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)is study investigates the finite-time boundedness for Markovian jump neural networks (MJNNs) with time-varying delays. An
MJNN consists of a limited number of jumpingmodes wherein it can jump starting with onemode then onto the next by following
aMarkovian process with known transition probabilities. By constructing new Lyapunov–Krasovskii functional (LKF) candidates,
extended Wirtinger’s, and Wirtinger’s double inequality with multiple integral terms and using activation function conditions,
several sufficient conditions for Markovian jumping neural networks are derived. Furthermore, delay-dependent adequate
conditions on guaranteeing the closed-loop system which are stochastically finite-time bounded (SFTB) with the prescribed H∞
performance level are proposed. Linear matrix inequalities are utilized to obtain analysis results. )e purpose is to obtain less
conservative conditions on finite-time H∞ performance for Markovian jump neural networks with time-varying delay.
Eventually, simulation examples are provided to illustrate the validity of the addressed method.

1. Introduction

Due to the great significance of neural networks (NNs) for
both practical and theoretical purposes, their dynamics have
been explored widely in recent years, such as pattern rec-
ognition, signal processing, solving optimization problems,
static image processing, associative memories, target
tracking, and automatic control. )erefore, many research
subjects have been studied in a broad spectrum of stability
analysis, passivity analysis, control, filtering design, and state
estimation and synchronization, concerning to NNs [1–6].
In [4], passive filter design for fractional-order quaternion-
valued neural networks with neutral delays and external
disturbance has been studied.)e authors in [6] investigated
stability criteria of quaternion-valued neutral-type delayed
neural networks. In many implementations of NNs, time

delays are inevitable [7] and can lead NNs to instability and
oscillation. Hence, the stability analysis with time delays in
the NN models under consideration has attracted consid-
erable attention [8–14].

Due to interconnection failures, sudden environment
changes, components, and so on, plenty of structural pa-
rameters of neural networks may mutate. In general, there
are finite modes in the neural network,s switching or
jumping from onemode to another mode by a random form.
A Markov chain can be used to describe jumping between
different modes of neural networks, and the kinds of systems
are called Markovian jump neural networks [15–18]. Many
practical control systems can be modeled as Markovian
jump neural networks, such as air intake systems and
economic systems [19]. In an MJNN, hopping among op-
eration modes is specified by a Markov process, so it is
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important to understand the impacts of its stochastic at-
tributes on the stability analysis of delayed MJNNs. Some
previous works [15–18] have discussed certain standard
results in relation to MJNN stability analysis. In [20], the
authors conducted an asymptotic stability analysis for sto-
chastic and static NNs with time-varying delays that are
mode-dependent. )e use of linear matrix inequalities
(LMIs) has led to important and interesting results con-
cerning various types of NN with MJ parameters [21, 22].
)e mode-dependent MJNNs with time-varying delays and
incomplete transition rates can be found in [23], wherein
some LMI-based conditions are proposed to obtain the
required results.

In some cases, we are interested in knowing how the
modeled system behaves within fixed- and finite-time in-
tervals. In other words, given an initial bounded state, we
require the system to remain in a state that is not superior to
a particular threshold during a specified time interval. Since
this type of stability ensures a faster convergence of the
system, it has been widely used in various NNs, such as the
MJNNs, and synchronizing neural networks [24]. An im-
portant example can be found in controlling the trajectory of
a spacecraft between its initial and final locations within a
specified time interval. However, because of the lack of other
finite-time-bounded operational conditions, it is natural that
research interest has shifted to Lyapunov stability in this
paper. In addition, based on LMI results, the idea of finite-
time boundedness (FTB) has been revisited here. We also
studied that finite-time stability involves dynamical systems
whose part of the trajectory converges to an equilibrium
state in a finite time. Note that the finite-time stability with
control frameworks has gained significant attention in re-
cent years [25–28]. In [29], the authors discussed the finite-
time L2-gain performance of MJNNs. )e design of a finite-
time passive controller for uncertain MJ systems is opti-
mized in [28], wherein a robust and fuzzy finite-time passive
control is defined along with the finite-time stochastic
stability of a nonlinear MJ system. However, finite-time H∞
state estimation of MJ systems has not been studied much
for NNs. )is is a primary inspiration for this study. )e
main contributions of this study are listed as follows:

(1) )e comprehensive Markovian jump neural net-
works with state and input constraints are studied.

(2) We have introduced a novel Lyapunov–Krasovskii
functional (LKF), including time-varying delays.

(3) Wirtinger’s double integral inequality, introduced by
Park et al. [30], and Wirtinger’s integral inequality,
extended by Zhang et al. [31], are introduced into the
time-derivative of LKF. )is time-derivative forms
the LMIs which are FTB. )ese LMIs deliver more
effective outcomes in comparison to previous works.
)e numerical examples are also given.

(4) To show the real-life application, the four-tank water
pumping system and network circuit are considered
in this paper in terms of the NN model to show
feasibility on a benchmark problem.

Notations are as follows:
Rn: n-dimensional Euclidean space
P> 0: the matrix P is a symmetric matrix
min (P): minimum eigenvalue of P

max(P): maximum eigenvalue of P

I: identity matrix
diag ·{ }: diagonal matrix
∗ : symmetric matrices

2. Preliminaries and Problem Formulation

Given a probability space (Ω,F,P), where Ω,F, andP
represent sample space, σ-algebra of events, and probability
measure defined onF, respectively. Let parameter rt, t≥ 0􏼈 􏼉

be a right continuous Markov chain taking values on
(Ω,F,P) a finite set S � 1, 2, . . . , N{ } with generator Π �

(πij)N×N given by

Pr rt + Δt( 􏼁 � j|rt � i􏼈 􏼉 �
πijΔt + o(Δt), i≠ j,

1 + πiiΔt + o(Δt), i � j,
􏼨

(1)

where rt ∈ S, Δt> 0, limΔt⟶0(o(Δt)/Δ) � 0, and πij de-
notes the transition probability from modes i to j satisfying
πij ≥ 0, for i≠ j, with πii � − 􏽐

s
j�1,j≠ i πij, i, j ∈ S.

Consider the MJNNs with time-varying delays are as
follows:

_x(t) � − A rt( 􏼁x(t) + B rt( 􏼁h(x(t)) + Bd rt( 􏼁h(x(t − δ(t))) + J + E1 rt( 􏼁w(t),

y(t) � C rt( 􏼁x(t) + D rt( 􏼁x(t − δ(t)) + E2 rt( 􏼁w(t),

z(t) � G rt( 􏼁x(t),

x(t) � ϕ(t), t ∈ [δ, 0],

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (2)

where x(·) � [x1(·), x2(·), . . . , xn(·)]T ∈ Rn is the state
vector, y(t) ∈ Rp is the output measurement, z(t) ∈ Rm

denotes the estimated signal, w(t) ∈ Rq represents exoge-
nous disturbance belonging to L2[0,∞),
h(x(t)) � [h1(x1(t)), h2(x2(t)), . . . , hn(xn(t))]T ∈ Rn is a

neuron activation function, and J ∈ Rn denotes an external
input constant vector. A(rt)> 0 is a diagonal matrix, and
B(rt),Bd(rt),E1(rt),E2(rt),C(rt),D(rt), and G(rt) are
connection weight matrices. A time-varying delay is denoted
as δ(t), where 0≤ δ(t)≤ δ and _δ(t)≤ μ, such that δ and μ are
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known constants. For each possible value of r(t) � i, i ∈ S, a
matrix A(rt) is denoted by Ai and all other matrices with
appropriate dimensions are denoted by
Bi, Bdi, E1i, E2i, Ci, Di, and Gi.

Assumption 1. Each neuron activation function hk(t)

(k � 1, 2, . . . , n) is continuous and bounded and satisfies the
following condition:

ϱ−k ≤
hk x1( 􏼁 − hk x2( 􏼁

x1 − x2
≤ ϱ+k , ∀x1, x2 ∈ R, x1 ≠ x2, (3)

where ϱ−k and ϱ
+
k are constant.)en, we define the followings

L1 � diag ϱ−1 , ϱ−2 , . . . , ϱ−n􏼈 􏼉, L2 � diag ϱ+1 , ϱ+2 , . . . , ϱ+n􏼈 􏼉,

Mt � diag ϱ−1ϱ
+
1 , ϱ−2ϱ

+
2 , . . . , ϱ−nϱ

+
n􏼈 􏼉,

Mu � diag
ϱ−1 + ϱ+1

2
,
ϱ−2 + ϱ+2

2
, . . . ,
ϱ−n + ϱ+n

2
􏼨 􏼩.

(4)

Assumption 2. )e external disturbance w(t) fluctuates and
satisfies the following inequality:

􏽚
T

0
w

T
(t)w(t)dt≤ d, d≥ 0. (5)

For a MJNN defined as (2), a state estimator is con-
structed as follows:

􏽥x(t) � − Ai􏽥x(t) + Bih(􏽥x(t)) + Bdih(􏽥x(t − δ(t))) + J + Ki(y(t) − 􏽥y(t)),

􏽥y(t) � Ci􏽥x(t) + Di􏽥x(t − δ(t)),

􏽥z(t) � Gi􏽥x(t),

x(t) � 0, t ∈ [δ, 0],

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where 􏽥x(t) ∈ Rn denotes the estimated state and 􏽥z(t) ∈ Rq is
the estimated measurement of z(t). )en, estimator gain
matrix Ki is to be constructed.

By defining the error e(t) � x(t) − 􏽥x(t),
f(e(t)) � h(x(t)) − h(􏽥x(t)), and z(t) � z(t) − 􏽥z(t), an
error system can be obtained in the following form:

_e(t) � − Ai + KiCi( 􏼁e(t) − KiDie(x(t − δ(t))) + Bif(e(t)) + Bdif(e(t − δ(t))) + E1i − KiE2i( 􏼁w(t),

z(t) � Gie(t),
(7)

where e(t) � [e1(t), e2(t), . . . , en(t)]T ∈ Rn denotes the
state vector of modeled system and
f(e(t)) � [f(e(t))f2(e(t)), . . . , fn(e(t))]T, and f(e(t)) �

g(x(t)) − g(􏽥x(t)) is the transformed activation function.
From Assumption 1, the neuron activation function satisfies

l
−
a ≤

fa(ρ)

ρ
≤ l

+
a , (8)

where ρ ∈ R and ρ≠ 0.

Definition 1 (stochastically finite-time stable (SFTS) [27]).
Given time constant T> 0, an MJNN defined as (7) with
w(t) � 0 is SFTS with respect to (c1, c2, T, R) if there exists a
positive matrix R> 0 and scalars c1 > 0 and c2 > 0, such that
the following inequality holds:

E x
T
0 (t)Rx0(t)􏽨 􏽩< c1⇒E x

T
(t)Rx(t)􏽨 􏽩, t ∈ [0, T]. (9)

Definition 2 (stochastically finite-time boundedness (SFTB)
[27]). Given a time constant T> 0, anMJNN defined as (7) is
said to be SFTB with respect to (c1, c2, T, R, d), where there
exist R> 0 and scalars c1 > 0 and c2 > 0, such that the fol-
lowing inequality holds:

E x
T
0 (t)Rx0(t)􏽨 􏽩< c1⟹E x

T
(t)Rx(t)􏽨 􏽩, t ∈ [0, T].

(10)

Definition 3 (see [32, 33]). For T> 0, an MJNN defined as
(7) is said to be SFTB with respect to (c1, c2, T, R, d) and with
a prescribed level of noise attenuation c> 0 under a zero
initial condition if it holds:

E 􏽚
T

0
z

T
(s)z(s)ds􏼨 􏼩≤ c

2
E 􏽚

T

0
w

T
(t)w(t)dt􏼨 􏼩. (11)

Mathematical Problems in Engineering 3
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Definition 4 (see [34]). A functional V(x(t), r(t), t> 0) �

V(x(t), r) is said to be a stochastic positive functional. Its
weak infinitesimal operator can be defined as

L(V(x(t), r(t))) � limΔt⟶0
1
Δt

[EV(x(t + Δt), r(t + Δt), t + Δt)|x(t), r(t) � i − V(x(t), i, t)]. (12)

Lemma 1 (see [30]). Let a constant matrix M> 0; the fol-
lowing condition can be defined for all differentiable function
ϕ in [a, b]⟶ Rn for scalars a and b with a< b:

−
b
2

− a
2

2
􏽚

− b

− a
􏽚

t

t+θ
_ηT

(s)M _η(s)dsdθ ≤ − ΩT
1MΩ1 − 2ΩT

2MΩ2,

(13)

where Ω1 � (b − a)η(t) − 􏽒
t− b

t− a
η(s)ds and Ω2 � − (b − a)

/2η(t) − 􏽒
t− b

t− a
η(s)ds + 3/b − a 􏽒

− b

− a
􏽒

t

t+θ η(s)dsdθ.

Lemma 2 (see [35]). For any constant matrix M> 0, the
following inequality holds for all continuously differentiable
function φ on [a, b]⟶ Rn×n:

(b − a) 􏽚
b

a
φT

(s)Mφ(s)ds≥ 􏽚
b

a
φ(s)ds􏼠 􏼡

T

× M 􏽚
b

a
φ(s)ds􏼠 􏼡 + 3ΩT

MΩ, (14)

where Ω � 􏽒
b

a
φ(s)ds − 2/b − a 􏽒

b

a
􏽒

s

a
φ(θ)dθds.

Lemma 3 (see [31]). For a given symmetric matrix
W2 � WT

2 > 0, the following inequality holds for all contin-
uously differential function x in [α, β]⟶ Rn:

(β − α) 􏽚
β

α
_x
T
(s)W2 _x(s)ds≥ ξTΞξ, (15)

where

ξ � x
T
(β) x

T
(α)

2
β − α

􏽚
β

α
x

T
(s)ds

12
(b − a)2

􏽚
β

α
􏽚

s

α
x

T
(θ)dsdθ􏼢 􏼣

T

,

Ξ �

9W2 − 3W2 − 36W2 2W2

∗ 9W2 15W2 − 5W2

∗ ∗ 48W2 − 15W2

∗ ∗ ∗ 5W2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

3. Methodologies and Theoretical Results

3.1. Finite-Time State Estimation. )is section derives the
SFTB of the error system in (7).

Theorem 1. For scalars c1, c2, T, d, δ, μ, and α, an MJNN
defined as (7) is SFTB in relation to (c1, c2, T, R, d) if there
exist feasible matrices Pi > 0, Qs > 0, Ws > 0 (s � 1, 2, 3),

Ut > 0, Uu > 0, N, and X, where Pi, Qs, and Ws are sym-
metric positive definite (PD), and Ut > 0 and Uu > 0 are
diagonal, such that the following inequality holds:

Ψ � ψij􏽨 􏽩9×9< 0, (17)

e
αT

c1Λ + λ9d􏼂 􏼃< λ1c2, (18)

where

4 Mathematical Problems in Engineering
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ψ11 � 􏽘
N

j�1
πijPj + Q1 + Q2 + δW1 − 9W2 − δW3 −

δ2

4
w3 − MtUt − NAi − A

T
i N

T
− LiCi − C

T
i L

T
i ,

ψ12 � LiDi,ψ13 � 3W2,ψ14 � 2Pi − N − A
T
i N

T
− C

T
i L

T
i ,ψ15 � 36W2 + δW3 +

δ
2
W3,

ψ16 � − 2W2 −
3
2
W3,ψ17 � MuUt + NBi, ψ18

ψ22 � − (1 − μ)Q1 − MtUu,ψ23 � 0,ψ24 � D
T
i L

T
i ,ψ25 � 0,ψ26 � 0,ψ27 � 0,ψ28 � MuUu,ψ29 � 0,

ψ33 � − Q2 − 9W2, ψ34 � 0, ψ35 � − 30W2,

ψ36 � − 5W2,ψ37 � 0,ψ38 � 0,ψ39 � 0,ψ44 � δW2 +
δ
4

4
W2 − N − N

T
,

ψ45 � 0,ψ46 � 0,ψ47 � NBi,ψ48 � NBdi,ψ49 � NE1i − LiE2i,ψ55 � −
1
δ
W1 −

3
δ
W1 − 192W2 − 2W3,

ψ56 �
6

δ
2W1 − 30W2 +

3
δ
W3,ψ57 � 0,ψ58 � 0,ψ59 � 0,ψ66 � −

12

δ
3W1 − 5W2 −

9

δ
2W3,ψ67 � 0,

ψ68 � 0,ψ69 � 0,ψ77 � Q3 − Ut,ψ78 � 0,ψ79 � 0,ψ88 � − Q3 − Uu,ψ89 � 0,ψ99 � − X.

(19)

In addition, the desired control gain matrices can be
calculated by Ki � N− 1Li.

Proof. Construct LKF for an MJNN defined as (7):

V(t) � 􏽘
5

i�1
Vi(t), (20)

where

V1(t) � e
T
(t)Pie(t),

V2(t) � 􏽚
t

t− δ(t)
e

T
(s)Q1e(s)ds + 􏽚

t

t− δ
e

T
(s)Q2e(s)ds,

V3(t) � 􏽚
t

t− δ(t)
f

T
(e(s))Q3f(e(s))ds,

V4(t) � 􏽚
0

− δ
􏽚

t

t+θ
e

T
(s)W1e(s)dsdθ + 􏽚

0

− δ
􏽚

t

t+θ
_e
T
(s)W2 _e(s)dsdθ,

V5(t) �
δ
2

2
􏽚
0

− δ
􏽚
0

β
􏽚

t

t+θ
_e
T
(s)W3 _e(s)dsdθ.

(21)

By differentiating the above LKF to obtain its time de-
rivatives along with the trajectory of the MJNN defined as
(7), we obtain

LV1 � 2e
T
(t)P _e(t) + e

T
(t) 􏽘

N

j�1
πijPje(t), (22)

LV2 � e
T
(t) Q1 + Q2( 􏼁e(t) − 1 − δD( 􏼁e

T
(t − δ(t)) × Q1e(t − δ(t)) − e

T
(t − δ)Q2e(t − δ), (23)

Mathematical Problems in Engineering 5
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LV3 � f
T
(e(t))Q3f(e(t)) − f

T
(e(t − δ(t)))Q3f(e(t − δ(t))), (24)

LV4 � δe
T
(t)W1e(t) − 􏽚

t

t− δ
e

T
(s)W1e(s)ds + δ _e

T
(t)W2 _e(t) − 􏽚

t

t− δ
_e
T
(s)W2 _e(s)ds, (25)

LV5 �
δ
2

2
⎛⎝ ⎞⎠

2

_e
T
(t)W3 _e(t) −

δ
2

2
􏽚
0

δ
􏽚

t

t+θ
_e
T

(s)W3 _e(s)dsdθ. (26)

Utilizing Lemma 2, we obtain

− 􏽚
t

t− δ
e

T
(s)W1e(s)ds ≤

− 1
δ

􏽚
t

t− δ
e(s)ds􏼠 􏼡

T

× W1 􏽚
t

t− δ
e(s)ds􏼠 􏼡 −

3
δ
ΦT

1 W1Φ1, (27)

where Φ1 � 􏽒
t

t− δ e(s)ds − 2/δ 􏽒
0
− δ 􏽒

t

t+θ e(s)dsdθ. By applying Lemma 3, the following inequality can be
written as

− 􏽚
t

t− δ
_e
T
(s)W2 _e(s)ds≤

e(t)

e(t − δ)

1
δ

􏽚
t

t− δ
e(s)ds

12

δ2
􏽚

t

t− δ
􏽚

s

t− δ
e(s)dsdθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

− 9W2 3W2 36W2 − 2W2

∗ − 9W2 − 30W2 5W2

∗ ∗ − 192W2 30W2

∗ ∗ ∗ − 5W2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e(t)

e(t − δ)

1
δ

􏽚
t

t− δ
e(s)ds

12

δ2
􏽚

t

t− δ
􏽚

s

t− δ
e(s)dsdθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

By applying Lemma 1, we obtain

−
δ
2

2
􏽚
0

δ
􏽚

t

t+θ
_x
T
(s)W3 _x(s)dsdθ ≤ −

Φ2

Φ3

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

T
W3 0

0 2W3

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
Φ2

Φ3

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(29)

where Φ2 � δe(t) − 􏽒
t

t− δ e(s)ds and Φ3 � − δ/2e(t) − 􏽒
t

t− δ e

(s)ds + 3/δ 􏽒
0
− δ 􏽒

t

t+θ e(s)dsdθ.
From Assumption 1, we obtain

fk ek(t)( 􏼁 − M
−
k ek(t)􏼂 􏼃 fk ek(t)( 􏼁 − M

−
k ek(t)􏼂 􏼃≤ 0,

fk ek(t − δ(t))( 􏼁 − M
−
k ek(t − δ(t))􏼂 􏼃 × fk ek(t − δ(t))( 􏼁 − M

−
k ek(t − δ(t))􏼂 􏼃≤ 0,

where, k � 1, 2, . . . , n.

(30)

)is can be written algebraically as

e(t)

f(e(t))
􏼢 􏼣

T
Mt − Mu

∗ I
􏼢 􏼣

e(t)

f(e(t))
􏼢 􏼣≤ 0,

e(t − δ(t))

f(e(t − δ(t)))
􏼢 􏼣

T
Mt − Mu

∗ I
􏼢 􏼣

e(t − δ(t))

f(e(t − δ(t)))
􏼢 􏼣≤ 0.

(31)
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)en, the following inequality holds for any positive
matrices Ut � diag u1, u2, . . . , un􏼈 􏼉 and Uu � diag 􏽢u1, 􏽢u2,􏼈

. . . , 􏽢un}:

e(t)

f(e(t))
􏼢 􏼣

T
MtUt − MuUt

∗ Ut

􏼢 􏼣
e(t)

f(e(t))
􏼢 􏼣≤ 0, (32)

e(t − δ(t))

f(e(t − δ(t)))
􏼢 􏼣

T
MtUu − MuUu

∗ Uu

􏼢 􏼣
e(t − δ(t))

f(e(t − δ(t)))
􏼢 􏼣≤ 0. (33)

For convenience, consider a matrix N with appropriate
dimension, and the following zero equality holds:

0 � 2 e
T

(t) + _e
T
(t)􏽨 􏽩N − _e

T
(t) − Ai + KiCi( 􏼁e(t) + KiDie(t − δ(t)) + Bif(e(t)) + Bdif e(t − δ(t)) + E1i − KiE2i( 􏼁w(t)(􏽨 􏽩.

(34)

)erefore, from (22)–(34), given that α> 0, we obtain

LV(e(t)) − αV(x(t)) − αw
T
(t)Xw(t) ≤ ϑT

(t)Ψϑ(t)< 0,

(35)

where

ϑT
(t) � e

T
(t)e

T
(t − δ(t))e

T
(t − δ) _e

T
(t) 􏽚

t

t− δ
e(s)ds􏼠 􏼡

T

􏽚
0

− δ
􏽚

t

t+θ
e(s)dsdθ􏼠 􏼡

T

f
T
(e(t)f(e(t − δ(t))w

T
(t)⎡⎣ ⎤⎦. (36)

We can write this as

LV(e(t))≤ αV(x(t)) + αw
T
(t)Xw(t). (37)

Multiplying both sides of (37) by e− αt and then inte-
grating from 0 to t, where t ∈ [0, T], we obtain

e
− αt

E[V(e(t))] ≤E[V(e(0))] + α􏽚
t

0
e
αs

w
T
(s)Xw(s)ds.

(38)

It can be simplified as

E[V(e(t))] < e
αt

E[V(e(0))] + α􏽚
t

0
e
αs

w
T
(s)Xw(s)ds􏼠 􏼡,

(39)

E[V(e(t))] < e
αT

E[V(e(0))] + λ9d( 􏼁. (40)

Let Pi � R− 1/2PiR
− 1/2, Q1 � R− 1/2Q1R

− 1/2, Q2 � R− 1/2Q2
R− 1/2, Q3i � R− 1/2Q3R

− 1/2, W1 � R− 1/2W1R
− 1/2, W2 �

R− 1/2W2 R− 1/2, and W3 � R− 1/2 W3R
− 1/2.

Conversely,

E V e0, 0( 􏼁􏼂 􏼃 � λmax Pi( 􏼁e
T
(0)Re(0) + λmax Q1( 􏼁 􏽚

0

− δ(0)
e

T
(s)Re(s)ds + λmax Q2( 􏼁 􏽚

0

− δ
e

T
(s)Re(s)ds + λmax Q3( 􏼁max M

−
t , M

+
u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

× 􏽚
0

− δ(0)
e

T
(s)Re(s)ds + λmax W1( 􏼁 􏽚

0

− δ
􏽚
0

θ
e

T
(s)Re(s)dsdθ + λmax W2( 􏼁 􏽚

0

− δ
􏽚
0

θ
_e
T
(s)R _e(s)dsdθ

+ λmax W3( 􏼁 􏽚
0

− δ
􏽚
0

β
􏽚
0

θ
_e
T
(s)R _e(s)dsdθ

≤ λmax(P) + δλmax Q1( 􏼁 + δλmax Q2( 􏼁 + δmax M
−
t , M

+
u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2λmax Q3( 􏼁 +

δ2

2
λmax W1( 􏼁 +

δ2

2
λmax W2( 􏼁 +

δ5

12
λmax W3( 􏼁

⎧⎨

⎩

⎫⎬

⎭

sup
− δ≤s≤0

e
T
(s)Re(s), _e

T
(s)R _e(s)􏽮 􏽯,

V(x(t)) ≤ e
αT Λc1 + dλ9( 􏼁,

(41)
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where

Λ � λ2 + δλ3 + δλ4 + δmax M
−
t , M

+
u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2λ5 +

δ
2

2
λ6 +

δ
2

2
λ7 +

δ
5

12
λ8.

(42)

Note that

E[V(x(t))] ≥ λmin(P)E x
T
(t)Rx(t)􏽨 􏽩 � λ1E x

T
(t)Rx(t)􏽨 􏽩.

(43)

)en, from (18), we obtain

E x
T
(t)Rx(t)􏽨 􏽩< c2. (44)

Based on Definition 2, an MJNN defined as (7) is
SFTB. □

Corollary 1. Given scalars c1, c2, T, δ, μ, and α, an MJNN
defined as (7) with w(t) � 0 is SFTB in relation to
(c1, c2, T, R) if there exist feasible matrices Pi > 0, Qs > 0,
Ws > 0 (s � 1, 2, 3),Ut > 0,Uu > 0, andN, where Pi, Qs, and
Ws are symmetric PD, and Ut > 0 and Uu > 0 are diagonal
such that the following inequality holds:

Ψ1 � ψi,j􏽨 􏽩8×8< 0, (45)

e
αT

c1Λ􏼂 􏼃< λ1c2, (46)

where ψij is defined in +eorem 1.

Proof. It can be proved in a similar way as )eorem 1. )e
proof is omitted for brevity. □

3.2. Finite-Time H∞ State Estimation

Theorem 2. Given scalars c1, c2, T, δ, μ, d, and α, an MJNN
defined as (7) is SFTB in relation to (c1, c2, T, R, d) with noise
attenuation c> 0 if there exist feasible matrices Pi > 0, Qs > 0,
Ws > 0 (s � 1, 2, 3), Ut > 0, Uu > 0, N, and X, where Pi, Qs,
and Ws are symmetric PD, and Ut > 0 and Uu > 0 are di-
agonal, such that the following inequality holds:

Ψ �

Ψ1 􏽢Ψ Gi

∗ ψ99 0

∗ ∗ − I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (47)

e
αT

c1Λ + c
2
d􏽨 􏽩< λ1c2, (48)

where Ψ1 � [ψi,j]8×8, 􏽢Ψ � col[ψi9], i � 1, 2, ..., 8,

ψ11 � 􏽘
N

j�1
πijPj + Q1 + Q2 + δW1 − 9W2 − δW3 −

δ
2

4
w3 − MtUt − NAi − AT

i N
T

− LiCi − CT
i L

T
i ,

ψ12 � LDi,ψ13 � 3W2,ψ14 � 2Pi − N − AT
i N

T
− CT

i L
T
i ,ψ15 � 36W2 + δW3 +

δ
2
W3,

ψ16 � − 2W2 −
3
2
W3,ψ17 � MuUt + NBi,ψ18 � NBdi,ψ19 � NE1i − LiE2i,

ψ22 � − (1 − μ)Q1 − MtUu,ψ23 � 0,ψ24 � DT
i L

T
,ψ25 � 0,ψ26 � 0,ψ27 � 0,ψ28 � MuUu, ψ29 � 0,

ψ33 � − Q2 − 9W2,ψ34 � 0,ψ35 � − 30W2,ψ36 � − 5W2,ψ37 � 0,ψ38 � 0,ψ39 � 0,

ψ44 � δW2 +
δ
4

4
W2 − N − N

T
,ψ45 � 0,ψ46 � 0,ψ47 � NBi,ψ48 � NBdi,ψ49 � NE1i − LiE2i,

ψ55 � −
1
δ
W1 −

3
δ
W1 − 192W2 − 2W3,ψ56 �

6

δ
2W1 − 30W2 +

3
δ
W3,ψ57 � 0,ψ58 � 0,ψ59 � 0,

ψ66 � −
12

δ
3 , W1 − 5W2 −

9

δ
2W3,ψ67 � 0,ψ68 � 0,ψ69 � 0,ψ77 � Q3 − Ut,ψ78 � 0,ψ79 � 0,

ψ88 � − Q3 − Uu,ψ89 � 0,ψ99 � − c
2
I.

(49)

Proof. In a similar way to the proof in)eorem 1, we obtain

E LV(e(t)){ } + z
T
(t)z(t) − c

2
w

T
(t)w(t) < ϑT

(t)Ψϑ(t).

(50)

It can be deduced from (47) and (50) that

E LV(e(t)){ } + z
T
(t)z(t) − c

2
w

T
(t)w(t)< 0. (51)
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By integrating (51) from 0 to T, we obtain

E V(x(t)) − V(x(o)) + 􏽚
T

0
z

T
(t)z(t)dt − c

2
􏽚

T

0
w

T
(t)w(t)dt􏼨 􏼩< 0. (52)

Subsequently, the following inequality is obtained:

E 􏽚
T

0
z

T
(t)z(t)dt􏼨 􏼩≤ c

2
E 􏽚

T

0
w

T
(t)w(t)dt􏼨 􏼩. (53)

Hence, we conclude that the MJNN defined as (7) is
SFTB. □

Remark 1. Consider the following error system from the
MJNN defined as (7), with w(t) � 0 and without MJ
parameters:

_e(t) � − (A + KC)e(t) − KDe(x(t − δ(t)))

+ Bf(e(t)) + Bdf(e(t − δ(t))).
(54)

Corollary 2. Given scalars δ and μ, the error system (54) with
w(t) � 0 is said to be stable if there exist feasible matrices
Pi > 0, Qs > 0, Ws > 0 (s � 1, 2, 3), Ut > 0, Uu > 0, and N,
where Pi, Qs, and Ws are symmetric PD, and Ut > 0 and
Uu > 0 are diagonal, such that the following inequality holds:

Ψ � ψi,j􏽨 􏽩8×8< 0, (55)

where

ψ11 � Q1 + Q2 + δW1 − 9W2 − δW3 −
δ
2

4
w3 − MtUt − NA − AT

N
T

− LC − CT
L

T
,ψ12 � LD,

ψ13 � 3W2,ψ14 � 2P − N − AT
N

T
− CT

L
T
,ψ15 � 36W2 + δW3 +

δ
2
W3,ψ16 � − 2W2 −

3
2
W3,

ψ17 � MuUt + NB,ψ18 � NBdi,ψ22 � − (1 − μ)Q1 − MtUu,ψ23 � 0,ψ24 � DT
L

T
,ψ25 � 0,

ψ26 � 0,ψ27 � 0,ψ28 � MuUu,ψ33 � − Q2 − 9W2,ψ34 � 0,ψ35 � − 30W2,ψ36 � − 5W2,ψ37 � 0,

ψ38 � 0,ψ44 � δW2 +
δ4

4
W2 − N − N

T
,ψ45 � 0,ψ46 � 0,ψ47 � NB,ψ48 � NBdi,

ψ55 � −
1
δ
W1 −

3
δ
W1 − 192W2 − 2W3,ψ56 �

6

δ
2W1 − 30W2 +

3
δ
W3,ψ57 � 0,ψ58 � 0,

ψ66 � −
12

δ
3W1 − 5W2 −

9

δ
2W3,ψ67 � 0,ψ68 � 0,ψ77 � Q3 − Ut,ψ78 � 0,ψ88 � − Q3 − Uu.

(56)

Proof. Following similar ideas as in the proof of )eorem 1.
)e proof is omitted for brevity. □

Remark 2. Consider a NN from the MJNN defined as (7)
with C � 0, D � 0, w(t) � 0, and no MJ parameters:

_e(t) � − Ae(t) + Bf(e(t)) + Bdf(e(t − δ(t))). (57)

Corollary 3. Given scalars δ and μ, the error system (57) with
w(t) � 0 is said to be stable if there exist feasible matrices
Pi > 0, Qs > 0, Ws > 0 (s � 1, 2, 3), Ut > 0, Uu > 0, and N,
where Pi, Qs, and Ws are symmetric PD, and Ut > 0 and
Uu > 0 are diagonal, such that the following inequality holds:

􏽥Ψ � 􏽥ψi,j􏽨 􏽩8×8< 0, (58)
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where

􏽥ψ11 � Q1 + Q2 + δW1 − 9W2 − δW3 −
δ
2

4
w3 − MtUt − NA − AT

N
T
, 􏽥ψ12 � 0, 􏽥ψ13 � 3W2,

􏽥ψ14 � 2P − N − AT
N

T
, 􏽥ψ15 � 36W2 + δW3 +

δ
2
W3, 􏽥ψ16 � − 2W2 −

3
2
W3, 􏽥ψ17 � MuUt + NB,

􏽥ψ18 � NBdi,ψ22 � − (1 − μ)Q1 − MtUu, 􏽥ψ23 � 0, 􏽥ψ24 � 0, 􏽥ψ25 � 0, 􏽥ψ26 � 0, 􏽥ψ27 � 0, 􏽥ψ28 � MuUu,

􏽥ψ33 � − Q2 − 9W2, 􏽥ψ34 � 0, 􏽥ψ35 � − 30W2, 􏽥ψ36 � − 5W2, 􏽥ψ37 � 0, 􏽥ψ38 � 0,

􏽥ψ44 � δW2 +
δ
4

4
W2 − N − N

T
, 􏽥ψ45 � 0, 􏽥ψ46 � 0, 􏽥ψ47 � NB, 􏽥ψ48 � NBdi,

􏽥ψ55 � −
1
δ
W1 −

3
δ
W1 − 192W2 − 2W3, 􏽥ψ56 �

6

δ2
W1 − 30W2 +

3
δ
W3, 􏽥ψ57 � 0, 􏽥ψ58 � 0,

􏽥ψ66 � −
12

δ
3W1 − 5W2 −

9

δ
2W3, 􏽥ψ67 � 0, 􏽥ψ68 � 0, 􏽥ψ77 � Q3 − Ut, 􏽥ψ78 � 0, 􏽥ψ88 � − Q3 − Uu.

(59)

Proof. It can be proved in a similar way to )eorem 1. )e
proof is omitted for brevity. □

Remark 3. )e stability analysis of time-delay systems can
be classified into two categories, i.e., delay-dependent sta-
bility criteria and delay-independent ones. Also, it is well
known that delay-dependent stability criteria, which use the
information on the size of time delays, are less conservative
than delay-independent ones. )us, more attention has been
paid to the derivation of delay-dependent stability criteria
for time-delay systems.

Remark 4. It is important to note that some pioneering
works have been done on finite-time H∞ state estimation for
Markovian jump neural networks based on interval time-
varying delay with simple LKF techniques. In [29], the
authors studied finite-time boundedness for Markovian
jump neural networks with L2 gain analysis. Authors in [26]
formulated finite-time stabilization of uncertain neural
networks. Exponential state estimation problem has been
designed for Markovian jumping neural networks in [18].
)e model consider in this present study is more practical
than that proposed by [18, 26, 29], whereas in this paper, we
consider finite-time H∞ state estimation problem with the
combination of Markovian jump neural networks’ interval
time-varying delay model, which is another advantage.
However, the authors in [18, 26, 29] used some simple
techniques in LKFs to solve the stability problems to those

articles. A new LKF with double and triple integral terms and
utilizing extended Writnger’s integral inequality (EWII)
techniques has been proposed for the stochastically finite-
time bounded analysis of Markovian jump system in this
paper. Consider that some less conservative results can occur
in our method and can be provided in the numerical ex-
ample section with real-life examples. Hence, the results
presented in this paper are essentially new.

Remark 5. Typically, finite time stability with H∞ control,
state estimation approach, and interval time-varying delay is
not simply applied to Markovian jump neural networks.
Some research publications have handled such issues
[17, 18, 26, 29]. As it is, the author utilized some elementary
LKFs to deal with the stability problems in those articles.
Novel LKF with EWII has been proposed; in addition, the
developed stochastic stability criteria tested for feasibility of
the benchmark problem to explore the real-world applica-
tion in this paper. However, the desired control was com-
pletely studied for the considered neural network model
with the real-world application problem (e.g., four-tank
pumping system and network circuit), which is the principle
commitment and inspiration of our work.

4. Numerical Examples

)is section shows our results through some numerical
examples onMJNNs with 2 operation modes to demonstrate
the effectiveness of the proposed approach.

10 Mathematical Problems in Engineering
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Example 1. Consider anMJNNs withMJ parameters (i � 2):

A1 �
3 0
0 3

􏼢 􏼣,B1 �
− 0.7 0.3
0.6 − 0.8

􏼢 􏼣,Bd1 �
0.8 0
0.2 0.4

􏼢 􏼣,E11 �
0.1 0.9

− 0.6 0.2
􏼢 􏼣,

C1 �
0.4 0.8

− 0.7 0.2
􏼢 􏼣,D1 �

− 0.4 0
0 − 0.2

􏼢 􏼣,E21 �
0.4 0.6
0 0.8

􏼢 􏼣,G1 �
0.3 0
0.2 0.4

􏼢 􏼣,

A2 �
2.5 0
0 2.5

􏼢 􏼣,B2 �
− 0.5 0.2
0.4 − 0.5

􏼢 􏼣,Bd2 �
0.8 0
0.2 0.4

􏼢 􏼣,E12 �
0.07 0.8
− 0.5 0.1

􏼢 􏼣,

C2 �
0.5 0.7

− 0.8 0.1
􏼢 􏼣,D2 �

− 0.6 0
0 − 0.24

􏼢 􏼣,E22 �
0.4 0.6
0 0.8

􏼢 􏼣,G2 �
0.2 0
0.1 0.2

􏼢 􏼣,

π �
4 − 4

− 3 3
􏼢 􏼣, δ � 2.5, μ � 0.3, d � 0.02, T � 5, c1 � 1, c2 � 4, α � 0.0002.

(60)

)e activation functions are given as
Mt � diag 0, 0{ } andMu � diag 1, 1{ }. By solving the LMIs in
)eorem 2, we can obtain a feasible solution:

P1 �
180.9128 184.5018
184.5018 198.2708

􏼢 􏼣, P2 �
191.9509 182.5133
182.5133 179.4404

􏼢 􏼣, Q1 �
70.8390 21.9994
21.9994 15.5734

􏼢 􏼣,

Q2 �
2.4863 2.4205
2.4205 3.2684

􏼢 􏼣, Q3 �
27.3140 19.0082
19.0082 14.7271

􏼢 􏼣, W1 �
1.7407 1.5347
1.5347 1.9210

􏼢 􏼣,

W2 �
0.1952 0.1575
0.1575 0.1754

􏼢 􏼣, W3 �
0.0496 0.0350
0.0350 0.0324

􏼢 􏼣.

(61)

)en, we obtain state estimator gain matrices as

K1 �
2.8449 1.1379

− 1.6262 − 0.6468
􏼢 􏼣, K2 �

2.2627 0.9719

− 1.1607 − 0.4569
􏼢 􏼣.

(62)

)us, the system is SFTB with the external disturbance
c � 0.90.

To demonstrate the capability of the proposed approach,
we show the effectiveness of the theoretical results, as shown
in Figures 1–4 . Figure 1 demonstrates the MJ mode rt.

Figures 2 and 3 show the behaviors of the error system and
state estimation of the error system, respectively. Figure 4
illustrates that the state x(t) of the system converges to zero.
Furthermore, the superiority of our theoretical results is
demonstrated through the simulation result of xT(t)Rx(t)

in Figures 5 and 6. )erefore, the proposed MJNN (7) is
STFB.

Example 2. Consider the NN (57) with the following
parameters:

A �

1.2769 0 0 0

0 0.6231 0 0

0 0 0.9230 0

0 0 0 0.4480

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,B �

− 0.0373 0.4852 − 0.3351 0.2336

− 1.6033 0.5988 − 0.3224 1.2352

0.3394 − 0.0860 − 0.3824 − 0.5785

− 0.1311 0.3253 − 0.9534 − 0.5015

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bd �

0.8674 − 1.2405 − 0.5325 0.0220

0.0474 − 0.9164 0.0360 0.9816

1.8495 2.6117 − 0.3788 0.8428

− 2.0413 0.5179 1.1734 − 0.2775

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Mt � diag 0, 0, 0, 0{ }, Mu � diag 0.1137, 0.1279, 0.7994, 0.2368{ }.

(63)
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Figure 2: Estimation errors e1(t) and e2(t).
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Figure 1: Markovian jumping mode.
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Figure 3: e(t) and its estimation.
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Figure 4: State trajectories of the system.
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)is example shows a comparison of the conservative-
ness in the stability condition concerning the results in
[36–38]. )e maximum allowable delay bound (MADB) of δ
for various μ can be calculated using the MATLAB LMI
toolbox. )e MADBs of δ for some values of μ in Example 2
are summarized in Table 1. We found that the outcomes of

our proposed method produced better results than the
previous research [36–38].

Example 3. Consider the NN (57) with the following
parameters:

A �
2 0

0 3.5
􏼢 􏼣,B �

− 1 0.5

0.5 − 1
􏼢 􏼣,Bd �

− 0.5 0.5

0.5 0.5
􏼢 􏼣, Mt �

0 0

0 0
􏼢 􏼣, Mu �

1 0

0 1
􏼢 􏼣. (64)

For some values of μ, the MADBs of δ are obtained and
summarized in Table 2. We compare these results with those
of previous studies [36, 39, 40]. As shown in Table 2, the
MADB are larger than those obtained from [36, 39, 40]. It
shows the superiority that the proposed stability criterion is
less conservative than the previous works.

Remark 6. We calculated upper bounds with different delta,
and they are listed in Tables 1 and 2. We provide

comparisons with the results obtained in previous studies to
show the improvements obtained by our proposed method.

Example 4. )e NNs have similar characteristics to the
neurons in a biological organism, leading to the nervous
system.)e NNs can represent not only the nervous systems
with neurons but also the engineering systems such as the
four-tank water pumping system, as shown in Figure 7. )e
four-tank water pumping system is equipped with 2 water

c2

c1

2 4 6 8 10 12 14 16 18 200

Time, t

0

1

2

3

4

5

6

7

8

9

10

xT 
(t)

 R
x 

(t)

Figure 5: State trajectories of xT(T)Rx(t).
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Figure 6: Evolution of xT(T)Rx(t).
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pumps and 4 interconnected tanks with two valves. Voltage
]1 and ]2 are two input processes of two supplying pumps.
)e four-tank water pumping system can be modeled as a
neural network model. Previous studies in [41–43] suggested
the state-space equations of this four-tank system which is
an application of the neural networks. State feedback con-
troller modeled as follows:

_􏽢x(t) � 􏽢A0(􏽢x(t)) + 􏽢A1 􏽢x t − δ1( 􏼁( 􏼁 + 􏽢B0 􏽢u t − δ2( 􏼁( 􏼁

+ 􏽢B1 􏽢u t − δ3( 􏼁( 􏼁,
(65)

where

􏽢A0 �

− 0.0021 0 0 0

0 − 0.0021 0 0

0 0 − 0.0424 0

0 0 0 − 0.0424

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 􏽢A1

􏽢B0 �
0.1113c1 0 0 0

0 0.1042 1 − c2( 􏼁 0 0
􏼢 􏼣, 􏽢B1 �

0 0 0 0.1113 1 − c1( 􏼁

0 0 0.1042 1 − c2( 􏼁 0
􏼢 􏼣,

c1 � 0.333, c2 � 0.307, 􏽢u � 􏽢K􏽢x(t), 􏽢K �
− 0.1609 − 0.1765 − 0.0795 − 0.2073

− 0.1977 − 0.1579 − 0.2288 − 0.0772
􏼢 􏼣.

(66)

Another control problem of our interests is obtained by
adding transport delays δ(t) through delaying the inlet of
incoming water into the tanks. Hence, the proposed ap-
proach has been used to study this problem here. Time-
varying transport delays between valves and tanks have also
been considered in the previous works, but they have not
been considered the following aspects. For simplicity, it was
assumed that δ1 � 0, δ2 � 0, and δ3 � δ(t) (since δ(t)≤ δ). In
this example, the control input 􏽢u(t) indicates the amount of
water pumped.)erefore, it is naturally a nonlinear function
and can be written as follows:

􏽢u(t) � 􏽢K􏽢f(􏽢x(t)),

f
⌢

(􏽢x(t)) � 􏽢f1 􏽢x1(t)( 􏼁, . . . ., 􏽢f4 􏽢x4(t)( 􏼁􏽨 􏽩
T
,

f
⌢

i 􏽢xi(t)( 􏼁 � 0.1 􏽢xi(t) + 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 􏽢xi(t) − 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑,

i � 1, 2, . . . , 4.

(67)

)e four-tank system (65) can be rewritten to the form of
system (57) with 􏽢K � 1 as follows:

_e(t) � − Ae(t) + Bf(e(t)) + Bdf(e(t − δ(t))), (68)

whereA � 􏽢A0 − 􏽢A1, B � 􏽢B0
􏽢K, Bd � 􏽢B1

􏽢K, and f(·) � 􏽢f(·). In
addition, Mt � diag 0, 0, 0, 0{ } and Mu � diag 0.1, 0.1, 0.1,{

0.1} with δ � 6.5 and μ � 0.5. Using MATLAB LMI toolbox
and solving the inequalities in Corollary 2, we are able to
obtain feasible solution, which lead to a conclusion that
FTPS (68) is stable.

Example 5. A continuous-time artificial NN containing n

units can be described as the following well-known differ-
ential equations in [44]:

dei(t)

dt
� −

ei(t)

RiCi

+ 􏽘
n

j�1
Wijyj(t) + ui(t), yi(t) � fi ei(t)( 􏼁.

⎧⎨

⎩

(69)

Table 1: )e maximum delay upper bounds δ for given μ in Example 2.

Method 0.5 0.8 0.9
[36] 3.6954 2.7711 2.5795
[37] 3.8709 3.3442 3.1291
[38] 4.2749 3.1993 2.9504
Corollary 3 4.5008 3.8621 3.5402

Table 2: )e maximum allowable delay upper bounds δ for given μ in Example 3.

Method 0.8 0.9
[36] 0.8784 0.8484
[39] 0.8841 0.8570
[40] 0.9631 0.9324
Corollary 3 1.3680 1.1035
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)is nonlinear system is implemented by a simple re-
sistance-capacitance (RC) network circuit. It is shown in
Figure 8, where ui � ei and Vi � fi(ei(t)) are input and
output voltage of the ith amplifier, where Vi and − Vi are two
output terminals of the ith amplifier, and the value Ri is
defined as

1
Ri

�
1
σi

+ 􏽘
n

j�1

1
Rij

,

Wij �

+
1

Rij

, Rij is connected toVj,

−
1

Rij

, Rij is connected to − Vj.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(70)

)us, nonlinear system (69) can be rewritten in the
following form:

_e(t) � − Ae(t) + Bf(e(t)) + Bdu, (71)

with

A �

1
R1C1

0 · · · 0

0
1

R2C2
· · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · ·
1

RnCn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,B �

W11

C1

W12

C1
· · ·

W1n

C1

W21

C2

1
W21/C2

· · ·
W2n

C2

⋮ ⋮ ⋱ ⋮

Wn1

Cn

0 · · ·
Wnn

Cn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,Bd �

1
C1

0 · · · 0

0
1

C2
· · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · ·
1

Cn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (72)

Y1 Y2

Pump
U1

h1
h2

Pump
U2

h4h3

Tank 1

Tank 3 Tank 4

Tank 2

Figure 7: Schematic representation of the four-tank water pumping system.
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)eproductRiCi � δi, i � 1, 2, . . . , n, is called as the time
constant of the ith neuron. An identical time constant for
each neuron would require, that is, Ci � C and Ri � R, for all
i. In this case, every individual value for δi would have to be
chosen in a way that compensates for Ci and Ri. It is im-
portant to note that the time constant δi describes the
convergence of the neural state ei of the ith neuron. Because
of the high-level gain of the transfer function, the output Vi

might be saturated very fast. )us, even if the state ei is still
far from reaching its equilibrium point, the output Vi might
already be saturated, and by observing only Vi, it might
appear as if the circuit had converged in merely a fraction of
the time constant δi.

Consider the delayed neural networks (71) with the
following parameters: n � 2, C1 � C2 � R1 � R2 � w11 � 1,

w22 � − 1, w12 � 1.5, w21 � − 1.5, and s1 � s2 � 0. )e neural
network equations are, therefore, described as

de1(t)

dt
� − e1(t) + f e1(t)( 􏼁 + 1.5f e2(t)( 􏼁,

de2(t)

dt
� − e2(t) − 1.5f e2(t)( 􏼁 − f e2(t)( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(73)

and f(e(t)) � [f1(e1(t)) . . . fn(en(t))]T ∈ Rn, which
satisfy

l
−
a ≤

fa x1( 􏼁 − fa x2( 􏼁

x1 − x2
≤ l

+
a , ∀x1, x2 ∈ R, x1 ≠x2, (74)

We can choose the value f(ek(t)) � tanh e(t), which
implies l1 � 0 and l2 � 0.5I, and we now apply Corollary 3 to
system (71) by choosing μ � 0.5 and δ � 0 and Bd � 0. )en,
we can get (58) is feasible. Figure 9 shows the state responses
of the system with the interval [1, − 0.5]T. )us, the neural
network (71) is asymptotically stable.

5. Conclusion

Herein, we studied the SFTB of MJNNs with time-varying
delays. Using an LKF with Wirtinger’s integral inequalities,
a sufficient condition was derived such that the MJNNs
were SFTB and satisfied a prescribed level of H∞ distur-
bance attenuation in a finite-time interval. We illustrated
the effectiveness of our main results with five numerical
examples. We also compared to show that our results are
less conservative than some existing ones. Future works
focus on the discrete versions of these inequalities and their
applications. [45–47].
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