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Abstract

Reintroductions are increasingly being used as a conservation tool to restore spe-

cies to areas where they once existed. Unfortunately, many reintroduction projects

fail to establish viable populations. Climate suitability at release sites is thought to

be important in determining reintroduction outcomes, and future climate change

is an essential consideration for effective reintroduction planning. Climate change

threatens species in a variety of ways, such as by impacting life history traits or

causing spatial and temporal distribution mismatches of interdependent species.

Hibernating species, such as the hazel dormouse (Muscardinus avellanarius), may

be particularly susceptible to changes in climate. For example, milder winters

may increase the number of interbout arousals during hibernation, which are

energetically costly. Timing of food availability may also be impacted by changing

climates, potentially causing mismatches between activity and feeding opportuni-

ties. Here, we use species distribution models (SDMs) to map climate suitability

for dormice in the UK. We also investigate the impact of climate suitability on a

long-running dormouse reintroduction programme, providing the first such inves-

tigation for a reintroduced mammal. We find that higher levels of current climate

suitability increase the probability of reintroduction success. We find no effect of

climate suitability on adult dormouse counts at reintroduction sites, but dormouse

counts decline with time since reintroduction. Future projections predict that cli-

mate change may lead to more widespread climate suitability for dormice in the

UK, reflecting predicted changes in seasonality, winter temperature and precipita-

tion. Our work demonstrates the importance of understanding changing climate

suitability for reintroduction planning, with potential widespread applications of

SDMs for conservation projects of low-dispersing mammals.
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1 | INTRODUCTION

Climate change is contributing to global biodiversity loss
by impacting all levels of biodiversity from organism to
biome (IPBES, 2019; Parmesan, 2006). Changing climate
can directly impact species, for example those that are
living at thermal limits, or act by compromising life his-
tory traits. It is also indirectly impacting species that rely
on certain habitats or food sources, leading to mis-
matches in distribution or timings of food availability
(Line Bellard et al., 2012). There is limited evidence as to
the number of species that have been lost directly due to
climate change, but it is expected that it will surpass hab-
itat destruction as the biggest global threat to biodiversity
(Leadley et al., 2010). The future impacts on species will
depend on the trajectory of various climate change
scenarios.

In response to the biodiversity crisis, rising numbers
of reintroductions are taking place every year (Armstrong
et al., 2019; Seddon et al., 2007). Unfortunately, despite
increasing research, reintroduction programmes still
have a low chance of success (Bubac et al., 2019), so it is
important to understand the factors impacting reintro-
duction outcomes. Some of the key factors thought to
increase the risk of failure include unsuitable habitat
(Berger-Tal et al., 2020; Germano & Bishop, 2009; Wolf
et al., 1996), not removing the initial cause of decline
(Bubac et al., 2019; Fischer & Lindenmayer, 2000;
Kleiman, 1989) and an insufficient number of individuals
released (Fischer & Lindenmayer, 2000; Wolf
et al., 1998). Reintroductions are generally more success-
ful if the species is released within its historical range
(Berger-Tal et al., 2020; Bubac et al., 2019; Griffith
et al., 1989; Wolf et al., 1998). However, if the climate has
changed, some areas of the historical range may no lon-
ger be suitable.

A recent study demonstrated the importance of
assessing climate suitability in translocations of ecto-
thermic taxa, finding that project outcomes were better
in areas with higher predicted climate suitability (Bellis
et al., 2020). Furthermore, predicted climate suitability
was the strongest determinant of success when com-
pared to other more conventional predictors of translo-
cation outcome, such as the number of individuals
released and the origin of the source population (Bellis
et al., 2020). However, few reintroduction programmes
utilize climate suitability estimates for planning, instead
relying on known previous occupancy (but see Rusconi
et al., 2022). Given the low success rates of reintroduc-
tions, limited conservation funding and dealing with
species of conservation concern, it is essential to under-
stand the potential impacts of current climate suitability
and climate change.

The IUCN reintroduction guidelines (IUCN, 2013)
recommend that “the climate requirements of the focal
species should be understood and matched to current
and/or future climate at the destination site.” Species dis-
tribution models (SDMs) are recommended to locate suit-
able release sites effectively and rapidly (IUCN, 2013;
Osborne & Seddon, 2012). Species distribution models
identify statistical relationships between species presence
data and environmental descriptors, such as climate or
habitat, and are a useful tool for aiding reintroduction
site selection (Bellis et al., 2020; Di Febbraro et al., 2018).

Hibernating species may be particularly susceptible to
climate change (Lane et al., 2012; Rézouki et al., 2016).
In response to poor environmental conditions, around
half of all mammalian orders contain species that enter a
multiday torpor (Geiser & Ruf, 1995; Turbill et al., 2011).
During hibernation, animals will reduce body tempera-
ture and metabolic rate to conserve energy. Hibernation
is generally associated with slow life-history strategies
(Turbill et al., 2011) and can increase chances of survival
by reduced starvation, and in some species, reduced pre-
dation (Ruf & Bieber, 2023; Turbill et al., 2011). Costs
associated with hibernation include reduced immune
function, increased telomere degradation and increased
predation in some species (Est�ok et al., 2010; Nowack
et al., 2019; Predergast et al., 2002). These costs can be
reduced by occasional arousal from hibernation, known
as interbout arousals (Humphries et al., 2003). Interbout
arousals are themselves energetically costly, so their fre-
quency should be optimized (Boyles et al., 2020).

Climate change may impact hibernating species in
multiple ways, but the direction and magnitude of impact
is likely to vary across mammalian species (Findlay-
Robinson et al., 2023). Hibernation is thought to be an
energy-saving mechanism during periods of poor envi-
ronmental conditions, therefore the changing climate is
likely to have strong impacts. Climatic cues affect the
timing of emergence from hibernation and warming air
temperatures are associated with earlier emergence in
species groups such as Rodentia, which can lower
chances of survival (Findlay-Robinson et al., 2023;
Turbill & Prior, 2016). Timing of food availability may
not be driven by the same cues as those which lead to
emergence from hibernation, which could lead to limited
resources when animals enter their active period (Lane
et al., 2012). If winters are milder, interbout arousals may
increase (Findlay-Robinson et al., 2023), causing ener-
getic costs and depleting fat reserves. Early emergence
from hibernation would lead to reallocation of energy
resources, which is likely to influence other life-history
traits, such as litter size, parturition date and offspring
survival rates, in turn impacting individual and
population fitness (Findlay-Robinson et al., 2023;
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Maldonado-Chaparro et al., 2017). Conversely, there are
also suggestions that hibernators may be more adaptable
to climate change and climatic extremes, due to
having more plastic energetic requirements (Geiser &
Turbill, 2009).

The hazel dormouse (Muscardinus avellanarius) is a
hibernating rodent, with a current distribution across
Europe and Asia Minor (Hutterer et al., 2021). In the UK,
dormice were historically found across England and
Wales, but are now mostly restricted to southern England
and parts of Wales, having lost over half of their range
(Bright & Morris, 1996; Hurrell & McIntosh, 1984). The
population is in decline and reduced by 72% between
1993 and 2014 (Goodwin et al., 2017), leading to a Red
List status of Vulnerable (Mathews & Harrower, 2020).
Dormice are generally associated with diverse deciduous
and mixed woodland, with a well-developed understorey
(Bright et al., 1994; Bright & Morris, 1990; Harris
et al., 1995). It is thought their decline is linked to habitat
loss, fragmentation and a change in woodland manage-
ment practices, with previous work also suggesting that
climate change is likely to have had an impact (Bright
et al., 2006; Bright & Morris, 1996; Goodwin, Suggitt,
et al., 2018).

Dormice are monitored in the UK as part of the
National Dormouse Monitoring Programme (NDMP;
White, 2012) and ad hoc records are kept in the National
Dormouse Database, which is maintained by the People's
Trust for Endangered Species (PTES). The NDMP cur-
rently comprises over 400 sites, including around 30 rein-
troduction sites, so generates a large amount of data. At
every site, nest boxes are surveyed at least twice a year by
licensed volunteers, who record evidence of dormice (ani-
mals or dormouse nests present). Any animals that are
present are counted, sexed, and weighed, providing infor-
mation on demographics at each site through time.

The dormouse reintroduction programme has been
running since 1993 and releases have taken place almost
annually since (White, 2019); however, it has been
reported to be very difficult to select appropriate release
sites (White, 2014). The aim of the programme is to re-
establish dormice populations within the historic range;
therefore, most of the sites are in central and northern
England. According to NDMP monitoring, even though
short-term success has been reported at the majority of
sites (with dormice surviving the first two winters),
around half have failed to maintain viable populations
for longer than 10 years (White, 2019). Currently, reintro-
duction planning is focused on selecting suitable loca-
tions based on habitat and access (White, 2014), so there
is a need for more detailed understanding of how climate
impacts dormice (Phillips et al., 2022), both now and
under future climate change scenarios.

Existing evidence indicates that reintroduction sites are
performing better in eastern England, with larger popula-
tions, which was suggested to be due to more climate stabil-
ity in these regions (Cartledge et al., 2021). Dormice benefit
from warmer, drier, sunnier springs, summers, and
autumns, as well as colder, drier winters (Bright et al., 1996;
Combe et al., 2022; Goodwin, Suggitt, et al., 2018). Climate
change in the UK is likely to lead to warmer winters and
hotter summers, with periods of flooding and drought
(Defra, 2022), all of which may be detrimental to remaining
populations. Dormouse interbout arousals increase with
warmer winters, which is costly (Pretzlaff & Dausmann,
2012). Despite these concerns, there is evidence that dor-
mice might be adaptable to changing climate (Pretzlaff
et al., 2021; Pretzlaff & Dausmann, 2012) and even now in
some climates, dormice have a limited hibernation period
or do not hibernate at all (Panchetti et al., 2004).

In this study, we investigate current and future cli-
mate suitability for hazel dormice in the UK. We explore
whether current climate suitability impacts reintroduced
dormouse populations, both in terms of reintroduction
outcome and adult nest box counts. To investigate the
impacts of climate change on dormice, we project climate
suitability into the future (2050 and 2070) and discuss
what this may mean for dormouse conservation and the
reintroduction programme.

2 | METHODS

All data analysis was carried out in R version 4.2.1
(R Core Team, 2022). We projected all spatial data into
the WGS84 co-ordinate reference system (latitude/longi-
tude, EPSG code 4326), unless stated otherwise.

2.1 | Dormouse presence data

Dormice are currently monitored in woodlands in
England and Wales, as part of the NDMP, which began
in 1988 (White, 2012). Since its inception, the NDMP has
collected data on 671 sites, with around 400 sites cur-
rently being actively monitored. National Dormouse
Monitoring Programme surveys are undertaken by
licensed volunteers and take place up to once a month,
but with at least one survey before breeding (May/June)
and one after breeding (September/October). Further
information on NDMP surveys can be found online
(PTES, 2017). Alongside this monitoring scheme, the
PTES collects ad hoc dormouse records, which are not
restricted to woodland sites, and may incorporate public
records. This ad hoc data combined with the NDMP is
known as the National Dormouse Database (NDD;
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PTES, 2022). Records within the NDD date back to 1969
and are graded according to the reliability of the source.
Therefore, most of the occurrence data is derived from dor-
mice that use nest boxes. Monitoring techniques such as
this likely only capture a subset of the population. For
example, if there are other traits that are associated with
this nest box use, this could potentially influence the model
output by leading to incorrect presence estimates. How-
ever, by incorporating data from the NDD, our study maxi-
mizes the use of occurrence data from all potential sources.

When mapping current dormouse occurrence, we con-
sidered dormice to be present at any of the 671 NDMP sites
within England and Wales that had recorded dormice at
least once, or at locations of dormouse recordings in the
NDD since 1980, with reliability scores of “good” (thus
removing all “poor” and “fair” assessments). With occur-
rence data taken up to February 2022, this totalled 4218
locations where dormice had been recorded. These records
were then combined and thinned to a resolution of 1 km2.
To create the set of dormouse occurrence data, we then
removed the reintroduction sites and any dormouse pres-
ence records within 2 km of the reintroduction site
(to remove records of any dispersed reintroduced dormice).
We chose 2 km as it is thought that the majority of dormice
disperse no further than 2 km (Juškaitis & Büchner, 2013;
Schulze, 1987). This meant we could focus on climatic suit-
ability based upon naturally remaining dormouse popula-
tions. After this, the total number of dormouse occurrence
records was 2522 1-km2 grid cells (Figure 1a).

2.2 | Climate data

We downloaded current and future climate data from the
World Clim Database (Fick & Hijmans, 2017) at a 30 arc-
sec resolution, which approximately equates to 1 km2 at
the equator. All species are influenced by factors at multi-
ple scales and dormice specifically have some fine-scale
needs. For example, microclimate is thought to have an
impact on dormouse habitat use (Bright & Morris, 1996).
At a 1 km scale, our SDMs do not take into account these
fine-scale effects of climate suitability on dormice, but
they offer a valuable oversight of how climate suitability
can affect dormice at a macro scale.

Bioclimatic variables for the current period are aver-
aged across 1970–2000. Using a climate normal (a three-
decade average of climatic variables), our approach is
robust to short-term anomalies and allows us to fit multi-
variate models, such as the SDMs used here. The future
climate data was downloaded for 2050 and 2070 (which
are each an average across 2041–2060 and 2061–2080,
respectively). We used the CMIP5 data with the CCSM4
Global Climate Model, using the RCP8.5 high greenhouse
gas climate change scenario (Gent et al., 2011), as we
wished to explore the potential effects of the climate at
the most extreme likely scenario, to model the possible
extent of change. Of the 19 standard bioclimatic vari-
ables, we selected the variables that most likely influence
dormouse distribution (Table 1). We checked for collin-
earity between these bioclimatic variables, using the vari-
ance inflation factor (VIF) and correlation checks,
ensuring there were no variables with a VIF higher than
10 (which would indicate strong collinearity) and correla-
tions were lower than 0.7 (Green, 1979; Quinn &
Keough, 2002). As a result, the variables selected for fur-
ther analysis were temperature seasonality, mean tem-
perature of coldest quarter and precipitation of coldest
quarter (Table 1). Temperature seasonality was selected

FIGURE 1 The dormouse presence points used as presence

data in our current SDMs, after thinning down to 1 km2 (current:

1980–2021). Red points represent reintroduction site locations used

for analysis in this study (up to 2015).

TABLE 1 The bioclimatic variables utilized from the

WorldClim database, selected due to likely impacts on dormice.

Bioclim
number Variable

Bio1 Annual mean temperature

Bio4 Temperature seasonality (standard deviation of
average daily mean temperature per month � 100)a

Bio6 Minimum temperature of coolest month

Bio10 Mean temperature of warmest quarter

Bio11 Mean temperature of coldest quartera

Bio18 Precipitation of warmest quarter

Bio19 Precipitation of coldest quartera

aSelected for running SDMs, after collinearity checks.
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to investigate the effects of temperature variation across a
year. Temperature and precipitation of the coldest quar-
ter was chosen due to expected influence on dormouse
ecology, given that dormice prefer cooler, drier winters
(Bright et al., 1996; Combe et al., 2022; Goodwin, Suggitt,
et al., 2018). All climate rasters were masked to the UK,
using a shapefile downloaded from the geoBoundaries
Global Administrative Database (Runfolaid et al., 2020).

2.3 | Species distribution models

For current species distribution models (SDMs), we used
an ensemble modeling technique to minimize uncer-
tainty associated with each algorithm (Buisson
et al., 2010). The ensemble included generalized additive
models (GAMs), generalized boosted models (GBMs),
random forests (RFs), and MaxEnt models, run using the
biomod2 package (Thuiller et al., 2021) in R version 4.2.1
(R Core Team, 2022). These models require presence and
absence data to generate projections (although it is possi-
ble to run MaxEnt without absence data). To compensate
for a lack of reliable data on known absences, pseudoab-
sences were generated at random from the background
extent of the UK, whereby 2500 points were selected, to
balance with the number of presence points. We evalu-
ated model performance by using the NbRunEval func-
tion which used 70% training and 30% testing splits of the
data five times. We calculated variable importance for all
three runs of each SDM algorithm and calculated the
mean for each algorithm. We evaluated the discrimina-
tion capacity of the SDMs by using the evaluation statis-
tics KAPPA, TSS (total sum of squares) and AUC (area
under receiver-operating characteristic curve ROC:
Allouche et al., 2006; Swets, 1988). Ensemble models for
current time period were constructed by using the
weighted mean based on the four SDM algorithms, five
testing/training runs and the three pseudoabsence selec-
tions. An ensemble model framework has been previ-
ously recommended to increase SDM reliability (Buisson
et al., 2010). All models (Figure S1, Supporting Informa-
tion) with scores as follows were included in the ensem-
ble models: KAPPA ≥0.4, TSS ≥0.5, and AUC ≥0.7
(Araujo et al., 2005). After running the ensemble model
for current dormouse climate suitability predictions, we
then incorporated the future climate data and used the
“BIOMOD_EnsembleForecasting” function to predict
future changes in climate suitability for dormice. Next,
we ran a plausibility check for each SDM algorithm,
including the ensemble models, by plotting the response
curves for each bioclimatic variable. These plots estimate
the probability of dormouse occurrence across the range
of each variable.

2.4 | Climate suitability and dormouse
reintroduction sites

We gathered the reintroduction site data from the NDMP
(between 1993 and 2015). Using generalized linear models
(GLMs), we investigated the impact of predicted climate
suitability on reintroduction outcome and reintroduced
populations. To study the impact on reintroduction out-
come, we extracted the predicted current climate suitabil-
ity scores from the reintroduction sites that have been
categorized as successful or not. This includes all reintro-
ductions that took place at least 10 years ago (19 sites),
according to the PTES system of identifying successful
reintroductions, where a reintroduction is categorized as
successful if dormouse populations are stable or increasing
(White, 2019). To test whether climate suitability impacts
reintroduction success, we ran a binomial GLM with cli-
mate suitability as a predictor and compared it to a null
model. We then investigated climate suitability at reintro-
duction sites when compared to natural sites, both cur-
rently and in the future, using the 2050 climate
predictions. To assess differences between the natural and
reintroduction sites, both now and in the future, we ran a
two-way ANOVA followed by a Tukey post hoc test.

When investigating whether climate suitability
impacted reintroduced population counts, we used a neg-
ative binomial generalized linear mixed model (GLMM)
with the number of nest boxes as an offset variable, to
account for differing survey effort, and site as a random
effect. In this part of the analysis, 22 sites were included
(all reintroductions that took place between 1993 and
2015), including the 19 sites used in the binomial model.
Predictor variables for these models included different
combinations of predicted climate suitability scores, the
number of releases, the number of dormice released, sur-
vey season and time since reintroduction, mirroring the
non-habitat variables used in Cartledge et al. (2021). Pop-
ulation counts (used as the response variable) were taken
from NDMP surveys and included all adult dormice
recorded during a particular survey at each site. Adult
counts were used because adults are the most consis-
tently recorded age bracket and most likely to contribute
towards population trends (Juškaitis & Büchner, 2013).
The number of adults is more stable, with juveniles hav-
ing a higher mortality rate during hibernation
(Juškaitis, 1999). Model selection was carried out by
ranking Akaike's information criterion corrected for
small sample size (AICc; Burnham & Andersen, 2002).
The best-fitting models were selected as the most parsi-
monious from within the top two ΔAICc scores
(Burnham & Andersen, 2002). Results and error margins
were visualized using the effect plot function in the R
package jtools (version 2.2.0; Long, 2022).
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3 | RESULTS

3.1 | Species distribution models

The ensemble SDM was of high quality and had high pre-
dictive power, with the current climate suitability SDM
having an AUC score of 0.949 (+/�0.003 standard devia-
tion). For the ensemble model and each SDM algorithm
considered for the ensemble model, the AUC scores plot-
ted against the TSS scores can be found in Figure S2.

The highest level of current climate suitability for dor-
mice can be found in southern England, with some
highly suitable areas also present in southern Wales and
the north west of England (Figure 2a). The response plots
from the current SDM indicate that dormice are more
likely to occur where temperature seasonality (standard
deviation of average daily mean temperature per
month � 100) is higher than 400, the mean temperature
of the coldest quarter is above 3�C and the precipitation
of the coldest quarter is above 200 mm (with a drop-off

FIGURE 2 Ensemble SDM projections across the UK and Ireland. Color codes represent level of climate suitability, with yellow

representing the most climatically suitable areas for dormice. Darker colors represent the least climatically suitable areas. Climate suitability

is projected across various time periods, with projections across (a) current, (b) future (2050) and (c) future (2070) periods. Future SDMs

were based upon the CCSM4 Global Climate Model and RCP8.5 greenhouse gas scenario. Black points indicate locations of dormouse

reintroduction sites.
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around 400 mm: Figure S3). The average variable impor-
tance across each SDM algorithm revealed that tempera-
ture seasonality ranked first in all algorithms, followed
by the mean temperature of coldest quarter and finally
the precipitation of the coldest quarter (Figure S4).

When projecting into the future, there is more wide-
spread predicted climatic suitability for dormice in the
UK, with similar projections in 2050 and 2070
(Figure 2b,c). There are also major changes in climate
suitability for dormice in the Republic of Ireland and
Northern Ireland, where dormice are not native.
Although current climate suitability is spatially limited,
future projections indicate extensive climate suitability
for dormice in Ireland and Northern Ireland. However,
the highest levels of climate suitability as projected for
the current range (shown in yellow in Figure 2) are not
predicted to persist in future scenarios. In the future, the
maximum climate suitability is projected to be markedly
lower than it is currently.

3.2 | Climate suitability and dormouse
reintroduction sites

We find a positive relationship between the predicted cli-
mate suitability of reintroduction sites (based upon the
current SDM) and the probability of dormouse reintro-
duction success (Figures 3 and S5). Average climate suit-
ability is higher at successful reintroduction sites, when
compared to failed reintroduction sites.

Climate suitability is significantly lower at reintroduc-
tion sites when compared to natural dormouse sites
(Tukey test p < 0.001; Figure 4). It is predicted to increase
at the existing reintroduction sites by 2050 and become

more similar to natural dormouse sites, although reintro-
duction sites will remain significantly less climatically
suitable than natural sites (Tukey test p < 0.001). How-
ever, the average climate suitability at natural dormouse
sites is predicted to decline (Tukey test p < 0.001).

FIGURE 3 The relationship between current climate

suitability and the probability of reintroduction success, as

calculated by a binomial generalized linear model. Gray shading

shows standard error margins. Points represent raw data used in

the model.

FIGURE 4 Current and future climate suitability scores

compared across natural dormouse sites and reintroduction sites

(2503 and 22 sites, respectively). Color represents time period,

either from the current SDM or future projection (2050). Boxes

show interquartile range, horizontal lines are medians, whiskers

show 1.5 � interquartile range and points are outliers.

FIGURE 5 Number of adult dormice per nest box plotted

against time since reintroduction, as predicted by negative binomial

generalized linear models. Reintroduction site was included as a

random effect and number of nest boxes as an offset variable. Gray

shaded area represents 95% confidence interval (calculated using

the jtools R package).
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When investigating the impact of climate on reintro-
duced adult population counts, we find that the best-
fitting model included time since reintroduction as the
only predictor variable, with an estimated decline of
5.03% each year (Figures 5 and S6). The number of adult
dormice per nest box declines in the years after a reintro-
duction is carried out, but other predictor variables (such
as current climate suitability, site size, number of releases
and number of dormice released) do not have an impact
on our dataset.

4 | DISCUSSION

We used ensemble SDMs to predict current and future
climate suitability for hazel dormice in the
UK. Investigating the climate suitability for dormice
reveals some interesting trends. The extent of areas pro-
jected to be highly climatically suitable increases in
future climate change projections; however, the very
highest levels of climate suitability, based on current pro-
jections, are predicted to decline to a slightly lower level
of suitability in future scenarios.

The majority of highly suitable climate for dormice is
currently located in the south of England, with some
areas in the east and west, and southern and eastern
Wales. There are also some small, isolated patches of cli-
matically suitable areas in Ireland, Northern Ireland and
Scotland, where dormice are non-native. There are no
records in these countries, apart from a handful of sight-
ings in County Kildare in Ireland (Sheehy &
Lawton, 2015), but this is in an area of low predicted cli-
mate suitability. There is also a patch of suitable climate
in the northwest of England, where there is now one
remaining natural population (White, 2012).

Given that our SDMs are built with data from the cur-
rent dormouse range, which is predominantly distributed
in southern England, it is unsurprising that the current
climate suitability map shows a bias towards higher pre-
dicted suitability in this area. For example, it is easy to
assume that the remaining dormouse populations are
located in ideal areas, in terms of habitat or climate, as a
“refugee species” (Kerley et al., 2012). Therefore, it is
important to be cautious when drawing conclusions
about ideal climate suitability, as the models likely repre-
sent a combination of climate suitability and other factors
which allowed dormice to remain in the southern sites.

Of the three bioclimatic variables used in our SDMs,
temperature seasonality had most impact on the proba-
bility of dormouse occurrence, with dormice preferring a
value higher than 400 (a standard deviation of >4�C in
average daily mean temperature per month across the
year). This variable therefore represents locations with

higher temperature variability, indicating larger seasonal
differences. This fits with previous studies suggesting that
dormice prefer warmer springs and summers, and cooler
winters (Combe et al., 2022; Goodwin, Suggitt, et al.,
2018). However, when investigating the impact of the
temperature of the coldest quarter, dormice preferred
locations with a mean temperature above 3�C, so there
may be a required threshold for winter temperatures. We
also found that dormice may have a required winter pre-
cipitation threshold of around 200 mm, but that the prob-
ability of dormouse occurrence declines at a threshold of
around 400 mm. This is consistent with some previous
studies that have found dormice prefer drier winters
(Combe et al., 2022), but that they need to ensure they do
not desiccate during hibernation (Bright & Morris, 1996).

We found that higher current climate suitability, as
estimated by SDMs, increases the probability of dor-
mouse reintroduction success. It has been suggested to
use SDMs to assist reintroduction site selection
(IUCN, 2013; Osborne & Seddon, 2012). Recently, it has
been shown quantitatively for the first time that SDMs
can be used to select climatically suitable sites for ecto-
therms and that climate is a key influencer of reintroduc-
tion outcome (Bellis et al., 2020). Here, we find that this
is also true for a mammalian species. Existing reintroduc-
tions sites are on average found in areas of lower climate
suitability than natural dormouse sites, but there are
fewer areas of climate suitability in northern England,
which is the current target of the dormouse reintroduc-
tion programme (Mitchell-Jones & White, 2009).

Although we found that reintroduction success was
more likely in areas of higher climate suitability, there
are likely to be other factors playing an important role in
reintroduction outcome, as we see that some sites have
succeeded even with low climate suitability. For example,
it is thought that habitat suitability plays a key role in
reintroduction success (Berger-Tal et al., 2020;
Germano & Bishop, 2009; Wolf et al., 1996) and that dor-
mice are particularly susceptible to habitat changes
(Bright & Morris, 1996; Morris, 2003). When using
ecological-niche factor analysis, Cartledge et al. (2021)
found that reintroduction sites had lower habitat suitabil-
ity on average when compared to natural sites and that
some habitat factors influence adult dormouse counts at
reintroduction sites (such as frequency of broadleaved
woodland and arable land). It would be interesting to
include other variables in our binomial climate suitability
models, such as these habitat variables, the number of
releases, number of dormice released and site size. At this
point, there are not enough reintroduction sites where
the outcome has been assessed at the 10-year mark to
create these more complex models, but in the future, it
would be possible to add the reintroduction outcome of
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other sites. Currently, the release site decision is based on
observational judgments of habitat suitability and acces-
sibility, and more recently, the possibility of setting up
metapopulations (Chanin, 2014; White, 2014). Our
results suggest that it is also important to consider cli-
mate suitability at proposed dormouse release sites.

When investigating the variables that impact popula-
tion counts for reintroduced adult dormice, we found
that current climate suitability was not included in the
best-fitting model. Of the variables tested, only time since
reintroduction influenced population counts. That is, as
time since reintroduction increases, dormouse population
counts decline, which was also found in a previous dor-
mouse habitat suitability study (Cartledge et al., 2021).
The rate of decline estimated in the current study (5.0%
per year) is similar to the background decline at wider
NDMP dormouse sites, which has been calculated as an
average of 5.8% per year between 1993 and 2014
(Goodwin et al., 2017). Initially, this may seem to contra-
dict our results from the binomial reintroduction model,
which found that climate suitability strongly influenced
reintroduction outcome. It has previously been suggested
that nest box counts may not reflect true population size
(Cartledge et al., 2021), as it is known that dormice alter
nest box use according to various factors such as season
or natural nest site availability (Chanin & Woods, 2003;
Juškaitis & Büchner, 2013). The results of our population
count model may also indicate imperfect nest box counts,
where population trends or even dormouse presence can
be masked by other factors. With most of our presence
points resulting from nest box surveys, there may be hid-
den biases which impact the model outcomes.

There are likely finer-scale impacts of climate suit-
ability that we could not detect with our model. This may
occur due to the climate suitability scores being calcu-
lated from each of the variable averages across 1970–
2000, so it would not necessarily be expected to closely
match changing populations over time. Dormice have
very specific requirements for habitat and food availabil-
ity, which may be impacted by local-scale climate differ-
ences across time and space. There could also be
differences in how climate influences population estab-
lishment or persistence at reintroduction sites. The key
factors influencing long-term reintroduction success are
not always the same as those determining initial popula-
tion establishment (Armstrong & Seddon, 2008). Climate
suitability may be more closely linked to establishment of
dormouse populations and thus influence initial reintro-
duction success, but may not be as important at regulat-
ing population persistence. When considering population
regulation, other factors may be more important. How-
ever, previous research has found that dormouse popula-
tion numbers respond in a density-dependent way to

climate, but these models used occupancy methods
to account for imperfect detection (Combe et al., 2022).

When considering the success of dormouse reintro-
duction sites, there are likely unknown impacts of the
founder source populations. It has previously been shown
that dormice are genetically structured across the UK;
however, there is evidence that at least one reintroduc-
tion site in northern England has resident dormice with
genetics most like a southern cluster on the Isle of Wight
(Combe et al., 2016). This likely traces back to the indi-
viduals originally sourced for reintroduction; however,
the impacts of dormouse genetics on local adaptation has
not yet been studied. For example, there is a possibility
that historical northern dormouse population were cli-
mate adapted and became extinct for reasons other than
climate. There are potentially many factors affecting rein-
troduction success that were not the focus of this study.
However, it is worth noting that we still found a clear
relationship between climate suitability and reintroduc-
tion success.

In our SDM future projections to 2050 and 2070,
under the most extreme climate change scenario, high
levels of climate suitability for dormice become much
more widespread, expanding further into all countries of
the UK. However, there are some areas in central and
eastern England and central Scotland that are predicted
to remain relatively low in terms of climate suitability.
The highest level of climate suitability in the south of
England declines, but still remains relatively high. We
found that the climate at existing reintroduction sites is
set to improve and become closer to the levels of climate
suitability currently found at natural dormouse sites, but
still significantly lower. Generally, this is good news for
the future of the reintroduction programme, as the
targeted areas in northern and central England (Mitchell-
Jones & White, 2009; White, 2014) will increase in cli-
mate suitability. However, we have demonstrated that
the current climate suitability will impact reintroduction
outcome for the release sites, so reintroduction planning
should not rely on future climatic improvements. We also
found that climate suitability will decline at the remain-
ing natural sites, but still remain relatively high.

Despite the relatively positive outlook on future cli-
mate suitability for dormice in the UK, there may be
other more nuanced impacts of climate change. Our
SDMs are based on presence records of dormice, which
reliably represents dormouse occurrence in the
UK. However, it does not consider impacts on dormouse
population dynamics, which are likely to be altered by
changing climates, with warmer and wetter winters likely
contributing to lower survival rates (Combe et al., 2022).
Life history traits, such as hibernation, may be altered
with warmer climates, for example with increased
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interbout arousals during winter or earlier emergence in
the spring, which will both have energetic costs (Boyles
et al., 2020; Findlay-Robinson et al., 2023; Maldonado-
Chaparro et al., 2017). Timing of food availability may be
impacted by changing climates and it is not clear whether
this will cause mismatches in dormouse activity and feed-
ing opportunities. Alternatively, if dormice reduce hiber-
nation times or do not hibernate at all, as in some
Mediterranean locations, there may be very limited feed-
ing opportunities through the winter. Climate change
may impact other factors too, such as increasing pests
and disease to dormice or their habitats, therefore more
research should be conducted in this area (Phillips
et al., 2022). The presence of dormice is also strongly
driven by non-climatic habitat factors (Cartledge
et al., 2021; Goodwin, Hodgson, et al., 2018; Goodwin,
Suggitt, et al., 2018), meaning that even with suitable cli-
mate, viable dormouse populations are unlikely to be
supported if the habitat is unsuitable.

It may be possible for dormice to adapt life history
traits (Findlay-Robinson et al., 2023). For example, in the
Mediterranean, dormice hibernate for short periods or
not at all (Panchetti et al., 2004). If dormice emerge ear-
lier there may be the opportunity to breed earlier or mul-
tiple times, leading to more offspring and potentially
more time to fatten up for hibernation, as long as food is
available (Pretzlaff et al., 2021; Pretzlaff & Dausmann,
2012). Data from captive populations of dormice may
offer the opportunity to investigate the impacts of climate
on hibernation immergence and emergence dates, as well
as frequency of interbout arousals, and how this is linked
to body condition and breeding success.

Our study focuses on the climate suitability for dor-
mice within the UK and does not consider the whole
dormouse distribution. Whilst this provides useful
regional insights for the UK, future work should consider
the impacts of climate change across the full current dis-
tribution. At the moment, dormice are considered Least
Concern by the IUCN Red List (Hutterer et al., 2021), but
if climate suitability shifts northwards, there may be
cause for concern for existing population strongholds.

SDMs do not always represent the actual species
range, as there may be limits on dispersal or biotic inter-
actions (Svenning & Sandel, 2013). For example, dormice
are thought to be particularly limited by habitat fragmen-
tation, due to low dispersal ability (Bright & Morris,
1996). Even where there is predicted suitable climate, dis-
persal and other factors such as suitable habitat or food
availability will influence where the species occurs. With
complex interactions between these factors (Williams
et al., 2022), it can be difficult to tease apart the impacts
of each independently. Other limitations with SDMs
relate to the method of selecting pseudoabsence, for

example different SDM algorithms have optimal numbers
of pseudoabsence points and runs (Barbet-Massin
et al., 2012). Further, we chose three bioclimatic vari-
ables, based on our own understanding of dormouse ecol-
ogy, but there may be others which influence dormouse
distribution. For example, we investigated the effects of
precipitation in winter, but the levels of precipitation in
spring and summer are also likely to impact dormice
(Bright et al., 2006). We chose only one of these variables
due to a strong correlation between them, but it would be
possible to undertake a principal component analysis on
the bioclimatic variables and use the resulting principal
components.

Overall, our results suggest that climate suitability in
the UK may become more widespread with climate
change, with the loss of some high levels of suitability.
However, it is important to consider that this analysis has
focused on climate suitability at a low resolution, with
further fine-scale impacts not considered. This may
impact the long-term sustainability of dormouse popula-
tions within these areas, alongside any other changes in
habitat or food availability. We found that the outcome of
dormouse reintroductions is influenced by current cli-
mate suitability, where the probability of successfully
maintaining populations for over 10 years increases with
increasing climate suitability. We find no evidence that
climate suitability impacts adult dormouse population
counts, when using nest box records, but we find that
dormouse counts decline in the time since reintroduction
at a similar rate to the population decline found at natu-
ral sites (Goodwin et al., 2017). Future analysis could
investigate climate impacts on dormouse populations at
natural sites, for example population numbers, litter size
and weight. There are also some sites where dormice are
tagged for individual identification, offering the potential
to study climate impacts on survival probability. We note
that it has previously been highlighted by dormouse con-
servation practitioners that a greater understanding of
the potential impacts of climate change on dormice is
required (Phillips et al., 2022). We provide the first pro-
jection and evidence that climate suitability for dormice,
at a 1 km2 scale, in the UK may increase with climate
change, highlighting the importance of considering cur-
rent climate in reintroduction planning.
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