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RESEARCH ARTICLE

Early-life challenge enhances cortisol regulation in
zebrafish larvae
Luis A. Castillo-Ramıŕez1, Ulrich Herget1,2, Soojin Ryu1,3 and Rodrigo J. De Marco1,4,*

ABSTRACT
The hypothalamic-pituitary-adrenal (HPA) axis in mammals and the
hypothalamic-pituitary-interrenal (HPI) axis in fish are open systems
that adapt to the environment during development. Little is known
about how this adaptation begins and regulates early stress
responses. We used larval zebrafish to examine the impact of
prolonged forced swimming at 5 days post-fertilization (dpf ), termed
early-life challenge (ELC), on cortisol responses, neuropeptide
expression in the nucleus preopticus (NPO), and gene transcript
levels. At 6 dpf, ELC-exposed larvae showed normal baseline cortisol
but reduced reactivity to an initial stressor. Conversely, they showed
increased reactivity to a second stressor within the 30-min refractory
period, when cortisol responses are typically suppressed. ELC
larvae had fewer corticotropin-releasing hormone (crh), arginine
vasopressin (avp), and oxytocin (oxt)-positive cells in the NPO, with
reduced crh and avp co-expression. Gene expression analysis
revealed upregulation of genes related to cortisol metabolism
(hsd11b2, cyp11c1), steroidogenesis (star), and stress modulation
(crh, avp, oxt). These results suggest that early environmental
challenge initiates adaptive plasticity in the HPI axis, tuning cortisol
regulation to balance responsiveness and protection during repeated
stress. Future studies should explore the broader physiological
effects of prolonged forced swimming and its long-term impact on
cortisol regulation and stress-related circuits.

KEY WORDS: Zebrafish larvae, HPI axis, Cortisol regulation,
Early-life challenge, Stress response, Developmental programming

INTRODUCTION

The hypothalamic-pituitary-adrenal/hypothalamic-pituitary-interrenal
(HPA/I) axis functions as an adaptive system closely linked to bodily
responses to environmental challenges that disrupt homeostasis and
trigger protective adaptations (Wendelaar Bonga, 1997; Charmandari
et al., 2005; Chrousos, 2009). As an open system, it continually

adjusts to interactions between the organism and its environment
throughout development, enhancing the ability to cope with stress.
However, excessive or poorly timed stress can lead to high allostatic
load, accelerating maladaptive processes (de Kloet et al., 2005;
Danese and McEwen, 2012; Chen and Baram, 2016). While the
effects of stress in adulthood are often transient, early-life stress (ELS)
can alter brain development, resulting in long-lasting behavioral
changes (Danese and McEwen, 2012; Bick and Nelson, 2016;
Teicher et al., 2016; Agorastos et al., 2019). These behavioral
symptoms may manifest in childhood, adolescence, or later in
adulthood, when the delayed effects of stress-induced alterations in
brain development become apparent (Lupien et al., 2009).
Additionally, human infants exposed to high cortisol levels in utero
show elevated baseline cortisol and reduced cortisol responses to
separation stress (O’Connor et al., 2013). Similarly, rodent studies
show that early postnatal dexamethasone treatment reduces
corticosterone responses to stress later in life (Felszeghy et al.,
2000), while prolonged exposure to low-dose corticosterone further
suppresses reactivity (Kinlein et al., 2015). These findings illustrate
how both pre- and post-natal environments shape stress regulation and
long-term HPA axis function, although the exact mechanisms remain
unclear.

Larval zebrafish (Danio rerio) are a valuable model for exploring
HPA/I axis adaptation during early development due to their genetic
accessibility and external development, which facilitate the analysis
of ELS (Alsop and Vijayan, 2008, 2009; Egan et al., 2009;
Champagne and Richardson, 2013; Biran et al., 2015; Eachus et al.,
2021; Tan et al., 2022). As a non-mammalian vertebrate model
(Grunwald and Eisen, 2002; Holtzman et al., 2016), zebrafish have
become prominent in ELS research, offering practical advantages
such as small size, high reproductive capacity, and lowmaintenance
costs. Their external development and lack of parental care allow for
controlled experiments without the confounding effects of prenatal
stress. The first stage of stress processing in zebrafish occurs in the
nucleus preopticus (NPO), which is homologous to the mammalian
paraventricular nucleus (PVN) (Herget et al., 2014). The process
involves key neuropeptides like corticotropin-releasing hormone
(CRH), which stimulates adrenocorticotropic hormone (ACTH)
production in the pituitary, leading to glucocorticoid (GC) release
from the interrenal gland, functionally similar to the adrenal gland in
mammals (Alderman and Bernier, 2009). The increased secretion of
GCs like cortisol after the onset of stress, known as glucocorticoid
reactivity (GCR), is crucial for the organism’s response to challenge.
Beyond their role in stress, GCs regulate a wide range of bodily
functions, including metabolism, maintenance of water and
electrolyte balance, immunity, growth, cardiovascular function,
mood, cognition, reproduction, and development. Primarily
produced in the adrenal cortex, along with aldosterone and
dehydro-epi-androsterone, all derived from cholesterol, GCs are
also synthesized at extra-adrenal sites such as the thymus, brain, and
epithelial barriers. These localized productions contribute to spatialReceived 12 August 2024; Accepted 30 October 2024
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specificity in steroid actions, operating independently of systemic
and stress-induced fluctuations (Munck et al., 1984; Chrousos,
1998; de Kloet et al., 1998; McEwen, 2007; Timmermans et al.,
2019; de Kloet and Joëls, 2023). Together, these features make
zebrafish a powerful handle for investigating the molecular
mechanisms by which early environments influence brain
development and behaviour, as well as for exploring potential
therapeutic interventions for stress-related disorders (Veenstra-
VanderWeele and Warren, 2015; Bick and Nelson, 2016).
By 4-6 dpf, when the HPI axis becomes functional (Alsop and

Vijayan, 2008; Alderman and Bernier, 2009; De Marco et al.,
2016), zebrafish larvae in laboratory settings primarily encounter
visual cues from conspecifics and mechanosensory inputs from
other larvae, unless raised in isolation, along with self-generated
motion. Temperature, illumination, and food availability can be
tightly controlled, creating an environment with limited variability,
ideal for analyzing early HPI axis calibration to external stimuli. For
example, their response to water currents, where they adjust
swimming to match flow strength, allows for environments with
varying physical challenges. Zebrafish larvae adapt to water vortex
flows through rheotaxis, orienting themselves against the current,
which imposes high energy demands and activates the HPI axis.
Controlled vortex flows at specific revolutions per minute (rpm)
induce a rapid and significant rise in cortisol levels, unlike
conditions without flow, establishing vortex flow as an effective
stressor (Castillo-Ramírez et al., 2019). While the metabolic or
cardiorespiratory effects of vortex exposure have not yet been
measured, the cortisol increase indicates significant energy
demands and physiological stress. Additionally, vortex flows offer
several advantages as a stressor, minimizing confounding variables
such as salt concentration or pH changes and utilizing an innate,
reproducible behaviour, reducing experimental variability.
Consequently, vortices and less predictable water motions have
been used to study stress responses in zebrafish larvae (De Marco
et al., 2014; vom Berg-Maurer et al., 2016; Ryu and De Marco,
2017; Castillo-Ramírez et al., 2019; Langebeck-Jensen et al.,
2019; Herget et al., 2023; Castillo-Ramírez et al., 2024 preprint).
Notably, as vortex strength (rpm) increases, cortisol levels rise
proportionally, as does larval swimming effort to counteract the
flow (Castillo-Ramírez et al., 2019). This quantifiable relationship
between vortex intensity and GCR allows precise categorization of
stress levels, making vortex flows ideal for repeated stress assays.
Using these highly controlled water vortices, we established a high-
throughput forced swim test for larval zebrafish. This test revealed
that ELC, in the form of sustained involuntary swimming, triggers
prolonged HPI axis activation and alters the cortisol response to a
single instance of either homotypic or heterotypic stress 1-4 days
post-ELC. ELC also enhances spontaneous activity, reduces startle
reactivity, and improves energy efficiency during rheotaxis
(Castillo-Ramírez et al., 2019). The mechanisms underlying these
effects remain unknown.
To address this gap, we set out to characterize features of the HPI

axis and cortisol response in zebrafish larvae following ELC
induced by vortex flows. First, we re-examined how ELC in the
form of sustained involuntary swimming at 5 dpf affects cortisol
response dynamics following a 3-min vortex at 6 dpf. The rationale
for selecting the 5-6 dpf timewindow is based on a key observation:
the machinery for GC synthesis and signaling becomes fully
functional around hatching, as evidenced by significant increases in
gene expression (Alsop and Vijayan, 2008; Alderman and Bernier,
2009). This corresponds with the gradual rise in whole-body
cortisol levels between 2 and 8 dpf. Importantly, cortisol

responsiveness to vortex-induced stress peaks at 6 dpf (Castillo-
Ramírez et al., 2019), indicating increased developmental
sensitivity of the HPI axis at 5-6 dpf. We then examined how
ELC impacts the expression and co-expression of crh, avp (arginine
vasopressin), and oxt (oxytocin) in the larval NPO. Focusing on
these peptides is justified by their established roles in mammals and
their conserved functions in stress response and homeostasis in
zebrafish. CRH initiates the body’s response to stress and influences
autonomic and behavioral responses; AVP plays a crucial role in
stress response, social behaviour, and cardiovascular functions,
including osmoregulation and blood pressure regulation; and OXT
is known for its role in modulating stress and anxiety, social
bonding, and reproductive behaviour (Swanson and Sawchenko,
1983; Herman and Cullinan, 1997; Eaton et al., 2008). Assuming
that the expression and coexpression profile of NPO cells can
undergo stress-derived plasticity, as occurs with PVN cells (Kiss,
1988; Harbuz and Lightman, 1989; Swanson, 1991; Kurrasch et al.,
2009), we predicted that ELC may reduce the degree of expression
and coexpression of key NPO neuropeptides involved in HPI
axis activation.

Next, we explored the effect of ELC at 5 dpf on the transcript
levels of genes involved in HPI axis activation, cortisol synthesis
and inactivation, and GR signaling, both under baseline conditions
and after vortex exposure at 6 dpf. These genes included hsd11b2
(11-hydroxysteroid dehydrogenase type 2), essential for cortisol
inactivation (Krozowski, 1999; Alderman and Vijayan, 2012;
Theodoridi et al., 2021); cyp11c1 (11β-hydroxylase), critical for
the synthesis of 11-ketotestosterone and cortisol (Nelson et al.,
2013; Tokarz et al., 2015); and star (steroidogenic acute regulatory
protein), involved in cholesterol transport (Stocco, 2000). We
also analyzed crh, avp, oxt, crhr1 (corticotropin-releasing
hormone receptor 1), pomca (pro-opiomelanocortin, the ACTH
precursor), mc2r (adrenocorticotropic hormone receptor), nr3c2
(mineralocorticoid receptor, MR), nr3c1 (glucocorticoid receptor,
GR), and fkbp5 (FK506 binding protein 5), a stress-responsive
regulator of GR (Sinars et al., 2003; Zannas et al., 2016; Hartmann
et al., 2021). To explore potential ELC-derived patterns in transcript
abundance, we employed a whole-body RNA approach without
isolating changes specific to individual HPI axis components (NPO,
pituitary, interrenal gland). This exploratory approach is inherently
limited, as some target genes are ubiquitously expressed while
others are more restricted, with expression often extending beyond
the HPI axis. Despite this limitation, the approach allows us to test
whether the overall transcript profile reflects increased cortisol
inactivation under both baseline and stress conditions, and whether
it indicates an enhanced capacity for cortisol synthesis and stress
modulation in larvae previously exposed to ELC. Such patterns
would be consistent with an early challenge that imposed prolonged
HPI axis activity and elevated cortisol levels.

Lastly, we examined how ELC at 5 dpf affects the cortisol
response of 6 dpf larvae to a second vortex applied within the
30-min refractory period following an initial exposure (Castillo-
Ramírez et al., 2024 preprint). The refractory period reflects the
action of the glucocorticoid feedback loop, during which cortisol
levels typically return to baseline and are unresponsive to additional
stress. This period has only recently been identified in zebrafish
larvae and represents a critical window to assess altered cortisol
regulation. In previous work (Castillo-Ramírez et al., 2024
preprint), we showed that cortisol levels rise after a 3-min vortex
and return to baseline within 30-40 min, depending on the intensity
of the vortex. A second vortex administered within 30 min of the
first fails to elevate cortisol, but blocking GR disrupts this refractory
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period, indicating GR-dependent feedback. We hypothesized that if
ELC at 5 dpf enhances cortisol regulation, larvae exposed to ELC
may show an altered response to repeated stress during the refractory
period, potentially amplifying the cortisol response to a second
vortex. The results are discussed in the context of how ELC
influences the initial adjustments of cortisol responsiveness in
zebrafish larvae when they encounter environmental challenges for
the first time after being in a largely constant environment. This
early-life impact on HPI axis activity further supports the suitability
of larval zebrafish as a model for studying the developmental
programming of HPA/I axis function.

RESULTS
Forced swimming at 5 dpf reduces a larva’s cortisol
response to a subsequent exposure to the same type of
stress
We first exposed 5 dpf larvae to either vortex flows for 9 h (ELC
larvae) or equal handling without vortex exposure (control larvae)
(see Materials and Methods for details). At 6 dpf, we compared the
basal whole-body cortisol levels (Fig. 1A) and the cortisol time
course following a 3-min vortex (Fig. 1B) between ELC and control
larvae. Consistent with previous data (Castillo-Ramírez et al.,
2019), mean baseline whole-body cortisol levels at 6 dpf were
similar between control and ELC larvae (Fig. 1C, Mann–Whitney
test: U=17, P=0.90;N=6 per group), although cortisol levels in ELC
larvae were less variable (coefficient of variation: control, 46.8%,
ELC, 18.1%). The 3-min vortex transiently increased whole-
cortisol in both groups, yet ELC larvae showed reduced GCR to the
vortex [Fig. 1D, two-way ANOVA on square root-transformed data:
group: F(1,50)=35.8, P<0.0001; time: F(4,50)=202.9, P<0.0001;
group x time: F(4,50)=15.4, P<0.0001; Bonferroni’s tests: 10′:
P<0.0001, 20′: P<0.0001, 30′: P=0.0032, 40′: P=0.125, 60′:
P=0.99; N=6 per group]. These results confirm that prolonged
forced swimming at 5 dpf reduces a larva’s cortisol response to

subsequent homotypic stress, likely due to adjustments in the
mechanisms regulating HPI axis reactivity. This raises questions
about how these changes relate to the expression and co-expression
levels of NPO neuropeptides, which may influence downstreamHPI
axis activity.

NPO imaging shows expression and coexpression of key
neuropeptides linked to ELC
To examine whether the altered cortisol response to homotypic
stress observed in ELC larvae at 6 dpf (Fig. 1) is associated with
changes in the expression of crh, avp, and oxt in the larval NPO, we
employed multicolor fluorescent in situ hybridization at 6 dpf
following the ELC protocol implemented at 5 dpf (seeMaterials and
Methods). We compared the numbers of crh-, avp-, or oxt-positive
cells in the NPO of unstressed subjects from both groups, ELC and
control larvae. Quantification of cell numbers revealed that,
compared to control larvae, ELC larvae had fewer crh-positive
cells within the NPO, as well as fewer oxt-positive and fewer avp-
positive cells (Fig. 2A, Mann–Whitney tests: oxt: U=167, P=0.03;
avp: U=112, P=0.0004; crh: U=85, P<0.0001; group sizes: ELC,
N=20, control, N=27), in line with the idea that ELC can alter the
expression of NPO neuropeptides. Additionally, we examined the
degree of coexpression between sets of two neuropeptides in
the same cell in ELC and control larvae using systematic cell by cell
comparisons of pairwise combinatorial ISH staining of avp, crh, and
oxt in the larval NPO (Fig. 2B). In both groups, ELC and control
larvae, coexpression was consistently high for the combination of
avp and crh, low or moderate for the crh and oxt combination, and
absent or rare for the oxt and avp combination, in line with previous
data (Herget and Ryu, 2015). Also, coexpression was consistently
lower in ELC larvae for the combination avp and crh staining
compared to control larvae (Fig. 2C,Mann–Whitney tests: crh+avp:
U=787.5, P=0.02; avp+crh: U=686, P=0.002; group sizes: ELC,
N=20, control, N=27). These results indicate that the changes in

Fig. 1. Forced swimming at 5 dpf
reduces a larva’s cortisol
response to a subsequent
exposure to the same type of
stress. (A,B) Comparison steps and
time points for measuring baseline
whole-body cortisol levels (A) and
whole-body cortisol trajectory post-
vortex (B) in 6 dpf larvae with or
without ELC exposure. (C,D)
Baseline whole-body cortisol levels
(C) and whole-body cortisol
trajectory post-vortex (D) in control
(black) and ELC (orange) larvae.
(C) P=0.90 by Mann–Whitney test;
N=6 per group. Box and whiskers
(min. to max.), all data points shown.
(D) 10′ and 20′: ****P<0.0001, 30′:
**P=0.003, 40′: P=0.125, 60′: P=0.99
by Bonferroni’s test after a two-way
ANOVA on square root-transformed
cortisol levels; N=6 per group.
Mean±s.e.m. The red line represents
the average baseline whole-body
cortisol levels from C.
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GCR observed at 6 dpf in ELC larvae correlate with altered levels of
both the expression and coexpression of avp, crh, and oxt in the
larval NPO.

ELC correlates with changes in the transcript abundance of
genes involved in cortisol metabolism, steroidogenesis, and
stress modulation
Next, we explored whether ELC at 5 dpf is associated with changes
in the transcript levels of hsd11b2, cyp11c1, star, crh, avp, oxt,
pomca, mc2r, crhr1, nr3c2, nr3c1, and fkbp5 at 6 dpf, both at
baseline and following a 3-min vortex. These genes play roles in
cortisol synthesis, HPI axis activation, cortisol inactivation, and GR
signaling. We employed RT-qPCR to quantify total RNAs from
both ELC and control larvae, measuring the fold change in
transcript abundance of the 12 genes (Table 1) relative to reference
samples from control larvae. Samples were taken at baseline and at
30, 60, and 120 min after exposure to the 3-min vortex (see

Materials and Methods). The results indicated that ELC at 5 dpf was
associated with altered expression of several genes by 6 dpf (Fig. 3).
Compared to controls, ELC larvae showed consistently higher
expression of hsd11b2 under both baseline and stress conditions
[Fig. 3A, two-way ANOVA on log-transformed data: group:
F(1,32)=53.4, P<0.0001; time: F(3,32)=0.06, P=0.98; group x
time: F(3,32)=0.25, P<0.86; Bonferroni’s tests: basal: P=0.007,
30′: P=0.003, 60′: P=0.0006, 120′: P=0.013; N=5 per group]. Post-
stressor, ELC larvae showed elevated expression of cyp11c1 and
star [Fig. 3B,C, two-way ANOVAs; cyp11c1: group: F(1,32)=20.8,
P<0.0001; time: F(3,32)=0.99, P=0.41; group x time:
F(3,32)=1.15, P=0.34; Bonferroni’s tests: 60′: P=0.007; star log-
transformed: group: F(1,32)=26.2, P<0.0001; time: F(3,32)=2.02,
P=0.13; group x time: F(3,32)=1.41, P=0.26; Bonferroni’s tests:
60′: P=0.014, 120′: P=0.008]. Increases in pomca, crh, and oxt
expression were also observed post-vortex [Fig. 3D-F; pomca:
group: F(1,32)=4.99, P=0.033; time: F(3,32)=0.45, P=0.72; group

Fig. 2. Peptidergic NPO cell
numbers in wild-type larvae with or
without ELC exposure.
(A) Comparison of cell numbers in the
NPO with or without ELC exposure.
(B) Maximum intensity projections of
confocal stacks show NPO cells
expressing oxt (green), avp (red), or
crh (blue) in control (above) or ELC
(below) larvae. Double-color
comparisons of each pairwise
combination are also shown. Scale
bar: 25 μm. (C) Comparison of
coexpression levels in the NPO
with or without ELC exposure.
(A,C) Orange: ELC larvae, N=20;
black: control larvae, N=27; all data
points shown; P-values by Mann–
Whitney tests. (See also Results.)
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x time: F(3,32)=2.26, P=0.10; Bonferroni’s tests: 120′: P=0.038;
crh log-transformed: group: F(1,32)=6.41, P=0.017; time:
F(3,32)=1.05, P=0.38; group x time: F(3,32)=0.76, P=0.52; oxt
sqrt-transformed: group: F(1,32)=7.24, P=0.011; time:
F(3,32)=2.65, P=0.07; group x time: F(3,32)=1.23, P=0.32].
Expression of avp and nr3c2 was influenced by both group and
time factors [Fig. 3G,H; avp: group: F(1,32)=6.9, P=0.013; time:
F(3,32)=4.98, P=0.006; group x time: F(3,32)=0.23, P=0.88;
nr3c2: group: F(1,32)=4.5, P=0.042; time: F(3,32)=9.42,
P=0.0001; group x time: F(3,32)=2.77, P=0.06]. Although not
statistically significant, nr3c1 levels tended to increase in ELC
larvae post-stressor [Fig. 3I, group: F(1,32)=2.76, P=0.11; time:
F(3,32)=2.2, P=0.11; group x time: F(3,32)=1.2, P=0.32]. For
crhr1 and mc2r, only time influenced expression [Fig. 3J,K; crhr1:
group: F(1,32)=0.45, P=0.51; time: F(3,32)=3.9, P=0.02; group x
time: F(3,32)=1.1, P=0.37; mc2r: time: group: F(1,32)=0.06,
P=0.81; time: F(3,32)=6.2, P=0.002; group x time: F(3,32)=0.31,
P=0.82]. Lastly, fkbp5 transcript levels rose initially and declined
later in both ELC and control larvae [Fig. 3L, log-transformed:
group: F(1,32)=1.7, P=0.21; time: F(3,32)=45.7, P<0.0001;
group×time: F(3,32)=4.6, P=0.009]. In summary, we observed
differences in transcript levels between control and ELC larvae at
6 dpf. Expression of hsd11b2 was elevated in both baseline and
stress conditions, while cyp11c1 and star increased specifically after
vortex exposure. Stressed ELC larvae also showed higher levels of
pomca, crh, and oxt. Expression of avp and nr3c2was influenced by
both group and time factors, while trends in nr3c1, crhr1, and mc2r
were primarily driven by time following stressor exposure. Finally,
fkbp5 levels initially increased and then declined in both groups
(Fig. 3M).

ELC modifies glucocorticoid reactivity to a second vortex
during the refractory period
A reduced capacity of the NPO to influence HPI axis reactivity,
along with enhanced cortisol inactivation following ELC, may
partly account for the diminished GCR observed after the initial

post-ELC vortex. Furthermore, increased cortisol synthesis capacity
and the availability of stress modulators could influence GCR

dynamics during repeated homotypic stress, potentially affecting
the response to a second vortex. To investigate this possibility, we
compared whole-body cortisol levels between ELC and control
larvae at 6 dpf after two consecutive 3-min vortices, applied
within the 30-min refractory period following the initial exposure
(Castillo-Ramírez et al., 2024 preprint) (Fig. 4A). ELC larvae
showed increased whole-body cortisol in response to the second
vortex applied during this refractory period, whereas control
larvae did not [Fig. 4B, unpaired two-tailed t-test: t(10)=13.9,
P<0.0001; N=6 per group]. Both ELC and control larvae had
similar baseline cortisol levels [Fig. 4C, one-sample t-test against
fold change of ‘1’: t(5)=0.9, P=0.40; N=6 per group; data from
Fig. 1C]. However, ELC larvae showed a reduced cortisol
response to the first vortex as well as an enhanced response
to the second vortex [Fig. 4D, two-way ANOVA: group:
F(1,20)=9.8, P=0.0052; vortex: F(1,20)=208.1, P<0.0001;
group×vortex: F(1,20)=149.5, P<0.0001; Bonferroni’s tests:
vortex #1: P<0.0001, vortex #2: P<0.0001; N=6 per group; data
from Figs 1D and 4B]. As a result, control and ELC larvae showed
distinct cortisol reactivity to the second vortex. While ELC larvae
showed a GCR to the second vortex that was 91% of their response
to the first vortex, control larvae showed only 18% [Fig. 4E,
unpaired two-tailed t-test; t(10)=20.7, P<0.0001; N=6 per group;
data from Fig. 4D]. These findings indicate that prolonged forced
swimming at 5 dpf improves the ability of larvae at 6 dpf to
regulate cortisol levels and adjust HPI axis activity in response to
stress, enhancing their capacity to cope with repeated exposure to
the same stressor.

DISCUSSION
Here we provide strong evidence for extended effects of early
forced swimming on cortisol regulation and stress responsiveness
in zebrafish larvae. We observed that ELC at 5 dpf resulted in
significant alterations in cortisol reactivity to subsequent stress

Table 1. Design primer sequences

Gene name Gene ID Primer sequence (5′→ 3′)

avp ENSDARG00000058567 F: CCCAGCCGGAGCCCATCAGA
R: CCATGCAGACCTGCGCCTCC

pomca ENSDARG00000043135 F: CGCAGACCCATCAAGGTGTA
R: CGTTTCGGCGGATTCCT

nr3c2 ENSDARG00000102082 F: CCCATTGAGGACCAAATCAC
R: AGTAGAGCATTTGGGCGTTG

mc2r ENSDARG00000054949 F: CTTGGTGATTGTGGCTGTG
R: GATAAAGCAGTACATGGGAGAG

nr3c1 ENSDARG00000025032 F: ACAGCTTCTTCCAGCCTCAG
R: CCGGTGTTCTCCTGTTTGAT

fkbp5 ENSDARG00000028396 F: CCGACTGCTGTCTTTACCT
R: CATGCTGTTTCACAATCTTGC

oxt ENSDARG00000042845 F: CGGCCTGCTACATCTCAAAC
R: TGCCTTCACCACAGCAGATA

crhr1 ENSDARG00000003989 F: TTTATCCTGCGAAATGCCAC
R: GCACCAGATCACATTGCTC

cyp11c1 ENSDARG00000042014 F: TGTGCTGAAGGTGATTCTCG
R: GCTCATGCACATTCTGAGGA

crh ENSDARG00000027657 F: ATAGGTGGTGGGTTGTTCC
R: CTACATTCATACGGCGGTG

star ENSDARG00000006137 F: TCAAATTGTGTGCTGGCATT
R: CCAAGTGCTAGCTCCAGGTC

hsd11b2 ENSDARG00000001975 F: TGCTGCTGGCTGTACTTCAC
R: TGCATCCAACTTCTTTGCTG
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events. Specifically, ELC larvae had similar baseline cortisol
levels compared to controls but showed reduced GCR to a single
vortex at 6 dpf. This finding is consistent with previous data
(Castillo-Ramírez et al., 2019) and reveals adaptive adjustments in
stress axis function following prolonged early-life stressor
exposure. Notably, while ELC larvae showed reduced GCR to
the initial stressor, they had increased cortisol responsiveness to a
second stress event occurring within the 30-min refractory period
following the first vortex (Castillo-Ramírez et al., 2024 preprint).
This dual response pattern suggests that ELC larvae have
enhanced stress responsiveness during homotypic stress,

potentially due to adaptive changes in HPI axis signaling and
cortisol metabolism.

Our findings are consistent with research in fish and other
vertebrates showing that early-life stress and GC manipulation
can have lasting effects on HPA/I axis function and stress
responsiveness. In larval zebrafish, optogenetic techniques
enable non-invasive control of endogenous GC levels (De Marco
et al., 2013, 2016). Transgenic larvae expressing Beggiatoa
photoactivated adenylyl cyclase (bPAC) (Ryu et al., 2010; Stierl
et al., 2011) under a StAR promoter can induce light-dependent
activation of interrenal gland steroidogenic cells, resulting in

Fig. 3. Transcript abundance of
genes involved in cortisol
metabolism, steroidogenesis, and
stress modulation in control and
ELC larvae. (A-L) Fold change in
expression of selected genes relative
to control reference samples,
measured under baseline (basal)
conditions and at 30, 60, or 120 min
after high-strength vortex exposure in
control (black) and ELC (orange)
larvae; N=5 per group. P-values for
group and time factors from two-way
ANOVAs are shown in the top-left
corner of each panel. Asterisks
indicate Bonferroni’s test results
following the ANOVAs (*P<0.05,
**P<0.01, ***P<0.001). (M) Density
grid summarizing fold change
comparisons in expression levels of
the 12 target genes. Asterisks on the
right denote results for the group and
time factors from two-way ANOVAs.
Asterisks within ELC panels indicate
Bonferroni’s test results following the
ANOVAs. (See Results for details.)
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elevated cortisol levels (Gutierrez-Triana et al., 2015). Persistent
activation of these cells during early development leads to
chronically high cortisol levels and a diminished cortisol response
to later stressors (Nagpal et al., 2024). Additionally, optogenetically
elevated GC levels early in life disrupt hypothalamic neurogenesis,
causing precocious development, failed maturation, and impaired
feeding and growth (Eachus et al., 2024). Chronic stress induced by
random shocks in developing zebrafish also causes sustained high
cortisol levels and increased expression of glucocorticoid and
mineralocorticoid receptors, which correlate with increased anxiety-
like behaviour and elevated cortisol levels later in life (Chin et al.,
2022). Zebrafish exposed to air-exposure stress at different
developmental stages showed increased cortisol levels, altered
stress responses, and changes in ion concentrations (Hare et al.,
2021). Similar trends are observed in other species. In rainbow trout,
chronic cortisol intake and daily stress exposure reduce GCR

(Barton et al., 1987). Rodent studies show that neonatal rats treated
with dexamethasone show reduced GCR in response to cold and
restraint stress later in life (Felszeghy et al., 2000), while mice
subjected to prolonged low-dose corticosterone exposure show
suppressed GCR, adrenal atrophy, and decreased CRH mRNA

levels in the PVN (Kinlein et al., 2015). In humans, infants exposed
to high cortisol levels in utero show elevated baseline cortisol and
reduced GCR in response to separation stress (O’Connor et al.,
2013). Collectively, these observations underscore the complex
interplay between ELC, GC regulation, and stress responsiveness
early in life. However, the mechanisms through which ELC affects
HPA/I axis function and leads to long-term changes in stress
response patterns are still largely unclear, particularly regarding the
initial phase of this interaction.

The HPA axis regulates its stress-induced activation through
negative feedback mechanisms (Dallman and Yates, 1969; Dallman
et al., 1994; Dallman, 2005; Shipston, 2022). In mammals, this
feedback acts on the PVN, where GCs suppress the expression of
stress modulators like crh (Malkoski and Dorin, 1999). Given the
structural and chemoarchitectural similarities between the
mammalian PVN and the zebrafish NPO (Herget et al., 2014), it
is likely that the NPO is subject to similar GC-mediated regulatory
feedback (Castillo-Ramírez et al., 2024 preprint). Supporting this,
zebrafish with disrupted GC signaling show increased numbers of
crh-expressing cells in the NPO (Ziv et al., 2013; Facchinello et al.,
2017). In mammals, regulation of the PVN involves not only the

Fig. 4. ELC alters GCR to a second vortex during the refractory period. (A) Sampling scheme for measuring GCR to homotypic stress in 6 dpf larvae with
or without ELC. (B) Whole-body cortisol following two 3-min vortices applied within a 30-min refractory period in control (black) and ELC (orange) larvae.
Control larvae did not show cortisol levels above baseline in response to a second 3-min vortex, while ELC larvae did. N=6 per group. ****P<0.0001 by
unpaired two-tailed t-test. (C) Baseline whole-body cortisol levels in ELC larvae relative to controls (data from Fig. 1C), depicted for the sake of interpreting
panels D and E. P=0.40 by one-sample t-test against fold change of ‘1′. (D) GCR to 1st and 2nd vortices relative to baseline in control and ELC larvae. Data
from Fig. 1C,D (10 min post-vortex), and B. N=6 per group. P-values indicate Bonferroni’s test results following a two-way ANOVA. (E) GCR to the 2nd vortex
relative to GCR to the 1st vortex in control (black) and ELC (orange) larvae (data from D). P<0.0001 by unpaired two-tailed t-test. (B-E) Box and whiskers
(min. to max.), (C-E) all data points shown.
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expression of individual modulators like crh but also the co-
expression of multiple neuropeptides within the same cells
(Sawchenko et al., 1984; Whitnall et al., 1985; Simmons and
Swanson, 2009; Biag et al., 2012). However, in the zebrafish NPO,
neuropeptides tend to be produced by distinct, tightly packed cells,
with limited co-expression, although certain combinations show
occasional to moderate co-expression (Herget and Ryu, 2015).
Given that stress can induce plastic changes in the expression and
co-expression of neuropeptides in the PVN (Kiss, 1988; Harbuz and
Lightman, 1989; Swanson, 1991; Kurrasch et al., 2009), we
hypothesized that ELC might similarly alter the expression and co-
expression profiles of key neuropeptides in the NPO. Our findings
show that ELC larvae had fewer crh-, avp-, and oxt-positive NPO
cells than controls, with a marked reduction in crh and avp co-
expression. These results suggest that, analogous to the mammalian
PVN (Ziv et al., 2013; Herget et al., 2014; Facchinello et al., 2017),
the zebrafish NPO serves as a critical site for GC feedback
regulation. Moreover, they indicate that ELC induces plasticity in
neuropeptide expression within the developing NPO, potentially
affecting downstream HPI axis activity. The reduced number of crh-
and avp-positive cells in the NPO may contribute to the reduced
GCR observed following the initial stress exposure in ELC larvae.
While the expression profile of steroidogenic enzymes involved

in GC biosynthesis has been characterized in developing zebrafish
(Weger et al., 2018), our data revealed group differences between
ELC and control larvae. Specifically, ELC larvae showed
upregulation of hsd11b2 under both baseline and stress
conditions, as well as increased expression of cyp11c1, star,
pomca, crh, oxt, avp, and nr3c2 following a 3-min vortex.
Additionally, transcripts for avp, nr3c2, crhr1, mc2r, and fkbp5
showed time-dependent changes post-stressor. Interestingly,
previous studies in fish have linked whole-body cortisol levels
with hsd11b2 and cyp11c1 mRNA expression (Tsalafouta et al.,
2014), while prolonged cortisol release has been observed in
zebrafish lacking functional Hsd11b2 (Theodoridi et al., 2021).
Notably, although ELC larvae showed fewer crh-positive cells in
the NPO, their whole-body crh levels increased after acute stress.
This suggests that ELC may influence the maturation of stress-
related circuits involving NPO crh-positive cells (Bolton et al.,
2022). While whole-body qPCR cannot isolate transcript changes
specific to the HPI axis, given that some genes are ubiquitously
expressed while others have restricted but broader distribution, the
overall transcript pattern in 6 dpf ELC larvae points to enhanced
cortisol inactivation under both baseline and stress conditions.
Additionally, the upregulation of steroidogenic enzymes and stress
modulators indicates an increased capacity for cortisol synthesis and
regulation during stress. These transcriptional changes, alongside
altered avp, crh, and oxt expression and co-expression patterns in
the NPO, suggest that ELC enhances cortisol regulation, preventing
excessive cortisol release and promoting an appropriate response to
homotypic stress (Fig. 5).
Our findings contribute to a better understanding of how early-

life environments shape GCR, NPO plasticity, and GC pathways
during the early stages of HPI axis development. They also highlight
the value of larval zebrafish as a model organism for studying the
developmental programming of HPI axis function (Weinstock,
2008; Glover et al., 2010; Moisiadis and Matthews, 2014; de Abreu
et al., 2021; Eachus et al., 2021; Swaminathan et al., 2023). While
this study focused primarily on cortisol dynamics, future research
should compare forced swimming in vortex conditions to a larva’s
routine swimming patterns, investigating the broader physiological
effects of vortex-induced stress, which offers an excellent tool for

high-throughput testing. Additional studies could evaluate measures
such as whole-body lactate and cholesterol levels, cardiac activity,
and anaerobic metabolism to provide a more comprehensive
understanding of the physiological demands imposed by vortex
exposure. Moreover, examining how prolonged early-life forced
swimming affects cortisol production in interrenal cells (Wilson
et al., 2016), the maturation of stress-related circuits in the NPO, and
stress responses in later life stages could reveal long-lasting impacts
on cortisol regulation and stress-related pathways. Such research
would clarify how vortex exposure as an ELC influences not only
immediate stress responses but also long-term physiological and
behavioral outcomes, offering valuable insights into stress-related
developmental programming.

MATERIALS AND METHODS
Zebrafish husbandry, handling, and experimental unit
Zebrafish breeding and maintenance were conducted under standard
conditions (Westerfield, 2000). Groups of 30 wild-type eggs (cross of AB
and TL strains, AB/TL) were collected in the morning, and the embryos
were raised on a 12:12 light/dark cycle at 28°C in 35 mm Petri dishes with
5 ml of embryo-medium2 (E2). The E2 medium (0.5× E2, 1 L) consisted of
5 mM NaCl, 0.25 mM KCl, 0.5 mM MgSO4×7 H2O, 0.15 mM KH2PO4,
0.05 mM Na2HPO4, 0.5 mM CaCl2, and 0.71 mM NaHCO3. At 3 dpf, the
E2 medium was renewed, and chorions and debris were removed from the
dishes. Experiments were performed with 5-6 dpf larvae. In all experiments,
each experimental unit (replicate) comprised a group of thirty larvae,
maintained in a 35 mm Petri dish. All dishes were kept under identical
conditions in the incubator on top of the stirrer plate (see below) to ensure
no perturbation. Zebrafish experimental procedures were conducted
according to the guidelines of the German animal welfare law and
were approved by the local government (Regierungspräsidium Karlsruhe;
G-29/12).

Water vortex flows
We used water vortices in a high-throughput manner to induce rheotaxis
and cortisol elevation (Castillo-Ramírez et al., 2019). Groups of 30 larvae
(either 5 or 6 dpf, depending on the experiment) were placed in 35 mm
Petri dishes containing 5 ml of E2 medium (experimental units) and
exposed to controlled vortices generated by the spinning movements of
small encapsulated (coated) magnetic stir bars (6×3 mm, Fisherbrand,
#11888882, Thermo Fisher Scientific, Leicestershire, UK) inside the dishes.
Each Petri dish, either containing a stir bar or not (depending on the
experimental group), was always positioned on a magnetic stirrer plate

Fig. 5. Proposed model illustrating the initial adaptation of the HPI axis
following ELC. Prolonged early-life activation of the HPI axis, induced by
increased environmental challenge, diminishes the NPO’s capacity to
influence downstream HPI axis activity. Baseline conditions show enhanced
cortisol inactivation, which can persist upon stress onset. There is an
increase in cortisol synthesis capacity and elevated levels of stress
modulators. These adaptations enhance the larva’s capability to regulate GC
levels, preventing excess cortisol while facilitating its production in response
to familiar stress.
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(Variomag, Poly 15; Thermo Fisher Scientific, Leicestershire, UK) and
maintained at 28°C in an incubator (RuMed 3101, Rubarth Apparate
GmbH, Laatzen, Germany). Vortex flows were induced by the movements
of the stir bars, driven by magnetic field inversions of the stirrer plates set at
330 rpm. The magnetic field inversions alone did not affect whole-body
cortisol levels in larval zebrafish, and we limited the speed to 330 rpm to
avoid potential ceiling effects in vortex-dependent cortisol increases, as
previously reported (Castillo-Ramírez et al., 2019). At 5 dpf, larvae were
either exposed to 9 h of continuous vortices (ELC larvae) or to magnetic
field inversions without vortices (control larvae), as no stir bars were present
in the control group’s Petri dishes. The 9-h exposure period was designed to
maximize the duration of vortex exposure while adhering to the light/dark
cycle. Larvae at 5 dpf exposed to vortex flows for 9 h show elevated whole-
body cortisol levels, peaking shortly after vortex initiation and remaining
high for up to 4 h compared to controls, i.e. unexposed larvae that are
handled similarly but without vortex flows in their medium. By 6 h after
vortex onset, cortisol levels in both exposed and control larvae are
comparable. Additionally, exposed larvae consistently engage in positive
rheotaxis throughout the vortex exposure, as indicated by their body angle
relative to the incoming current, even 8.5 h after the vortex began (Castillo-
Ramírez et al., 2019). At 6 dpf, larvae previously exposed (ELC) or not
exposed (control) to the 9-h forced swimming period at 5 dpfwere used for the
following analyses: 1) measurement of baseline whole-body cortisol levels
(Fig. 1C), extraction of total RNA for quantification of baseline transcript
abundance of 12 genes, or whole-mount fluorescent in situ hybridization and
immunohistochemistry to assess cell number and coexpression (Fig. 2); 2)
measurement of whole-body cortisol at 10, 20, 30, 40, and 60 min after a
single 3-min vortex (330 rpm) (Fig. 1D), or total RNA extraction to quantify
transcript abundance of the 12 genes post-vortex (Fig. 3); and 3) measurement
of whole-body cortisol after a second 3-min vortex administered 30 min after
the first (Fig. 4). The selected 10, 20, 30, 40, and 60-min intervals (Fig. 1D)
effectively captured cortisol dynamics following the initial stressor, providing
a broad range to account for variability in stress response timing. This design
ensured experimental rigor while adhering to ethical guidelines for subject
use. At 6 dpf, larvaewere immobilized in icewater before cortisol detection or
total RNA extraction (see below).

Whole-body cortisol
At 6 dpf, groups of 30 ELC or control larvae (replicates), either unexposed
to the 3-min vortex (baseline measurement) or exposed to one or two
vortices applied within 30 min, were immobilized in ice water (<2°C) to
minimize stress. Excess water was removed, and larvae were immediately
frozen in an ethanol/dry-ice bath to ensure rapid euthanasia and
preservation. Samples were then stored at −20°C for subsequent cortisol
extraction, which took place between 10:30 and 11:30 h. The procedures for
cortisol measurements and the homemade ELISA were as previously
described (Yeh et al., 2013). The homemade ELISA used for cortisol
detection was validated through assessments of intra-assay and inter-assay
precision, recovery rates, and cross-reactivity. Results across batches and
sessions were consistent, with no significant differences in baseline cortisol
levels, further confirming the reliability of the assay. Full details of the
validation process, including comparisons with a commercial kit, can be
found in Castillo-Ramírez et al. (2024).

Quantitative real-time PCR (qPCR)
Total RNA was extracted from groups of thirty larvae, as previously
described for cortisol extraction. RNA isolation was performed using the
RNeasy Micro Kit (Qiagen, Hilden, Germany), according to the
manufacturer’s protocol. The purity and concentration of RNA were
determined using a NanoDrop spectrophotometer (Thermo Fisher
Scientific), and the integrity of the RNA was confirmed using an RNA
6000 Pico Kit chip (Agilent Technologies) on the Agilent 2100 Bioanalyzer.
Only samples with RNA Integrity Numbers (RIN) above 7.0 were used
in subsequent qPCR analysis. qPCR reactions were carried out using the
Power SYBR Green RNA-to-Ct 1-Step Kit (Thermo Fisher Scientific,
Leicestershire, UK) on a 7500 Real-Time PCR system (Applied
Biosystems). RNA was reverse transcribed and amplified in a single-step
reaction. Primers for the target genes (listed in Table 1) were either designed

in-house using Primer3 software or obtained from published sources. Primer
efficiency was confirmed using a standard curve approach, ensuring that
only primers with an efficiency of 90% to 110% were used in further
experiments. The gene Elongation Factor 1-alpha (EF1α) (F: CTG-
GAGGCCAGCTCAAACGT R: ATCAAGAAGAGTAGTACCGCTA)
was selected as the reference gene based on its known stability in zebrafish
across various tissues and treatments (McCurley and Callard, 2008). To
ensure that EF1α maintained stable expression in our experimental setup,
the cycle threshold (Ct) values of EF1α were examined across all
experimental groups. Consistency in Ct values across conditions indicated
stable expression of EF1α, validating its use as a reliable internal control for
normalizing the expression of target genes. Minimal variation in Ct values
across all treatments and replicates demonstrated that the gene was
unaffected by experimental conditions. Each 20 µl qPCR reaction
contained 10 µl of SYBR Green Master Mix, 0.5 µl of forward and
reverse primers (10 µM), 0.4 µl of ROX reference dye, and 100 ng of total
RNA. The thermal cycling program included an initial reverse transcription
step at 48°C for 30 min, followed by denaturation at 95°C for 10 min, and 40
cycles of 95°C for 15 s and 60°C for 1 min. Relative gene expression levels
were calculated using the 2^−ΔΔCt method (Livak and Schmittgen, 2001),
with EF1α serving as the reference gene for normalization. The fold change
in gene expression was calculated by comparing the treated samples to the
control group, and statistical analyses were performed on the ΔCt values to
determine significance.

Whole-mount fluorescent in situ hybridization,
immunohistochemistry, and imaging
Whole-mount fluorescent in situ hybridization and immunohistochemistry
were performed as described elsewhere (Kastenhuber et al., 2010; Lauter
et al., 2011), using riboprobes for avp (Eaton et al., 2008), oxt (Unger and
Glasgow, 2003), and crh (Löhr et al., 2009), and a primary chicken antibody
labeling GFP (1:500, Abcam), with a secondary anti-chicken Alexa 488
antibody (1:1000, Invitrogen). For imaging, specimens were cleared in 80%
glycerol (Gerbu Biotechnik GmbH, Heidelberg, Germany) in PBS for 1 h.
Confocal stacks were recorded using a Leica SP5 confocal microscope
(Leica Microsystems GmbH, Wetzlar, Germany) with a Nikon 20x glycerol
objective (Nikon, Tokyo, Japan). Each channel was recorded sequentially to
reduce interfering signals from overlapping emission spectra. Zoom,
dimensions, gain, offset, average, and speed were adjusted for each stack
to obtain the optimal image quality of the desired volume. Stacks were
evaluated using Amira 5.4 (Thermo Fisher Scientific, Leicestershire, UK) to
create maximum intensity projections, which were spatially restricted to the
volume of interest, excluding signals from planes in front or behind.
Brightness and contrast were adjusted for each channel.

General design and statistical analysis
Cortisol and RT-qPCR measurements were conducted on distinct groups of
30 larvae (replicates), with larval density per well kept constant. For each
measurement, all 30 larvae in a well were used. Each replicate was fully
independent of the others. For cell counting measurements, each replicate
consisted of a single larva. In all experiments, treatments were randomly
assigned to replicates, and blinding was implemented. An initial
experimenter conducted the treatments, collected, and labelled the
samples. A second experimenter then performed the measurements on the
labelled samples, assigning new labels. The first experimenter subsequently
quantified the results using these newly encoded samples. Our sample sizes
are consistent with those commonly used in the field and align with previous
publications (Castillo-Ramírez et al., 2019; De Marco et al., 2013, 2016;
Yeh et al., 2013; vom Berg-Maurer et al., 2016; Herget et al., 2023;). They
are based on prior work that established acceptable coefficients of variation
for measurements while minimizing the use of subjects, in accordance with
ethical guidelines. Data were tested for normality and homoscedasticity
using the Shapiro–Wilk and KS normality tests and the Brown–Forsythe
and Bartlett’s tests, respectively. We employed Mann–Whitney tests for
pairwise comparisons involving non-normally distributed data, two-way
ANOVAs followed by Bonferroni’s post-hoc tests for multiple comparisons.
In cases where the data did not meet the assumption of homoscedasticity, we
applied log transformations to normalize variance. Unpaired two-tailed
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t-tests were used for comparing independent groups, and one-sample t-tests
were performed when comparing data to a hypothetical mean (i.e. a fold
change of 1). No data points or samples were excluded from the analysis.
Statistical analyses were performed using MS-Excel (Microsoft Corp;
Redmond, WA, USA) and Prism 10.2.0 (Graphpad Software Inc, San
Diego, CA, USA).
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