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ABSTRACT Optimising vegetable production systems is crucial for maintaining and enhancing agricultural
productivity, particularly for crops like lettuce. Separating the crop from the background poses a significant
challengewhen using automated tools. To address this, a novel technique has been developed to automatically
detect the vegetative area of lettuces, optimising time and eliminating subjectivity during crop inspections.
The proposed deep learning model integrates the YOLOv10 object detector, the K-means classifier, and
a segmentation method known as superpixel. This combination enables lettuce area identification using
bounding box labels instead of contour labels during training, improving efficiency compared to other
methods like YOLOv8 and Detectron2. Additionally, the combination of the YKMS method with YOLOv8
(YKMSV8) is evaluated, where YKMS serves as a label assistant. These methods are also used as
benchmarks to compare the proposed approach. For the training of each methods, a custom database has
been created using a low-cost, low-power custom IoT node deployed on a real farm to provide the most
accurate data. Throughout the comparison, a custom metric is used to evaluate performance both in training
and inference, balancing computational cost and area error, making it applicable in agriculture. Performance
metric is associated with computational cost factor and accuracy factor whose value are respectively 65%
and 35%, ensuring applicability for autonomous agricultural devices. Computational cost is prioritised
to maintain battery life during extended campaigns. The results of the custom metric during inference
indicated that the YKMSV8 method achieved the highest performance, followed by Detectron2, YOLOv8,
and, lastly, YKMS. Regarding area error, YOLOv8 exhibited the lowest mean error, followed by Detectron2,
while YKMSV8 and YKMS produced similar values. In terms of inference time, YKMSV8 was the most
computationally efficient, followed by YOLOv8, YKMS, and, finally, Detectron2.

INDEX TERMS Computer vision, object detection, YOLOv8 segmentation, YOLOv10, superpixel,
K-means, threshold, detectron2, smart agriculture.

I. INTRODUCTION
A. MOTIVATION
With the growing global demand for food and the effects
of climate change limiting the availability of resources such
as water and arable land, the optimisation of vegetable
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production systems has becomemore critical than ever. In this
context, the precise measurement of physiological parame-
ters, such as leaf area, is considered essential for improving
productivity and agricultural sustainability, particularly in
crops like lettuce. Leaf area is regarded as a vital indicator
in plant physiology, providing detailed information about the
plant’s health and growth conditions. Measurements of leaf
area are used to assess the plant’s capacity for photosynthesis,
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the process by which sunlight is converted into chemical
energy by plants [1], [2].

Generally, an increase in leaf area is taken to indicate
that the plant is healthy and developing well. Nitrogen,
a key nutrient for plant growth, is a primary component of
chlorophyll, the pigment used by plants for photosynthesis.
If adequate nitrogen levels are present in lettuce, the leaves
tend to be larger and greener, resulting in an increased leaf
area [3].

Leaf area can also serve as a broader indicator of the
plant’s overall health. By knowing the exact growth status
of plants, fertilisers can be applied more precisely and in
the necessary amounts, reducing excessive use and lowering
costs [4]. Reduced leaf area may indicate that the plant
is experiencing stress, lacks essential nutrients, receives
insufficient water, or is affected by disease. Therefore,
frequent monitoring of leaf area size is considered valuable
for preventing unnecessary fertiliser application in lettuce
cultivation [5]. Although manual methods for measuring
leaf area are accurate, they are impractical for large-scale
farming systems. In contrast, automated methods based
on artificial intelligence are recognised for their ability to
reduce time and costs, enabling continuous and accurate
monitoring. Such methods provide farmers with real-time
information to improve decision-making and crop man-
agement. For instance, as presented in [6], an automated
device integrated with an algorithm for the identification
of weeds and insects operates autonomously, combining
real-time data acquisition with advanced image processing
techniques to detect and classify various types of weeds and
insects accurately. This solution helps farmers optimise pest
management and improve crop yields by reducing the need
for manual inspection and enabling more targeted application
of treatments.

Although accurate, manual methods for measuring leaf
area are impractical on a large scale. Automated techniques
based on artificial intelligence are acknowledged not only for
reducing time and costs but also for minimising destructive
intervention, allowing continuous, real-time monitoring of
plant health. Several methods are traditionally relied upon
by farmers to inspect leaf area. Among the most common
are manual measurements, where each leaf is measured
individually. While highly accurate, this method is laborious,
time-consuming, and often destructive to the plants. The
planimetric method, which employs planimeters to measure
the perimeter of the leaves and calculate the total area,
is also labour-intensive and can be destructive. Similarly,
the gravimetric method estimates leaf area index based
on the relationship between biomass and leaf area by
measuring the dry weight of the leaves [7].
Today, the adoption of artificial intelligence methods

is beginning to alleviate these tedious processes [8]. The
YOLOv8 and Detectron2 methods have been applied to
identify the leaf area of lettuce. While these methods
have proven effective for object detection, they require
a preliminary step of detailed labelling, which consumes

significant time and resources, as it involves coordinates
representing the object’s contour. In fact, dedicated labelling
tasks are often assigned to handle this process due to its
complexity and labour intensity. To overcome the limitations
of current methods, the YKMS method is proposed, which
simplifies the labelling process by predicting contours from
bounding boxes, significantly reducing labour time and
accelerating the implementation of the process in lettuce
crops.

B. STATE OF THE ART
Crop detection and identification through contour detection
from an image involves three specific challenges: 1. The
separation of a specific crop from the background, 2. The
separation of the specific crop from other crops, and
3. The detection of the exact leaf area in order to assess
the growth and health of the leaf area. The separation of
a specific crop from the background has been identified
as a significant challenge for the application of artificial
intelligence techniques. Various approaches have been pro-
posed by researchers to address this problem, each with
its advantages and limitations. One such method is the
use of the Colour Index of Vegetation Excess Green Index
(CIVE), as mentioned in [9]. This method has been shown
to be particularly useful in green-coloured crops, as its
main function is the identification of the colour green.
However, its applicability is limited to cases where the crop is
green, and its effectiveness may be compromised if the crop
colour changes due to diseases or nutritional deficiencies,
preventing precise detection. In addition, this article explores
common computer vision methods for pixel classification,
such as k-means and Support Vector Machines (SVM). The
k-means method is used to cluster similar pixels and has
been combined with semantic segmentation techniques to
improve results in images with complex weed presence,
as described in [10]. This approach has been compared with
the superpixel method, which groups neighbouring pixels
with similar characteristics to simplify the image and reduce
computational load while maintaining important features
such as edges and textures [11], [12]. While traditional
methods such as those mentioned have proven to be effective
in specific cases, limitations in accuracy and generalisability
to variable field conditions, such as changes in crop colour
or complex backgrounds, have been noted. To address these
challenges, convolutional neural network-based models have
emerged as a more robust solution.

A widely used method for segmentation today is based
on deep convolutional neural networks (CNNs). Among the
most employed are Mask R-CNN [13], [14], YOLOv8 [15],
and Detectron2 [16], [17]. YOLOv8 is notable for being
the first official YOLO model capable of performing
segmentations, requiring a robust database to train the model
to detect the contours of the objects of interest.

The applicability of these models in agriculture has been
demonstrated, as shown in [18], where the contour of canola
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pods has been identified using YOLOv8, along with a
comparison to Detectron2 using Mask R-CNN. This study
has highlighted how these advanced models can significantly
improve the accuracy and efficiency of segmentation in
agricultural images.

When discussing CNNs, their performance is typically
evaluated based on the accuracy with which the object or
the contour of the mask is identified. However, an often-
overlooked aspect is the computational cost required during
the inference of the images. In [19] and [20], a metric
has been proposed that involves not only accuracy but also
computational cost.

Other methods widely applied in agriculture belong
to the YOLO (You Only Look Once) family of object
detection [21]. Although the primary aim of this article is
contour identification, the relevance of object detection to
the proposed YKMS method makes it important to describe
the evolution of this family of techniques. An object detector
identifies bounding boxes around objects of interest. The first
model developed in PyTorch was YOLOv5, and since then,
numerous versions of YOLO have been developed. The most
recent iteration is YOLOv10, an object detector designed
to introduce substantial improvements in computational cost
and prediction efficiency.

In [22], YOLOv5 and YOLOv7 were applied for insect
detection in crops. While promising results have been
obtained in terms of precision and the reduction of com-
putational costs, the evolution of YOLO has continued
with YOLOv10 [23], achieving improvements not only
in accuracy but also in computational efficiency. This
improvement is primarily due to enhancements in the
prediction of the bounding boxes that enclose the objects.
YOLOv10 demonstrates superior accuracy, particularly in
detecting small objects and in complex scenarios, without
compromising inference speed [24].

C. CONTRIBUTION
This work evaluates three techniques to calculate the area of
lettuce, considering both computational cost and area error.
Among the techniques considered, YOLOv8 and Detectron2
employ a labelling method that requires the coordinates
enclosing the contour of the object in question to be known.
On the other hand, the technique proposed by the authors is
based on the use of bounding boxes, which facilitates the
labelling process. This is considered a crucial part of the
process in preparing the input data of the neural network for
further learning.

The YKMS technique proposed by the authors combines
YOLOv10, k-means, and superpixels. Labelling training
images in YOLOv5 format with bounding boxes is regarded
as requiring less time and effort than the contour labelling
needed by other methods.

YKMSV8, which combines YKMS and YOLOv8 tech-
niques, was also evaluated. In this method, predictions from
the YKMS method are used as input labels for the YOLOv8

process. This approach leverages the strength of the YKMS
technique in creating accurate labels along with the ability
of YOLOv8 to require less time for making predictions.
In effect, the YKMSV8 technique uses YKMS as a label
assistant for YOLOv8.

Imageswere captured using a low-cost, autonomous device
at BioAlverde farm in Seville, Spain. The goal is to provide
farmers with a remote tool tomonitor crop health, specifically
by evaluating lettuce leaf area and growth percentage, while
balancing computational cost and precision.

The remainder of this article is structured as follows:
Section II explains the image acquisition process, algorithms,
and metrics used for evaluation. Section III presents the
training of each of the methods along with the segmentation
results and error metrics. The work concludes with a brief
conclusion and future directions in Section IV.

II. METHODOLOGY AND EXPERIMENTATION
A. EXPERIMENTAL SETUP
The images used for training were collected by an
autonomous device called a vision node deployed at a farm
in Spain named BIOAlverde. The node is composed of
a Raspberry Pi 3, on which the algorithms were loaded,
and it utilises a pair of USB cameras with OV2710 chips
(HBV-1716WA model) to capture the images. Additionally,
a Pycom microcontroller (Lopy) was employed to send the
processed data via LoRa technology to a gateway, which
then transmitted the data to a server named TTS (via WiFi
or 4G), where it was later stored in a database from which
the website retrieves the information to enable visualisation
of the processed data. The database consists of 324 images,
although 76 images were sufficient to train the neural
networks and achieve the desired results. In Fig. 1, the vision
node at the farm is shown, which was first presented in [25].

FIGURE 1. Vision node deployed on the farm.

One of the objectives was to use low-cost resources, which
is why the selected camera does not have the capacity to
adapt to changes in light. To solve this problem of possible
excessive light, two time bands were chosen for image
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capture, specifically at sunrise and sunset, to create the
dataset.

On the other hand, the trainings were conducted using
resources available in Google Colab. This platform provides
access to a high-end CPU, which is usually sufficient to
run many types of code, including moderate-sized machine
learningmodels. Additionally, the available resources include
free access to an Nvidia Tesla K80 or T4 GPU, which are
useful for accelerating the training of deep learning models.
Although these GPUs are beneficial, their performance may
be lower compared tomore powerful GPUs available on other
platforms. Google Colab also offers 12 GB of RAM and a
limited amount of storage space in the Colab environment,
which is reset every time the session is closed. With the free
version of Colab, access to a maximum runtime of 12 hours
is granted; after this period, the session is automatically
disconnected, and all unsaved data is lost.

B. YKMS
The method proposed by the authors, YKMS, is shown
in Fig. 2. The first step evolved ROI (Region of interest)
identification involved the application of the YOLOv10
method is used to identify objects and plays a pivotal role
in the identification of the ROI.

In addition to the parameters andmetrics used in YOLO for
object detection, YKMS employs complementary techniques
such as superpixel segmentation, and k-means clustering
to improve the accuracy of segmentation and analysis of
detected areas whose process is shown in Fig. 2.

FIGURE 2. YKMS method process.

YOLOv10, manual labelling was required. In this case,
software called Roboflow was used for labelling.1 The

1https://roboflow.com/

labelling system is shown in Fig. 3, where a bounding box
is drawn around the object and repeated for all images
to complete the database. To use this database, the label
information was exported in YOLOv5 format, where these
labels were normalised, meaning each pixel value was scaled
between 0 and 1 to facilitate learning.

FIGURE 3. Label with Roboflow to YOLOv10.

The next step after the label obtained in the specific
format was training, for which a pre-trained network was
used. A pre-trained network is a neural network model that
has been trained on a large dataset and is then used as a
starting point to identify characteristics of a specific object,
achieved by training the last layer of this pre-trained model.
Therefore, training only the last layer is sufficient to adapt
it to the identification of a specific object, such as lettuce.
To train, the dataset he pre-trained YOLOv10s weights were
chosen because they offer the highest training speed with
moderate accuracy available in the Ultralytics repository,2

along with everything necessary to implement this method
and ultimately obtain the desired object identification.

After the implementation of the YOLOv10 object detector,
which identifies the bounding boxes, the proportion of the
image contained within the boxes is isolated, as this is the
area that will be used from this point onwards. The new
area of interest changes from the RGB (red, green, blue)
colour space to the CIELUV workspace, which uses the L,
a∗, and b∗ channels, where L represents illumination, a∗

is the chromaticity on the purple-green axis, and b∗ is the
chromaticity on the blue-yellow axis. The L channel is used
for further processing, as the luminosity reflected by a surface
is similar across it. Thus, any area of the surface belonging to
the lettuce will have similar luminosity values. TheL channel
of this image fragment is referred to as the Region of Interest
(ROI).

In parallel to ROI identification, the superpixel method
is applied to the original image. This method, based on
the k-means method and known as SLIC (Simple Linear
Iterative Clustering), is one of the most widely used methods
for superpixel image segmentation due to its simplicity
and efficiency. Seeds are evenly distributed in the image,
serving as the initial centres of the superpixels to perform

2https://github.com/THU-MIG/yolov10
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the clustering of similar pixels. Each pixel in the image
is assigned to the nearest superpixel centre. The distance
considered is a combination of the spatial distance and
the colour distance in CIELAB space [12]. The superpixel
method groups nearby pixels with similar characteristics into
areas. Among all the areas corresponding to the superpixels
obtained from the original image, only those contained within
the bounding boxes are considered.

To determine the area considered part of the lettuce,
an intersection between the results obtained from the k-means
method and the superpixel method is performed. The k-means
method alone cannot perfectly identify the outline of the
lettuce due to variations in luminance, making it necessary
to combine it with the superpixel method. The superpixel
method groups similar pixels in the image, helping to identify
areas belonging to the lettuce more accurately. While the
k-means method effectively separates the lettuce from the
background, it does not achieve good segmentation on its
own. By combining it with the superpixel method, the
segmentation accuracy is improved. Finally, the outline of the
preserved areas is identified as the final outline of the lettuce,
with any areas that do not have at least 20% of their area
within the contour being eliminated.

1) YKMS PARAMETERS, METRICS
In this first part, the usage of YOLO within the YKMS
algorithm to detect objects is explained, alongside how
YOLO parameters and metrics contribute to improving the
accuracy of object detection in the RGB-based workspace.

To utilise YOLOv10, certain basic parameters must be
considered, which are described below:
epochs: An epoch refers to a complete iteration over the

training dataset.
batch_size: The batch size defines how much data is

processed before the model parameters are updated.
learning_rate: The learning rate controls the step size at

each iteration as the model moves toward minimising the loss
function.

Intersection over Union (IoU): This metric not only
considers IoU , which measures the overlap between the
labelled object box and the predicted box, but also accounts
for the alignment of their centres and the aspect ratio of
the boxes. This provides a more comprehensive measure of
how well the predicted bounding box matches the ground
truth [26].
CIoU is defined as follows:

CIoU = IoU −
ρ2(b,bg)

c2
− αv (1)

where:

ρ(b,bg) =

√
(x − xg)2 + (y− yg)2 (2)

c =

√
(w+ wg)2 + (h+ hg)2 (3)

v =
4
π2

(
arctan

(
wg

hg

)
− arctan

(w
h

))2

(4)

α =
v

(1 − IoU) + v
(5)

where:
b and bg are the predicted and ground truth bounding

boxes, respectively. ρ(b,bg) is the Euclidean distance
between the centres of the predicted and ground truth
bounding boxes. c represents the diagonal length of the
smallest enclosing box that contains both b and bg. v
measures the aspect ratio consistency between the predicted
and ground truth bounding boxes. α is a weight factor that
balances the influence of v.

A higher CIoU value, with a maximum of 1, represents
greater precision in predicting the object’s position and
size. It is a key parameter for evaluating the accuracy
of an object detection model’s predictions. A value of
1 indicates perfect alignment between the predicted and
actual bounding boxes, and approaching this value reflects
higher detection precision [23]. However, when annotations
cover significantly different areas, achieving a high CIoU
is not necessarily critical for YOLO’s performance. YOLO
is designed to detect and localise objects accurately, even
if the bounding boxes are not perfectly drawn. In such
cases, CIoU may not fully represent detection quality,
and other factors, such as the accuracy of object iden-
tification, become more relevant in evaluating YOLO’s
effectiveness.

Moreover, the CIoU score is often used to evaluate how
well the predicted bounding box matches the actual location
and size of the object. Although CIoU is not directly involved
in calculating the confidence score, it is essential for training
the model and improving the accuracy of its predictions.

Multiple object categories: Object detection models must
identify and localise multiple object categories within an
image. Therefore, Average Precision (AP) calculates the
accuracy for each category, and the average of these is then
taken.

The metric corresponding to YOLOv10 involves the
confidence score, which in object detection models like
YOLOv10 is calculated as the product of two factors: the
probability that a bounding box contains an object (Pobj)
and the probability of the most likely class (Pclass). The first
factor, object probability (Pobj), is determined during the
training process by evaluating the likelihood that a bounding
box encloses a relevant object. This probability is obtained by
applying a Sigmoid function to the model’s predicted logits.

The second factor, class probability (Pclass), evaluates how
likely it is that the object inside the bounding box belongs to
a particular class. This probability is computed by applying a
Softmax function to the class logits and selecting the highest
probability.

Consequently, the confidence score serves two purposes: it
quantifies the model’s certainty in the presence of an object
within a specific bounding box, and it indicates the expected
accuracy of that box’s positioning. A higher confidence score
suggests a stronger belief in both the object’s presence and the
correctness of the bounding box’s boundaries.
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F1-Score: The F1-Score is computed separately for each
category and then combined to form an overall curve.
This combined curve helps visualise the trade-off between
precision and recall at different confidence levels. It is
particularly useful for selecting the best confidence threshold
for the entire model, especially where the overall F1-Score
is highest. This method helps optimise the balance between
precision and recall, ensuring the model performs well
across all detected categories. Additionally, the F1-Score is
calculated as:

F1 = 2 ×
Precision× Recall
Precision+ Recall

, (6)

In order to evaluate the model, the following parameters must
be taken into account:

Precision and recall: Precision measures the accuracy of
the model’s positive predictions, while recall measures the
proportion of actual positive cases that are correctly identified
by the model. In both scenarios, precision and recall must be
calculated. These metrics provide a balanced assessment by
considering the area under the precision-recall curve [27], and
they are defined as follows:

Precision =
TP

TP+ FP
Recall =

TP
TP+ FN

where TP represents true positives, FP stands for false
positives, and FN indicates false negatives [28].
True Positives (TP) occur when a positive instance is

accurately identified by the model. In object detection, a TP
happens when the model correctly detects and classifies
an object within an image, including precisely placing a
bounding box around it. The criteria for a TP can vary,
often involving a threshold for classification confidence and,
in detection tasks, a minimum Intersection over Union (IoU)
with a ground truth bounding box.

False Positives (FP) arise when an incorrect positive
result is predicted by the model. In classification, this means
assigning an instance to an incorrect class. In object detection,
an FP can result from either misclassifying an object or
correctly identifying the class but placing the bounding
box inaccurately (e.g., with no significant overlap with any
ground truth object or overlapping with an object of a
different class).

False Negatives (FN) occur when themodel fails to predict
a positive result that should have been identified. In classifi-
cation, this happens when a positive instance is incorrectly
classified as negative or not recognised as belonging to the
relevant class at all. In object detection, an FN might occur
when the model overlooks an object entirely or fails to meet
the criteria for a TP, such as not detecting the object with
sufficient confidence or the bounding box not meeting the
IoU threshold with the ground truth.

The Average Precision (AP) is used to evaluate the
performance of the model, measuring precision across
all categories. It is based on the precision-recall metric,
seeking the intersection over union [29]. In the evaluation
of classification and object detection models, performance

metrics such as precision, recall, and Average Precision (AP)
are crucial. These metrics are derived from the concepts of
True Positives (TP), False Positives (FP), and False Negatives
(FN), each representing a specific type of prediction outcome.

Non-maximum suppression (NMS): This technique is
used for filtering overlapping bounding boxes, since the
detector can identify several bounding boxes around the same
object. NMS selects the one with the highest confidence
score [26]. The threshold for determining whether the
detection is sufficiently confident is referred to as the
confidence score, a value assigned by the model that indicates
the probability that a detection is correct. A higher score
signifies greater certainty in the detection and accuracy of the
bounding box.

YOLOv10 does not use predefined anchor boxes. Instead
of starting with preset sizes and aspect ratios, it directly pre-
dicts the coordinates and dimensions of the bounding boxes
for objects in the image. For each cell in the grid covering the
image, the model predicts the centre coordinates, width, and
height of the bounding boxes, along with a confidence score
that reflects the likelihood that the box contains an object.

During the training of object detection models like YOLO,
several performance curves are tracked to assess howwell the
model is learning. The two primary curves are the boxes loss
curve (box_loss) and the classification loss curve (cls_loss).
The object loss curve (box_loss) measures the difference
between the predicted coordinates and the actual coordinates
of the bounding boxes, while the classification loss curve
(cls_loss) reflects how the model’s capacity to accurately
classify objects evolves during training. Monitoring these
curves is crucial for fine-tuning the model’s training process
and ensuring effective learning [30].

C. YOLOv8
This subsection describes the process for employing the
YOLOv8 method. First, when labelling images in Roboflow
for segmentation, it is necessary for the labels to contain
points corresponding to the contour. It should be noted that
for the model to predict correctly, these contours must be as
accurate as possible. The aforementioned labelling process is
illustrated in Fig. 4, and the labels are normalised to values
between 0 and 1. Once all the images had been labelled,
the training proceeded using the Ultralytics repository for
segmentation.3 The yolov8n-segweights, a pre-trainedmodel
available in the mentioned repository, were fine-tuned with
our own database, thus obtaining a new model capable
of identifying lettuce. After this process, it was tested to
determine whether the newmodel could indeed detect lettuce.

YOLOv8 uses the same parameters as YOLOv10, as men-
tioned in Section II-B. However, it includes additional
parameters related to segmentation, such as object_loss and
variables associated with mask model evaluation, including
mask_precision, which measures improvements in the accu-
racy of segmentation masks, and dfl_loss, which relates to

3https://ultralytics.com/assets/coco2017val.zip
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FIGURE 4. Label with Roboflow for YOLOv8 and Detectron2.

the improvement of anchor point accuracy in bounding box
predictions. A lower loss indicates an improvement in anchor
point accuracy. Additionally, seg_loss evaluates the model’s
accuracy in segmenting areas of interest in the image [31].
A variation in the parameters compared to YOLOv10

occurs in the Complete Intersection over Union (CIoU)
parameter. In previous models, the IoU (Intersection over
Union) parameter was used to measure the overlap between
two bounding boxes, calculated as the intersection area
divided by the union area of the boxes. However, in YOLOv8,
the CIoU parameter not only considers the intersection of
areas between the labelled object box and the predicted box
but also takes into account the alignment of their centres,
as well as the aspect ratio of the boxes. This provides a more
comprehensive measure of how well the predicted bounding
box matches the ground truth.

YOLOv8 predicts bounding boxes differently. InYOLOv8,
a list of anchor box proposals is generated across the image.
These predefined boxes, with specific sizes and aspect ratios,
are used as reference points during object detection, arranged
in a grid across the image. During detection, the model
predicts bounding boxes within these anchor boxes and
adjusts them to better match the objects in the image. Once
the bounding box proposals have been generated and adjusted
based on the anchor boxes, a technique called Non-Maximum
Suppression (NMS) is applied to eliminate duplicates. NMS
reviews the predictions for the same object and selects
the bounding box with the highest confidence score, thus
preventing multiple predictions for the same object [32].

D. DETECTRON2
This section describes the process for employing the Detec-
tron2 method, a library developed by Facebook AI Research
(FAIR) for object detection and segmentation, built on the
PyTorch software library. It supports various detection and
segmentation models such as Mask R-CNN, Faster R-CNN,
Cascade R-CNN, and DensePose. In this work, Mask R-CNN
was employed for segmentation [33]. Detectron2 is an open-
source platform, and the implementation used the repository
from Facebook Research,4 utilising the pre-trained weights

4https://github.com/facebookresearch/detectron2

from the COCO dataset. Detectron2 was selected because
it can learn with a limited number of images, which is a
significant advantage in agriculture, as obtaining the training
dataset requires substantial time and effort [34].
The process to implement Detectron2 beginning with

image labelling, the labels created in Section II-C were used.
However, in this case, the labels had to be un-normalised
before training. For this application, both normalised and
un-normalised values were tested, and it was found that
normalised values caused the detector to malfunction.
Therefore, un-normalised values were used. Finally, after the
new model had been applied to the lettuce, the images were
inferred to observe the segmentation detection.

Detectron2 selects areas of the image through the Region
Proposal Network (RPN), which evaluates different parts of
the image to identify potential objects of interest. This process
is iterative and optimised during model training [35].

The adjustable parameters of Detectron2 include: the
number of classes (in this case, 1, for lettuce), the learning rate
(depending on the complexity of the features to be learned),
and the number of iterations (chosen based on the model’s
behaviour). The model reaches its learning limit when the
evaluation values stop decreasing. The following parameters
are crucial for identifying the model’s progress:
Total_loss: A consistent decrease in total loss indicates

that the model is learning and improving. If it stabilises,
it suggests that the model has reached its maximum learning
capacity for the current data or that the learning rate
parameter needs adjustment.
RPN_localization_loss: Measures how well the model

predicts the object locations.
RPN_classification_loss: Evaluates how accurately the

model identifies regions likely to contain a specific class,
compared to the actual labels of the proposed regions.
Classification_loss: Measures the model’s accuracy in

classifying objects, refining the RPN classification loss.
Box_regression_loss: Indicates the error in predicting the

coordinates of the bounding boxes around objects.
mask_loss: A consistent decrease in this value indicates

that the model is learning the mask and improving.
Detectron2 uses several key metrics to evaluate model

performance, similar to YOLO. These include:
Precision: The ratio of true positives to the total number of

positive predictions, indicating the accuracy of the detections.
Recall: The ratio of true positives to the total number of

actual objects in the image, indicating how many real objects
were correctly detected.

AP (Average Precision): The mean of precision scores
calculated at various recall levels, used to evaluate the overall
performance of the model [17].

E. YKMSV8
It is proposed to combine the YKMS bounding box labelling
method to predict labels that is used as input in the YOLOv8
method, with the aim of leveraging the strengths of each
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method and optimising not only the prediction results but also
the robustness and stability of the system.

F. EXPERIMENTAL EVALUATION
When making evaluations in computer vision methods that
employ deep learning, precision is typically considered.
However, when applying these methods to an automated
system in agricultural settings, such as on a farm, it is
important to consider using devices with processors that
might not have high computational capacity. This can reduce
the cost of the equipment, consume less battery during
operation, and make it more feasible to acquire them in larger
quantities. It is an aspect to be considered in understanding
the computational cost employed.

Therefore, it is proposed to use the equation presented
in [19], which was originally used in RNN; however,
in this case, it will be applied with a CNN approach. This
equation reflects the balance between computational cost
and error, where high values indicate that the model is
performing effectively within its own limits, and low values
indicate that the model does not demonstrate robustness
and stability against the various values it encounters. This
equation prevents a metric with larger magnitude values from
dominating the combined metric, which is the case with
accuracy.

εerror =

(
wa

αa − βa
× (αa − xa)

)
,

εtime =

(
wt

αt − βt
× (αt − xt )

)
(7)

where εerror is the performance metric from the error area,
εtime is the performance metric from the computational cost,
αa is the largest RMS, βa is the smallest RMS, αt is the
longest time taken, βt is the shortest time taken, wa is the
error weighting factor,wt is the computational cost weighting
factor, and wa + wt = 100. xa is the actual RMSE, and xt is
the actual time taken.

Finally, the performance metric is ε:

ε = εerror + εtime (8)

To evaluate the method proposed by the authors (YKMS),
as well as the Detectron2 and YOLOv8methods, a metric that
involves both area error and computational cost is used. The
YKMS method uses neural networks only for bounding box
detection and not for edge detection, thus having only one
possible prediction. As a result, the accuracy metric, which
measures the confidence of the network in its predictions by
considering discarded predictions, does not apply to YKMS.
Therefore, we will use the adjusted precision metric error
between the contour predictions of each method and the
manually created labels. Additionally, we will evaluate the
time required to perform these contour predictions. The area
error involved by the contour is calculated according to the
RMSE of the enveloping area and is calculated as follows:

Error% =
A1 − A2
A1

100%

where RMSE is the error A1 is the area resulting from the
manual label.A2 is the area calculated with the result of the
YKMS segmentation.

The mean square error is calculated as follows:

RMSE =

n∑
1

Error%
n

where RMSE is the mean error absolute and n is the number
of images involved in the process.

III. RESULTS AND DISCUSSION
A. TRAINING AND PREDICTION RESULTS
This subsection initially describes common aspects for all
implementedmethods and then presents the results of training
and area identification.

The database images used for all implemented methods
were distributed into test, train, and validation sets in propor-
tions of approximately 11%, 70%, and 19%, respectively.

In the case of the YKMS method, the ROI results were
first obtained by applying the YOLOv10 method to identify
bounding boxes. The training was conducted over 200 epochs
with a batch size of 16, and it was completed in approximately
410.22 s, using 589.5 MB of RAM and 4178.5 MB of GPU
memory.

In Figures 5a and 5b, the box_loss curves show how
well the model predicted the position and dimensions of
the bounding boxes. Likewise, the cls_loss illustrated in
Figures 5c and 5d evaluated how accurately the model
classified objects within those boxes.

In Fig. 6, the F1-Confidence curve illustrates the appropri-
ate value for the confidence parameter. The confidence value
derived from this curve is 0.9, as it provides the best balance
between recall and precision. The recall, precision, and mAP
values with a confidence value of 0.9 were 100%, 99.6%,
and 99.5%, respectively, as shown in Fig. 7.
In Fig. 8a, the labels created in Roboflow are shown, while

in Fig. 8b, the prediction is displayed. It can be noted that
the YOLOv10 object detector was able to perfectly identify
the lettuces and correctly plot the bounding boxes. Once the
bounding boxes of the lettuce were successfully identified,
a workspace channel change was performed, transitioning
from RGB to CIELUV. The L channel corresponding to
illumination was then used, resulting in Fig. 9a, which shows
the ROI.

After obtaining the ROI, the k-means method was applied,
whose result is seen in Fig. 9b, from which the class with the
most predominant area, corresponding to the green colour,
was extracted. In Fig. 9c, the result of applying an area
contour detector to the predominant area extracted from the
k-means method is presented. In parallel, the superpixel
method was applied to the original image, whose result
is shown in Fig. 17d. Both methods were intersected to
determine which areas identified by the superpixel method
corresponded to the lettuce. The result of the retained areas is
seen in Fig. 9e. Finally, a contour detector was applied, and
the result is shown in Fig. 17f.
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FIGURE 5. Training data YOLOv10: (a) Training the location and size of the boxes, (b) Predicting the location and size of the
boxes, (c) Training for classifying objects within the bounding boxes, (d) Prediction of classifying objects within the
bounding boxes.

TABLE 1. Performance parameters.

FIGURE 6. F1 vs confidence curve.

In Fig. 10, the results of applying methods 3: YOLOv8 and
method 4: Detectron2 are shown, with the annotation labels
displayed in Fig. 10a. Meanwhile, Figs. 10b and 10c show the

FIGURE 7. Precision vs recall curve.

results of each method, respectively. The results of training
for each of these cases will be described below.

By applying the YOLOv8 method, 500 epochs were used.
The training time was 1308.18 s, using 114.79 MB of RAM
and 114.79 MB of GPU memory. In Figs. 11a and 11b, the
box_loss curves depict how well the model predicted the
position and dimensions of the bounding boxes. The dfl_loss
shown in Figs. 11c and 11d is related to the improvement in
the accuracy of anchor points in the prediction of bounding
boxes. The loss of segmentation during training seg_loss is
shown in Figs. 11f and 11e.

In Fig. 12, the F1-confidence curve is observed, from
which the confidence value of 0.882 is obtained. In Fig. 13,
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FIGURE 8. ROI: (a) Lettuce label in Roboflow, (b) Lettuce predicted from YOLOv10 results.

FIGURE 9. Method 2 results: k-means-superpixel (a) ROI: Channel L∗ from CIELUV, (b) K-means results, (c) Class edge, (d) Superpixel areas,
(e) Superpixel areas and class edge intersection, (f) Final edges.

the Precision vs Recall curve obtained using the confidence
value of 0.882 is observed. The recall, precision, mAP, and

mask_precision values with a confidence value of 0.882 were
100%, 93.1%, 99.5%, and 99.7%, respectively.
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FIGURE 10. (a) Lettuce label in Roboflow, (b) Lettuce predicted from YOLOv8 segmentation results,
(c) Lettuce predicted from Detectron2 results.

Detectron2 was employed for 1000 epochs, and the
training time was approximately 364.5860 s, using 1770 MB
of RAM, with a learning rate of 0.0001.

In Fig. 14a, the general behaviour of the model, rep-
resented by the Total_loss curve, is shown. Figs. 14b
and 14c display the curves associated with the proposed
regions for objects, namely RPN_classification_loss and
RPN_localization_loss. In Fig. 14d, the Classification_loss
curve shows how the model classifies the classes, with
only one class considered in this case. In Fig. 14e,
Box_regression_loss relates to the improvement of the
accuracy of anchor points in the prediction of bounding
boxes. The loss of mask accuracy during training, represented
as mask_loss, is shown in Fig. 14f.

By applying the YOLOv8 method with YKMS labels,
500 epochs were used, with a training time of 1190 s,
utilising 3252.48 MB of RAM and 128 MB of GPU memory.
The Precision vs Recall curve, obtained using a confidence
value of 0.995, is shown. The recall, precision, mAP, and

mask_precision values at a confidence value of 0.898 were
100%, 99%, 99.5%, and 99%, respectively.

In Fig. 15, a graph shows the inference time for each
method. A notable observation is that the proposed YKMS
method requires more time to be inferred, followed by
Detectron2, YOLOv8, and finally, YKMSY8, which has the
shortest inference time. This method combines the strengths
of two approaches: the ability to infer quickly from the
YOLOv8 method and the robustness in labelling provided by
the YKMS method.

In Table 1, the parameters used in the performance metric
ε are shown. A value of wa of 35% and wt of 65% were
considered, prioritising execution time to reduce battery
consumption, which is crucial considering that the algorithm
is intended for implementation in an autonomous field device.

Table 2 shows the percentage root mean squared error
(RMSE), the performance metric ε, and the average time
spent per model. The ε results obtained were 70.26%
for YKMS, 81.9% for YOLOv8, 84% for Detectron2,
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FIGURE 11. Training data YOLOv8: (a) Training the location and size of the boxes, (b) Predicting the location and size of the
boxes, (c) Training for classifying objects within the bounding boxes, (d) Prediction of classifying objects within the bounding
boxes.

FIGURE 12. F1 vs confidence curve YOLOv8.

and 87.3% for YKMSV8. The RMSE values are as follows:
the YKMSmethod achieved 5.2%, YOLOv8 achieved 3.3%,

FIGURE 13. Precision vs recall curve YOLOv8.

Detectron2 achieved 3.9%, and YKMSV8 achieved 5.2%.
The average time spent per model was as follows: the
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FIGURE 14. Training data Detectron2: (a) Model learning, (b) Predicting the object location, (c) Training model identifies regions likely to
contain a specific class, (d) Measures the model accuracy in classifying objects, (e) Error in predicting the coordinates of the bounding boxes
around objects, (f) Predicting the mask.

FIGURE 15. Inference time of each method.

TABLE 2. CNN evaluation models.

YKMSmethod took 4.07 s, YOLOv8 took 1.01 s, Detectron2
took 4.12 s, and YKMSV8 took 0.46 s.

In Table 3, the values of εerror and εtime for each method
are shown. In terms of εerror , the YOLOv8, Detectron2, and
YKMSY8 methods have similar values, while in terms of
time, the best performance is achieved by the YKMSY8
method. Although the values of the other methods are not far
off, the aim is to find the method with the best performance,
with a focus on time. This is because the analysis of the
algorithms is conducted with the goal of making them
feasible for use in a battery-operated device that needs to
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TABLE 3. Comparison of εerror and εtime for each method.

FIGURE 16. YOLOv8 combined with YKMS: (a) Manual label, (b) Predicted label with YKMS, (c) Predicted label with YKMSY8.

be autonomous for as long as possible, designed for use in
isolated locations such as farms.

B. DISCUSSION
In the case of lettuce, achieving a very low area error
is not deemed necessary, as the area is usually estimated
through visual inspections when performing non-destructive
measurements. Time remains a significant factor, as these
methods are analysed for use in a battery-operated device.

In Fig. 16a, a manually created label is shown. In Fig. 16b,
a prediction from the YKMSmethod is displayed. In Fig. 16c,
the prediction from the YKMSV8 method is presented. Upon
comparing the three images, there is no significant difference
in the area enclosed. However, the YKMSV8method exhibits
a more refined result than the YKMS method, adapting
better to the contour of the lettuce, even more so than
the manual label. This is because YOLOv8 learns certain
common characteristics of the pixels enclosed, making the
prediction sometimes more accurate than the manual label,
which is subject to human error due to its manual creation.

An interesting aspect, depending on the application,
is that the YKMS method proposes a reduction in the time
required for labelling, as it identifies the lettuce area using
bounding boxes, thereby saving considerable time during
labelling. In contrast, the YOLOv8 and Detectron2 methods
require labels with multiple coordinates corresponding to
the object’s contour. While the time required for labelling is
somewhat subjective, the accuracy of the labels is crucial for
training. This subjectivity is eliminated by using the YKMS
method, which only labels the bounding boxes. Therefore,
the combination of these methods leverages their strengths.
The YKMSV8 method takes advantage of the versatility
in labelling from YKMS and the speed in inference from
YOLOv8.

Since in the YKMS method, the contours identified by the
Python findContours command are stored as prediction

contour coordinates, a high number of points belonging
to the contour is obtained. When compared with manual
annotations, it is observed that the YKMS method generates
a higher number of coordinates.

Therefore, by using YKMS predictions as labels, the
YKMSV8 method has more annotations of points belonging
to the contour than the manual annotations. This results in
the YKMSV8 method having more input annotations for
training, implying that during training, the model generalises
better and becomes more efficient during inference. For
this reason, the YKMSV8 method performs better than
the YKMS method, even though the mean squared error
(MSE) remains the same when compared to the latter
method. However, better performance implies less dispersion,
demonstrating greater stability in the method.

The YOLOv8 method, during inference, internally pro-
poses multiple prediction options, among which it selects
the one with the highest accuracy. However, being a more
efficient model due to the number of coordinates in its
annotations, it exhibits greater proximity between these
proposed predictions, facilitating the calculation of CIoU to
identify redundant predictions. This proximity allows for eas-
ier identification and suppression of significantly overlapping
predictions using the NMS parameter, optimising the time
needed to obtain the final predictions.

The importance of having well-detailed information in the
annotations for training the neural network plays an essential
role. However, in some crops, achieving a perfect contour
during labelling is even more challenging, either due to their
irregular shape or the lack of agility of the person labelling,
introducing subjectivity. An example is chard, which, due to
its many leaves, shows irregularity in its shape. Labelling it
would be an easier task if the YKMS method were applied
as a labeller. In Fig. 17, the preliminary result process for
obtaining labels with the YKMS method is shown, which
could be used by another method such as YOLOv8.
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FIGURE 17. YKMS results: k-means-superpixel (a) ROI: Channel L∗ from CIELUV, (b) K-means results, (c) Class edge, (d) Superpixel areas,
(e) Superpixel areas and class edge intersection, (f) Final edges.

IV. CONCLUSION AND FUTURE WORK
Methods to standardise leaf area measurement have been
introduced, mitigating the subjectivity present in visual
assessments and making them applicable to low com-
putational cost devices. These methods aim to automate
activities, thereby reducing the time farmers spend on
periodic inspections. One key method, YKMS, employs
bounding box labels around objects and predicts contours.

Different contour identification methods were trained
in Google Colab, using the following resources during
inference: YOLOv10: 589.5 MB of RAM, 4178.5 MB of
GPU memory, and 410.22 seconds; YOLOv8: 3330.71 MB
of RAM, 114.79 MB of GPU memory, and 1210.21 seconds;
Detectron2: 1770 MB of RAM, 2510.8 MB of GPUmemory,
and 364.586 seconds; YKMSY8: 3252.48 MB of RAM, 128
MB of GPU memory, and 1190 seconds.

A performance metric was proposed to evaluate the
balance between precision and computational cost. This
metric assesses stability by analysing the variation of values
within their extremes, with weighting factors of 65% for
computational cost and 35% for accuracy. It evaluates
functionality and stability, ultimately determining the real

inference time, which directly impacts battery consumption.
For this application, the results were: YOLOv8: 81.9%,
Detectron2: 84%, YKMS: 70.26%, and YKMSV8: 87.3%.

Future work will focus on expanding the database to
include other crops and utilising the YKMS method as a
labelling assistant to generate object contours from bounding
boxes, particularly useful in cases with irregular contours.

Additionally, it is proposed to modify YKMS to label
multiple classes instead of a single one and to combine it
with other techniques to enhance its precision and evaluate
its performance.
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