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Additive manufacturing of Aluminium alloy 2024 by laser powder bed fusion: 

Microstructural evolution, defects and mechanical properties 

Abstract 

Purpose: The purpose of this study is to investigate the microstructural evolution of high 

strength 2024 Al-alloy prepared by the Laser- Powder Bed Fusion (L-PBF) additive 

manufacturing route. The high strength wrought Al-alloy has typically been unsuitable for AM 

due to its particular solidification characteristics such as hot cracking, porosity and columnar 

grain growth. 

Design/methodology/approach: In this research work, samples were fabricated using L-PBF 

under various laser energy densities by varying laser power and scan speed. The 

microstructural features that developed during the solidification are correlated with operating 

laser parameters. In addition, Finite Element Modelling (FEM) was performed to understand 

the experimentally observed results.  

Findings: Microstructure evolution and defect formation have been assessed, quantified, and 

correlated with operating laser parameters. Thermal behaviour of samples was predicted using 

FEM to support experimental observations. An optimised combination of intermediate laser 

power and scan speed produced the least defects. Higher energy density increased hot tearing 

along the columnar grain boundaries while lower energy density promoted void formation. 

From the quantitative results it is evident that with increasing energy density both the top 

surface and side wall roughness initially reduced till a minimum and then increased. Hardness 

and compressive strength were found to decrease with increasing power density due to stress 

relaxation from hot tearing. 

Originality/value: This research work examined how L-PBF processing conditions influence 

the microstructure, defects, surface roughness and mechanical properties. Results indicates that 

complete elimination of solidification cracks can be only achieved by combining process 

optimisation and possible grain refining strategies.  

Keywords: Additive Manufacturing (AM); Powder Bed Fusion (PBF); Aluminium alloys; 

Solidification; Microstructure evolution. 
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1. Introduction 

Additive manufacturing (AM) is gaining widespread attention in the metal manufacturing 

industry for its ability to produce complex geometries and increased product customization for 

high quality structural components with improved functionality [1, 2]. This is particularly 

beneficial where conventional manufacturing reaches its limits in terms of design and 

manufacturing capabilities. Metallic AM systems can be classified as: (i) Powder Bed Fusion 

(PBF), (ii) Direct Energy Deposition (DED), and (iii) droplet-on-demand systems. PBF 

technologies include Selective Laser Melting (SLM) and Electron Beam Melting (EBM) [3]. 

All these varieties of AM processes carry similar attributes, and Laser powder bed fusion (L- 

PBF) is one of the most promising for metallic components with complex geometry as a laser 

is an ideal source for precise melting of metals and alloys [1, 4]. L-PBF has been successfully 

applied to different alloy systems including Ti-6Al-4V [5, 6], nickel-based superalloys [6-8], 

Al-Si-Mg alloys [9, 10], austenitic steels [11-13], high entropy alloys [14] and numerous other 

alloy systems [15-18]. 

Current research on L-PBF of Al-Alloys is predominantly focused on castable and weldable 

alloys, e.g., Al-10Si-Mg, Al-12Si-Mg, due to their process suitability compared to high-

strength wrought Al-Alloys [19]. The major challenges in using a laser beam to melt Al-alloy 

powders in AM are [19, 20]: (i) much higher reflectivity (compared to other alloys) to the laser 

beam making laser melting of Al an energy inefficient process, (ii) Al powders readily develop 

an oxide (Al2O3) layer due to its high affinity to oxygen resulting in entrapment of oxide 

inclusions in the laser built components, and (iii) managing the thermal stresses developed in 

intricate geometry produced by L-PBF becomes even more crucial as they involve complex 

stress distribution and may further aggravate defect formation in the component. Furthermore, 

the repetitive melting and rapid cooling (up to 106 Ks-1) [21] experienced by the material during 

L-PBF processing is significantly different from conventional casting and welding processes. 
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In L-PBF, alloys with a wide freezing range leads to hot cracking and volatilisation of elements, 

such as Zn and Mg, resulting in a turbulent melt-pool, excessive sputtering, and porosity 

formation during processing [20, 22].  

Limited literature is available on the processing of high-strength Al-alloys through L-PBF, and 

specifically, on heat-treatable wrought alloys (2xx.x, 6xx.x and 7xx.x) [23-28]. Conventionally 

produced wrought Al-alloys possess ultimate tensile stress (UTS) in the range of 200 - 575 

MPa and ductility of 3 - 20% depending on the deployed thermomechanical processing route 

during manufacturing [29]. On the other hand, besides the difficulties in L-PBF processing, the 

obtained mechanical properties of these alloys are an order of magnitude lower (25-40 MPa 

UTS and 0.3-0.7% ductility) than their conventionally manufactured counterparts due to build 

defects such as hot-cracking and voids [19]. Therefore, it is essential to understand the 

relationship between the defects and critical L-PBF processing parameters to produce defect 

free, high strength, and ductile parts.  

In the current investigation, commercial high-strength heat treatable wrought Al 2024 alloy is 

used, which is widely deployed in aviation, aerospace, automotive, rail transit and several other 

fields due to its high specific strength, excellent fatigue properties and good damage tolerance 

[30-33]. Despite its wide range of applications, its feasibility as a material for AM (or L-PBF) 

is hardly reported. Therefore, the present study investigates L-PBF AM processing of 2024 Al 

alloy highlighting the microstructural evolution and defect formation, and their dependence on 

the process parameters. The influence of process parameters, and the resulting microstructural 

features, on the mechanical properties have been investigated to propose a suitable laser 

processing window. A finite element model (FEM) using Abaqus software was adopted to 

analyse the temperature development in the built component during the process to compliment 

the experimental results obtained. 
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2. Experimental Method 

2.1 Alloy for additive manufacturing 

Gas atomised 2024 Al alloy powder (Al-4.35Cu-1.50Mg-0.25Fe-0.60Mn-0.08Ti-0.05Cr, all 

compositions expressed in wt. %) from Carpenter Additive, UK with average particle size of 

29 µm was used in this study. The powder was analysed using a Zeiss Sigma FE (Carl Zeiss 

Ltd, UK) scanning electron microscope (SEM). Figures 1(a) and (b) present the particle size 

distribution (PSD) of the alloy powder. PSD was calculated by measuring the diameters of the 

powder particles from the Secondary Electron SEM micrographs using ImageJ software 

(ImageJ, USA). More than 90 % of the particles were measured to be smaller than 50 µm.  

2.2 Processing by L-PBF 

For AM of samples, an M280 L-PBF 3D Printer was used (EOS, UK). Cubic (15 mm × 15 mm 

× 15 mm) and cylindrical (φ = 7 mm, h = 15 mm) specimens were fabricated for microstructural 

analysis and compression testing, respectively. Three samples produced for each condition to 

ensure reproducibility. The L-PBF machine is equipped with a Yb fibre laser of 400 W 

maximum power and beam spot size of 70 μm. Laser parameters used for building the samples 

are listed in Table 1. Hatch distance (distance between consecutive laser tracks within a layer) 

and the layer thickness (thickness between layers in the vertical Z direction) were kept constant 

at 170 µm and 20 µm, respectively. The energy density (Ed) was calculated using Equation 1, 

where 𝑃𝑃 is laser power (W), 𝑉𝑉𝑠𝑠 is scan velocity (mm/s) and ℎ𝑑𝑑 is hatch distance (mm).  

Ed = P
Vs×hd

 (1) 

A zigzag pattern was used as the scanning strategy and scanning direction was alternated by 

90° for successive layers. The base plate (Al 2139) was maintained at a constant temperature 

of 200 °C through continuous heating to reduce the thermal gradient between the sample and 
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the base plate to minimise crack formation. An Argon atmosphere with less than 0.1 vol. % O2 

was maintained inside the build chamber to prevent oxidation of the specimens. Figure 1(c) 

shows the as-built cubes and cylinders.  

2.3 Microstructure characterisation and quantification 

To evaluate the microstructure along the build (vertical) direction and across the horizontal 

plane, samples were cut along the vertical and horizontal cross sections and prepared using 

standard metallographic procedure. Samples were compression mounted in a thermo-setting 

phenolic resin. Mounted samples were wet ground using P400 grit SiC paper and progressively 

polished using 9 µm, 3 µm and 1 µm diamond paste under 22N load. All samples went through 

a final polishing under 22N load using 0.06 µm colloidal silica suspension. The top surface and 

the side walls of the as-fabricated cubes were also investigated using a JSM 7800F SEM (JEOL 

Ltd, Japan) equipped with energy dispersive spectroscopy (EDS) and electron back-scattered 

diffraction (EBSD) detectors. For EBSD analysis, 0.2 µm step size with 20 kV accelerating 

voltage was used and samples were tilted 70° from horizontal to enhance EBSD signal. 

Quantitative analysis of defects in the samples was achieved by calculating the area fraction of 

cracks and voids by thresholding the optical images from the horizontal cross-sections using 

ImageJ software. The roughness of the top surface and the side walls were measured using an 

InfiniteFocus G5 confocal microscope (Bruker Alicona UK).  

2.4 Assessment of mechanical behaviour 

Microhardness measurements along the build and horizontal directions were carried out in a 

Wilson® VH1202 Vickers hardness tester (Buehler UK, UK) using 100 gF and dwell time of 

10s. Compressiontesting was performed at room temperature on cylindrical samples using 

strainrate 0.005 /min., according to ASTM E9-19 [34]. Besides applying lubricant, 

thespecimen's dimension ratio (diameter/ length) was used 2.0 to avoid barrellingand buckling 
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effect. In addition to that, constant true strain rate to a strainlimit of ε = 0.5 is usually applied 

to avoid further barrelling. Through a compression test, we have measured maximum 

compressive strength, 0.2% offset yield strength (YS) and chord modules. 

Table 1. Laser parameters used for manufacturing the samples and the surface roughness of 

top surface and side wall of manufactured cubes.  

Sample 

ID 

Laser power, 

P (W) 

Scan speed, 

vs (mm/s) 

Energy 

density, 

Ed(J/mm2) 

S1 350 1000 2.06 

S2 800 2.58 

S3 600 3.44 

S4 300 1000 1.76 

S5 800 2.2 

S6 600 2.94 

S7 250 1000 1.48 

S8 800 1.84 

S9 600 2.46 
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Figure 1: (a) Secondary electron SEM image of 2024 alloy gas atomised powder, (b) powder 

size distribution, average size is 29 μm, and (c) L-PBF printed cube (15 × 15 × 15 mm3) for 

microstructure analysis and cylinder (diameter = 7 mm, height = 15 mm) for compression 

testing. 
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3. Finite Element Model  

For the finite element model, thermal conductivity [34, 35], and specific heat capacity [35] 

were taken from the literature and varied with temperature. Using the references outlined, 

Thermal conductivity (k) was taken to vary according to: 

k = -5E-09T4 + 7E-06T3 - 0.0033T2 + 0.9274T - 0.8253    (2) 

and Specific heat capacity (CP) was taken to vary according to: 

CP= 5E-06T3 - 0.0074T2 + 3.9418T + 198.83     (3) 

Where T is the temperature in Kelvin. Values were inputted into the model up to 700 K. 

Density was assumed to be 2,785 kg/m3 at room temperature [36]. Latent heat was assumed to 

be 290,000 J/kg with a solidus of 773 K and a liquidus of 913K (calculated using Thermo-Calc 

software). These material properties were applied to both the base plate and the build section 

of the model.  

The model consisted of a substrate measuring 20 x 100 x 100 mm3, and a built cubic section of 

side length 15 mm. The cube was placed at the centre of one of the large faces of the substrate. 

The procedure to create the model outlined in the Abaqus manuals and in relevant publications 

was used [37-39]. To obtain the laser positional information, ReplicatorG software was then 

used to generate GCode files from a *.stl file exported from Abaqus. The Abaqus provided 

script (generateEventSeries.py) was then used to generate the required input files from the 

GCode file.  

This resulted in a scan speed of 1 ms-1, and a layer thickness of 20 µm, a hatch distance of 21 

µm giving a total of 2.5 hrs (real time) to complete the build of the 15cm cube. This input data 

provided closest possible approximation of the original experiment as the original GCode was 

unavailable, and the finite element model was used to obtain qualitative data to help understand 
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the reasons for cracking during the build. The maximum time step in the model was limited to 

2.0 sec to improve the resolution of temperature and stress during the build.  

The substrate initial temperature was 473K. Cooling of the block was achieved through the 

application of a heat transfer coefficient of 18 Wm-2K-1 with a sink temperature of 473 K and 

an emissivity coefficient of 0.25 [37] with an ambient temperature of 473 K. Two laser powers 

were used for this finite element study (350 W and 250 W) with other laser parameters chosen 

to match the experimental values (Bead Height = 0.02 mm; Bead Width = 0.07 mm; “Energy 

Distribution” = “Concentrated”). 40,668 DC3D8 elements were used for the heat transfer 

model, which was found to be sufficient to accurately capture the thermal response. For the 

built part, a cubic element was used with an edge length of 0.5 mm. 

4. Results and discussion  

4.1 Defects formation: cracking, porosity, balling and agglomeration  

Figure 2 shows the various internal and surface defects formed in the L-PBF cubes. These 

internal defects include hot tearing, hot shot and porosities (macro and micro). Hot tearing is 

identified as cracks, also known as hot cracks. Hot cracks are observed both inside and on the 

surface of the built components. Hot shots are generated due to insufficient molten metal filling 

the gaps arising out of contraction during solidification of build layers [40]. Macro pores form 

due to insufficient flow of the molten metal during solidification of the molten layer, whereas 

micro-pores are generated from in-situ release of gas bubbles [29]. The Al-Cu alloy system is 

susceptible to hot cracks due to its large freezing range [19]. Hot cracking tendency is directly 

related to the amount of eutectic liquid present during the later stages of solidification [41] and 

strong grain boundary segregation. Beyond a certain value, hot tearing decreases with 

increasing eutectic content as observed in the cast alloys (e.g. AlSi10Mg system) [41]. 

Quantification of total defect formation, and the average size and nature of the defects, is 
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presented in Figures 2(a) and (b). Figures 2(c) and (d) illustrates the defects developing in the 

sample built with higher laser power (350 W), showing that crack formation is more dominant 

than void formation at higher energy densities. In contrast to this, voids are the dominant defect 

in samples built under lower laser power (250 W) as shown in Figures 2(g)-(h), which reveals 

the presence of much larger voids than in 2(c) and (d). Sample S5, built with an intermediate 

power and scan speed, showed minimum total defects as shown in Figures 2(e)-(f).  

 

Figure 2: Quantitative analysis of defects with respect to the laser parameters at different Ed: 

(a) total area% of defects and (b) average size of defects (cracks and voids), where total defect 

represents the area fraction of both cracks and voids. Representative optical micrographs of 

sample S1(c) and (d); S5(e) and (f); and S9(g) and (h) showing distribution of defects in the 

horizontal and the vertical cross sections, respectively.  

Figures 3(a)-(d) show various types of defects (e.g. hot tearing, voids, porosities, balling, etc.) 

observed in the samples. The nature of defects was observed to be dependent on the superheat 

of the melt pool. Higher input energy appears to increase the propensity of hot tearing. 
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However, total defects get balanced out due to minimisation of void formation as increased 

energy input provides sufficient melt fluidity, facilitating filling of shrinkage voids during 

solidification. Although the same energy input can be achieved with various combinations of 

laser power and scan speed, its interaction with material will be influenced by the individual 

laser parameters (power and scan speed). Therefore, defect formation, microstructure evolution 

and property evaluation will be discussed with respect to fundamental parameters (laser power 

and scan speed) along with respective energy densities. 

Increased laser power (for a given scan speed) may increase the thermal gradient and promote 

a larger volume of superheated melt pool. Growth of columnar grains is enhanced and the liquid 

film between the large columnar grains is susceptible to form hot cracks along the grain 

boundaries, as seen in Figure 2(d). While increased laser power promotes the formation of 

cracks, it reduces the tendency of formation of hot shots.  

Irregular voids or hot shots are caused by insufficient energy input causing incomplete melting 

of powder and incomplete filling of the voids and gaps (Rayleigh instability) [42]. Defects are 

found to be minimum for optimum laser power of 300 W at an intermediate energy input (S5) 

of 2.2 J/mm2. Hot tearing is more prominent at higher power levels, whereas voids and hot 

shots are the prominent defects formed in samples built at lower power levels (see Figures 2(a) 

and (b)). This is due to insufficient superheat in the melt pool at low laser power, reducing melt 

fluidity and causing incomplete filling of shrinkage voids [43].  



12 
 

 

Figure 3: SEM micrographs showing various defects formed in the L-PBF samples (S9 for (a), 

(b) and (d), and S1 for (c)).  

Besides internal defects, several surface defects could also be observed on the side walls and 

the top surface of the cubes. The micrographs from the top surface provide important 

information on the gradual development of defects in L-PBF printed cubes. Figures 3(c) and 

(d) show the surface defects on the final deposited layer of the cubes. Hot shots, cracks, balling 

and agglomeration of powders are observed on the surface. Balling and agglomerations are 

likely due to insufficient melting of the powder bed. However, balling and agglomerations 

could be re-melted during deposition of the next layer, but hot shots and cracks develop over 

multiple layers and that leads to accumulation of internal defects. Agglomeration of powders 

was also confirmed from the residual powder recollected from the chamber after the build was 

accomplished. 
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4.2 Microstructural evolution  

EBSD analysis shows (Figure 4) the crystallographic texture present in the L-PBF produced 

cubes. Figure 4 presents the inverse pole figures (IPFs) of sample S5 (cube built with optimised 

laser parameters – minimum porosity and cracking defects) from the longitudinal (XZ plane) 

and the transverse cross section (XY plane). Columnar primary-Al grains grew along the 

building direction against the thermal gradient through epitaxial growth, which is very similar 

to microstructure reported in welding literature [44]. The sample exhibits <001>-fibre texture 

typical of directionally solidified structure in FCC alloys [45]. The average columnar grain size 

was 234 μm along the vertical (build) direction and 37 μm in the horizontal cross section. 

Figures 4(c) and (f) show that higher volume fractions of high angle grain boundaries (HAGBs) 

are oriented along the build direction and hot cracks were found to be present along these grain 

boundaries. EBSD micrographs were obtained from samples with different processing 

conditions to S5 but were found not to provide any new or additional information. 

In addition, all samples exhibit cracks and these have been characterised carefully by detailed 

microscopy. In the welding literature three type of cracks are observed depending on the alloys 

and processing conditions [46]: (i) during solidification cracking is observed due to hot tearing, 

(ii) liquation type cracking is observed because of segregation of the solute elements in the 

grain boundary, and (iii) solid-state cracking is often observed because of the residual stresses 

generated during the welding. In the present work, we have used Thermo-Calc calculation to 

study solidification of the AA2024 alloy phase. Figure 5(a) clearly shows that AA2024 alloy 

has a long solidification range ~ 120 °C (from 640 °C to 520 °C), in comparison with the 

Al10SiMg alloy (~25 °C) making it vulnerable to cracking during AM. EDS spectra from the 

sample is presented in Figure 5(b) showing strong copper segregation along the grain 

boundaries. This Cu segregation in Cu at grain bounties occurs through successive 

solidification and melting events, accomplice by solid-state diffusion. This indicates the 
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presence of a Cu-rich liquid film at the HAGBs and suggests liquation type cracking, occurring 

during solidification, rather than during cooling of the solidified built samples. The long 

solidification range, solute segregation and the steep temperature gradient in L-PBF would 

create the right environment for the liquation at first, followed by hot-cracking up to a few mm 

in size.  

 

Figure 4: Representative micrographs showing grain structure and hot cracks along grain 

boundary: (a) to (c) plane of fabrication; (d) to (f) build direction. EBSD map in (b) and (e) 

showing directional growth of primary-Al grain along <001> direction.  
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Figure 5: (a) AA2024 alloy Thermo-Calc calculated about the solidification range and (b) EDS 

spectra from the cracked columnar region in a sample. The grain boundary areas indicating 

strong segregation of Cu that is absent in the cracked regions.  

4.3 Finite element analysis 

For the finite element model, the origin is defined at the centre of the top face of the substrate 

where the material is added. The build takes place in the positive Z-direction replicating the 

experimental case. To observe temperature differences during the build, the following locations 

were chosen:  

1) Centre of substrate face (0, 0, 0) – node 5154;  

2) Centre of build (0, 0, 7.5) – node 23792; 

3) Centre of built face (15, 0, 7.5) – node 1790; 
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Figure 6: Abaqus predicted temperature profiles during build of 15 mm cube. 

Figure 6 shows the predicted temperature profile at discrete points during the build. At the 

centre of the substrate face, the temperature is typically 50 K higher for the 350 W laser. 

Similarly, at the centre of a built face and the centre of the block, the temperature is typically 

90 K higher for the 350 W laser, reaching over 720 K for the 350 W laser. This increase in 

temperature for the 350 W laser extends the length of time that the metal spends in the brittle 

temperature region during cooling (above 700 K), thereby increasing the propensity to cracking 

due to the hot shortness properties of this alloy [47, 48]. Increasing the cooling rate after 

deposition may help to reduce cracking [49]. This thermal prediction supports the observation 

from EDS analysis (Figure 5) suggesting hot tearing contributed to cracking observed in the 

samples.  

4.4 Surface roughness and mechanical performance in the as-fabricated microstructures 

Mechanical performance of structural components significantly depends on their surface finish. 

Figure 7 presents the average roughness (Ra) and the vertical distance from the highest peak to 
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the lowest trough (Rz) of the top surface and the side wall of the built cubes as a function of 

laser power, scan speed, and energy density (Ed). Figures 7(a) and (b) show that the top surface 

and the side wall roughness is strongly dependent on the applied laser power. It is 

predominantly affected by balling phenomenon.  Under increased laser power, the heat input 

is higher and the enhanced melt fluidity results in a smoother surface. Figures 7(c) and (d) show 

increasing scan speed results in higher roughness of the top surface , however, no consistent 

trend is observed for the side wall. Slower scan speed facilitates longer interaction time 

between the energy source (laser) and the powder bed. At the lowest laser power and speed, 

surface roughness is highest as this power level is probably insufficient to fully melt the 

powders and not significantly affected by the scan speed. Higher heat input at higher laser 

power (P = 350 W) leads to more neighbouring powder particles being melting on to the build 

surface, thus reduce surface roughness. Similarly, at slower scan speed the laser beam has more 

interaction time with the surrounding powder particles. This facilitates more particles to 

become fused to the build surface, resulting in reduced surface roughness. Agglomeration of 

neighbouring powders into the build at the side wall results in greater roughness than the top 

surface at any laser power and most scan speeds. Furthermore, surface roughness as a function 

of Ed are show in Figures 7(e) and (f). From the quantitative results it is evident that with 

increasing Ed both the top surface and side wall roughness initially reduced till a minimum and 

then increased.  Increasing Ed from 1.5 to 2.5 J/mm2 enlarges the melt pool increasing molten 

liquid fluidity. This significantly reduced any balling effect leading to a reduction in the surface 

roughness from 20 to 5 μm for the top surface and 25 to 12 μm for the side wall. Similar 

observation has also been made for the Rz value. Further increasing Ed from 2.5 to 3.5 J/mm2 

probably leads toan unstable melt pool contributing an increase in surface roughness. This is 

consistent with previous observation of initial decrease in the surface roughness with energy 

density followed by an increase beyond a critical limit [50]. 
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Figure 7: Variation in surface roughness of the top and side surface with (a) and (b)  laser 

power, (c) and (d) scan speed, and (e) and (f) energy density (Ed). Ra is the average distance 

between the peaks and the troughs and Rz represents the vertical distance from the highest 

peak to the lowest trough.  

Figure 8 presents the mechanical properties of the L-PBF samples built under different 

processing conditions. From Figure 8(a) it can be inferred that average hardness is strongly 

dependent on laser power, with a decrease in average hardness observed with increasing laser 

power. Figure 8(b) shows an increase in hardness corresponding to an increase in the scan 
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speed. In terms of Ed, average hardness decreased with an increase in Ed at a specific laser 

power or scan speed. Although residual stresses are expected to increase with an increase in 

energy input (increased power or decreased scan speed) leading to higher hardness, present 

results suggest that proportionate hot cracking at high energy inputs leads to 'stress relaxation' 

in the samples leading to reduced hardness observed in figure 8(c). Figure 8(d) represents the 

engineering compressive stress-strain curves for samples built with representative energy 

densities and figures 8(e) and (f) summarises the compressive strength, 0.2% offset yield 

strength (YS) and chord modules as a function of Ed. Compression test results displayed a 

decreasing compressive strength and YS with increasing Ed, however, higher chord modulus 

was measured at intermediate Ed level (between 2 to 2.9 J/mm2) (Figure 8 (e)). The compressive 

strength was found to decrease with increased Ed due to the higher defect concentration in the 

samples built under increased Ed. We attribute the large difference observed in mechanical 

property mainly to the defects such as crack, porosity and surface roughness rather than any 

grain refinement (Hall-Petch) effect. After compression test, samples were examined under 

SEM (Figure 8(g)) and shows further propagation of existing cracks as well as new cracks 

appearing in the regions of Cu segregation at the grain boundaries. The results revels that 

complete elimination of cracking in high strength 2xxx alloy also requires better understanding 

of solute segregation in additive manufacturing to develop strategies to counter cracking. 
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Figure 8: Microhardness of built specimen as a function of (a) laser power, (b) scan speed, 

and (c) energy density (Ed); Ed, is represented by the numerals in each bar of respective sample 

in (a) and (b). Representative engineering stress-strain curves obtained from compression 

testing are presented in (d), compressive strength, yield strength -0.2% off set (Y.S) and chord 

modules as function of Ed are presented in (e) and (f); and representative microstructure of 

tested sample (in build direction) shown crack opening and new cracks formation on Cu 

segregated grain boundary.  

5. Conclusions  

Microstructure and defects formed in Al-Cu (2024) alloy samples fabricated by L-PBF AM 

has been examined under different processing conditions. The following specific conclusions 

can be drawn from this work: 
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1. The columnar growth of primary-Al along the build direction and formation of internal 

and surface defects, such as hot cracking, hot shots, porosities, balling and powder 

agglomeration.  

2. Samples produced using higher Ed showed increased hot-cracking, predominantly 

along the columnar grain boundaries, whereas samples produced at lower Ed showed 

increased numbers of voids and hot shots. Minimum defect formation (in terms of both 

size and volume) was observed at an optimum combination of intermediate laser power 

(300 W) and scan speed (800 mm/s) with a resulting Ed of 2.2 J/mm2. The increased 

cracking observed under higher laser power appears to be contributed by increased 

metal temperature leading to brittle properties, as predicted using finite element 

analysis and verified through microstructural observations.  

3. Surface roughness of samples was found to depend on the laser parameters. Higher 

power and energy density (2.5 J/mm2) promote smoother surface by enlarging melt pool 

and subsequently increase molten liquid fluidity. However, beyond the critical limit 

(2.5 J/mm2), led to an unstable melt pool contributing an increase in surface roughness. 

4. Hardness was found to decrease with increased laser power and decreased scan speed 

due to ‘stress relaxation’ associated with hot-cracking under increased energy input. 

Ultimate compressive stress was also found to decrease with increased energy density.  

References  

[1] D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic 
components: materials, processes and mechanisms, International Materials Reviews 57(3) (2012) 133-
164. 
[2] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Materialia 
117 (2016) 371-392. 
[3] W.E. Frazier, Metal Additive Manufacturing: A Review, Journal of Materials Engineering and 
Performance 23(6) (2014) 1917-1928. 
[4] Psychosis and schizophrenia in adults: prevention and management, NICE guideline [CG178]  
(2014). 
[5] D. Agius, K.I. Kourousis, C. Wallbrink, A Review of the As-Built SLM Ti-6Al-4V Mechanical Properties 
towards Achieving Fatigue Resistant Designs, Metals and Materials International 8 (2018) 75. 



22 
 

[6] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-
Heid, A. De, W. Zhang, Additive manufacturing of metallic components – Process, structure and 
properties, Progress in Materials Science 92 (2018) 112-224. 
[7] K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, F. Medina, 
Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting, Acta 
Materialia 60(5) (2012) 2229-2239. 
[8] Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, X. Zeng, The microstructure and mechanical properties of 
deposited-IN718 by selective laser melting, Journal of Alloys and Compounds 513 (2012) 518-523. 
[9] K. Kempen, L. Thijs, J. Van Humbeeck, J.P. Kruth, Mechanical Properties of AlSi10Mg Produced by 
Selective Laser Melting, Physics Procedia 39 (2012) 439-446. 
[10] N. Read, W. Wang, K. Essa, M.M. Attallah, Selective laser melting of AlSi10Mg alloy: Process 
optimisation and mechanical properties development, Materials & Design (1980-2015) 65 (2015) 417-
424. 
[11] J. Suryawanshi, K.G. Prashanth, U. Ramamurty, Mechanical behavior of selective laser melted 
316L stainless steel, Materials Science and Engineering: A 696 (2017) 113-121. 
[12] P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, E.A. Jägle, Steels in additive manufacturing: 
A review of their microstructure and properties, Materials Science and Engineering: A 772 (2020) 
138633. 
[13] F. Abe, K. Osakada, M. Shiomi, K. Uematsu, M. Matsumoto, The manufacturing of hard tools from 
metallic powders by selective laser melting, Journal of Materials Processing Technology 111(1) (2001) 
210-213. 
[14] Y. Brif, M. Thomas, I. Todd, The use of high-entropy alloys in additive manufacturing, Scripta 
Materialia 99 (2015) 93-96. 
[15] W. Xiong, L. Hao, Y. Li, D. Tang, Q. Cui, Z. Feng, C. Yan, Effect of selective laser melting parameters 
on morphology, microstructure, densification and mechanical properties of supersaturated silver 
alloy, Materials & Design 170 (2019) 107697. 
[16] H. Zhang, H. Zhu, T. Qi, Z. Hu, X. Zeng, Selective laser melting of high strength Al–Cu–Mg alloys: 
Processing, microstructure and mechanical properties, Materials Science and Engineering: A 656 
(2016) 47-54. 
[17] A. Iveković, N. Omidvari, B. Vrancken, K. Lietaert, L. Thijs, K. Vanmeensel, J. Vleugels, J.-P. Kruth, 
Selective laser melting of tungsten and tungsten alloys, International Journal of Refractory Metals and 
Hard Materials 72 (2018) 27-32. 
[18] V. Manakari, G. Parande, M. Gupta, Selective Laser Melting of Magnesium and Magnesium Alloy 
Powders: A Review, Metals 7 ( 2017) 2. 
[19] N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, 3D printing of Aluminium 
alloys: Additive Manufacturing of Aluminium alloys using selective laser melting, Progress in Materials 
Science 106 (2019) 100578. 
[20] W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchik, 
Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials 
challenges, Applied Physics Reviews 2(4) (2015) 041304. 
[21] L. Qian, J. Mei, J. Liang, X. Wu, Influence of position and laser power on thermal history and 
microstructure of direct laser fabricated Ti–6Al–4V samples, Materials Science and Technology 21(5) 
(2005) 597-605. 
[22] S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, C. Charitidis, Additive 
manufacturing: scientific and technological challenges, market uptake and opportunities, Materials 
Today 21(1) (2018) 22-37. 
[23] B. Ahuja, M. Karg, K.Y. Nagulin, M. Schmidt, Fabrication and Characterization of High Strength Al-
Cu Alloys Processed Using Laser Beam Melting in Metal Powder Bed, Physics Procedia 56 (2014) 135-
146. 
[24] R. Casati, J.N. Lemke, A.Z. Alarcon, M. Vedani, Aging Behavior of High-Strength Al Alloy 2618 
Produced by Selective Laser Melting, Metallurgical and Materials Transactions A 48(2) (2017) 575-579. 



23 
 

[25] S. Dadbakhsh, R. Mertens, K. Vanmeensel, J. Vleugels, J.V. Humbeeck, J.-P. Kruth, In situ alloying 
and reinforcing of Al6061 during selective laser melting, Procedia CIRP 74 (2018) 39-43. 
[26] D. Carluccio, M.J. Bermingham, Y. Zhang, D.H. StJohn, K. Yang, P.A. Rometsch, X. Wu, M.S. 
Dargusch, Grain refinement of laser remelted Al-7Si and 6061 aluminium alloys with Tibor® and 
scandium additions, Journal of Manufacturing Processes 35 (2018) 715-720. 
[27] M.L. Montero-Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. Van Hooreweder, J.-P. Kruth, J. Van 
Humbeeck, Changing the alloy composition of Al7075 for better processability by selective laser 
melting, Journal of Materials Processing Technology 238 (2016) 437-445. 
[28] S. Sun, P. Liu, J. Hu, C. Hong, X. Qiao, S. Liu, R. Zhang, C. Wu, Effect of solid solution plus double 
aging on microstructural characterization of 7075 Al alloys fabricated by selective laser melting (SLM), 
Optics & Laser Technology 114 (2019) 158-163. 
[29] J. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International  (1993). 
[30] T. Gu, B. Chen, C. Tan, J. Feng, Microstructure evolution and mechanical properties of laser 
additive manufacturing of high strength Al-Cu-Mg alloy, Optics & Laser Technology 112 (2019) 140-
150. 
[31] P. Wang, C. Gammer, F. Brenne, K.G. Prashanth, R.G. Mendes, M.H. Rümmeli, T. Gemming, J. 
Eckert, S. Scudino, Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si 
alloy produced by selective laser melting, Materials Science and Engineering: A 711 (2018) 562-570. 
[32] E.A. Starke, J.T. Staley, Application of modern aluminum alloys to aircraft, Progress in Aerospace 
Sciences 32(2) (1996) 131-172. 
[33] N.D. Alexopoulos, Z. Velonaki, C.I. Stergiou, S.K. Kourkoulis, Effect of ageing on precipitation 
kinetics, tensile and work hardening behavior of Al-Cu-Mg (2024) alloy, Materials Science and 
Engineering: A 700 (2017) 457-467. 
[34] W.J.H. R.L. Powell, and H.M. Roder, Journal of Applied Physics 31(3) (1960) 496. 
[35] H.W.D. C.F. Lucks, Thermal Properties of 13 Metals, ASTM, Special Technical Publication No. 
2271958. 
[36] MIL-HDBK-5H,  (1998) 3-68. 
[37] X. Song, S. Feih, W. Zhai, C.-N. Sun, F. Li, R. Maiti, J. Wei, Y. Yang, V. Oancea, L.R. Brandt, A.M. 
Korsunsky, Advances in additive manufacturing process simulation: Residual stresses and distortion 
predictions in complex metallic components, Materials and Design  (2020). 
[38] E.R. Denlinger, J.C. Heigel, P. Michaleris, T.A. Palmer, Effect of inter-layer dwell time on distortion 
and residual stress in additive manufacturing of titanium and nickel alloys, Journal of Materials 
Processing Technology 215 (2015) 123-131. 
[39] E.R. Denlinger, P. Michaleris, Effect of stress relaxation on distortion in additive manufacturing 
process modeling, Additive Manufacturing 12 (2016) 51-59. 
[40] N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed 
by selective laser melting, Additive Manufacturing 1-4 (2014) 77-86. 
[41] S. Li, D. Apelian, Hot Tearing of Aluminum Alloys, International Journal of Metalcasting 5(1) (2011) 
23-40. 
[42] R. Martinez, I. Todd, K. Mumtaz, In situ alloying of elemental Al-Cu12 feedstock using selective 
laser melting, Virtual and Physical Prototyping 14(3) (2019) 242-252. 
[43] S. Coeck, M. Bisht, J. Plas, F. Verbist, Prediction of lack of fusion porosity in selective laser melting 
based on melt pool monitoring data, Additive Manufacturing 25 (2019) 347-356. 
[44] M. Miyagi, Y. Kawahito, H. Wang, H. Kawakami, T. Shoubu, M. Tsukamoto, X-ray phase contrast 
observation of solidification and hot crack propagation in laser spot welding of aluminum alloy, Optics 
express 26 (2018) 22626. 
[45] P. Kontis, E. Chauvet, Z. Peng, J. He, A.K. da Silva, D. Raabe, C. Tassin, J.-J. Blandin, S. Abed, R. 
Dendievel, B. Gault, G. Martin, Atomic-scale grain boundary engineering to overcome hot-cracking in 
additively-manufactured superalloys, Acta Materialia 177 (2019) 209-221. 
[46] S. Kou, Library, MRS Bulletin 28(9) (2003) 674-675. 



24 
 

[47] N.K. Hiroshi Tamura, Shozo Ochiai, Yasunori Katagiri, Cracking study of aluminum alloys by the 
variabletensile strain hot cracking test, Transaction of the Japan Welding Society 8(2) (1977) 63-69. 
[48] F.M.G. M. Sheikhi, H. Assadi, Prediction of solidification cracking in pulsed laser welding of 
2024aluminum alloy, Acta Materialia 82 (2015) 491-502. 
[49] Q.S. Xitang Tian, Preventing welding hot cracking by welding with an intensive trailing cooler, 
Journal of Materials Processing Technology 97 (2000) 30-34. 
[50] X. Yan, C. Chang, D. Dong, S. Gao, W. Ma, M. Liu, H. Liao, S. Yin, Microstructure and mechanical 
properties of pure copper manufactured by selective laser melting, Materials Science and Engineering: 
A 789 (2020) 139615. 

 


