descriptors are based 
solely on the parent molecule and not the metabolite, hence this could 
lower performance.

In terms of modelling, a number of approaches to resolving the issues 
of metabolites can be taken. It may be assumed (or hoped) that meta
bolism is captured in the model in some way, i.e., some descriptors 
incorporate this. For instance, descriptors for a primary aromatic amine 
group may be important for predicting mutagenicity, however, it is not 
the amine, rather it is the nitrenium ion formed through metabolism 
[52,53] that is responsible for the effects. Other approaches, which were 
not adopted in the DGM/NIHS Second Challenge Project, would be to 
identify molecules capable of being metabolised and model them sepa
rately, or predict metabolites computationally and perform separate 
assessments. The concern with the latter approach of predicting me
tabolites, is the explosion in the numbers of potential metabolites, 
without knowing which are necessarily relevant. With regard to the 
prediction of metabolites, further work is required to identify only those 
that are relevant and of concern from a toxicological perspective.

3.2.3. Ensuring “accessibility” of descriptors
Individual descriptors for use in a QSAR model should be calculated 

using the same software, or in the case of experimental descriptors 
measured in the same manner. This has clear implications for the use of 
historic models. As such, prospective model performance may be 
adversely affected if descriptors generated using different approaches 
are utilised. This is an important aspect of the sustainability of a model 
as well as its adequate description. Thus, it is fundamental that when 

software is used to calculate descriptors the version of the software must 
be recorded and, where possible, this version must be used to calculate 
future descriptors for molecules of interest for which predictions are 
made. Where this is not possible, descriptors should be re-generated for 
all molecules of interest, or this must be acknowledged as a limitation to 
the modelling approach. Other aspects related to the accessibility of 
descriptors include: the availability of software, its cost, its accuracy, 
reliability and reproducibility in calculating descriptors, and the time 
and computational resources that may be required to obtain the 
descriptors.

3.2.4. Modelling of excessively large sets of molecular descriptors
As noted above, it is possible to calculate 1,000s of descriptors very 

rapidly. Whilst this may be useful for machine learning techniques, there 
are a number of pitfalls, potentially contributing towards poor model 
performance, that need to be recognised. The reality is that it is now 
possible to have “oversquare” data matrices where there are signifi
cantly more descriptors than there are chemicals in the data set. As such, 
these data matrices may have considerable redundancy of information.

Given a sufficient quantity of features, it is possible to develop 
models which are almost perfectly predictive with respect to their 
training sets. These are, however, likely to be overfit to a significant 
degree. Rather than accounting exclusively for key structure–activity 
relationships, output is informed instead by chance correlations arising 
between “excess” descriptors and the target variable. In essence, such 
models are so acutely attuned to their training data that their ability to 
generalise towards unseen substances is impaired. The probability of 
encountering interrelatedness, or collinearity, between descriptors 
within a large feature pool is high. For example, molecular weight and 
number of heavy atoms, as representatives of general compound size, 
are likely to correlate closely. Although any minor variation present 
between the two may reasonably be anticipated as incidental (i.e., 
noise), it will nevertheless be drawn upon by the algorithm in its search 
to improve statistical fit.

Ahead of training, the extent of collinearity between all descriptors 
should, ideally, be determined. Feature reduction can thus be enacted, 
whereby one from each descriptor-pair exceeding a defined correlation 
threshold (e.g., Pearson correlation coefficient = 0.7) is removed. Whilst 
smaller feature sets may produce models less liable to overfitting, the 
general loss of information may result in predictivity being reduced. In 
order to identify the presence and extent of overfitting, it is common to 
apply techniques such as cross-validation (typically ten-fold) – noting 
variation between the training set and validation set performance met
rics. Other methods for descriptor reduction can include selection of 
significant descriptors, or elimination of less significant descriptors – 
this is performed in stepwise regression analysis and, to a certain extent, 
in RF. Other approaches include the reduction of descriptor dimen
sionality through principal component analysis (PCA). The potential 
disadvantage of approaches such PCA is that the new descriptors, the 
principal components, may be difficult to assign a physico-chemical or 
structural meaning to and will therefore limit interpretation of the 
model.

3.3. Reasons for poor QSAR model performance: Statistical relationship 
or model applied

The statistical model that provides the bridge between biological 
data and descriptors is the third element of a QSAR. Starting in the 1960s 
with linear regression analysis, a multitude of statistical methods have 
been attempted incorporating multivariate statistical approaches and 
now embracing machine learning and generative artificial intelligence 
approaches. There is no formal guidance or recommendation as to which 
method to apply. As such, there is a trade-off between the desire for 
simplicity and transparency, as compared the ability of machine 
learning approaches to utilise multiple streams of descriptors in a non- 
linear manner. There is no doubt that predictive performance of 
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QSARs will be affected by the model used, this Section investigates how 
and why different modelling approaches may be responsible for 
different effects on predictions.

3.3.1. Ensuring the modelling approach is appropriate to both the question 
being asked and the type and extent of data available

Modellers should not treat toxicological data as merely as numerical 
inputs – unless the purpose of the model is simply to search for patterns 
in the data. Toxicological data are the outcome of an often complex 
biological process and should not be generalised. The modelling should 
take into account these complexities and therefore the model should 
have an appropriate structure. Many structure–toxicity relationships are 
complex and non-linear, however some are relatively simple. For 
instance, some endpoints, such as cytotoxicity, may be modelled suc
cessfully by a single descriptor in a linear relationship [54]. Since 
mutagenicity is a categorical endpoint, the modelling approach is 
implicitly aiming to find descriptors that can separate mutagenic (or 
reactive) molecules from non-reactive molecules.

3.3.2. Bigger doesn’t always mean better…
As a modeller, there is always the temptation to want as large a data 

set as possible. The DGM/NIHS data set provided such an opportunity 
and, as we move into an era of greater data accessibility, further datasets 
will also materialise. However, modelling of large toxicological data sets 
may not be intuitive as it may hide (or mask) significant areas of 
chemical space where the model is inappropriate. This does not, of 
course, preclude the development of models from large datasets, but the 
limitations must be borne in mind.

The concept of activity cliffs within data, where a small change in 
structure may bring about large change in activity, is well established 
[55]. This is likely to be highly relevant for the Ames test, where small 
changes in structure will be highly influential in determining whether a 
molecule may be reactive or metabolised to a reactive intermediate. As 
noted in Section 3.2.1, such molecular subtleties are difficult to capture 
with the types of 2-dimensional descriptor being commonly utilised in 
model development. As such, small, but highly relevant, changes in 
molecular structure may not be captured in models for large, chemically 
diverse datasets and the possible learning from it lost within the 
statistics.

As part of the process of applying models, we should focus on areas of 
chemical space where we can assess the prediction, i.e., where there is 
homogeneity in the accuracy of predictions. Likewise, if we can under
stand chemical space, or parts of the model where there is poor pre
dictivity we may be able to focus on those, either by improving the 
model or recognising that area as having higher uncertainty. Global 
models and statistical analyses hide such distinctions. Assessment of 
nearest-neighbours is one means of achieving this, albeit in a rather 
artificial manner. It would be beneficial to provide a better assessment of 
predictivity within chemical space. In other words, knowledge of the 
prediction quality of the space the target chemical finds itself in.

3.3.3. Setting realistic performance criteria
Setting performance standards as criteria for acceptance of the pre

dictions for a model is often unhelpful, if not unwise, as it may eliminate 
potentially pertinent lines of evidence from an overall weight of evi
dence. There is a temptation for the model developer or user to rely on 
predetermined measures of statistical fit, i.e. a valid model is associated 
with a certain statistical fit. In fact, few, or no, legislations make refer
ence to pre-defined statistical criteria and it is the authors’ opinion that 
there is a danger in so doing. It is possible to manipulate a model, even if 
done unwittingly, to increase statistical fit, e.g. by rationalising selection 
of data or removal of outliers.

A more realistic option is to ensure that performance criteria of a 
model are realistic with regard to the biological (or other) data being 
modelled – as noted in Section 3.1. Whilst performance criteria may be 
less than objective, it is important to benchmark, or baseline, a model 

against the type of data it is intended to predict. This will assist the 
model developer or user in understanding whether the model is over- or 
under-fit. Thus, the model performance itself should not be considered 
alone, although an important diagnostic of the model, rather its per
formance against the baseline for the data should be considered.

3.4. Reasons for poor QSAR model performance: Other factors related to 
the development and application of the model

There are a number of other factors that may affect the performance 
of a QSAR model adversely. These are not necessarily related to the 
biological and descriptor data, or directly to the method used to create 
the model. Rather they relate to the motivation for the creation of a 
model, its description and storage. In particular, the purpose for which 
the model is developed should be borne in mind, and whether its sub
sequent use is commensurate with that purpose.

3.4.1. Establishing the need for, or application of, the QSAR – Problem 
formation statement

QSAR models are usually developed for a specific purpose(s), that 
purpose should be conceived before modelling begins. There are many 
specific purposes for the creation which could include hazard identifi
cation (i.e. toxicity effect prediction), through to exploration of a data 
set, training and education etc. A clear statement of the need, or pur
pose, of a model will assist the user in applying it correctly. For instance, 
a model developed to investigate the chemical space of a large inventory 
of compounds may not be suitable for the direct prediction of toxicity of 
compounds with known mechanisms. Whilst a model may be used for an 
alternative purpose in future, this deviation from the intended use of the 
model should be acknowledged when assessing its performance and 
utility for that purpose. The purpose of creating models for the dataset 
provided by Furuhama et al. [25] was to make predictions of the Ames 
test for a large number of compounds and enable superior model 
development. Thus, a large global model was required and, indeed, 
provided by the contributors to Furuhama et al. [25]. However, espe
cially in the case of the LJMU DL, the model cannot be considered to 
have been superior to those already available.

3.4.2. Uncharacterised uncertainties
In addition to full documentation and description of a QSAR model, 

it can be considered essential to characterise the uncertainties within it. 
Consideration of uncertainties is a fundamental component of ECHA’s 
QAF [8]. Separate to the QAF, a framework to characterise uncertainties 
has been developed [11] and its application to assess QSARs demon
strated [3]. No real analysis of the uncertainties of any of the models for 
mutagenicity reported by Furuhama et al. [25] was undertaken, there
fore users of these models have little insight into key factors that may 
influence the performance of the models.

It would appear that there are uncertainties associated with various 
aspects of the models. The data on which the models are built have been 
curated by DGM/NIHS, however access to original study reports and 
precise protocols is not available. Similarly, there is incomplete access to 
the descriptor data and model architecture in the models reported in 
Furuhama et al. [25]. There is also no definitive mechanistic informa
tion, other than a positive outcome in the Ames test is indicative of 
disruption of bacterial cells.

Not characterising uncertainties does not invalidate the model, nor 
does it directly affect the performance of a model to make predictions. 
However, a better characterisation of uncertainties would enable an 
overall evaluation of the model, with a particular emphasis on how it 
may be used. Characterisation of the uncertainties will also pinpoint 
areas where they may be reduced, which in itself could improve, or 
allow for the better understanding of, model performance.

3.4.3. Applicability domains poorly, or not at all, described
The applicability domain of a QSAR should be defined, and is explicit 
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in the third of the OECD principles for the validation of (Q)SARs [9]. 
Whilst much effort has been placed into the definition of domains, it 
remains a difficult and complex process to conceptualise as well as 
achieve [56]. The applicability domain of a model is highly context 
dependent and should not be generalised. Dimitrov et al. [57] recom
mended the domain be considered in four stages, namely physico- 
chemical properties, structural characteristics of the molecules, toxi
cology and potential metabolites. Most current methods of QSAR 
applicability domain definition still do not account for all these stages 
adequately, thus the relevance of whether a molecule is stated to be in or 
out of the domain for some models should be verified manually, e.g. 
checking for the validity in the four domains noted by Dimitrov et al. 
[57], assessment of close analogues etc. With regard to the data 
considered in the Furuhama et al. [25] study, no effort was made by 
LJMU in developing the DL model to ensure that the test set compounds 
were in the applicability domain of the model. This oversight could be 
corrected to determine if a valid domain can be defined for the training 
set whether this affected the performance of the DL model for the test 
set.

3.4.4. Models in isolation do not build a weight of evidence
As noted in Section 3.3.3, good and successful modelling does not 

necessarily mean high statistical fit or performance. The output from a 
model, such as a prediction for a chemical without data, should be 
viewed as a piece of evidence to inform a decision to be made. Only in 
very limited circumstances does a prediction from a model imply that it 
has the same scientific value or standing as an experimental test, or that 
it may replace the need for a test [58]. The acceptance of predictions to 
adapt REACH requirements is one such instance, where strict criteria for 
the acceptance of predictions from QSARs are put in place. In addition, 
due to the limitations of QSARs – such as those outlined in this paper – 
there may be a preference for read-across (data gap filling from a similar 
substance with adequate data) with regard to more complex health ef
fects [59].

As safety assessment moves towards a process whereby information 
is compiled and probabilities of safety judged, such as Next Generation 
Risk Assessment (NGRA) [60], it may be more illustrative to consider the 
prediction of mutagenicity through the combination or, or formation of 
a consensus of, predictions from different models (which may implicitly 
be based on different modelling approaches and represent different 
areas of chemical space). It should be noted, however, that multiple 
predictions from models with low predictive capacity is unlikely to be 
improve significantly on the outcome. Despite these caveats, an example 
of where the assessment of different modelling approaches has found 
acceptance is the ICH M7 assessment and control of DNA reactive 
(mutagenic) impurities in pharmaceuticals to limit potential carcino
genic risk [61]. ICH M7 does not rely on a single prediction of muta
genicity, but requires two complimentary methods, one knowledge- 
based and the other a statistical (QSAR) model, to make an assess
ment. Expert judgement (or review) is also a crucial factor in making a 
prediction [62].

4. Opportunities for progress in improving how QSAR models 
predict toxicity

In addition to the identification of areas where current modelling 
techniques can be improved, the reflection of the poor performance of 
the LJMU DL model reported by Furuhama et al. [25] also allowed for 
the consideration of some new technologies, which are described in this 
section. Several of these technologies relate to better applying and 
interpreting machine learning models, Section 4.5 focuses on ensuring 
models are available for use. This is not a complete or comprehensive 
overview of the new technologies that are relevant to the in silico pre
diction of toxicity, but gives a selection based on their relevance to the 
models reported by Furuhama et al. [25].

4.1. Federated learning (FL)

With regard to increasing the availability of data for modelling, there 
are also further opportunities to store data and allow for greater 
compilation of data even when there may be concerns over confidenti
ality. In this regard, federated learning (FL) has recently been proposed 
for local training and storage of data at the source. FL is a privacy- 
preserving decentralised collaborative approach, which enables 
training a single model on data from multiple sources without jeop
ardising the privacy and security of those data [63]. More specifically, 
each client, e.g., private institutions, academic laboratories and business 
working in FL, has their own local training data that are not commu
nicated to the other clients or the central server. Each client performs 
training on its local training data, and then the local updates are sent to 
the central server for aggregation to obtain a global model. The global 
model is then distributed back to the clients for the next iteration. Thus, 
FL is a way to build global models while preventing the dissemination of 
chemical data and avoiding data leaks or breaches compared to a cen
tralised approach where a single central server stores all data locally and 
manages every step of the training procedure. Collaboration by FL can 
help to increase predictive performance, particularly when the client 
holds a small set of private data, and enables the models to capture 
patterns in datasets outside their own resources, leading to broader 
chemical space in the model [64]. At present, there are two real-world 
implementations of FL in drug discovery, namely MELLODY [65–68]] 
and Effiris [69,70], with other ongoing research, for example, on mo
lecular generation using FL graph neural networks, as summarised in 
Hanser [71]. All these examples have shown that the FL model out
performs each individual model regardless of the data size with an in
crease in the applicability domain.

4.2. Data augmentation to improve data availability

Whilst care should be taken in selecting data for modelling, it is 
recognised that larger data sets have been shown to improve the per
formance of DL models. The dataset provided for modelling as part of the 
challenge described by Furuhama et al. [25] is one of the largest 
available for QSAR modelling of a toxicological endpoint. For many 
endpoints, much smaller datasets have to be relied upon. Improving the 
size of data sets for use in machine learning, especially DL, can be 
achieved through employing various strategies such as data augmenta
tion (e.g., generating multiple and different instances of the same 
molecule to be used as input), multi-stage training (e.g., transfer 
learning, active learning, reinforcement learning), and context-enriched 
training (e.g., additional context is provided to the model through 
different inputs), as summarised in van Tilborg et al. [72]. These low- 
data learning approaches are still in their infancy and require explora
tion for toxicity prediction tasks.

4.3. Probabilistic modelling

The issue of the variability of data, and the difficulty this creates in 
modelling, are described in Section 3.1.2. One solution to this could be 
the greater use of modelling approaches that provide a probability of an 
activity. Probabilistic programming of an endpoint allows for the cap
ture of data variability and quantification of uncertainty about the 
predictions in the form of a probability distribution. DL methods have 
the ability to model non-linearity. However, they are not appropriate for 
small datasets, which can lead to overfitting, neither can they quantify 
the uncertainty of experimentally measured or predicted values. 
Bayesian neural networks can address these pitfalls. For example, 
Bayesian parametric approaches were proposed for modelling the 
severity of drug-induced liver injury of 237 labelled compounds in 
preclinical safety assessment using a hierarchical prior instead of 
hyperparameter optimisation [73]. Bayesian neural networks were also 
shown to be useful in NGRA by modelling the biochemical activity of 20 
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molecular initiating events and how the statistical metrics such as 
standard deviation and credible intervals can inform decision-making 
and risk quantification [74].

4.4. Improving the interpretability of complex models

The importance of making models interpretable is well-established 
(see Section 3.1.3). There are distinct advantages to model interpret
ability, especially with regard to validation and acceptance of pre
dictions. However, even for a simple model, this is a skilled task 
requiring not only the explanation of the model but also it being put in 
context of the toxicological mechanism of action. For complex models, 
such as the LJMU DL model, the problem of interpretation is multiplied, 
due, in part, to the potential “black box” nature of the model but also the 
large number of descriptors and non-linear nature of the relationship. 
There are some solutions, for instance recently, the focus of QSAR 
models has shifted to the use of methods and strategies that help to 
understand model results such as assessment of feature importance, e.g., 
SHapley Additive exPlanations (SHAP) [75]. Other methods explore 
how representations of compounds are transformed in hidden layers, 
which is how neural networks learn. For example, Walter et al. [76]
developed an interpretation method to identify and explain possible 
associations between the activation of hidden neurons and known tox
icophores for mutagenicity by validating the approach with the struc
tural alerts from the Derek Nexus expert system.

4.5. Making models and their underlying data FAIR

Users of model should be able to find, reproduce and implement the 
model easily. With regard to the models reported in Furuhama et al. 
[25], it is not immediately clear how this could be achieved or all 
models. Thus, whilst not impacting on the performance of models, the 
adherence of the models, and the data on which they are developed, to 
the Findability, Accessibility, Interoperability, and Reuse (FAIR) prin
ciples of digital assets [77] will make them a truly useful and useable 
resource. Cronin et al. [78] revised the FAIR principles to make them 
applicable to in silico models for toxicity, and QSARs in particular. Whilst 
no formal analysis has been undertaken, none of the models described 
by Furuhama et al. [25] are likely to be compliant with the FAIR prin
ciples – although that was never the intention of the study. Notably, 
lacking from the models are an unique identifier, full description of the 
model and clear description of the meta data. The advantage of making 
models FAIR is that this will promote not only use of a model, but also 
that it is used consistently by any researcher. Likewise, since the bio
logical data are not fully published in Furuhama et al. [25] (due to 
reasons of commercial sensitivity), they may not be considered FAIR and 
the models and performance statistics cannot be reproduced, especially 
with regard to the FAIR principles established by Wilkinson et al. [77]. 
Thus, not having access to the data and model will hinder the capability 
to recreate or recalibrate a model and thus will undoubtedly affect 
reliability and use, and may be a cause of poor model performance i.e., 
the same model is not recreated.

5. Conclusions on assessing and improving QSAR model 
performance

Assessment and evaluation of QSAR models for toxicity prediction is 
a worthwhile exercise. Few truly blinded trials have been attempted in 
the past, with the study from Furuhama et al. [25] being one of more 
recent. The output from Furuhama et al. [25] shows a wide variety in the 
overall performance of models, as measured by predictivity of a large 
external test set. It is gratifying that so many models were submitted to 
the DGM/NIHS Second Challenge Project, with a diverse selection of 
modelling approaches.

Our assessment of our own models is that there is no single reason for 
the poor performance of a model, but it is likely to be due to a number of 

factors that need to be put in the context of the endpoint being modelled. 
Performance is related to a number of issues which should be considered 
not only by the model developer, but also the user of a model and any 
third party called upon to evaluate the predictions from a model. These 
include, but are not limited to: 

- Underlying data quality, consistency and relevance.
- Appropriate descriptors relating to the endpoint and mechanism of 

action.
- Appropriate selection of model in terms of the structure (i.e., 

complexity) of the model and number of descriptors utilised.
- Addressing metabolism adequately in the modelling process.
- Assessing (quantitatively, where possible) the uncertainties within a 

model.
- Ensuring predictions are within the applicability domain of the 

model.

With regard to the LJMU DL model presented in Furuhama et al. [25]
and the comparison of its performance with other models, all ap
proaches used the same data so that does not explain poor performance. 
Therefore, it is probable that poor performance was a result of de
scriptors in the model not addressing reactivity adequately, an inability 
of the model to parameterise metabolism and model structures not being 
appropriate to model the endpoint.

The use of the predictions from the models will depend on the pur
pose of the assessment. As the move towards “artificial intelligence” 
grows, it is worthwhile for model developers and users to step back to 
consider why and when a model will work, and the probability of suc
cess. A number of new technologies will assist in the better development 
of models for toxicity prediction. As a final consideration, we call on all 
model developers in the Second Ames/QSAR International Challenge 
Project to reflect critically on their models and associated performance. 
The opportunity within this exercise is not only to stimulate model 
development, but also to identify when a model did and did not perform 
to expectations and, importantly, the reasons why this was the case.
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