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A B S T R A C T

Navigation safety has been a critical guarantee of global shipping, and it becomes more challenging given the
increasing employment of advanced technologies and novel ship design in the era of Maritime Autonomous
Surface Ships (MASS). The human-centred risk analysis of human-machine cooperation is scarce in general and
emerging in maritime transport in specific. This paper aims to develop a new approach enabling the analysis of
significant risk influencing factors (RIFs) in human-machine cooperation through an in-depth investigation of the
occurred mistakes and violations in the cooperative operations of seafarers and machines in maritime transport.
Its novelties consist of (1) a novel approach to analysing and quantifying the connectivity between humans and
machines in safety-critical operations, (2) new integration of the frequency and impact of RIFs in the human-
machine cooperation model, and (3) ultilisation of graph theory to generate a network to analyse critical
human-machine RIFs and their interactions with the system. The connectivity analysis of RIFs is conducted
through a weighted undirected network, showing the features of RIF connectivity accommodating the closed-
loop system. The proposed novel approach, which combines the frequency and impact features to identify
critical RIFs and analyses graphical features, will aid to realise the human-centred risk analysis for MASS. The
findings make contributions for ship designers to rationalise the clustering design of function-based automation
and training organisations to improve seafarer skills by rationally considering the identified risk-based human-
machine cooperation features, and providing new competence schemes that can fit the demands of MASS in
future.

1. Introduction

By January 2023, the global fleet comprised 105,493 vessels
weighing 100 gross tons or more, and international trade volume
reached 12,027 million tons in 2022, highlighting its crucial role in
global transportation [63]. Navigation safety has been a significant
guarantee of global shipping, however, the introduction of advanced
technologies and novel ship design in the era of Maritime Autonomous
Surface Ships (MASS) demands new studies on human’s role in navi-
gation safety. Although there are several aspects associated with navi-
gation safety, including humans, vessels, environment, and
organisation, the interactions between humans and machines are among
the most prominent due to the increasingly popular evaluation of
human-machine interface (HMI) and human-machine cooperation [24,
36,42]. Their dynamic interaction process in a system is often tested
using simulation, and the causal relationship is investigated through risk

analysis models [36,43]. So far, current state-of-the-art methods have
failed to demonstrate quantified risk levels of entire systems in terms of
dynamic changes among system elements and human competencies. It is
therefore essential to understand, analyse and quantify the hidden
intercommunication mechanism between humans and machines. The
connectivity patterns among risk factors in human-machine systems
have yet to be harnessed and the principle of utilising identified features
to enhance system performance from a human-centred perspective re-
mains unclear, wanting a new solution to be found. Within this context,
this study aims to identify and analyse critical risk influencing factors
(RIFs) in human-machine systems, through the development of a new
framework of risk-based human-machine cooperation feature configu-
ration, to realise function-based seafarer competency training and to
pioneer human-centred design for human-autonomy systems in mari-
time operations.

The shipping industry has faced a transformation from working on
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conventional ships to navigation with contemporary ships with high
levels of automation, digitalisation, and decarbonisation, where human-
machine cooperation can be seen in various autonomous assistance
systems. To be specific, the MASS innovation has been assessed using the
Technology Adoption model, proving the significance of human capital
and its necessity to be considered in relevant studies and future policy
[28]. To maintain safe operations, the focus has to be given to the
process of humans manipulating machines, e.g., cooperation between
humans and machines. Furthermore, emerging of the MASS featured
with different autonomy levels of ships, has attracted industrial concerns
about safe and reliable operations during various types of interactions
between human operators and automation sub-systems [18]. Therefore,
understanding the cooperation between humans and machines is pivotal
for ensuring safe navigation for contemporary vessels. Previous studies
on HMI mainly investigate the effects of system design and interfaces on
human performance, contributing to function design and validation
from a machinery perspective [8]. However, the input and output of
machine systems connecting with human competencies have not been
addressed. Specifically, the human-centred analysis of significant RIFs in
human-machine cooperation is scarce. Thus, proposing a systematic
analysis framework of human-machine systems from a human
perspective will reveal risk features of the system and the interaction
among RIFs, providing insights into maritime training and ship design.
Therefore, this paper investigates the significant RIFs in human-machine
cooperation, mainly represented by mistakes and violations in the
cooperative operations of seafarers and machines in maritime
transportation.

The human-machine cooperation can be investigated through two
aspects, one is the machine-centred analysis of a system to achieve ex-
pected functions from a micro perspective, which can be validated
through simulation and experiment; the other is the human-centred
aspect to model the human-machine interactions from a systematic
perspective. This study mainly focuses on the latter aspect by proposing
a novel approach to investigating risk-based RIF connectivity among
deficiencies in human-machine systems. Consequently, seafarer com-
petencies in maritime systems are analysed to address RIFs and their
associations with machine sub-systems through a historical accident-
driven approach.

This study pioneers a novel approach to analysing connectivity be-
tween humans and machines considering their frequency and impact
features in safety-critical operations. Through a graph-based approach, a
weighted undirected network model is developed to identify critical
human-machine RIFs consisting of human competencies and machinery
elements with specific functions. A weighted undirected network is
employed because it allows for weighted evaluations between seafarer
competencies that do not reveal single directional influence. Then, ac-
cidents occurring in restricted waters are selected from a global
perspective to generate the database, serving as a case study to
demonstrate how frequently an RIF happens and the extent to which
each RIF impacts accidents. The choice of restricted waters lies in the
higher level of human involvement in the accidents [24]. Highlighted
RIFs with diverse graph theoretical features in human-machine coop-
eration are identified and analysed as a benchmark, revealing implica-
tions in terms of future ship automation and seafarer training in the
investigated waters and beyond towards regions of other risk features.

The rest of the paper is structured as follows. The literature review of
human factors in maritime safety and their interdependency analysis
model is conducted in Section 2. Next, Section 3 proposes the method-
ology of human-machine cooperation analysis involving human com-
petencies and machine sub-systems. Section 4 examines the proposed
approach by analysing accident data from restricted waters from a
global perspective, followed by implications. Finally, Section 5 con-
cludes the paper.

2. Literature review

2.1. Human factors in maritime transport

Human factors in maritime transport have been investigated to
identify critical RIFs and their association with maritime operations
through various approaches and models. Typically, a data-driven
Bayesian network (BN) was utilised to model the interdependency
among the RIFs and causational analysis in terms of different maritime
accident types [23]. This methodology was also applied to analyse port
hazardous cargo accidents, revealing predominant safety issues, inade-
quate supervision, intellectual issues, and violations [39]. Targeting
specific waterways, such as Three Gorges Reservoir, investigations were
conducted to analyse grounding accidents using the BN [37]. To eval-
uate the performance of a seafarer prior to his designation, the BN
enabled to quantify their performance reduction resulting from insuffi-
cient recuperative rest [55].

Moreover, BN was integrated with other methods to offer rational
strategies for maritime management and accident prevention. To be
specific, the BN and Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS) were utilised with statistical methods to select
the best-fit strategies for maritime accident prevention [15,27]. To
improve the robustness of the data-driven BN, the least absolute
shrinkage and selection operator (LASSO) algorithm was integrated to
optimise the feature selection process [26]. Taking advantage of the
classification capability of the Technique for Retrospective and Predic-
tive Analysis of Cognitive Errors (TRACEr) [30], it was combined with
the BN to assess human errors in collision risks with a focus on
human-centred design [60]. The utilisation of a Functional Resonance
Analysis Method (FRAM) and Dynamic Bayesian Network (DBN)
enabled ship pilotage operation analysis, identifying inadequate human
look-out as the most influential factor [32]. Furthermore, the BN can be
integrated with the Human Factor Analysis and Classification System
(HFACS) to facilitate qualitative and quantitative modelling in maritime
transport and analyse the potential errors and violations of seafarers
[64]. The study on the effects of human fatigue on maritime groundings
revealed that vessel certifications, manning resources, and quality con-
trol were critical factors related to fatigue management aspects [3].
Additionally, other data-driven methods have been utilised to analyse
important human factors in maritime accidents, for instance, Random
Forests (RF) and Multiclass Support Vector Machines with Boolean
Kernels (MSVM-BK) [19]. A graphical network model was introduced to
represent imprecise probabilistic inference in ship collision accidents,
demonstrating the important role of human and organisational factors
(HOFs), and that the relative bearing, TCPA, and presence of other ships,
influenced the ship collision probability [17].

In the context of a comprehensive systematic framework, the HFACS
has been important and popular in maritime accident investigations
[14]. It provides a hierarchical relationship among unsafe acts,
pre-conditions, unsafe supervision, and organizational influences, which
explains the occurrence of accidents at different levels [10]. In addition,
it demonstrates descriptive information on errors and violations when
operators manipulate devices and equipment, explaining the process of
human-machine interaction in maritime transport. When the HFACS
was used with BN, the risk factors including human-machine coopera-
tion affecting allision accidents can be analysed during port manoeuvres
[9]. Integrated with the Analytical Network Process (ANP), it provided
advantages of weighing accident causes to cargo ships [4]. Combined
with the Success Likelihood Index Method (SLIM), the HFACS was used
to calculate seafarers’ errors in maritime pilot transfer operations [7]. In
terms of different types of vessels, such as passenger vessels, the
framework was modified with analytical methods to analyse HOFs [68].
In addition, another systematic approach, i.e., the Systems Theoretic
Process Analysis (STPA), was applied to analyse hazards in inland pas-
senger ship operations, which delivered the identified Unsafe Control
Actions (UCA) in a ship bridge and highlighted the human factor as the
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most contributory one [62].
To reduce human errors, several approaches have been utilised in

maritime operations to calculate human error probability (HEP). The
Cognitive Reliability and Error Analysis Method (CREAM) model was
widely used to quantify human reliability analysis [6]. It can be inte-
grated with Event Tree Analysis (ETA) - Fault Tree Analysis (FTA) to
conduct qualitative and quantitative analyses of human-related and
non-human-related events [53]. Through the use of Evidential
Reasoning (ER) and Decision Making Trial and Evaluation Laboratory
(DEMATEL), the CREAM enabled the calculation of HEP so as to provide
suggestions to reduce human errors [66]. Moreover, the Success Like-
lihood Index Method (SLIM) was extended with fuzzy logic for the
Ballast Water Treatment (BWT) system in the ship to calculate HEP [5].
Integrating with FTA, the SLIM was used to investigate container loss
risks, showing that safety culture, experience, and fatigue were highly
influential factors affecting crew performance [21]. Because human
factors are primary causes of marine oil spill pollution [16], the SLIM
can be used to calculate the HEP of bunkering operations, and the results
helped prevent ship-based oil spills [38].

Several critical human factors and relevant scenarios are highlighted
in maritime transportation. The situational awareness (SA) errors in
collisions were identified using Endsley’s model and analysed to
represent associations with contributing factors for duty officers, iden-
tifying significant collision causes including inadequate operation
planning, inadequate bridge design, insufficient training, communica-
tion failures, and distracting elements [58]. The identification of SA
information requirements of navigators could also be achieved through
an interview using Goal-Directed Task Analysis (GDTA) [59]. Regarding
fatigue factors in the maritime field, it was evident that fatigue was a
critical human factor [26] and positively correlated with mental work-
load, especially in the night shift among Vessel Traffic Services (VTS)
[47,48].

Recently, the significance of human-centred research in MASS has
arisen [29,41]. A navigational risk framework consisting of human, ship,
environment, and technology aspects was proposed for remotely
controlled crewless ships, which assisted in the design process and
operational planning of remote-control centres [22]. The grey and fuzzy
theories were utilised to investigate the decision-making prioritisation
for autonomous ship manoeuvring [67]. Also, a neurophysiological
approach has been adopted to analyse and validate maritime safety
systems [25]. For instance, the electroencephalographic (EEG) was
utilised to validate the Human Risk-Informed Design (HURID) frame-
work, showing a statistically significant lower mental workload and
stress, and higher attention while performing critical shipboard tasks
with the HURID [56]. The psychology questionnaire was utilised to
analyse the personality and aggression levels of seafarers, proving the
resilient personality among master mariners and 33% of the students
with overcontrolling personalities [44]. A notable correlation was
discovered between crew burnout and job satisfaction levels and fatigue
[20].

However, current research on calculating the HEP overlooked the
impact of RIFs, leaving a significant research gap in RIF assessment in
maritime transport. Without considering the impact of each RIF, it is
impossible to clarify risk levels of maritime transport given some RIFs
with a low frequency in overall accidents but a high impact (i.e.,
repeated occurrence) in a single accident.

2.2. Human-machine cooperation in the maritime field

Given new technologies in the era of MASS, there are some studies on
human-machine cooperation in the maritime field. Instead of merely
replacing human work, the evolving human-in-the-loop configurations
necessitated the creation of new roles and the redefinition of existing
expertise to assess maritime operations and meet systematic re-
quirements and changes [31,52]. To develop the dynamic analysis for
the HMI function design, the Information, Decision, and Action in Crew

Context (IDAC) model was combined with the simulation system to
avoid human errors in the interaction [34].

Classical models and approaches to human factor studies for con-
ventional ships can be used for human-machine cooperation. Technique
for Human Error Rate Prediction (THERP) and BNmodel were utilised to
calculate HEP focusing on human-autonomy collaboration, which pro-
vided suggestions for the Shore Control Centre (SCC) construction and
operator training [70]. The Success Likelihood Index Method (SLIM)
was combined with an interval type-2 fuzzy sets (IT2FSs) approach to
predicting operational errors based on the human-machine interface
(HMI) in autonomous ships, where the IT2FSs tackled the
decision-making uncertainty and SLIM handled HMI errors [43]. The
SLIM was also integrated with STPA to calculate the HEP in HMI,
proving the importance of human performance in the interaction among
humans, machines, and software [2]. The risk appetite-oriented colli-
sion avoidance decision-making system (RA-CADMS) was proposed
utilising human-machine interaction principles to facilitate automatic
ship collision avoidance for MASS under remote control [65]. Moreover,
the framework of an HMI-oriented Collision Avoidance System (HMI--
CAS) was developed to enable automatic collision avoidance and share
the decision-making with human operators to take control when
necessary, which was validated through simulation [36]. An ETA
method was used to evaluate the seafarer’s performance in the
human-machine relationship, showing that additional alarms prevented
further deterioration in fault recognition [13].

Considering complex interactions among humans, machines, and
software, the Systems Theoretic Accident Model and Process (STAMP)
model was used to analyse ship allision accidents in narrow waters,
identifying violations of safety constraints at control structures [12]. It
addressed the features of system-based, dynamic, and complex situa-
tions, but did not demonstrate the connection degree of the identified
causes. Aiming at complex human-machine technical systems, the STPA
and Markov chain (MC) methods were used to simulate interactions and
reveal the characteristics of risks during ship navigation [40]. The re-
sults showed the significant role of external environmental disturbances
in terms of randomness and complexity. However, the issue of how the
disturbance dynamically interacts with other elements in the
human-machine system has not been revealed. With regards to the SA
evaluation, the head-down time of navigators was measured to illustrate
the human and machine interaction and effects of augmented reality
(AR), which showed the use of AR significantly reduced head-down time
and occurrences but did not improve mean SA [35]. To illustrate SA
requirements for human supervisors in collision avoidance, a
goal-directed task analysis was conducted to find increased cognitive
activities in human autonomy tasks and the significance of transparency
for a safe and effective system [46]. Another instance of human-machine
collaboration was evident in cyber-physical systems (CPSs) through
safety and security analysis, which incorporated information technolo-
gies into control frameworks and modified interactions between auto-
mation and human operators [33].

Although human-machine cooperation in the maritime field is still in
its infancy, other sectors with higher levels of automation, such as the
road sector, witness more quantitative approaches to human factor
investigation and help define specific metrics [51]. In order to design
automated vehicles, automation-related accidents in transport modes
(aviation, maritime, and rail) were investigated using the AcciMap
technique and network metrics [54]. Similarly, human-machine coop-
eration in the maritime field can learn lessons from others. To evaluate
the seafarer competencies and their interactions with machines, a dy-
namic model in shipping was developed referring to Crew Resource
Management (CRM) and the International Convention on Standards of
Training, Certification and Watchkeeping for Seafarers (STCW), to
qualitatively analyse seafarer competencies in a closed-loop mode [24].

Previous studies on HMI evaluation and systematic risk analysis of
human-machine cooperation neither address the association between
seafarer competencies and machine systems, nor quantify the effects of
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such RIFs on system safety. Therefore, it is urgent to deploy a novel
approach to uncovering the interaction among systematic RIFs in
human-machine cooperation. This study pioneers a graphical method-
ology to reveal the RIF connectivity of seafarer competencies in human-
machine systems through a human-centred risk analysis.

2.3. New contributions

This study proposes a new methodology to analyse human-machine
cooperation in maritime transport from a human-centred perspective,
utilising graph theory to address critical RIFs through a data-driven
approach. Although targeting maritime transport systems, the new
framework is generic in nature and hence can be adopted to analyse HMI
and human-machine cooperation of other systems involving automation
and autonomy. More specifically, its novelties and contributions consist
of:

• Proposing a novel approach to analysing connectivity between
humans and machines in safety-critical operations through historical
accident data.

• Pioneering the integration of the frequency and impact of seafarer
competencies in the human-machine cooperation model.

• Utilising graph theory to generate a network to analyse critical
human-machine Risk Influential Factors (RIFs) and their interactions
with the system.

• Generating insights into enhancing human-machine cooperation in
terms of Maritime Autonomous Surface Ships (MASS).

The study reveals the significance of RIFs in dynamic human-
machine cooperation and their graphical features in maritime trans-
port. The proposed novel approach that combines, for the first time, the
frequency and impact features of seafarer competencies to identify
critical RIFs and evaluate their graphical implications will pioneer the
human-centred risk analysis in connectivity analysis between humans

and machines in the maritime field. It can help ship designers rationalise
the clustering design of module-based automation with optimised dis-
plays and seafarer training organisations to enhance seafarer compe-
tencies in human-machine cooperation tasks, providing insights into
future development of MASS.

3. A graph-based approach for human-machine cooperation
analysis

To analyse the risk level of the human-machine system, a graph-
based approach is utilised, as illustrated in Fig. 1. First, the RIFs from
seafarer competencies and other elements in systems are identified
through the STCW code and literature review. Subsequently, a human-
machine cooperation model is constructed using a closed-loop struc-
ture. Then, the graph-based approach is proposed to generate a con-
nectivity matrix, followed by the creation of a weighted undirected
network. At last, network features are calculated using graph theory to
illustrate the risk level of human-machine cooperation.

3.1. Seafarer competency identification

To investigate human-machine cooperation in maritime operations,
one needs to analyse two main components in the process, i.e., humans
and machines. By reviewing international codes and literature, the
human-related components were represented by seafarer competencies
involving human and organisational factors. They were identified based
on the competence requirement outlined for officers in STCW Code
Table A-II/1, and for crisis management for senior officers as detailed in
STCW Code Table A–V/2. The STCW Code Tables are mandatory, rep-
resenting the minimum standards of competence requirement for sea-
farers, which are used in maritime professional training. Referring to
CRM in aviation [45] and Bridge Resource Management (BRM) in the
maritime sector [61], seafarer competencies within the human-machine
system are outlined in Table 1. The phases of input, process, output, and

Fig. 1. The methodology of human-machine cooperation analysis.
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reference signal are created from human elements, representing groups
of seafarer competencies. The competencies occurring at the beginning
of actions and interacting with machine sub-system are grouped as the
input phase of human elements; the competencies including interactions
with individuals and teams are classified as the process phase; the
competencies with action executions and interacting with machine
sub-system are the output phase. In addition, the reference signal means
considered references within the input phase for human sub-systems.
The details of grouping relevant seafarer competencies in the dynamic
system are documented in a previous study [24].

3.2. Human-machine cooperation system

To establish a comprehensive human-machine system, there are
other non-human elements associated with machines and the environ-
ment, as described in Table 2 [24]. The machine sub-system is created
from ship conditions and their related equipment; the disturbance is the
element influencing both human and machine sub-systems, which
consists of a comprehensive human-machine cooperation system.

The above human-machine model, consists of machine sub-system,
reference signal, disturbance, and human elements including input,
process, and output phases. The disturbance influences both human el-
ements and machine sub-systems; the output of machine and reference
signal point to the input phase of human elements; the output phase of
human interacts with the input of machine. Therefore, the logic of these
elements is shown in Fig. 2.

Taking advantage of the closed-loop model, the proposed framework
enables the clarification of RIFs’ frequency and impact on human-
machine cooperation. Specifically, the human-machine system func-
tions are adaptive to an evolving process of existing issues in safety-
critical operation, represented by the discrete occurrence of RIFs refer-
ring to the timeline. For example, some RIFs, such as communication
(COM), appeared more than once in a single maritime accident, result-
ing from the event of “INF – COM – machine sub-system – KNO – COM –
SO” in the closed-loop system. In this case, previous studies counting the
occurrence of COM only once in the accident analysis model, do not
demonstrate the true impact of COM (higher than the others) regarding
its repeated occurrence in a single accident. Therefore, the proposed
model addresses the multiple occurrences of an RIF and quantifies the
impact through the closed-loop system. Both the frequency (e.g.,
whether the RIF occurs in an accident) and impact (e.g., howmany times

Table 1
Seafarers’ competencies in the human-machine system [24].

Phase Abbreviation Competency Description

Input KNO (1) Knowledge A good knowledge of
equipment/device, having
qualified skills and
precautionary thought,
illustrating the capacity to
deal with route work and
emergency cases.

CC (2) Cognitive capacity Appropriate cognitive states
and mental workloads,
being influenced by
“inattention”, “inadequate
procedures”, “observation
missed”, and
“communication failure”.

INF (3) Information Reliable and accurate
information obtained and
updated from the nautical
chart, publications, radar,
ECDIS, Automatic Radar
Plotting Aid (ARPA),
weather and meteorological
data.

TD (4) Task demand The difference between the
reference signal and the
machine sub-system.

Process SA (5) Situational
awareness

Effective understanding of
anything that could impact
the security, safety,
economy, or environment in
maritime domain, in order
to increase effectiveness in
the planning and conduct of
operations.

TWL (6) Teamwork and
leadership

Effective support and proper
supervision, not working
isolated with various
hazards.

COM (7) Communication Effective communication,
being influenced by cultural
issues, language barriers,
educational qualifications,
and training.

DM (8) Decision making Utilising information,
knowledge, situational
awareness, teamwork and
communication to make
rational decisions, usually
with adequate supervision
and support from the team.

Output EQM (13) Equipment
correctly used

Correctly positioning or
detecting alarm systems,
navigational indicators (e.
g., working lights), and
correctly using information
from the equipment.

SO (14) Manoeuvres Appropriately selecting
steering modes, correctly
utilising manoeuvre signals,
operating actions under
regulations and rules; not
exceeding the safe operating
limits of ship propulsion and
power systems.

SC (15) Amend/ maintain
ship course

The ability to amend and
maintain a ship’s course and
speed under adequate
information, sufficient
knowledge, and correction
of errors in equipment or
system.

PO (16) Procedure
operations

Being in accordance with
contingency plans, handling
of dangerous cargoes, cargo
inspections, cargo

Table 1 (continued )

Phase Abbreviation Competency Description

operations, and pollution
prevention actions to
safeguard the environment,
personnel, and the ship.

Reference
signal

PP (9) Passage plan Appropriate plan for the
passage, being absent or
unapproved revision leads
to maritime accidents.

RM (10) Comply with
regulations and
management

Complying with regulations
and management involving
organisational factors, such
as codes, endorsements,
regulations, procedures,
instructions, operation
manuals, and requirements.

Table 2
Other elements in the human-machine cooperation [24].

Element Description

Machine sub-system
(12)

Vessel conditions, devices, and ergonomic impacts;
increasing complexity regarding ship automation.

Disturbance (11) Environmental and geographical factors.
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the RIF happens in an accident) of RIFs are clarified in this study, to
demonstrate risk interactions between humans and machine systems. In
this process, every accident needs to be thoroughly analysed to under-
stand its evolution from the initial event to the final consequence, and to
quantify the number of occurrences of each identified RIF in order to
accurately reflect their true impact.

3.3. Graph-based approach for RIFs

To analyse RIF connectivity in the human-machine model, this study
proposes a graph-based approach to identify critical RIFs and assess
their features in the system. Compared to other methods to analyse
causal relationships of RIFs, such as DEMATEL [1], the proposed
graph-based approach can explore network properties and examine the
connectivity of RIFs in overall topology through a symmetric matrix, for
instance, the identification of clustered RIF groups. The inter-
connectivity among each RIF is explained through a weighted undi-
rected network, where the “weighted” denotes the magnitude of RIF
connectivity and the “undirected” accommodates the competency re-
lationships in the closed-loop system. In this way, a graph theoretical
model is generated to illustrate human-machine cooperation within
safety-critical operations. There are four steps to conduct the analysis:

1) Database reflecting frequency and impact

The raw dataset is derived from historical maritime accident reports,
identifying RIFs and their occurrences in human-machine cooperation
process. Diverging from conventional factor identification methods,
these RIFs are quantified based on their frequency and impact, forming a
dataset for subsequent analysis. The frequency of an RIF is represented
by its occurrence ratio across all accidents, while its impact is disclosed
by the number of occurrences within a single accident. For example, in a
dataset of 4 nodes [INF, COM, Machine, KNO, SO], the COM is counted
as 2 and the others as 1 in one accident with the occurrence of “INF –
COM – machine sub-system – KNO – COM – SO”, formulating [INF,
COM, Machine, KNO, SO]=[1, 2, 1, 1] as one row of accident records. It
is noteworthy that two events may occur simultaneously, which does not
influence the structure of an undirected network. As a baseline for the
analysis, all accident types are included in the counting of frequency and
impact to provide findings for the investigated database. However, the
proposed approach may generate different implications with other
database inputs.

2) Connectivity matrix

Taking the frequency and impact concepts of each RIF into account, a
connectivity matrix of RIFs within human-machine systems is formu-
lated using a partial correlation method. To be specific, every cell in the
matrix is represented by a partial correlation value of the corresponding
row and column, calculated using 64 data pieces, each corresponding to
a line with node counts from Step 1. To investigate the relationship
between two RIFs, correlation coefficients will obtain misleading results
when another RIF is numerically related to both RIFs. It can be avoided
by using partial correlation, which explains the degree of association
between two RIFs, removing the influence of other RIFs. In this matrix,
each row and column correspond to a specific RIF, with the cell value
indicating the partial correlation between the two RIFs situated in the
respective row and column.

3) Weighted undirected network

A network representation of the human-machine system comprises a
set of nodes, interconnected by links between pairs of nodes. In this
network, the nodes represent identified RIFs in the model, while links
represent effective connections between pairs of RIFs. In order to
construct an undirected network, the connectivity matrix needs 1) to be
symmetric, which is consistent with the original connectivity matrix
features; 2) all values equalling 1 or <0 are replaced with 0 [57], as
shown in Fig. 3. The weights of links in the network vary depending on
the values in the matrix cells. Then, a weighted undirected network is
constructed, with the rows/columns representing nodes and the entries
in the matrix representing links in the network. An undirected network
accommodates nodes with non-hierarchical characteristics, where the
influence of two factors does not always follow a single homogenous
direction. Therefore, it best fits the nature of relationships being
explored for seafarer competencies.

4) Graph theory calculation on degree, strength, clustering, and
betweenness centrality

To capture the characteristics of the weighted undirected network,
the integration of graph theory with partial correlation analysis is uti-
lised to identify critical RIFs. In this network, the nodes denote RIFs, and
the weighted links signify the correlation strength between every pair of
RIFs. To investigate critical RIFs in human-machine cooperation, both
degree and strength are calculated. Clustering is used to explore dense
activities within a small group of RIFs and their connections to machine
sub-systems. Betweenness centrality is analysed to identify nodes with
the shortest paths in the network, illustrating human-machine

Fig. 2. Human-machine cooperation model.
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cooperation patterns in maritime safety.
Regarding diverse features in the network, the results are calculated

using converted matrices, such as the normalisation matrix and
weighted connection-lengths matrix. Below is a 4 × 4 matrix example
featuring nodes A, B, C, and D, illustrating the calculation of degree,
strength, clustering, and betweenness centrality [11,50]. This showcases
connectivity features of the proposed methodology.
Example

A

A 0

B 0.2

B C D

0.2 0.1 0.8

0 0.3 0.2

C 0.1

D 0.8

0.3 0 0.1

0.2 0.1 0

a. Degree: Node degree refers to the count of links connected to a node.
In weighted networks, calculations do not take into account
connection weights.

Degree (i) =
∑
j∕=iaij

Where aij equals 1 if there is a link between nodes i and j, 0 otherwise. In
the provided example, all nodes A-D have the same degree value, which
is 3. Normally, a node with the highest degree signifies that the corre-
sponding RIF has the most connections with other RIFs, suggesting its
centrality in human-machine cooperation. Such a node is expected to
play a busy role in facilitating interactions between humans and ma-
chines.

b. Strength: Node strength is the aggregate of weights associated with
links connected to the node.

Strength (i) =
∑n

j=1
wij

Where wij is the strength or weight of the edge linking nodes i and j. In
the example provided, the strength values for nodes A-D are 1.1, 0.7,
0.5, and 1.1, respectively. In the proposed model, the nodes A and D
with the highest strength indicate their greatest weight within the sys-
tem and prominence in association with other connected nodes.

c. Clustering: The clustering coefficient represents the proportion of
triangles surrounding a node and is equivalent to the fraction of a
node’s neighbours that share a connection with each other.

Clustering (i) =
1

ki(ki − 1)
∑

j,k

aijajkaki

Where ki is the total weighted degree of node i; the clustering equals
0 when ki is 0 or 1. Before conducting the clustering calculation, the
example matrix is normalised as follows:
⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0.25

0.25 0

0.125 1

0.375 0.25

0.125 0.375

1 0.25

0 0.125

0.125 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Following the normalisation, the clustering values of nodes A-D are
calculated as 0.291, 0.284, 0.235, and 0.291, respectively. The nodes A
and D with the highest clustering coefficient indicate dense activities
among RIFs and play a critical local role in the interaction functions.

d. Betweenness centrality: Node betweenness centrality indicates the
proportion of all shortest paths in the network that traverse through
a specific node.

Betweenness centrality (i) =
∑

s∕=v∕=t

σst(v)
σst

Where σst is the total number of shortest paths from node s to node t, and
σst(v) is the number of those paths that pass through v. Utilising the
provided example, non-zero elements in the matrix are identified, fol-
lowed by the reciprocal. Then the matrix is transformed into a weighted
connection-lengths matrix.
⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 5

5 0

10 1.25

3.33 5

10 3.33

1.25 5

0 10

10 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

The betweenness centrality values for nodes A - D are 0, 4, 0, and 0,
referring to calculation in Rubinov and Sporns [57]. This indicates that
the majority of the shortest paths in the network traverse through node
B, highlighting its pivotal role in facilitating connections within the
network. Indeed, nodes with higher betweenness centrality values play a
crucial role in numerous shortest paths within the network. This in-
dicates that the corresponding RIF serves as a key element for important
information transfer along these shortest paths, ultimately influencing
the efficiency of system functions.

To summarise, the aforementioned features illustrate the human-
machine cooperation analysis using graph-based approaches, as shown
in Table 3. Aiming at human-machine cooperation, RIFs are identified
and influential patterns among seafarer competencies and machine sub-
systems are specified, sufficing to serve the aim of this study.

Fig. 3. Weighted undirected network.
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4. Experimental results with a case of human-machine
cooperation in restricted waters

4.1. Dataset

To examine the proposed methodology, this study compiled the
database sourced from historical maritime accident reports. The dataset
consists of two features: 1) the frequency, indicating whether the RIF
contributed to the accident; 2) the impact, representing the number of
occurrences of the RIF in an accident. Considering both in the proposed
dynamic model, the accident data was obtained between January 2012
to December 2017 from the Marine Accident Investigation Branch
(MAIB) and the Transportation Safety Board of Canada (TSB), and be-
tween January 2005 to April 2021 from the Global Integrated Shipping
Information System (GISIS), in restricted waters. In total, there were 64
report records in restricted waters as cases to illustrate deficiencies in
both human and machine sub-systems, showcasing the frequency and
impact of RIF occurrences in the area. The 64 are reported to a level from
which all the detailed impacts between RIFs can be detected and
quantified. It means that any other cases lacking such specific infor-
mation are excluded from the raw input data. Among the database,
accident types of restricted waters include collision, grounding, contact,
foundering, striking, fire, and capsize.

4.2. Connectivity matrix for human-machine systems

This study extracted RIFs and calculated correlation values in human
and machine sub-systems, generating a connectivity matrix to illustrate
their cooperation process in maritime transport. In the closed-loop sys-
tem of maritime accidents, both human-related and non-human-related
RIFs played crucial roles. Human-related RIFs were explained by

seafarer competencies, while non-human-related RIFs stem from ma-
chinery deficiencies and environmental factors contributing to acci-
dents. To be noted, the focus of this model was not on specific machinery
deficiencies, but rather on understanding the interaction process be-
tween human elements (such as seafarer competencies) and machines.
Following this approach, the connectivity matrix for human-machine
systems was constructed, incorporating RIFs along with corresponding
partial correlation values. In this matrix, each value denotes the partial
correlation between the RIF in the respective row and column. It rep-
resented the degree of association between two RIFs in the model, with
the influence of a set of controlling RIFs taken into account and
removed.

Before generating the weighted undirected network, values repre-
senting partial correlation in the connectivity matrix were converted
into positive values. By removing all negative values and self-
connections, the matrix was exactly symmetric (by correcting for
round-off error), as shown in Fig. 4. The row and column numbers from
1 to 16 represent RIFs KNO, CC, INF, TD, SA, TWL, COM, DM, PP, RM,
Disturbance, Machine sub-system, EQM, SO, SC, and PO.

Moreover, certain values between rows and columns in Fig. 4
revealed a high correlation. They were CC (2) and EQM (13) (r (48)
=0.466, n= 64, p< 0.001), TD (4) and SA (5) (r (48)=0.427, n= 64, p=
0.002), COM (7) and SO (14) (r (48) =0.489, n = 64, p < 0.001), DM (8)
and Disturbance (11) (r (48) =0.468, n = 64, p < 0.001). That is to say,
there was a significant relationship between inappropriate use of
equipment (13) and cognitive capacity (2); improper task demand (4)
had a significant association with affected situational awareness (5);
ineffective communication (7) was significantly related to manoeuvring
issues (14); and violated decision making (8) had a significant connec-
tion with disturbances (11) in the system. From these perspectives, the
connections between each pair of RIFs were demonstrated through the
matrix.

4.3. Weighted undirected network

The weighted undirected network was constructed based on the
connectivity matrix, incorporating the identified RIFs and their links. To
calculate the graph features, the original connectivity matrix was con-
verted into different forms. To begin with, the degree and strength were
computed using the original matrix in Section 4.2. Subsequently, the
clustering was calculated after matrix normalisation, where

Table 3
Features in graph theory and their purposes.

Feature Purpose

Degree Central RIFs with the most connections
Strength Prominent RIFs, taking into account weights (correlation

values)
Clustering RIFs’ dense activities in a cluster
Betweenness
centrality

RIF efficiency and impact pattern in human-machine
cooperation

Fig. 4. Connectivity matrix after correction.
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normalisation rescaled all weight measurements to the range from 0 to
1, as shown in Fig. 5. To calculate the betweenness centrality, weights in
the network were transformed into lengths to produce a weighted
connection-lengths matrix, as shown in Fig. 6. In a weighted connection
network, higher weights naturally signify shorter lengths. Therefore, in
this context, the connection-lengths matrix is defined as the inverse of
the connection-weights matrix.

4.4. Graph-based analysis results

To create a benchmark for the graph-based analysis, all accident
records were used to construct the weighted undirected network. The
analysis utilised network features to illustrate the effect of RIFs on
human-machine cooperation, aligning with the frequency and impact of
RIF occurrences. This study utilised the database with each RIF’s oc-
currences in all accident types, formulating the whole network with 16
nodes. The connectivity matrix was obtained by calculating partial
correlations between each two RIFs. Then the weighted undirected
network was established according to steps in Section 3.3. At last, the
degree, strength, clustering, and betweenness centrality vectors con-
sisting of 16 nodes were calculated for the proposed network and the
significance of RIFs and their connections with other RIFs were revealed.
The results showed that the RIF with the highest value in a specific
feature provided implications for seafarer competency training and
human-autonomy design. The details of network features are shown in
Table 4.

4.4.1. Degree
From Table 4 and Fig. 4, the DM had the most connections (11) with

other RIFs, demonstrating its central role in facilitating human-machine
cooperation. To be specific, decision making was a critical competency
associated with multiple risk factors in maritime accidents, including the
disturbance from environment (disturbance), knowledge of crews
(KNO), task demand (TD), and manoeuvres of vessels (SO). Among these
elements, the only significant connection in the model was observed
with the disturbance (p < 0.001). In addition, it demonstrated connec-
tions, albeit not strong ones, with the machine sub-system. That is to say,
the role of seafarer decision making appeared to be surrounded by other
competencies and machine sub-systems. Enhancing seafarer training in
decision making could involve improving competencies, such as

professional knowledge and manoeuvring skills. Moreover, proficient
practice in safe navigation, considering diverse external disturbances
and machinery deficiencies, would likely enhance the decision-making
capabilities of seafarers in human-machine cooperation.

Besides, the RIF with the least degree value was the disturbance,
showing its fewer connections with other RIFs. There were only four
RIFs connected with disturbance, involving INF, SA, DM, and SO.
Among them, INF (p = 0.027) and DM (p < 0.001) showed significant
correlations. Given the impact of disturbances on both human and ma-
chine sub-systems, such two RIFs, i.e., information and decision making,
emerge as crucial factors for competency training and ensuring the
reliability of machine systems.

4.4.2. Strength
Task demand had the strongest weight and stood out prominently

with certain elements in human-machine cooperation. Specifically, task
demand was significantly associated with SA (p = 0.002), and relatively
close to TWL, DM, RM, and PO, as shown in Table 5. The task demand
denotes the difference between the reference signal and the machine
sub-system. When the reference signal failed to be reliable or accurate in
representing the state of machine sub-systems, task demand inevitably
increased to accommodate the complexity of the situation, thus
becoming the input of the human sub-system. Evidently, the SA emerged
as a critical RIF associated with such a process. Hence, the assessment of
task demand for seafarers must take into account the SA, particularly
concerning the challenges introduced by higher automation in advanced
ships. Although task demand did not have the highest number of con-
nections, it illustrated close links to SA issues and was prominent in
terms of seafarer training and ship automation.

4.4.3. Clustering
In the light of clustering, the machine sub-system showed the highest

clustering coefficient, demonstrating dense activities within a cluster.
This cluster consisted of KNO, CC, INF, TD, SA, and POwith the machine
sub-system as a centre. Among them, the partial correlation between
machines with INF was significant (p = 0.053), proving a strong causal
relationship that machinery deficiencies may deteriorate the informa-
tion transformation for seafarers. From a clustering perspective, the
machine sub-system was engaged in dense activity with the input phase
of the human sub-system, i.e., KNO, CC, INF, and TD. The improvement

Fig. 5. Matrix normalisation for clustering calculation.
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in such competencies will accommodate the evolution of machine sub-
systems. These competencies should be enhanced and prioritised in
the training program, particularly in the investigated scenario. As ma-
chine sub-systems are replaced by high autonomy systems, the clus-
tering of competencies must be redefined to meet the demands of ship
autonomy. The competency training of seafarers can be reshaped based
on the clustering results, aligning competencies grouped within a cluster
with the functions of machines.

On the one hand, it implies the possibility of enhancing human
performance at the input phase by improving machine sub-systems,
aligning with the MASS design clues. To be specific, the results

showed that the KNO, CC, INF, TD, and SA were clustered around the
machine sub-systems. If the novel ship design aims at new functions to
improve such RIFs, it will significantly improve the deficiencies in HMI
and enhance human performance. For instance, the development of
autonomous technologies and manoeuvring assistance systems aug-
menting reality will benefit information reliability and enhance the SA
of seafarers, as so to improve human-machine cooperation. Moreover,
the practice of shaping seafarer competencies aiming at cognitive ca-
pacity, can be achieved through different scenarios setting with machine
functions. The high autonomy of certain machine sub-systems may
relieve the cognitive burden on humans when dealing with information.
However, to what extent the autonomy influences seafarers’ cognitive
workload is still unclear, and can be further explored using the clus-
tering result of this study.

4.4.4. Betweenness centrality
The INF had the highest betweenness centrality values and played a

significant role in terms of efficiency through numerous shortest paths
within the network. That is to say, the INF transferred along the shortest
paths and influenced the efficiency of the human-machine system. This
suggests that accurate and reliable information in maritime operations is
crucial for ensuring safe navigation and fostering efficient human-
machine cooperation.

The INF was significantly correlated with the disturbance (p =

0.027), machine sub-systems (p= 0.053), TD (p= 0.005), and EQM (p=
0.005). Although the information was human-related RIF, both seafarer
competencies and machine sub-systems relied on its high betweenness
centrality features. Enhanced information processing and maintenance
enabled appropriate individual and teamwork tasks, resulting in more
reliable interactions with RIFs from a systematic perspective. Therefore,
reliable information regarding vessels, environment, and human re-
sponses should be integrated to serve the whole human-machine system.
It should be noted that automation technologies aiming to simplify the
process of human operations cannot scarify the accuracy and clear in-
formation, otherwise these technologies could induce systematic fail-
ures and even catastrophes in extreme cases. For example, after two
Boeing 737 MAX crashes in 2018–2019, it was found that the
Manoeuvring Characteristics Augmentation System (MCAS) automati-
cally controlling pitch based on airflow sensors, malfunctioned, causing
the nose to dip without the pilots knowing of the system’s existence

Fig. 6. Weighted connection-lengths matrix for betweenness centrality calculation.

Table 4
Calculation of network features in human-machine cooperation model.

Number RIFs Degree Strength Clustering Betweenness
centrality

1 KNO 8 1.485 0.101 10
2 CC 7 1.633 0.092 20
3 INF 10 1.724 0.080 30
4 TD 10 1.804 0.120 22
5 SA 9 1.487 0.089 4
6 TWL 7 0.952 0.063 4
7 COM 8 1.370 0.126 10
8 DM 11 1.776 0.103 20
9 PP 8 1.104 0.116 8
10 RM 9 0.828 0.096 0
11 Disturbance 4 0.903 0.107 8
12 Machine 9 1.128 0.128 2
13 EQM 8 1.638 0.109 16
14 SO 10 1.285 0.084 8
15 SC 8 0.851 0.092 0
16 PO 8 1.577 0.127 26

Table 5
Partial correlations between task demand and other RIFs.

RIF Partial correlation with task demand Significance

5 SA 0.4269 0.002
6 TWL 0.2310 0.107
8 DM 0.2078 0.148
10 RM 0.2293 0.109
16 PO 0.2044 0.154

S. Fan et al. Reliability Engineering and System Safety 253 (2025) 110547 

10 



[49]. Additionally, the increased Artificial Intelligence (AI) interaction
was argued to introduce higher mental workload among seafarers,
subsequently undermining their performance [69]. Similarly, the pro-
cedure operation competency had a relatively high betweenness cen-
trality value, proving its high efficiency in improving system safety by
handling contingency plans and cargo operations.

4.5. Comparisons between the benchmark and the collision accident

To generate more accident-type insights, this section describes the
experiment results on collision accidents in restricted waters. By doing
so, it can also reveal a comparative result between the above general
findings and the specific ones against specific accident types, while it
also helps illustrate how the generic methodology can be used in
different settings for new insights into managerial implications. This
yielded insights into tailored strategies for seafarer training in various
risk scenarios. To specify, the most common accident types in the
investigated database were collisions (32) and groundings (11); how-
ever, only collisions were analysed in this section using the graph-based
approach, as the node number in the network should be less than the
record number in the connectivity matrix calculation.

To perform the graph-based analysis for collisions, 32 accident re-
cords from the raw database were selected to create a connectivity
matrix. This matrix was then utilised to construct a weighted undirected
network, and subsequently, the degree, strength, clustering, and
betweenness centrality of each node in the network were calculated. The
results of the calculation on collisions are shown in Table 6.

From Table 6, it was evidence that 1) Degree: procedure operation
(PO) had the most connections with other RIFs, implying its central role
in developing collision avoidance strategies; 2) Strength: cognitive ca-
pacity (CC) had the strongest weight for qualified seafarers to manipu-
late multiple tasks and machines in collision accidents; 3) Clustering:
passage plan (PP) revealed dense activities in the human-machine sys-
tem, especially closely with decision making (DM) and equipment use
(EQM) in collision avoidance; 4) Betweenness centrality: procedure
operation (PO) demonstrated high efficiency in ensuring system safety
by managing contingency plans and cargo operations, a trait that was
also relatively prominent in the benchmark analysis.

Compared with benchmark findings from all accident types, this
analysis identified different critical RIFs in association with connectivity
features (degree, strength, clustering, and betweenness centrality),
implying their diverse influential effects on human-machine coopera-
tion in collision scenarios. Therefore, it is applicable to provide bespoke
seafarer training to enhance skills in facing with risks of collisions or
other accident types. The proposed methodology shows promising ap-
plications in maritime transport, offering insights into seafarer training

tailored to various scenarios and tasks involving human-machine
cooperation.

4.6. Implications

Themain implications of the study benefit both the current fleets and
future ship automation. Evidently, the proposed model quantifies the
significance of RIFs in human and machine sub-systems, highlighting
their features and closely connected competencies within the network.
These connections and mechanisms of highlighted competencies pave
the way for addressing deficiencies in HMI through the lessons learned
from historical accidents. Therefore, the results provide suggestions and
recommendations for HMI in future ship designs and shape trends in
ship automation development, along with the associated dynamic in-
teractions with seafarer competencies.

To begin with, seafarer competencies should be redefined in light of
advanced machine automation. The findings provide that seafarers’ DM
competency should be trained, taking into account factors from humans
(knowledge of crews), environment (external disturbance), task (task
demand), and ships (ship manoeuvres). Previous research on ship
decision-making, which primarily focuses on ship trajectories and
environmental variables, may not be sufficient to address human com-
petencies comprehensively. In order to collaborate and interface effec-
tively with advanced autonomy technologies, the decision-making
requirements for operators in remote control centres of MASS are ur-
gently required to be reshaped aligning with MASS features and relevant
RIFs. The proposed methodology emphasises the necessity of DM com-
petency training in association with environmental disturbance and
adaptive ship autonomy. It provides insights for maritime education and
training institutions to redefine and evaluate the DM competency of
seafarers properly given advanced technologies. Utilising the proposed
methodology to generate findings with other databases, it is possible to
suggest DM competency training in different accident types or diverse
waterways. In addition, task demand, representing the variance between
the reference signal and the machine sub-system, has been shown to be
closely linked with SA. The maritime SA serving as a critical factor to
keep safe navigation for conventional ships, is also dominant in MASS
workplaces such as remote control centres. Advanced ships require op-
erators to establish and sustain appropriate SA during navigation given
task demands under remote working mode, especially in restricted wa-
ters. It suggests maritime authorities enhance SA through rationale task
demand allocation, i.e., keeping machine functional indicators consis-
tent with reference signals and minimising time delays in their
transmission.

Moreover, the development of machine sub-systems should prioritise
human-centred concepts to mitigate inherent flaws introduced by
human operations and enhance systematic efficiency in line with
seafarer competencies. In the light of machine automation technologies,
knowledge, cognitive capacity, information, task demand, and SA are
clustered around the machine sub-systems. That means the next gener-
ation of advanced autonomous ships must take these competencies of
operators into account for ship design and construction. From a sys-
tematic perspective, ship automation should convey reliable informa-
tion, keep rational task demands, and sustain the SA of humans but not
beyond their knowledge and cognitive capacity. Ship designers must
prioritise machine functions that enhance the previously mentioned
competencies. Otherwise, the designed machine sub-system will be
susceptible to human errors and lack resilience within the overall system
in restricted waters. Furthermore, the information serving with high
betweenness centrality influences the efficiency of human-machine
cooperation. In restricted waters, timely information is crucial for
maintaining efficient interactions between humans and machines,
especially in adaptive and complex navigational environments. Both
conventional ships and autonomous ships require reliable and sufficient
information to sense internal and external situations. Maritime author-
ities can utilise these findings to evaluate and manage navigational risks

Table 6
Network features for collisions.

Number RIFs Degree Strength Clustering Betweenness
centrality

1 KNO 7 2.300 0.013 12
2 CC 7 2.988 0.026 24
3 INF 7 2.337 0.024 12
4 TD 8 1.034 0.089 2
5 SA 8 1.771 0.064 18
6 TWL 9 2.067 0.029 2
7 COM 7 2.853 0.020 22
8 DM 9 2.505 0.049 18
9 PP 6 1.010 0.128 0
10 RM 6 0.887 0.074 0
11 Disturbance 7 1.735 0.043 10
12 Machine 8 2.144 0.078 8
13 EQM 8 2.469 0.024 12
14 SO 8 2.550 0.047 12
15 SC 9 2.923 0.069 12
16 PO 10 2.443 0.069 26
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by assessing the quality of information exchange in restricted waters.
This proactive approach helps prevent maritime accidents and enhances
risk management. Aiming for safe navigation of MASS, the maritime
industry also benefits from these results to promote autonomous ships in
restricted waters first, which can then spread to a wider range of ap-
plications in open seas. In other words, the advancement of ship au-
tonomymust be grounded in the enhancement of information reliability,
serving the most efficient effects on safe navigation systems.

5. Conclusion

This paper develops a novel approach to analysing the connectivity
between humans and machines in safety-critical operations, pioneering
the integration of frequency and impact of RIFs within a mathematical
model. It combines graph theory and statistical methods to generate
systematic features that reflect significant human-machine RIFs through
various matrices for the weighted undirected network. The results
indicate that decision making exhibits the highest degree, task demand
demonstrates the highest strength, the machine sub-system displays the
highest clustering, and information possesses the highest betweenness
centrality, all of which are critical RIFs in the human-machine cooper-
ation model. In addition, a comparison study is conducted to provide
discussions on seafarer competency training and human-machine
cooperation across various scenarios. These findings reveal their in-
teractions aligning with graph theoretical features and generate impli-
cations for seafarer competency training and novel ship design.

Although there is existing research on risk analysis and modelling of
maritime accidents, where significant risk factors are identified and
their interdependencies with safety are uncovered through machine
learning and data mining approaches using various data resources [38],
the basis of these findings is restricted to the frequency of RIFs occurring
in maritime accidents. Traditionally an RIF is only and maximumly
counted once in every accident, and it could not truly reflect its impact,
as it is evident that one factor could have a higher impact degree in one
accident if it repeatedly occurs in the chain of accident occurrence.
Obviously, repeated factors will matter more than those of one presence.
Therefore, only considering the frequency of RIFs is not scientifically
rigorous for maritime risk analysis targeting process assessment among
human and machine interactions. This study fulfils the research gap by
extracting the frequency and impact of RIFs from historical accident
data into a graph-based model to examine dynamic human-machine
cooperation.

However, the study has a limitation on the network construction.
Although the proposed undirected network outweighs the directed one
in terms of non-hierarchical relationships among RIFs, it is possible to
develop a directed network for comparison with this benchmark if
ample data with time series are collected. This study only addresses the
human-centred model so future work can be done with extended ma-
chine categories when the relevant data is feasible. In conclusion, this
study pioneers a novel approach by combining the frequency and impact
of RIFs to analyse the connectivity between human and machine coop-
eration. The generated network identifies critical RIFs and the function-
based features, generating implications for enhancing human-machine
cooperation for future ships.
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