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Abstract: Visual evaluation of the landscape is an important way to judge landscape quality. In
this study, by optimizing the vertical angle and relative slope parameters of a visibility analysis
algorithm, we intuitively and quantitatively display visibility grid data on the landscape based on
tourists’ viewpoints and realize the transformation from making calculations only for the visible
area to quantitatively evaluating the quality of visually experiencing the landscape considering
parallax. We consider a variety of landscape visual influence factors (visible area, landscape water
system distribution, number of landscape resources) to construct an index system for evaluating
landscape visual effects. Finally, a set of improved landscape visual evaluation methods is proposed
by integrating the analytic hierarchy process (AHP) and an optimization algorithm into the visibility
analysis. Validation of the case study of the ancient town Fenghuang shows that these methods can
effectively distinguish good and bad landscape viewpoints in a scenic area and support planning
and design decisions on the related spatial layout and viewing platform. This study provides a new
perspective for developing a quantitative, intelligent digital landscape analysis system.

Keywords: landscape visual evaluation; visibility analysis; analytic hierarchy process; landscape
visual experience; site planning of viewing platform

1. Introduction

With the rapid growth of tourism in China, the visual experiences of visitors at tourist
sites significantly impact the overall quality of these sites [1]. We can thus utilize approaches
to landscape visual assessment, using comprehensive analysis of the visible area, land-
scape water system distribution and number of landscape resources, to evaluate aesthetic
qualities and provide scientific grounds for planning and the protection of landscapes.
In the domain of analytical systems for landscape visibility, abundant research has been
conducted by scholars in China and abroad. For instance, Qiao et al. [2] applied the analytic
hierarchy process (AHP) to assessing the quality of the landscape in five housing quarters
in Yangling, China, considering functionality, eco-friendliness and attractiveness. Mean-
while, Zhao et al. [3] devised questionnaires using the Semantic Differential (SD) method,
evaluated the visual qualities of historical building blocks and constructed an assessment
structure using the Factor Analysis (FA) method. Śleszyński Przemysław [4] presents a
methodology for assessing the visual aesthetic value of landscapes, which is analyzed
with respect to a highly environmentally diverse fragment of the Małopolska Upland
(central Poland). This methodology provides a versatile platform for evaluating nature
and landscapes, as well as for practical applications such as nature preservation, tourism
development and spatial planning. However, by relying primarily on expert surveys, these
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methods lack objectivity and rigor. The imperative task of transforming subjective visual
perceptions into computable data is essential to enabling quantitative evaluation of the
landscape visibility and enhancing enjoyment for tourists.

Visibility is a prerequisite for judging whether a view of the landscape exists or
not [5], which can be calculated using visibility analysis algorithms. Traditional algorithms
like R3, R2 and XDraw have their respective strengths and weaknesses—R3 features
high precision yet a lengthy computation time, while R2 and XDraw are more efficient
but less accurate [6]. In recent years, visibility analysis has been widely applied across
various domains, including travel route planning [7,8], scenic resource allocation and
conservation [9–12] and site selection for fire lookout towers [13,14]. Different contexts
require tailored optimization strategies. The existing improvements have centralized
around speed and precision, as exemplified by Dou et al. [15], who combined parallel
computing with visibility algorithms for geographic data processing, and Wu et al. [6].
who proposed the PDERL (Proximity-Direction-Elevation Reference Line) algorithm by
establishing visibility algorithms in partial differential equation spaces, achieving precision
close to R3 and efficiency comparable to XDraw. However, from tourists’ perspective, the
current algorithms can only determine whether landscape features are visible, without
quantitatively assessing their viewing experiences. Prior studies like that undertaken
by Wheatley and Gillings [16] defined distance zones to indicate decaying clarity, and
Fisher [17] adopted fuzzy set theories to model atmospheric impacts across distances. Yet,
vertical influences on viewing experiences remain insufficiently addressed.

This study aims to quantify tourists’ landscape viewing experiences and construct an
objective assessment framework for scenic visibility. To achieve this goal, the parameters in
the visibility analysis are optimized from horizontal and vertical perspectives, incorporated
with influential factors like aqueous distributions and the available resources. An enhanced
approach is thereby established, integrating optimized visibility algorithms and the analytic
hierarchy process (AHP) for the quantitative evaluation of landscape visibility. Its validity
and accuracy will be evidenced using the case study of Fenghuang Town, Shaanxi Province,
China, whereby sightseeing tower sites are selected based on the proposed method.

2. Methodology

This study, by optimizing the vertical angle and relative slope parameters of the
visibility analysis algorithm, intuitively and quantitatively displays visibility grid data on
the landscape based on tourists’ viewpoints and realizes the transformation from making
calculations only for the visible area to quantitatively evaluating the quality of visually
experiencing the landscape considering parallax. It considers a variety of landscape visual
influence factors (visible area, landscape water system distribution, number of landscape
resources) to construct an index system for evaluating landscape visual effects. Finally, a set
of improved landscape visual evaluation methods is proposed by integrating the analytic
hierarchy process (AHP) and an optimization algorithm into the visibility analysis.

2.1. Visibility Analysis

The visibility analysis algorithm generates a binary raster of visible (coded as “1”)
and invisible areas (coded as “0”) based on an input observation point [16]. Such outputs
can merely determine the landscape visibility, without quantitatively depicting tourists’
viewing experiences. This section optimizes the parameters in the visibility algorithm,
specifically the vertical angle and relative slope, to quantify how topographic attributes
like gradient, distance and elevation influence sightseeing and visual perception.

2.1.1. Parameter Optimization

The vertical angle takes into account the relative distance and relative height between
tourists and the landscape. Without considering the terrain where tourists are located,
the impacts of the relative distance and relative height on the vertical angle are shown
in Figure 1. By simplifying and amplifying the slope and height of the terrain where
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the landscape is located within a two-dimensional triangular plane, as the vertical height
decreases and the distance between the landscape and the tourists increases, the vertical
angle becomes smaller, visibility weakens and the visual experience of sightseeing becomes
worse. In contrast, the larger the vertical angle, the better the visibility and the sightseeing
experience. The calculation formula for the vertical angle is:

α = arctan(
∆H
L

) (1)
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Figure 1. The effects of relative distance and elevation difference on vertical angle without considering
the terrain where tourists are located.

In Figure 1, point A represents the tourist, and point B represents the landscape. Using
the elevation of point A where the tourist is located as the reference line, α represents the
vertical angle of point A, L represents the actual distance between the two points and ∆H
represents the elevation difference between the two points.

However, the above ideal model does not exist because the slope and height of
the terrain where the tourists are located also affect the accuracy of the vertical angle
calculation. Therefore, we enlarge and simplify both the slope and height of the terrain
where the tourists A and the landscape B are located within a two-dimensional triangular
plane, respectively (Figure 2).
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Figure 2. Vertical angle calculation schematic diagram after considering the terrain where tourists
are located.

Where point A represents the tourist, point B represents the landscape, h1 and h2
represent the elevation where the tourists and the landscape are located, respectively, L
represents the relative distance between the two and β1 and β2 represent the terrain slope
where they are located, respectively. Therefore, after considering the terrain where the
tourists are located, the calculation formula for the vertical angle is:

α = arccos(
x2

4 + x2
3 − x2

2
2x4x3

) (2)

Because:
x1 =

h1

sin β1
(3)

x2 =
h2

sin β2
(4)

x3 =
√
(x2

1 + L2 − 2x1L cos(180◦ − β1)) (5)

x4 =
√
(x2

2 + x2
3 − 2x2x3 cos θ) (6)

γ = arc cos(
L2 + x2

3 − x2
1

2Lx3
) (7)

θ = 180◦ − γ − β2 (8)

We derive Equation (9) from Equations (3) and (5):

x3 =

√
((

h1

sin β1
)

2
) + L2 + 2 cot β1h1 (9)

Then, Equation (10) can be derived from Equations (7)–(9):

θ = 180◦ − arccos(
L + cot β1√

( h1
sin β1

)
2
+ L2 + 2h1L cot β1

)− β2 (10)

Equation (11) is derived from Equations (4), (6), (9) and (10):

x4 =

√√√√((
h2

sin β2
)2 + ((

h1

sin β1
)2 + L2 + 2h1 cot β1)− 2

h2

sin β2

√
(

h1

sin β1
)2 + L2 + 2h1 cot β1 cos θ (11)

Finally, the vertical angle α is calculated by combining Equations (2), (4), (9) and (11).
The larger the vertical angle, the better the visual experience for the tourists.
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Evidently, the larger the slope of the landscape surface relative to the tourists’ per-
spective, the larger the visible area and the likelihood of the landscape being noticed, and
the more comfortable the visual sightseeing experience. Therefore, the projected area of
the landscape surface along the line of sight can be used to describe the impact of the
relative slope on the tourists’ visual experience (denoted by sensitivity S), as shown in
Figure 3 (level sight as an example). For level or upward sight, the relative slope is the
actual terrain slope. For downward sight, the relative slope is the terrain slope minus 90◦.
If the landscape area is 1 and the terrain slope is β, then the sensitivity is:

S1 = sin β(0◦ ≤ β ≤ 90◦) (12)

S2 = sin(90 − β) (13)
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Figure 3. Sensitivity diagram considering the front horizontal view as an example.

In Figure 3, β represents the slope angle of the landscape surface. When the line of
sight is perpendicular to the landscape surface, the projection area is maximized, and the
sensitivity is equal to 1. When the line of sight is parallel to the landscape surface, the
projection area is minimized, and the sensitivity is equal to 0. Other angles yield values
between 0 and 1.

2.1.2. Algorithmic Implementation

The implementation process for the visibility analysis optimization algorithm is
as follows:

(1) Employ the visibility analysis algorithm to calculate the visible area of the observa-
tion points.

(2) Take the center points of each grid in the visible area as the target points.
(3) Implement the visibility analysis optimization algorithm to compute the optimization

parameter values corresponding to each target point.
(4) The visible area obtained by weighting the optimization parameters and their cor-

responding weights (calculated using the AHP) can quantitatively evaluate tourists’
visual experience of sightseeing. Utilize the GIS view function to display the visibility
at graded levels from low to high based on the visual experience scores.
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2.1.3. Algorithmic Validation

To validate the effectiveness of the visibility analysis optimization algorithm, Fenghuang
Town was selected as the study area. We performed a comparison experiment before and
after the optimization of the visibility analysis algorithm, keeping the tourists’ coordinates,
observation radius and landscape coordinates unchanged.

Figure 4a shows that the visibility analysis results before optimization can only display
the visible area. As shown in Figure 4b, we can see that after optimization, not only can
the visible area be obtained but the visual experience can also be quantitatively assessed,
and the results can be displayed in graded colors. The darker the color, the better the
visual experience.
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Figure 4. (a) denotes the visible region before optimization by the visibility analysis algorithm and 
(b) denotes the visible region after optimization by the visibility analysis algorithm. 

Figure 4. (a) denotes the visible region before optimization by the visibility analysis algorithm and
(b) denotes the visible region after optimization by the visibility analysis algorithm.

To validate the accuracy of the proposed visibility analysis optimization algorithm,
this study adopts the statistical correlation analysis method, comparing the correlation
between on-site questionnaire survey results on the “landscape visual experience” and the
landscape visual experience chromatic map predicted using the optimization algorithm. A
higher correlation coefficient indicates that the chromatic map more accurately reflects the
actual visual effect distribution for the landscape, thus proving the accuracy of the visibility
analysis optimization algorithm. The specific verification procedures are as follows:

(1) A total of 100 test points were systematically randomly sampled within the research
area for conducting questionnaire surveys using the landscape visual experience scale.

(2) The questionnaire scores for each test point were statistically normalized as the actual
landscape visual experience values.

(3) The landscape visual experience chromatic map (as shown in Figure 5) was produced
based on the visibility analysis optimization algorithm.

(4) The predicted landscape visual experience values corresponding to the 100 test points
were extracted from the chromatic map.

(5) Pearson’s correlation analysis was performed between the actual and predicted land-
scape visual experience values.

Our survey targeted ordinary tourists engaged in activities within the designated test
points of the study area. We conducted on-site questionnaire surveys utilizing a Likert five-
point scale, which included an item on the “landscape visual experience”. Normalization
was applied to the survey scores, mapping satisfaction values onto a 0–1 range (with 0
indicating complete dissatisfaction and 1 representing utmost satisfaction). The normalized
scores were then used to calculate the average scores for each test point, representing the
actual values.
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Figure 5. Chromatic map of the visual experience of the landscape.

Figure 6 presents the landscape visual experience value (RASTERVALU) along the
horizontal axis, derived using the visibility analysis optimization algorithm. The vertical
axis depicts scores representing the “landscape visual experience” (SCOER), obtained using
an on-site questionnaire survey. This survey evaluates multiple facets of the visual experi-
ence by incorporating questions on sensory fulfillment, aesthetic appreciation and other
relevant dimensions. Statistical summarization and analysis of the collected survey data
produce finalized landscape visual experience scores for the test points. There is a positive
correlation coefficient of 0.82 between the two, reaching a significance level of 0.01. The
few test points in Figure 6 that show a large discrepancy between the questionnaire results
and the predicted chromatic map results may be due to certain subjective randomness in
different tourists’ aesthetic needs and the landscape satisfaction criteria, causing deviations
in the evaluation of the same landscape. Overall, there is a strong correlation between the
actual and predicted values, which verifies that the chromatic map can accurately reflect
the actual distribution of the landscape visual experience, thus proving the accuracy of the
visibility analysis optimization algorithm.
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2.2. Establishment of the Landscape Visual Evaluation Method

By optimizing the visibility analysis algorithm, this study achieves a transformation
from merely making calculations for the visible area to the quantitative evaluation of the
quality of visually experiencing the landscape considering parallax. However, compre-
hensively evaluating the landscape visual effects requires integrating influencing factors.
This study selects quantitative indicators (e.g., visible area) and qualitative indicators (e.g.,
landscape water system distribution, number of landscape resources) closely related to
landscape visual satisfaction. Then, by employing the analytic hierarchy process (AHP)
to assign weights to these indicators, an integrated landscape visual evaluation method
possessing both quantitative computation and qualitative assessment is finally established.
This method not only considers the quantified effect but also comprehensively evaluates
the qualitative factors affecting the landscape quality, and its scientificity and functionality
have been validated in subsequent case studies.

The landscape visual evaluation method proposed in this study includes: (1) determi-
nation of the influence indicators; (2) calculation of the indicator weights; (3) calculation of
landscape visual assessment total scores. Firstly, by comprehensively summarizing previ-
ous studies and the existing expert experience, the primary indicators within landscape
visual evaluation are determined. Then, according to the AHP, the indicator weights are
calculated. Finally, the total scores of the landscape visual evaluation are obtained using
weighted calculation using both indicator values and weights.

(1) Determination of influence indicators

The Landscape Visual Management System (VMS) developed by the United States For-
est Service (USFS) suggests that the spatial relationship between observers and landscapes
can affect their visual experience. In 1995, the USFS updated the VMS to the Landscape
Management System (SMS), adding terrain features, river systems and cultural features as
important indicators affecting the visual quality of the landscape [18]. We select the indica-
tors that affect the landscape visual assessment method based on the SMS in this paper. We
can quantitatively analyze the impact of the terrain features on the visual experience within
the visible area, which is affected by the vertical angle and relative slope. The landscape
water system is divided into river system I, river system II and III river system, according
to their river flow and size. The more landscape river systems tourists see and the higher
the level, the more comfortable their visual experience will be [19,20]. The number of
landscape resources can reflect the cultural characteristics of different regions, including
natural and cultural landscapes. Tourists in areas with rich landscape resources are more
likely to resonate with the scenery and history, enhancing their visual experience [21,22]
(Alimardonova 2020; Iranmanesh 2010).

Overall, we propose a hierarchical landscape evaluation system, shown in Figure 7.
The primary indicators include the visible area, landscape resources and landscape water
systems, and the secondary indicators are composed of the vertical angle, relative slope,
natural landscape, cultural landscape, river system I, river system II and river system III.
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(2) Calculation of the indicator weights

When determining the weight of each indicator, evaluation using the traditional
methods is limited by subjective wishes or qualitative conditions, so the result is not
ideal. To solve this problem, Santy et al. [23] proposed consistent matrix discrimination,
which compares two factors with each other as much as possible to reduce the difficulty
of comparing factors with different properties and improve accuracy. Therefore, in the
evaluation process, it is necessary to compare each indicator with each other, and then
determine the importance levels based on the importance of each indicator. In this process,
aij denotes the results of the comparison of the importance of element i and element j.
Table 1 lists nine importance levels and their assigned values. The matrix formed according
to the results of pairwise comparison is called the judgment matrix. The judgment matrix
has the following properties:

aij =
1
aji

(14)

Table 1. Important levels from 1 to 9.

Scale Meaning

1 Element i is as important as element j
3 Element i is slightly more important than element j
5 Element i is stronger and more important than element j
7 Element i is more important than element j
9 Element i is more important than element j

2,4,6,8 Element i and element j are intermediate in importance

For each obtained weight, a consistency test is required. We use the CR (consistency
ratio) to verify the consistency of the weight. If the CR < 1, the consistency test is considered
acceptable; otherwise, the matrix elements must be changed and rescaled according to
Table 1 until the CR satisfies the consistency condition. The calculation of the CR is shown
in Equation (15), where the RI (random consistency index) needs to be looked up in Table 2.

CR =

(
λ − n
n − 1

)
×

(
1

RI

)
(15)

where n represents the order of the matrix and λ represents the maximum eigenvalue of a
matrix of order n.

Table 2. Average random consistency indicator RI values.

n RI

1 0
2 0
3 0.58
4 0.90
5 1.12
6 1.24
7 1.32
8 1.41
9 1.45

By selecting, modeling and calculating the weights of the landscape visual evaluation
indicators, the weights of each indicator were finally obtained as shown in Tables 3–6.
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Table 3. Weighting of primary indicators.

Visible Area Landscape
Resources

Landscape
Water Systems Weight

Visible area 1 3 3 0.43
Landscape resources 1/3 1 1/2 0.33
Landscape water systems 1/3 2 1 0.24

Where λ = 3.1 and the CR = 0.08 < 1, which proves that the consistency of this judgement matrix is ideal.

Table 4. Secondary indicators: weighting of visibility.

Vertical Angle Relative Slope Weight

Vertical angle 1 2 0.53
Relative slope 1/2 1 0.47

Where λ = 2 and the CR = 0 < 1, which proves that the consistency of this judgement matrix is ideal.

Table 5. Secondary indicators: weighting of landscape.

Natural Landscape Cultural Landscape Weight

Natural landscape 1 2 0.53
Cultural landscape 1/2 1 0.47

Where λ = 2 and the CR = 0 < 1, which proves that the consistency of this judgement matrix is ideal.

Table 6. Secondary indicators: weighting of river systems.

River System III River System II River System I Weight

River system III 1 2 3 0.41
River system II 1/2 1 1/2 0.35
River system I 1/3 2 1 0.24

Where λ = 3.3 and the CR = 0.0025 < 1, which proves that the consistency of this judgement matrix is ideal.

(3) Calculation of the landscape visual assessment total scores

After calculating the weighted sum of the indicator values and the weights of each
target point, the landscape visual evaluation score (LVES) of each target point is obtained (as
shown in Equation (16)). We then obtain the total score for the landscape visual evaluation
by summing up the scores of all the target points corresponding to the observation point
(as shown in Equation (17)).

LVESk =
k

∑
k=1

IVk × Wk (16)

LVES =
n

∑
n=1

LVESk (17)

where LVES represents the total score for the landscape visual evaluation of the observer
point, LVESk represents the landscape visual evaluation score for the target point, k repre-
sents the number of indicators, IVk represents the value of each indicator, Wk represents the
weight value corresponding to each indicator and n represents the number of target points
corresponding to the observer point.

3. Method Validation

To validate the effectiveness of the proposed landscape visual assessment method, we
regard Fenghuang Town as the study object, which is located between 109.3123079◦ E to
109.4373592◦ E and 33.5706358◦ N to 33.4810015◦ N. Fenghuang Town is in the southeast
of Zhashui County, Shangluo City, Shaanxi Province, China. The terrain of Fenghuang
Town is mainly mountainous, with a high topography to the west and low topography to
the east, and an average elevation of 709 m (Figure 8). Fenghuang Town is surrounded
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by abundant river systems, with a pleasant environment and rich natural and cultural
landscape resources. The data source used in the experiment is shown in Table 7.
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Table 7. Experimental data source.

Database Source

River system Baidu Maps API
Landscape Baidu Maps API

Elevation map of Fenghuang Town Resource and Environmental Science and
Technology Center, Chinese Academy of Sciences

Image of Fenghuang Town Resource and Environmental Science and
Technology Center, Chinese Academy of Sciences

3.1. Data Preprocessing

We adopt the GIS spatial analysis function for data extraction and preprocessing,
as follows:

(1) Selecting observation points

We divide the research area into a grid of 5000 m × 5000 m, and the center point of
each grid is regarded an observation point.

(2) Selecting the observation radius

To prevent overlaps in the visible areas between adjacent observation points from
affecting the experiment results, we select the half distance between adjacent observation
points as the observation radius.

(3) Selecting target points

We use visibility analysis to calculate the visible area corresponding to each observa-
tion point and regard the center point of the visible area the target point.

(4) Calculate the visual experience score of the landscape in the visible area

Based on using the visibility analysis optimization algorithm to calculate the landscape
visual experience score within the visibility area of each observation point, a hierarchical
display of the landscape visual experience score of Fenghuang Town is shown in Figure 9.

(5) Extracting river systems in the research area

We apply the Baidu Map API to extract the river system vector data surrounding
Fenghuang Town and count the number of river systems covered within the observation ra-
dius centered on each observation point. The distribution of the river systems in Fenghuang
Town is shown in Figure 10.
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Figure 9. Visual effects of the visible area.
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(6) Extracting landscapes in the research area

We use the Baidu Map API to extract the landscape vector data surrounding Fenghuang
Town and count the number of landscapes covered within the observation radius centered
on each observation point. The distribution of the landscape in Fenghuang Town is shown
in Figure 11.
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3.2. Calculating the Total Scores for the Landscape Visual Evaluation

The landscape visual experience scores for the visible areas and the covered numbers
of water systems and landscapes are extracted for each observation point using the spatial
analysis function in the GIS. The obtained experimental data are shown in Figure 12. Based
on the landscape visual evaluation system established in the previous section, the landscape
visual assessment scores for 12 observation points in Fenghuang Town are calculated as
shown in Figure 13.
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3.3. Results Analysis

As shown in Figure 9, the results obtained using the visibility analysis optimization
algorithm not only display the visible area but also quantitatively analyze the visual
experience for tourists using the optimization parameters. The colors displayed in Figure 9
are arranged from low to high according to the scores, with darker colors indicating a better
visual experience. Figure 13 shows that the total landscape visual assessment scores of
observation points 5, 6, and 10 are between 70 and 100. Then, we select these three points
as the predicted viewing platforms. We verify whether the landscape visual quality is
consistent with the actual situation using error analysis.

3.4. Error Analysis

We select the existing viewing platforms in Fenghuang Town as the observation
points and calculate the average value of the landscape visual evaluation scores for each
observation point. We use the average value as the actual value in the root mean square
error calculation. With the observation point as the center, as the radius increases by 500 m,
we calculate the landscape visual evaluation scores for four target points corresponding to
central angles of 90◦, 180◦, 270◦ and 360◦ and use them as the predicted values in the root
mean square error calculation. Finally, the root mean square error (RMSE) of the landscape
visual evaluation scores for different error radii is calculated as shown in Figure 14. The
formula for the root mean square error is:

RMSE =

√√√√√ n=4
∑

i=1
Xi − x

n
(18)

where n represents the number of target points, Xi represents the predicted values and x
represents the actual values.
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As shown in Figure 14, we can see that the root mean square error of the landscape
visual evaluation scores increases significantly when the error radius exceeds 1000 m,
indicating that the landscape visual effect is basically consistent within a range of 1000 m.
Therefore, the error range is defined as a circle with a radius of 1000 m centered on the
original observation platform. Using error analysis (Figure 15), we see that observation
points 5, 6 and 10 are all within the error range, indicating that their landscape visual effects
are consistent with the actual situation, further verifying the effectiveness of the proposed
viewshed analysis optimization algorithm and landscape visual evaluation method.
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4. Conclusions and Discussion

This study constructs a visibility analysis optimization algorithm to transform the
abstract assessment of tourists’ visual experience into quantitative data and graded visu-
alization layers based on the landscape visibility. By utilizing influencing factors like the
visible area, landscape water system distribution and the number of landscape resources,
a landscape visual evaluation indicator system is established. Finally, by integrating the
analytic hierarchy process with the visibility analysis optimization algorithm, an improved
landscape visual evaluation method is proposed. In the case study conducted in Fenghuang
Town, a graded display map (Figure 4) and chromatic map (Figure 5) of the landscape
visual experience for the observation points show that the visibility analysis optimiza-
tion algorithm not only can calculate the visible area but can also quantitatively analyze
tourists’ visual experience. The error analysis graph (Figure 15) indicates that compared to
traditional evaluation methods based on tourists’ subjective perception or expert scoring,
the proposed method that quantitatively evaluates the landscape visual experience from
an objective perspective can directly reflect tourists’ actual visual experience effects, with
evaluation results featuring higher accuracy, reliability, objectivity and scientificity.

This method has great potential to develop into a relatively mature, more automated
and scalable software tool in the future. It can not only assist in site selection and planning
for sightseeing platforms but also support landscape planning and conservation in scenic
areas. Regions with high landscape visual evaluation scores are considered to have a
higher visual quality and should be included in protected area list. For regions with lower
scores, planners can scientifically transform the landscape structure without damaging the
environment to increase diversity, improve visual quality and attract more tourists.

Of course, there are still some deficiencies in the research that need to be improved:
many factors affect the landscape visual evaluation results, such as the landscape quality,
weather factors and specific tourist-related factors. Therefore, the next plan is to establish a
more comprehensive indicator system to quantitatively evaluate landscape visuals.
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