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Abstract—Matrices are the foundation of science and 
engineering. For artificial intelligence (AI) and Internet of 
Things (IoT) tasks, developing a hardware efficient way to 
find the eigenvector of stochastic matrix is urgently in need. 
In this paper, inspired by the divide-and-conquer strategy, 
we proposed a new hardware architecture, which uses 
magnetic tunnel junctions (MTJs) to estimate the 
eigenvector of an n×n SM where n is the power of 2. This 
approach reduces the required device amount to log2n by 
converting the larger SM into 2-state SMs which are further 
represented by stochastic signals generated by MTJs. The 
validity of this method has been demonstrated and 
statistically evaluated. This method provides a novel 
hardware solution to solve mathematic problems using 
emerging hardware technologies. 

Index Terms—Stochastic matrix, eigenvector, Markov 
chain, magnetic tunnel junction 

I. INTRODUCTION
atrices play a crucial role in the fields of mathematics, 
science, engineering, and many other disciplines [1]. 

Among the many matrix operations, finding the eigenvalues 
and eigenvectors of matrices [2] have practical applications in 
stability analysis, structural engineering, quantum mechanics, 
data analysis, etc. In computer science, Google's PageRank 
algorithm [3] [4] measures the importance of webpages on the 
Internet by calculating the eigenvector of the “Google matrix,” 
a matrix which represents the links between webpages.  

From a mathematical perspective, the Google matrix is a 
stochastic matrix (SM), a matrix with non-negative elements 
where the sum of elements in each row is equal to one (Fig. 1a). 
The maximum eigenvalue of an SM, known as the spectral 
radius, is one [5]. In PageRank, the eigenvector corresponding 
to this eigenvalue is used to rank the importance of webpages. 
Apart from the PageRank algorithm, SM is also widely used in 
data analysis, probability theory, statistics, etc. [6] [7]. In all 

these applications, finding the eigenvectors of SM is critically 
important. 

So far, eigenvectors are typically calculated using 
algorithms, including the direct methods such as Gaussian 
elimination [2], or the iterative methods such as the Power 
method [8]. Those algorithms are carried out on computers or 
even super computers for tasks like information processing and 
image compression. However, due to the speed and energy 
requirement of artificial intelligence (AI) and Internet-of-
Things (IoT) hardware, calculating the eigenvectors of matrices, 
especially SM, using specifically designed hardware with 
higher efficiency, is highly desirable. Memristive crossbars [9] 
[10] [11] have been used to find the eigenvector in SM, but
since the crossbar is of the same dimension of the SM, this lead
to a polynomial rise (in the n2 way) in the crossbar size as the
SM dimension n increases. Despite the nanometer scale of
today’s memristive device, the chip’s area might become
intolerable, considering that the dimension of Google matrix
could exceed 10 million [12]. Therefore, an alternative way to
obtain the eigenvectors of SM, with architecture innovation to
reduce device amount and chip area, is urgently in need.

In this paper, we propose a new hardware architecture to 
estimate the eigenvector of certain SMs, based on non-volatile 
memristive devices. After converting the n×n SM (n is the 
power of 2) into log2n 2×2 SMs and representing each 2×2 SM 
with a Markov chain signal generated from a memristive device, 
only log2n devices are needed. As a result, the required device 
amount reduces from n2 (in the memristive crossbar method) to 
log2n in the proposed method (Fig. 1b). The functionality of 
this architecture has been proved, by using spintronic magnetic 
tunnel junctions (MTJs) [13] [14], a typical non-volatile 
memristive technology. The proposed architecture provides a 
promising solution to the development of compact circuits for 
emerging applications. 
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Fig.1. (a) Mathematical definition of an SM of dimension n. (b) The
required device amount reduces from n2 (in the memristive crossbar
method) to log2n in the proposed method. (c) I-V curve of the MTJ’s 
magneto-resistive switching, with its cross-section SEM image in the 
inset. 
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II. DEVICE AND EXPERIMENT
The experiments are based on a bottom-pinned perpendicular 

magnetization anisotropy (PMA) MTJ with a diameter of 78 
nm. The magneto resistive switching between its low-
resistance parallel (P) state and high-resistance antiparallel (AP) 
state is illustrated in Fig. 1c, along with the cross section 
scanning electron microscopy (SEM) image of the MTJ (inset 
of Fig. 1c). All electrical measurements were performed using 
the pulse measurement units (PMUs) in a Keithley 4200 
semiconductor analyzer. 

III. RESULTS AND DISCUSSIONS
In mathematics, an n×n SM describes the transitions of an n-

state Markov chain (MC) [15] [16]. The stationary distribution 
of the MC equals to the eigenvector corresponding to the 
eigenvalue 1 of the SM. In our earlier works [17] [18], we have 
developed methods to physically generate and modulate 2-state 
MC signals using a single MTJ, and obtained their stationary 
distributions, based on MTJ’s spintronic probabilistic 
switching nature [19]. However, for SMs larger than 2×2, how 
to use MTJs to estimate eigenvector remains a question. 

It is worth noting that the divide-and-conquer strategy [20], 
which involves breaking down a complex problem into smaller 
and more manageable parts, solving each part individually, and 
then combining the solutions to solve the original problem, is 
the basis of many efficient algorithms in mathematics and 
computer science. For example, in the famous Strassen 
algorithm [21] [22], an n×n matrix is divided into sub-matrices 
of size n/2×n/2. This is done iteratively, thereby  reducing the 
complexity of matrix multiplication from O(��) to O(������). 

Following the divide-and-conquer strategy, we developed a 
hardware approach to estimate the eigenvector of SMs, which 
includes converting a larger SM (with dimension being the 
power of 2) into 2×2 SMs, encoding the 2×2 SMs in the 2-state 
MC signals generated by MTJs, re-merging the 2-state MC 
signals, and finally reading its stationary distribution to 
estimate the eigenvector of the original larger SM. Take a 4×4 
SM for example: first of all, the 16 elements in the 4×4 SM are 
re-grouped in two different ways and averaged respectively to 
form two 2×2 matrices, in the way as Fig. 2a shows. Obviously, 
the 2×2 matrices are also SMs as their rows sum to one, which 

enables them to be individually represented by an MTJ device 
probabilistically switched by the 1st and 2nd pulse in the three-
pulse waveform. In the circuit schematic of Fig. 2b, the read 
pulses (the 3rd in the three-pulse waveforms) with same width 
are synchronously applied onto the top electrodes of the two 
MTJs. The read pulses are designed with different amplitudes 
(VRead1 > VRead2) to make the 4-state signal distinguishable by 
the sampling circuit. At the same time, a merged readout 
current, which has 4 levels, can be obtained from the connected 
bottom electrodes of the 2 MTJs. After digitization, this 4-level 
current is transferred into a 4-state MC signal and finally, its 
stationary distribution can be further obtained by simply 
counting the occurrence of the 4 states, which is an estimated 
eigenvector of the original 4×4 SM. 

Fig. 3 shows a practical demonstration of this method, with 
an original 4×4 SM GO in Fig. 3a converted into two 2×2 SMs 
and then represented by two MTJs in the form of MC signals, 
which are later merged into a 4-state MC including state 0, 1, 2 
and 3 (Fig. 3b). Since VRead1 > VRead2, the state 1 in the 4-state 
signal corresponds to MTJ1 in P state and MTJ2 in AP state, 
while the state 2 corresponds to MTJ1 in AP state and MTJ2 in 
P state. The stationary distribution of the 4-state MC leads to 
an eigenvector πMTJ, which gradually approaches to the original 
SM’s eigenvector πo calculated with MATLAB, as the length 
of MC increases (Fig. 3c). This trend agrees with the many 
computation paradigms that involves stochasticity. Finally, 
with 10,000 bits, the stationary distribution of the 4-state MC 
is very close to the original one (Fig. 3d). 

To evaluate the accuracy of this estimation methods, the 
similarity of the two eigenvectors, πMTJ and πo, is evaluated 
using the cosine similarity, a mathematical metric frequently 
used in statistics and machine learning to compared two vectors 
[23] [24]. Cosine similarity is defined in (1):

����� =
�������

������‖��‖
 (1) 

where ‖∙‖is the Euclidean norm. When its value is closer to one, 
it means the two vectors are more similar. The cosine similarity 

Fig.2. (a) The way that the 16 elements in a 4×4 SM are re-grouped in 
two different ways and averaged to form two 2×2 SMs. (b) The circuit 
schematic showing how the 2×2 SMs represented by MTJs and how the 
stationary distribution of the 4×4 SM can be obtained. 

Fig.3. (a) An original 4×4 SM ��  with eigenvector ��  for the 
demonstration of the proposed method. (b) The two 2×2 SMs, and the
4-state MC generated from the MTJs. (c) As the length of MC increases, 
(d) the experimental eigenvector ����  gradually approaches the 
eigenvector  �� calculated with MATLAB.
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in the example in Fig. 3 is 99.999%, supporting the validity of 
our method. 

Beyond the 4×4 SM, this method is applicable to SMs with 
larger dimensions. For example, an 8×8 SM can be divided into 
three 2×2 SMs as shown in Fig. 4a. It can be inferred that for 
any n×n SM, where n is a power of 2, the original SM can be 
converted into log2n 2-state SMs and represented by log2n 
MTJs. The effectiveness and generalizability of this method for 
larger dimension SMs is evaluated. An SM is randomly 
generated, then its eigenvector is estimated and compared to the 
mathematical value. For statistical reason, this process is 
repeated for 1000 times for a certain n. Fig. 4b demonstrates 
the averaged cosine similarity between the πMTJ and πo with n = 
4, 8, 16 and 32, which gradually increases with larger matrix 
dimension, approaching 99% for 32×32 SMs. 

While the overall averaged cosine similarity is good, for 
some SMs with smaller dimension (e.g. 4×4), the cosine 
similarity could be lower, as demonstrated in Fig. 4c. We 
assume that it might be attributed to the fact that this method 
only keeps the sums of partial elements from the high-
dimensional SM in 2×2 SMs, thereby the information of 
individual elements is, to various extent, lost. This is somehow 
similar to the convolution or average pooling in convolution 
neural networks [25]. Nevertheless, the improved estimation 
accuracy with larger matrix dimension is probably due to the 
more significant averaging effect among the larger amount of 
elements. That might be why the proposed method works better 
on larger SMs which are more common in practical operations. 
In addition, at this stage, this method is only applicable to SM 
whose dimension is power of 2. We will further expand this 
method for SMs and even a wider scope of matrices with 
arbitrary dimension. In addition, the high latency of this method, 
a drawback common in many stochastic-related computing 
paradigms, could be alleviated by introducing more devices to 
carry out this method in parallel. 

IV. CONCLUSIONS

In this paper, inspired by the divide-and-conquer strategy, 
we proposed a new hardware architecture using MTJs to 
estimate the eigenvector of an n×n SM where n is the power of 
2. This approach reduces the required device amount to log2n
by converting the SM into 2-state SMs which are further
represented by MC signals generated by MTJs. The validity of
this method has been demonstrated and statistically evaluated.
This method provides a novel hardware solution to solve
mathematic problems using emerging hardware technologies.
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