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INTRODUCTION
Amentoflavone (C30H18O10) is a bioflavonoid naturally  
occurring in more than 120 plants throughout the 
world.[1] It has many important biological effects, 
mostly acting as an antioxidant,[2] anti-inflammatory,[3]  
anticancer,[4] anti-senescence,[5] antibacterial,[6,7]  
antifungal,[8] antiviral,[9] neuroprotective,[10] cardiopro-
tective,[11] antidiabetic,[12] and so on.
Scientific reports suggest that amentoflavone is evident  
to act against dengue,[9] where it has been found to 
inhibit the viral NS5 RNA-dependent RNA polymerase  
(RdRp). It has also activity against coxsackievirus B3 
(CVB3),[13] human immunodeficiency virus (HIV),[14] 
respiratory syncytial virus (RSV),[15] herpes simplex 
virus 1 (HSV-1) and acyclovir (ACV)-resistant strains 
(e.g., HSV-1/106, HSV-1/153, and HSV-1/Blue).[16] 
The amentoflavone bioavailability after intravenous 
administration is >77% in a rat model.[17] The plasma 
half-life (t1/2) and maximum plasma concentration 
(Tmax) of amentoflavone following oral administra-
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ABSTRACT
Background: The plant-derived bioflavonoid amentoflavone has many important biological 
activities, among them remarkable antiviral effects, even against severe acute respiratory 
syndrome Coronavirus (SARS-CoV). It inhibits severe acute respiratory syndrome coronavirus  
(SARS-CoV) with an IC50 value of 8.3 µM. TMPRSS-2 activity is now thought to be the only  
factor necessary for cell entry and viral pathogenesis). In comparison, 3CLPRO is needed for 
COVID-19 replication and maturation during its life cycle. Aim: This study aims to perform an  
in silico study on amentoflavone activity against structural and non-structural severe acute 
respiratory syndrome coronavirus (SARS-CoV)-2 3-chymotrypsin-like protease (3CLPRO) and 
human transmembrane protease serine 2 (TMPRSS-2) proteins. Materials and Methods: 
Molecular docking studies were carried out using compounds against 3CLPRO and TMPRSS-2 
proteins through the Swiss model, Uniport, PROCHECK, Swiss PDB viewer, PyMol, PyRx, and 
Desmond (Schrödinger package) computerized software. Results: Amentoflavone showed  
strong interactions -9.5 and -7.4 kcal/mol with 3CLPRO and TMPRSS2 proteins, respectively.  
In any case, it had higher binding affinities than currently approved antiviral drugs, which are 
underutilized in coronavirus disease (COVID-19). Conclusion: Amentoflavone may be one of  
the potential leads (drug candidate) to fight human coronavirus, including SARS-CoV-2.  
Further in vivo studies are needed to support the findings of this study.
Key words: Phenolic compounds, Amentoflavone, Antiviral potential, SARS-CoV-2, COVID-19, 
Molecular docking, 3CLPRO, TMPRSS-2.
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tion were 2.06-3.34 h and 1.13-4.00 h, respectively, 
in normal rats.[18] However, it is evident to interact 
with CYP3A4 and CYP2C9, thereby reducing the 
metabolism of some drugs in our body.[19]

Coronaviruses (CoVs) are RNA viruses with medical  
and veterinary importance.[20,21] The 3CLPRO has 
gained much attention for the discovery, develop-
ment, and design of new drugs for SARS-CoVs  
as a valuable target. It is also termed as ‘the Achilles  
heel’ of coronaviruses.[22,23] Generally, human  
coronaviruses (HCoVs) are single-stranded and  
positive-sense (length: 30,000 bp) RNA viruses,  
containing two types of proteins: (i) Structural 
proteins (e.g., Spike (S), Nucleocapsid (N), Matrix  
(M), and Envelope (E) and (ii) Non-structural  
proteins (e.g., 3CLPRO, Papain-like protease (PLPRO) 
and RNA-dependent RNA polymerase (RdRp).[20]  
The CoV polyprotein encodes two proteases,  
responsible for translating the non-structural  
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proteins (nsps).[24] Briefly, the S protein, present on the outer surface of the 
virion, helps to attach and entry of the virus-cell into host cells.[25,26] On the  
other hand, RdRp, an important viral enzyme that is required in the 
RNA viruses’ life cycle.[27]

The nsp12 polymerase binds to the cofactors, nsp7 and nsp8, which 
helps to replicate and transcript the viral genome.[28] PLPRO cleaves the 
nsp1/2, nsp2/3, and nsp3/4 borderlines and works with 3CLPRO to cleave 
the polyproteins into naps.[29] The nsp13 (helicase) catalyzes the loosen 
of duplex oligonucleotides into single strands in a nucleoside 5’-triphos-
phate (NTP)-dependent manner, and, thus, can be considered as a target 
to develop antiviral drugs.[30] On the other hand, the nsp14 (N-terminal 
exoribonuclease and C-terminal guanine-N7 methyltransferase) of CoV 
is also crucial for HCoVs replication and transcription,[31] while nsp15  
(uridylate-specific endoribonuclease) forms a hexameric endoribonuclease  
that preferentially cleaves 3’ of uridines, also named as uridylate-specific  
endoribonuclease. The later one is one of the RNA-processing 
enzymes encoded by the CoV,[32] while nsp16(2’-O-methyltransferase) 
is an S-adenosyl methionine (SAM) dependent on the nucleoside-
2’-O methyltransferase. The nsp16 is only activated followingnsp10  
binding.[33] Thensp10 is also an essential co-factor which forms com-
plexes with nsp14 and nsp16.[34]

Thus, the development of new drugs for the CoVs focuses on two main 
strategies: (a) Blocking virus cell entry into the host cells, and (b) Halt 
transcription and replication of virus-cell inside the host. Therefore, the S 
protein, 3CLPRO, PLPRO, and nsps may be attractive targets for anti-SARS-
CoV drug design. Besides, human angiotensin-converting enzyme 2 
receptor (hACE2R), the calcineurin nuclear factor of activated T-cells 
(calcineurin–NFAT), Abelson murine leukemia viral oncogene homolog 
1 (ABL1), and transmembrane protease serine (TMPRSS)-2 and -4 are 
also some other mentionable target proteins in anti-CoV drug discovery 
and development.[35,36] 
According to recent data, SARS-CoV-2 reaches cells via the hACE2 
receptor, which acts in tandem with the host’s TMPRSS-2.[37] TMPRSS-2, 
in particular, cleaves the viral S glycoprotein, promoting viral activation  
and acting as one of the primary host factors for SARS-CoV-2  
pathogenicity.[38] TMPRSS-2 activity is now thought to be the only factor 
necessary for cell entry and viral pathogenesis.[39] In comparison, 3CLPRO 
is needed for COVID-19 replication and maturation during its life cycle.[40]

Additionally, nature is the best resource of lead compounds. Among  
them, flavonoids and phenolic compounds are a more potent class  
compound found in nature. A bioflavonoid, amentoflavone inhibited 
SARS-CoV with an IC50 value of 8.3 µM,[41] possibly through inhibition 
of 3CLPRO. Furthermore, FDA-approved antiviral drugs Camostat mesylate  
used in the clinical trial against COVID-19. 
In this sense, this study aimed to address the in silico potential of amen-
toflavone against 3CLPRO and TMPRSS-2 proteins. Additionally, some 
host proteins interacting with HCoV-2 were also taken into account. 

MATERIALS AND METHODS
Homology model and Macromolecule preparation
Homology modeling of 3CLPRO and TMPRSS-2 was performed by Swiss-
model.[42] Before modeling, the sequence was collected from UniProt,[43] 
followed by BLAST Analysis using NCBI BLAST,[44] program to choose the  
template. PROCHECK was employed for Homology Model  
validation.[45] Molecular docking of amentoflavone was performed to shed 
light on the binding mode of these proteins.
Amentoflavone activity was assessed against the active inhibitory site of 
HCoV-2 3CLPRO,[46] and TMPRSS2.[47] For that, a simple docking method 
explored the properties of GSF, i.e. a Quasi-Newton solid body optimi-
zation of the ligand location from random starting positions near the  

receptor site.[48] For energy minimization of protein structure, the  
Swiss-PDB Viewer software package (v. 4.1.0) was used, and then all 
heteroatoms and water molecules of proteins were removed by using 
PyMOl (version 1.7.4.5) before docking.[49]

Ligand preparation
The chemical structure of amentoflavone (PubChem ID: 5281600),  
as well as of the FDA-approved antiviral drugs Camostat mesylate  
(PubChem ID: 5284360) are shown in Figure 1. Amentoflavone and 
Camostat mesylate were downloaded from the PubChem (a database of 
chemical molecules) in the ‘sdf ’ file format. All internal energies of the 
ligands were optimized by using Chem3D Pro12.0 program packages.[50]

Docking protocol
Molecular docking is a computational method for drug design in medicinal  
chemistry. This method is used for predicting the drug candidate’s phar-
macodynamics profile by scoring and orienting them to the receptor  
binding sites,[51] by PyRx-virtual screening tool. The docking result  
determines the measure of ligand interaction to the active site of the  
targeted protein. The actives sites are the coordinates with the ligand in 
the original target protein grids (25Å × 25 Å× 25Å grid size),[52] with 
PyMol, PyRx, and Drug Discovery Studio (v.4.5) being used for scruti-
nizing these active binding sites of the target protein.[53]

Molecular dynamic simulation (MD) study
We performed MD simulations via utilizing Desmond (Schrödinger 
package).[54] The selected ligand-protein complexes were first soaked 
into TIP3 water box, extending 10 Å beyond any of the complex’s 
atoms. Counter ions of sodium and chloride were included to neutralize  
charges. We set salt concentration to 0.15 M sodium, and chloride ions 
to approximate physiologic condition. We implemented the MD in the  
NPT ensemble at temperature of 300 K and 1.63 bar pressure over  
100 ns. Simulations were passed with the OPLS-3e forcefield. Plots were 
depicted with Maestro tool.

ADME prediction
ADME (Adsorption, Distribution, Metabolism, and Excretion) is impor-
tant to analyze the pharmacodynamics of the proposed molecule that 
could be used as a drug. SWISS-ADME tool is a website (https://www.
swissadme.ch) which allows the user to draw their respective ligand or 
drug molecule or include SMILES data from PubChem and provides the 
parameters, such as lipophilicity (iLOGP, XLOGP3, WLOGP, MLOGP, 
SILICOS-IT, Log P0/w), water solubility-Log S (ESOL, Ali, SILICOS-IT),  
drug-likeness rules (Lipinski, Ghose, Veber, Egan, and Muegge) and 

Figure 1: The chemical structures of amentoflavone and standard 
anti-viral drugs.
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Medicinal Chemistry (PAINS, Brenk, Leadlikeness, Synthetic accessi-
bility) methods.[55] Data from PubChem, which consists of SMILES of 
amentoflavone (https://pubchem.ncbi.nlm.nih.gov/compound/amento-
flavone) was entered into the search bar and was analyzed.

Toxicity prediction
Toxicology prediction of small molecules is important to predict the  
tolerability of the small molecules before being ingested by human  
and animal models. pkCSM is an online database in which the small 
molecule can be drawn virtually or can be analyzed by submitting the 
SMILES of the same. The website can provide details of toxicology effects 
in the fields of AMES toxicity, human maximum tolerated dose, hERG-I 
inhibitor, hERG-II inhibitor, LD50, LOAEL, hepatotoxicity, Skin toxicity, 
T. pyriformis toxicity, and Minnow toxicity. The website was logged on 
and SMILES of the amentoflavone data from PubChem was searched 
and submitted into the website, and toxicity mode was selected.[56]

Computer-based instrumentation for molecular docking 
Computational drug discovery is a smart way to speed up and save  
money on the drug discovery and production process. Molecular docking,  
pharmacophore simulation and projection, de novo design, molecular  
similarity estimation, and sequence-based virtual scanning have all 
seen major advances in computational drug discovery.[57] In this study, 
for reducing all heteroatoms and water molecules from proteins PyMOl 
(version 1.7.4.5), and the Swiss-PDB Viewer software package (v.4.1.0) 
were used for energy minimization of protein structure. Protein and 
drug candidates were docked by PyRx-virtual screening tool (V.2.4), and 
Drug Discovery Studio (v.4.5) being used for scrutinizing these active 
binding sites of the target protein. For molecular dynamic simulation 
study Desmond (Schrödinger package). 

RESULTS
Homology modelling of 3CLPRO, and TMPRSS2
Homology modelling has developed into an effective structural biology 
tool, greatly shrinking the distance between experimentally described 
protein structures and recognized protein sequences.[58] Using com-
pletely automated frameworks and databases, the homology modelling 
process is optimized and standardized, enabling even those without a 
specialized computational background to create accurate protein maps 
and have a fast and clear reference to modeling findings, representation,  
and evaluation.[59,60] The amino acid sequence of 3CLPRO (Uniprot  
accession ID: P0DTD1), and TMPRSS-2 (Uniprot accession ID: O15393) 
was subjected to NCBI BLAST Program for selection of the closest 
homologous template Homology model of 3CLPRO, and TMPRSS-2 
was generated by Swiss model (Figure 2). Optimization of 3CLPRO and  
TMPRSS-2 was achieved by using the Swiss-PDB Viewer software  
package (v.4.1.0) before docking, whereas validation of these 3CLPRO,  
and TMPRSS-2 homology model was acquired through the use of  
Ramachandran plot performed by PROCHECK[45] and illustrated in  
Figure 3.
The Ramachandran plot is a simple way to see how a protein structure’s 
torsion angles are distributed. It also gives an overview of the allowed 
and disallowed regions of torsion angle values, which is useful when  
evaluating the quality of protein three-dimensional structures. The  
phi-psi torsion angles for all residues in the structure are seen in the 
Ramachandran plot (except those at the chain termini). Glycine residues 
are denoted by triangles since they are not limited to the plot regions 
allocated for the other side chain forms. The coloring/shading on the plot 
represents the different regions described: the darkest areas (here shown 
in red) correspond to the “core” regions representing the most favorable 
combinations of phi-psi values. Ideally, one would hope to have over 90% 

of the residues in these “core” regions. The percentage of residues in the 
“core” regions is one of the better guides to stereochemical quality.
From Ramachandran plot statistics, it has been found that residues in 
the most favored regions are about 92.1% (614 amino acid residues) and 
90.1 % (236 amino acid residue) for 3CLPRO and TMPRSS-2 proteins, 
respectively. 

Molecular Docking
Interaction with 3CLPRO

Amentoflavone and Camostat mesylate showed binding energies by 
-9.5 and -7.4 kcal/mol with SARS-CoV-2 3CLPRO, respectively (Table 1). 
Amentoflavone revealed a good binding energy with 3CLPRO through 
interacting with Thr26, Cys145, Glu166, Gly143, His41, and Met165 
amino acid residues. It also mediated hydrogen bond at a distance of 
2.37Å with the hydroxyl group of Thr26, whereas His41 exhibiting π-π 
interaction, Cys145 π-S interaction, Glu166, and Gly143 π-donor hydrogen  
bond, and π-CH3 interaction with Met165. Since protein and phytoli-
gands have hydrogen bonds, the ligands are more stable in their binding 
position. (Figure 4).
Additionally, the standard drug Camostat mesylate showed good  
interaction with the hydroxyl group of Asp153, Asn151, Ile249, Ser158 
at a distance of 2.48, 2.84, 2.56, and 2.72Å, respectively, with the π-π 
interaction of Phe294 and alkyl interaction of Ile106 exhibiting hydro-
phobic interaction. The 2D and 3D structures of non-bond interactions 
of amentoflavone with the target proteins are shown in Figure 4.

Figure 2: Three-dimensional structures of the SARS-CoV-2 proteins 
3CLPRO, and human TMPRSS-2.

Figure 3: The optimized model of the SARS CoV-2 3CLPRO and human 
TMPRSS-2 using PROCHECK.
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Table 1: Binding affinities of amentoflavone, and Camostat mesylate with SARS-CoV-2 3CLPRO protein.

Compound Binding energy (kcal/mol) H-bond residue H-Bond length (Å) No of H-Bonds Other amino acid residue

Amentoflavone -9.5 Thr26 (H) 2.37 1 Cys145, Glu166, Gly143, His41, 
Met165

Camostatmesylate

-7.4 Asp153(H)
Asn151(H)
Ile249(H)
Ser158(H)

2.48
2.84
2.56
2.72

4 Ile106, Phe294

Table 2: Binding affinities of amentoflavone, and Camostat mesylate with human TMPRSS-2 protein.

Compound Binding energy 
(kcal/mol)

H-Bond Residue H-Bond length (Å) No of 
H-Bonds

Other amino acid residue 

Amentoflavone -8.8 Gln129 (H) 2.58 2 Ala83, Arg84, Arg97, Lys405

Thr 128(H) 2.70

Camostat mesylate
-7.4 Lys68 (H) 2.60 2 Asp67, Ile135, Leu132, Phe 66, Phe118, Pro53

2.61

Figure 4: Interactions of amentoflavone and Camostat mesylate 
with the SARS-CoV-2 3CLPRO proteins.

Figure 5: Interaction of amentoflavone and Camostat mesylate with 
human TMPRSS-2 protein.

Interaction with TMPRSS-2
Amentoflavone and Camostat mesylate were docked into TMPRSS-2 
(Table 2). Results show that the hydroxyl moiety of amentoflavone  
mediates two hydrogen bonds with Gln129, and Thr128 at a distance  
of 2.58 and 2.70Å, respectively. Besides, multiple hydrophobic interac-
tions were observed with Ala83, Arg84, Arg97, and Lys405. Similarly, the 
hydroxyl group of Camostat mesylate also mediates two hydrogen bond 
interactions with Lys68 at a distance of 2.60 and 2.61 Å.
Additionally, multiple hydrophobic interactions were observed with 
Asp67, Ile135, Leu132, Phe 66, Phe118, and Pro53 as illustrated in  
Figure 5.

Molecular dynamic simulation study
Molecular dynamics (MD) simulation Method for computing he atom 
movements with time by Use of Integrating-Newton’s equations. Where  
MD simulates the dynamic style of the molecular systems and evaluate  
the protein ligand complex stability. RMSD Plots of 3CLPRO and 
TMPRSS-2 proteins on left Y-axis, while amentoflavone RMSD profiles  

were depicted on the right Y-axis which were aligned on proteins  
backbone. The root mean square deviation (RMSD) plot in Figure 5A 
reveals that the amentoflavone-3CLPRO complex stabilized after 20 ns of 
simulation beginning. However, the fluctuations in the RMSD values of 
3CLPRO were around 2.15 Å showing that the complex has not met with 
considerable conformational transformations. While, amentoflavone’s 
RMSD profile when it bound to 3CLPRO showed two periods of fluctua-
tions: RMSD is about 1 Å till 35 ns and later the RMSD jumped to 2.2 Å 
till the 100 ns.
The RMSD plot in Figure 6 shows the amentoflavone-TMPRSS-2 MD 
trajectory of 100 ns. The complex goes to be stabilized during simulation 
regarding the reference frame at time 0 ns. However, after arriving at the 
equilibrium the variation falls between 1.5-2 Å, hence, can be regarded 
as non-significant. Since the RMSD plots of amentoflavone and protein 
backbone were lying over each other, formation of a stable complex can 
be deduced. We can observe a minor divergence around 30 ns and 50 ns 
courses in the RMSD values of amentoflavone.
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The RMSD plot in Figure 1B shows the amentoflavone-TMPRSS-2 MD 
trajectory of 100 ns. The complex goes to be stabilized during simulation 
regarding the reference frame at time 0 ns. However, after arriving at the 
equilibrium the variation falls between 1.5-2 Å, hence, can be regarded 
as non-significant. Since the RMSD plots of amentoflavone and protein 
backbone were lying over each other, formation of a stable complex can 
be deduced. We can observe a minor divergence around 30 ns and 50 ns 
courses in the RMSD values of amentoflavone.

ADME assessment
Amentoflavone revealed a molecular weight of 538.46 g/mol with  
hydrogen bond acceptors of 10 and hydrogen bond donors of 6. The 
ligand had a molar refractory of 146.97. Besides, amentoflavone showed 
Log Po/w (iLOGP), Log Po/w (XLOGP3), Log Po/w (WLOGP), Log  
Po/w (MLOGP), Log Po/w (SILICOS-IT) and Consensus Log Po/w  
values of 3.06, 5.04, 5.13, 0.25, 4.61 and 3.62, respectively. Data obtained 
revealed that it’s a poorly soluble class and the values of ESOL, Ali, and 
SILICOS-IT were -6.75, -8.60, and -8.70 respectively. It also showed a 
bioavailability score of 0.17. Our study revealed 0 alerts of PAINS and 
Brenk. The Comparison of amentoflavone and Camostat mesylate are 
summarized in Table 3. 
The color space is a suitable physiochemical space for oral bioavailability.  
LIPO Lipophility: –0.7 < XLOGP3 < þ5.0. SIZE: 150g/mol< MW < 
500g/mol. POLAR (Polarity): 20Å2< TPSA < 130 Å2. INSOLU (insolu-
bility): 0 < Log S (ESOL) < 6. INSATU (insaturation): 0.25 < Fraction 
Csp3 < 1. FLEX (Flexibity): 0 < Num. rotatable bonds < 9 

Toxicity prediction
For the analysis and optimization of pharmacokinetics and toxicity  
profiles, the results demonstrated that the ligand displayed no AMES 
toxicity, with a maximum tolerated dose for the human being of 0.438. 
The inhibitory activity of hERG II oral rat acute toxicity (LD50) was 2.527, 
oral rat chronic toxicity (LOAEL) of 3.572, T. pyriformis toxicity of 0.285, 
and minnow toxicity at 2.685. However, the ligand had no hepatotoxicity 
neither triggered skin sensitization. The toxicity values of the ligand and 
positive control are shown in Table 4.

DISCUSSION
COVID-19 outbreak started in December 2019 has triggered multiple 
difficulties in clinical work.[61,62] For controlling the COVID-19 outbreak, 

researchers from various countries are working hard to find out effective 
anti-SARS-CoV-2 agents, potential preventive agents,[63] or even inhibitors  
or a vaccine against SARS-CoV-2.[64] Although many vaccines are in  
clinical trials and have been proposed by various companies using  
various platforms, there is currently no officially approved vaccine.[65,66]

Also, naturally-occurring bioactive molecules have been increasingly 
investigated as a potential source of lead compounds to combat COVID-
19.[67] The bioflavonoid amentoflavone, formerly isolated by Okigawa,  
Hwa,[1] has gained increasing attention due to its wider range of bioactivities.  
The CoV S protein helps to enter through binding to host cell receptor  
ACE2.[68] Indeed, SARS-CoV-2 also uses hACE2R for attaching and 
entry into human cells.[23] In this study, amentoflavone revealed a strong 
affinity towards the viral S protein as well as the host hACE2R protein. 
Ryu, Jeong[41] also demonstrated an interactive capability of amentoflavone  
with 3CLPRO. Therefore, this study is in agreement with the previously 
done research on this compound. On the other hand, the PLPRO catalyzes 
the cleavage of the site-specific peptide of viral polyprotein sites between 
nsp1/nsp2, nsp2/nsp3, and nsp3/nsp4. It removes both ubiquitin and 
IFN stimulated gene (ISG) 15 during post-translational changes.[69] This 
study also shows an interaction capacity of amentoflavone with the PLPRO.
In this study, amentoflavone illustrate good to moderate binding affinity  
with 3CLPRO via interaction with receptor amino acids e.g., Thr26 (H), 
Cys145, Glu166, Gly143, His41, Met165 (Figure 6). Furthermore, 3CLPRO 
cleaves host polyproteins and helps to generate proteins required for viral 
replication.[70] It’s indicate that amentoflavone interrupt SARS CoV-2 
replication process through interaction with 3CLPRO protein. 
The HCoV-2s use the RdRp enzyme in their life cycle.[27] CoVs RNA  
replication and transcription occur through nsps encoded by the open 
reading frames (ORF) 1a and 1b. The nsps encoded in ORF1a and ORF1b 
are nsp1 to nsp11 and nsp12 to nsp16, respectively.[71] On the other hand, 
the ABL1 and calcineurin–NFAT play important roles in SARS-CoV-2 
infection. Amentoflavone showed strong interaction abilities with the 
RdRp and nsps that linked to ORF1a (e.g., nsp10) and ORF1b (e.g., 
nsp12, nsp13, nsp14, nsp15, nsp16).
In this study, amentoflavone is evident to interact with TMPRSS2 
through Gln129 (H), Thr 128(H) Ala83, Arg84, Arg97 and Lys405. The 
TMPRSS2 facilitates hCoVs, including SARS-CoV-2 infections via two 
independent mechanisms: (i) proteolytic cleavage of hACE2R which  
promotes viral uptake, and (ii) CoV Spike proteins cleavage which  

Figure 5: RMSD analysis of MD simulation trajectory. The RMSD plot obtained for (A) amentoflavone-3CLPRO, and (B) Amentoflavone-TMPRSS-2. The 
simulation time of 100 ns showing the formation of stable complex without any significant conformational changes in protein structure.
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triggers glycoprotein activation for host cell entry.[72] It has also been  
suggested that the gut is a potential site of SARS-CoV-2 replication. 
Besides, TMPRSS2 and TMPRSS4 were seen to facilitate SARS-CoV-2 
spike fusogenic activity, thereby promoting virtual entrance into the 
host.[73] Therefore, molecular docking suggested that amentoflavone 
interact and inhibit TMPRSS-2. 
On the other side, it has been reported that the acceptable range of 
molecular weight to a dug should be <500. Here, the molecular weight 
of amentoflavone is a little bit higher (538.46 g/mol). Hydrogen bond 
acceptors and hydrogen-bond donors with a range of ≤10 and ≤5 are 
adaptable.[74] It has also been reported that molar refractivity rang-
ing from 40-130 is suitable, with an acceptable range of high lipophi-
licity (LogP) of <5.[74] Indeed, the numerous achievements in drug  
development are highly facilitated by the use of soluble molecules.[75] In 

Table 3: Comparison of amentoflavone and Camostat mesylate. 

Compounds Amentoflavone Camostat mesylate

Phamracochemical properties

Formula C30H18O10 C21H26N4O8S

Molecular weight 538.46 g/mol 494.52 g/mol

Hydrogen bond 
acceptors

10 9

Hydrogen bond 
donors

6 3

Num. rotatable 
bonds

3 10

TPSA 181.80 Å² 200.06 Å²

Fraction Csp-3 0.00 0.24

Molar Refractivity 146.97 123.31

Lipophilicity

Log Po/w (iLOGP) 3.06 1.92

Log Po/w 
(XLOGP3)

5.04 0.24

Log Po/w 
(WLOGP)

5.13 1.57

Log Po/w 
(MLOGP)

0.25 1.28

Log Po/w 
(SILICOS-IT) 

4.61 1.47

Consensus Log 
Po/w

3.62 1.30

Watersolubility

Log S (ESOL) -6.75 -2.66

Log S (Ali) -8.60 -4.00

Log S (SILICOS-IT) -8.70 -4.46

Druglikeness

Lipinski No; 2 violations: (MW>500, 
NHorOH>5)

Yes; 1 violation: 
NorO>10

Ghose No; 2 violations: MW>480, 
MR>130

No; 1 violation: 
MW>480

Veber No; 1 violation: TPSA>140 No; 1 violation: 
TPSA>140

Egan No; 1 violation: 
TPSA>131.6

No; 1 violation: 
TPSA>131.6

Muegge No; 3 violations: 
XLOGP3>5, TPSA>150, 

H-don>5

No; 1 violation: 
TPSA>150

Bioavailability 
Score 

0.17 0.55

Medicinal Chemistry

PAINS 0 alert 0 alert

Brenk 0 alert 4 alerts: imine_1, 
imine_2, phenol_ester, 

sulfonic_acid_2

Leadlikeness No; 2 violations: MW>350, 
XLOGP3>3.5

No; 2 violations: 
MW>350, Rotors>7

Synthetic 
accessibility 

4.27 3.46

Table 4: Toxicity prediction for amentoflavone.

Model Name Predicted Value Unit

Amentoflavone Camostat 
mesylate

AMES toxicity No No Categorical  
(Yes/No)

Max. tolerated dose 
(human)

0.438 0.133 Numeric  
(log mg/kg/day)

hERG I inhibitor No No Categorical  
(Yes/No)

hERG II inhibitor Yes No Categorical  
(Yes/No)

Oral Rat Acute 
Toxicity (LD50)

2.527 2.319 Numeric  
(mol/kg)

Oral Rat Chronic 
Toxicity (LOAEL)

3.572 2.81 Numeric  
(log mg/kgbw/day)

Hepatotoxicity No No Categorical  
(Yes/No)

Skin Sensitisation No No Categorical  
(Yes/No)

T. pyriformis 
toxicity

0.285 0.285 Numeric  
(log ug/L)

Minnow toxicity 2.685 0.524 Numeric  
(log mM)

Figure 6: Summary of physiochemical, pharmacokinetics, and  
toxicological properties of Amentoflavone.
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our study, the ESOL, Ali, SILICOS-IT, and class.[76,77] were determined. 
Drug-likeness evaluates the probability for a molecule to turn an oral  
drug concerning bioavailability. The Lipinski,[78] is the pioneer rule-of-five  
and the Ghose,[79] Veber,[80] Egan,[81] and Muegge,[82] were performed in 
case of drug-likeness. No value was stated for Lipinski, Ghose, Veber, 
Egan, and Muegge. Bioavailability Score pursues to compute the probability  
of a compound to have oral bioavailability in rat or measurable Caco-2 
permeability.[83] Here, PAINS are the molecules carrying substruc-
tures exhibiting optimal response in assays irrespective of the protein 
target,[84,85] Brenk, Schipani[84] reported a list of 105 fragments for the 
structural alert. Our study revealed 0 alerts of PAINS and Brenk. The 
lead likeness is subjected to chemical modifications which can enhance 
the size and lipophilicity of the compound and the leads are requisite 
to be lesser and small hydrophobicity.[86] Synthetic accessibility (SA), in  
the selection of the suitable virtual molecules, is a chief factor. Medicinal  
chemists, for a reasonable number of molecules, are the best able to 
determine SA. The SA Score ranges from 1-10 (very easy-very difficult 
to synthesize), after normalization.[87] Moreover, it has no hepatotoxicity 
and skin sensitization. From the several test, the results have been shown 
that amentoflavone is a good candidate for COVID-19 treatment. 
An ideal anti-SARS-CoV-2 drug must have four basic criteria: (i) restriction  
ability of viral entrance, thereby inhibiting cellular attachment; (ii) inhi-
bition of viral replication in the host cells; (iii) cytotoxic effects on the 
existing viruses; and (iv) protect the host normal cells from the viral 
origin oxidative stress and inflammatory responses. Amentoflavone is  
evident to work through all of these pathways. Moreover, it has anti-
oxidant,[2,88] and anti-inflammatory,[3,89,90] activities.

CONCLUSION
Amentoflavone (a biflavonoid) previously illustrated anti-SARS CoV 
activity in SARS-CoV experimental system, additionally it exerted 
antiviral effect in a plethora of viruses. In this molecular docking and 
dynamic simulation study, it has been displayed that amentoflavone 
strongly interacts with SARS-CoV-2 non-structural 3CLPRO protein, and 
also showed strong binding affinities with host proteins responsible for 
SARS-CoV-2 entrance and replication in humans body. Interestingly, the 
binding affinities evidenced by amentoflavone were even greater than 
those observed in the clinical trial antiviral drugs (Camostat mesylate), 
currently used in many countries for the treatment of COVID-19. Other 
than that, pharmacokinetics tests expose to view good parameters when 
compare with Camostat mesylate. From this study, amentoflavone can  
be conceived as a potential lead compound against SARS-CoV-2  
infection. Although further in vivo studies are needed to establish the 
findings observed here, our findings will be helpful for further non- 
clinical, pre-clinical, and clinical studies with these compounds, at the 
same time that will inspire medicinal chemistry scientists to conduct  
adequate research on this hopeful natural lead compound and its  
derivatives.
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GRAPHICAL ABSTRACT SUMMARY

A bioflavonoid, amentoflavone inhibited SARS-CoV with an IC50 
value of 8.3 µM, possibly through inhibition of 3CLPRO. Furthermore, 
FDA-approved antiviral drugs Camostat mesylate used in the clinical  
trial against COVID-19. In this sense, this study aimed to address the 
in silico potential of amentoflavone against 3CLPRO and TMPRSS-2 
proteins. Additionally, some host proteins interacting with HCoV-2 
were also taken into account.

Dr. Javad Sharifi-Rad is the Head of a multidisciplinary and 
international research team with more than 200 researchers 
worldwide with tremendous research output. He is currently 
a Research Scientist at the Phytochemistry Research Center 
at Shahid Beheshti University of Medical Sciences. Dr. Javad 
Sharifi Rad’s main research interest is Food Science and Drug 
Discovery from Medicinal Plants.

ABOUT AUTHORS


