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INTRODUCTION
Aerobic fitness is the capacity to perform prolonged, high-intensity 
activities, predominantly relying on aerobic metabolism. Physical 
activities such as mid- and long-distance running/walking are prime 
examples that demand high levels of aerobic fitness. Aerobic physi-
cal exercise has been consistently linked to improved cardiac struc-
ture, function, and cardiovascular risk profiles, highlighting its posi-
tive impact on cardiovascular health [1–3].

Several studies have found that some individuals experience ben-
eficial effects of exercise on metabolic health, while others show no 
change or even adverse effects [4, 5]. The mechanisms underlying 
the variability in exercise responsiveness, as well as potential pre-
dictors, remain unclear at present [6]. Measuring exercise effective-
ness through pre- and post-training assessments is crucial for quan-
tifying the impact of training initiatives and facilitating necessary 
adjustments for continuous improvement.
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ABSTRACT: Aerobic physical exercise has significant benefits for cardiovascular health; however, some 
individuals experience no benefit or even adverse effects. One reason for poor tolerance to aerobic exercise 
may be a  low percentage of slow-twitch (oxidative) muscle fibers. This study aims to identify the metabolic 
signatures associated with low and high response to exercise by comparing the metabolic profiles of participants 
categorized according to their improvement of the 6-minute walking distance. In this study, pre- and post-
exercise intervention measurements of the 6-minute walking distance were conducted in forty-three lean and 
overweight young women, followed by non-targeted metabolomics analysis of 1039 known metabolites. An 
independent validation cohort comprising 791 individuals from the GTEx project was used to assess the gene 
expression of selected targets. The results indicated that a low improvement in the 6-minute walking distance 
(Δ 6-MWD = 27 meters) was associated with higher serum levels of N-lactoyl amino acid metabolites, particularly 
the exercise-inducible metabolite N-lactoyl phenylalanine (Lac-Phe) (FDR = 0.016), compared to high responders. 
Our results were corroborated in an independent validation cohort, which showed that the gene expression of 
cytosolic nonspecific dipeptidase (CNDP2), the enzyme responsible for Lac-Phe synthesis, is negatively associated 
with the percentage of slow-twitch muscle fibers (p < 0.0001). N-lactoyl amino acids may serve as biomarkers 
for rapid muscle fatigue and low response to exercise, and could be used as metabolic indicators to differentiate 
exercise response efficacy.
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The 6-minute walking test (6-MWT) measures the distance an 
individual can walk on a flat surface in 6 minutes, which reflects 
their functional exercise level and aerobic capacity. The 6-MWT is 
a valuable tool for measuring the variability of functional exercise 
capacity and response to exercise training in clinical populations. 
Its simplicity and correlation with real-world activities make it 
a  preferred outcome measure in many exercise intervention 
studies [7].

Measuring the difference in 6-minute walking distance (Δ6-MWD) 
before and after exercise can provide valuable insights into the indi-
vidual’s response to aerobic exercise.

Metabolomics is becoming increasingly important in the field of 
exercise physiology and sports science. By analyzing metabolic pro-
files, researchers can gain insights into the complex physiological 
changes that occur in response to exercise [8].
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aerobic capacity is crucial in both clinical and fitness settings for 
populations that may not engage in regular exercise, and emerging 
data for young healthy adults suggest that the 6-MWT is a valuable 
tool for measuring this capacity [15–17]. The simplicity of the test, 
which requires minimal equipment and can be conducted in various 
settings, enhances its accessibility for sedentary individuals who used 
to walk in their daily life rather than running or cycling.

Clinical parameters, gene expression, and cytokines measurements
Fasting blood samples were sent to a licensed medical laboratory to 
measure fasting blood sugar, HbA1C, total cholesterol, triglycerides, 
HDL, and LDL. Insulin levels were measured in serum samples using 
Mercodia Insulin ELISA kit (UK) according to manufacturer’s instruc-
tions. Absorbance was read using cytation5 (BioTek, imaging reader, 
USA). Body fat, fat-free mass, fat mass, and muscle mass were 
measured using TANITA body composition monitor. The handgrip 
tests [18–20] were performed before and after intervention. The 
ProcartaPlex™ Human Mix & Match cytokine multiplex kit 
(MAN0024966, Invitrogen) was used to simultaneously profile cy-
tokines, including IL-1RA, IL-6, IL-8 CXCL8, MCP-1/CCL2, and TNF-
alpha using LUMINEX 200, according to manufacturer’s instructions. 
Separate standard curves are used to validate the assay for the detec-
tion and quantification of cytokines according to the manufacturer’s 
instructions using Xponent software. Activities of superoxide dismutase 
and catalase were determined using the colorimetric activity assays 
(EIACATC and EIASODC, respectively), according to manufacturer’s 
instructions (ThermoFisher Scientific, Fredrick, MD, USA). Absorbance 
was read using cytation5 (BioTek, imaging reader, USA). To determine 
the expression of CNDP2 and three myosin heavy chain (MYH) genes 
in m. gastrocnemius, RNA sequencing was used, as previously de-
scribed [9]. In brief, RNA was extracted from tissue samples of 
791 individuals from the GTEx project, followed by library prepara-
tion and sequencing using an Illumina platform. The resulting raw 
data underwent quality control, including trimming of adapters and 
filtering of low-quality reads. Clean reads were then aligned to the 
reference genome, and gene expression levels were quantified using 
bioinformatics tools to obtain normalized expression values, facilitat-
ing the analysis of CNDP2 expression across different tissues. Expres-
sion of the CNDP2 gene was presented in transcripts per kilobase 
million (TPM). The expression of myosin heavy chain genes (MYH1, 
MYH2, and MYH7) was used to determine muscle fiber composition.

Evaluation of muscle fiber composition
Muscle fiber composition of m. gastrocnemius (GTEx cohort) was 
estimated in the 791 individuals based on the expression of the 
myosin heavy chain 1 (MYH1; determining fast glycolytic phenotype, 
i.e., type IIX muscle fibers), myosin heavy chain 2 (MYH2; determin-
ing fast oxidative phenotype, i.e., type IIA muscle fibers), and myosin 
heavy chain 7 (MYH7; determining slow phenotype, i.e., type I mus-
cle fibers) genes. Given that the TPM count of each gene is propor-
tional to the amount of each fiber type, to estimate muscle fiber type 

Our objective is to identify metabolic signatures associated with 
low and high response to exercise. This could lead to the discovery 
of novel therapeutic targets to enhance the metabolic benefits of ex-
ercise, and improve our understanding of the mechanisms linking 
metabolism and poor exercise outcomes. In this study, we conduct-
ed a controlled exercise intervention in lean and overweight young 
women followed by non-targeted metabolomics analysis.

MATERIALS AND METHODS 
Study participants
Forty-three female students from Qatar University, who were not 
regularly participating in physical activity, took part in this study. 
Inclusion criteria included a BMI above 20 and below 30 kg/m2, and 
age between 20 and 30 years old. Participants with any cardiovas-
cular condition, type 2 diabetes, muscle degeneration, blood clots, 
and neurological disorders were excluded. All participants provided 
a consent form prior to participation. All protocols were approved by 
Qatar University (QU-IRB 1798-EA/23) as per regulations of the 
Qatar Ministry of Public Health (MoPH).

The validation cohort includes 791 individuals from the GTEx 
project which involved 535 males (age 20–79 years) and 256 fe-
males (age 20–79 years) of European descent, as previously de-
scribed [9]. The GTEx study (dbGaP accession number phs000424.
vN.pN) was approved by local Ethics Committees, as previously 
described [9].

Study design
Participants were engaged in an aerobic training session for 4 to 
8 weeks. The training program, adhering to American College of 
Sports Medicine (ACSM) and American Heart Association (AHA) 
recommendations [10−13], comprised aerobic exercises with pro-
gressive intensity (40–60% of HRmax and 50% of VO2 peak ini-
tially, progressing to 60–70% by the 4th or 8th week). All participants 
were trained three days per week for 50 minutes per session. The 
Metabolic Equivalent of Task (MET) values were adjusted based on 
IPAQ responses to quantify daily activities. MET was utilized for 
intensity and energy expenditure, expressed similarly for individuals 
of different weights. An assessment of 6-MWT was done both before 
and after the training intervention. The test was standardized for all 
participants and specific instructions were given before and during 
the test to ensure consistency and accuracy in the results. Each 
participant received a detailed description of the methodology before 
providing signed informed permission. As per the ATS statement [14], 
the 6-MWT was carried out with close observation, motivational 
words from the researcher, and tracking of dyspnea, SaO2, and mus-
cular exhaustion. All participants should have eaten at least two 
hours before the test, worn proper shoes, and worn comfortable 
attire on the day of the test. Study participants were not engaged in 
regular physical training before experimentations, hence, a 6-MWT 
would be a valuable tool to evaluate their submaximal exertion and 
endurance. Recent literature has shown that the assessment of 
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proportions, the expression (TPM) of each of the three genes (MYH1, 
MYH2, and MYH7) was divided by the sum of the expression of the 
three genes [21].

Metabolomics and statistics
Established protocols were used for untargeted metabolomics of 
serum samples from all participants using Metabolon’s platform [22]. 
Metabolomics data of 1039 known and 259 unknown identities was 
median-scaled, and imputed for missing values using minimum val-
ues across batches from the median-scaled data. The data was then 
natural log transformed and unknown metabolites were excluded 
from the downstream statistical steps. The difference in 6-minute 

walking distance (Δ6-MWD) was calculated as the post-exercise 
score minus the baseline score (pre-exercise) for each participant. 
A cube-root transformation was applied to each participant’s differ-
ence score to address the potential skewness in the distribution and 
eliminate the influence of the outliers. This was followed by the 
categorization of the transformed difference scores into tertiles, which 
split the dataset into three groups based on the magnitude of 
Δ6-MWD. These groups represented low, medium, and high levels 
of change in physical performance as measured by the 6-MWT.

Principal component analysis (PCA) was performed to assess the 
quality of the data. The highest discriminant metabolites associated 
with the tertiles of Δ6-MWD were found using an OPLS model. 

TABLE 1. Demographic characteristics and clinical parameters of participants displayed as difference (post-exercise – pre-exercise) 
and categorized by tertiles of Δ6-MWD.

Low aerobic capacity (n = 
15)

Medium aerobic capacity 
(n = 14)

High aerobic capacity 
(n = 14)

p-value

Δ 6-MWD (meters) 27 (18–52) 138 (102–158.5) 275.5 (228–364.5) 7.72 × 10−9

BMI -0.2 (-0.5–0.3) -0.15 (-0.48–0.08) 0.15 (-0.1–0.27) 0.456

Weight (kg) -0.3 (-0.85–0.85) -0.45 (-1.12–0.58) 0.5 (-0.03–0.9) 0.405

Body fat 0 (-0.01–0) 0 (-0.01–0.01) 0.01 (0–0.01) 0.348

Fat free mass (kg) -0.2 (-0.55–0.55) 0.15 (-0.18–0.68) -0.05 (-0.92–0.45) 0.869

Fat mass (kg) 0.2 (-0.6–0.7) 0 (-0.6–0.6) 0.4 (-1.35–0.92) 0.937

Muscle mass (kg) -0.2 (-0.55–0.55) 0.15 (-0.18–0.6) -0.05 (-0.83–0.45) 0.872

MET 435 (41–543.25) 884 (153.75–1687.12) 871.5(-262–1343) 0.213

Handgrip L 1.2 (-0.1–2.6) 2.05 (1.72–3.32) 2.95 (-0.38–3.78) 0.490

Handgrip R 1 (-0.75–2.2) 3.1 (1.8–4.6) 1.9 (0.12–3.6) 0.068

Insulin (mU/L) 0.62 (-1.75–1.51) -0.26 (-1.41–2.27) -1.04 (-4.63–1.72) 0.707

FBS (mmol/L) 0.1 (-0.3–0.75) -0.05 (-0.27–0.22) 0.1 (-0.08–0.27) 0.583

Total Cholesterol (g/dl) -2 (-18.5–13) -1.5 (-13.5–7.75) 0 (-10–7) 0.824

Triglycerides (g/dl) 6 (-6.5–18) 6.5 (-4.75–15.5) -1.5 (-7.5–6.25) 0.241

HDL (g/dl) 2 (-3–5.75) -3.5 (-4.75–2) -2.5 (-6–0) 0.350

LDL (g/dl) 0 (-19.5–8.5) 1 (-11.02–5.75) 3.5 (-3.25–10.5) 0.411

HbA1C 0.12 (-0.31–0.41) 0.19 (-0.06–0.53) 0.12 (0.04–0.31) 0.853

Total cholesterol HDL ratio 0 (-0.52–0.18) 0 (-0.1–0.2) 0.15 (0–0.2) 0.271

SOD (u/ml) 0.01 (-0.14–0.38) 0.18 (-0.07–0.39) 0.07 (-0.18–0.23) 0.628

Catalase (u/ml) 0.35 (0.02–0.86) 0.21 (-0.31–0.77) 0.06 (0.01–0.44) 0.820

IL 6 (pg/ml) 0 (-22.94–0) 0 (0–9.85) 0 (-2.96–5.74) 0.097

IL 8 CXCL8 (pg/ml) 1.18 (0–4.94) 0.08 (-1.37–1.54) 0.58 (-0.69–2.59) 0.824

IL 1RA (pg/ml) 2.48 (-310.5–247.9) -2.61 (-116.3–374.4) 22.43 (-29.08–418.7) 0.915

TNF alpha (pg/ml) 0 (0–3.52) 0 (-1.76–3.52) 0 (0–3.52) 0.850

MCP 1 CCL2 (pg/ml) 84.4 (-2.74–174.15) 20.4 (-18.7–87.72) 67.68 (-0.25–259.93) 0.526

Transformed difference scores were divided into tertiles based on the magnitude of Δ6-MWD. These groups represented low, medium, 
and high levels of change in physical performance as measured by the 6-MWT. Data are presented as the median (IQR) of the 
difference between the post-exercise and the baseline for each clinical measurement. The differences between the tertiles were analysed 
using Kruskal-Wallis test and p-value < 0.05 was considered statistically significant.
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Δ6-MWD. No significant difference in the characteristics and clinical 
parameters was observed among the three groups. Additional details 
regarding the values of pre- and post-exercise measurements were 
displayed in supplementary table (S1).

Multivariate analysis
The metabolic signatures of the participants were analyzed using 
non-targeted metabolomics. OPLS-DA (Figure 1) was utilized to iden-
tify the best distinguishing components among the three studied 
groups.

Univariate analysis
Univariate analysis included paired Student’s t-test and fold change 
analysis to detect changes in metabolite levels among the three 
groups. Seventy-three metabolites were statistically significant at 
a nominal p-value of ≤ 0.05, however after correcting for multiple 
comparisons using false discovery rate (FDR), only 3 metabolites 
remained significant (Figure 2). Table 2 shows the top significant 
metabolites differentiating the three groups. Supplementary table 
(S2) shows all the significant 73 metabolites. The same analysis 
was repeated, but considering the independent variable (Δ6-MWD) 

Univariate analysis was conducted using linear regression taking me-
tabolites as the response variable and tertiles as the explanatory vari-
able while correcting for age, BMI, and training period. The p-values 
were adjusted using false discovery rate (FDR) correction. Function-
al enrichment analysis was performed on all nominally significant me-
tabolites listed from the univariate analysis using Fisher’s exact test 
and p-values were adjusted by the FDR correction. The sub-pathways 
were previously predefined using Metabolon, and those with less than 
three top hits were dropped. In the validation cohort from the GTEx 
project, the association analysis between CNDP2 gene expression and 
the percentage of slow (type I), fast oxidative (type IIA), and fast gly-
colytic (type IIX) muscle fibers was performed using multiple regres-
sion adjusted for covariates (age, sex). To make scatter plots, the Pear-
son correlation coefficient was used to reflect the linear-related degrees 
of two variables (CNDP2 gene expression and the percentage of slow-
twitch muscle fibers) in females and males. The p-values < 0.05 were 
considered statistically significant.

RESULTS 
General characteristics of participants
Table 1 shows the characteristics of participants displayed as differ-
ence (post-exercise – pre-exercise) and categorized by tertiles of 

FIG. 1. Multivariate OPLS-DA Model associated with metabolomic changes in physical performance (Δ6-MWD): (A) OPLS-DA scores 
plot: Separation of individuals based on global metabolomic patterns associated with changes in physical performance assessed using 
(Δ6-MWD). The x-axis represents the predictive component of the model (variability explained by the metabolite profile), while the 
y-axis represents the orthogonal component (variation not directly related to the outcome). The model explains 89% of the variation 
in physical performance (R2Y = 0.89), with a modest predictive ability (Q2 = 0.078). (B) Loadings Plot: This plot identifies the 
metabolites contributing to the separation observed in (A). Enriched pathways associated with increased 6-minute walking distance 
(Δ6-MWD) are highlighted, reflecting key metabolic shifts contributing to enhanced physical performance.
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TABLE 2. Results from the linear regression analysis, correcting for age, BMI, and training period.

Metabolites Super-pathway Sub-pathway Estimate SE p-value FDR

N-lactoyl phenylalanine Amino Acid Lactoyl Amino Acid -0.314 0.063 1.54 × 10−5 0.016

Glutamine conjugate 
of C9H16O2

Partially 
Characterized 

Molecules
Partially Characterized Molecules 0.731 0.159 4.97 × 10−5 0.026

N-lactoyl valine Amino Acid Lactoyl Amino Acid -0.448 0.107 1.65 × 10−4 0.05

N-lactoyl leucine Amino Acid Lactoyl Amino Acid -0.277 0.076 7.74 × 10−4 0.17

Pyruvate Carbohydrate
Glycolysis, Gluconeogenesis, and 

Pyruvate Metabolism
-0.267 0.073 8.21 × 10−4 0.17

Gamma-glutamyl glutamate Peptide Gamma-glutamyl Amino Acid 0.302 0.086 1.24 × 10−3 0.202

N-lactoyl tyrosine Amino Acid Lactoyl Amino Acid -0.378 0.11 1.43 × 10−3 0.202

N-lactoyl isoleucine Amino Acid Lactoyl Amino Acid -0.258 0.076 1.56 × 10−3 0.202

FIG. 2. Boxplots showing the top FDR significant metabolites associated with the levels of change in 6-MWD.

TABLE 3. Results from the functional enrichment performed on all nominally significant metabolites from the linear regression analysis 
using Fisher’s exact test.

Sub-pathways p-value FDR

Lactoyl Amino Acid 0.000 0.000

Phosphatidylcholine (PC) 0.001 0.042

Monoacylglycerol 0.006 0.212

Diacylglycerol 0.009 0.224

Phenylalanine Metabolism 0.016 0.336

Secondary Bile Acid Metabolism 0.037 0.641
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as a continuous variable rather than converting into a nominal scale. 
The results of this analysis are shown in the supplementary table 
(S3).

Functional enrichment analysis
Functional enrichment analysis was performed on nominally signifi-
cant metabolites list from the univariate analysis using Fisher’s exact 
test and was followed by the FDR multiple testing correction method. 
The sub-pathways were previously predefined using Metabolon’s 

software, and those with less than three top hits were dropped. 
Results are presented in Table 3 and Figure 3.

CDNP2 gene expression analysis
CNDP2 gene expression was negatively associated with the percent-
age of slow-twitch (type I) muscle fibers (p < 0.0001, adjusted for 
age and sex). This association remained significant when the analy-
sis was performed separately for females and males (Figure 4). On 
the other hand, CNDP2 gene expression was positively associated 

FIG. 3. Bubble plot showing the enrichment analysis performed using Fisher’s exact test on the nominally significant metabolites.

FIG. 4. Negative correlation between CNDP2 gene expression and the percentage of slow-twitch muscle fibres in 791  individuals 
from the GTEx project.
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Although systemic lactate did not differ among participants (Sup-
plementary Figure S4), one possible explanation for the presence of 
higher levels of lactoyl amino acids in the low Δ6-MWD group in our 
study could be the increase of muscular lactate production in this 
group. Indeed, higher lactate levels were associated with shorter dis-
tances walked in 6-MWT [31]. Relatedly, Li-Gao et al. [32] hypoth-
esized that some N-lactoyl amino acids may serve as a “metabolic 
sink” for lactate and could function to buffer the deleterious effects 
of lactate on glucose homeostasis.

Another plausible explanation for higher levels of lactoyl amino 
acids in the low Δ6-MWD group is the elevated levels of phenylala-
nine and branched-chain amino acids (BCAA) in this group. In fact, 
multiple studies have demonstrated that elevated phenylalanine and 
BCAA levels are strongly linked to impaired cardiac function, heart 
failure, and increased cardiovascular mortality [33, 34]. Relatedly, 
Jansen et al. [24] showed that N-lactoyl phenylalanine levels were 
increased in patients with phenylketonuria with increased plasma 
phenylalanine levels, suggesting that N-lactoyl phenylalanine is 
a scavenging metabolite that helps regulate and remove excess phe-
nylalanine from the blood rather having a causative effect. Nonethe-
less, the role of N-lactoyl amino acids in human health remains a top-
ic of ongoing investigation. A comprehensive understanding of these 
novel metabolites is still lacking. Therefore, there is a pressing need 
to further elucidate their role in human health and disease.

One reason for poor tolerance to aerobic exercise may be a low 
percentage of slow-twitch muscle fibers [35]. We, therefore, hypoth-
esized that a low percentage of slow-twitch muscle fibers would be 
associated with increased expression of the CNDP2 gene, which codes 
for an enzyme responsible for Lac-Phe synthesis. To validate our find-
ings from the metabolomics study, we tested the association between 
CNDP2 gene expression and muscle fiber composition in the GTEx 
cohort. Interestingly, the results showed that CNDP2 gene expression 
was negatively associated with slow-twitch muscle fibers (p < 0.0001) 
and positively associated with fast glycolytic muscle fibers (p < 0.0001). 
The significant association between CNDP2 gene expression and the 
type of muscle fibers in the validation cohort further supports the role 
of N-lactoyl amino acids in exercise physiology.

Indeed, slow-twitch fibers are more efficient at oxidizing lactate, 
while fast-twitch glycolytic fibers produce and accumulate lactate 
more rapidly. Individuals with a higher proportion of fast-twitch gly-
colytic fibers may not tolerate long distances due to their reliance on 
anaerobic metabolism. This can cause muscle fatigue, cramps, and 
a decrease in exercise performance [36]. Concordantly, Guilherme 
et al. [37] reported that the CNDP2 rs6566810 AA genotype (which 
predicts low expression of CNDP2 in skeletal muscle [9]) is overrep-
resented in international-level Brazilian endurance athletes. This sug-
gests that the genetic predisposition could be, at least in part, a strong 
determinant of athletic performance, and that Lac-Phe could serve 
as a biomarker of this genetic background. Further research is nec-
essary to fully understand the role of CNDP2 and N-lactoyl amino 
acids in athletic performance.

with fast glycolytic (type IIX) muscle fibers (p < 0.0001, adjusted 
for age and sex). No association between CNDP2 gene expression 
and fast oxidative (type IIA) muscle fibers was found.

DISCUSSION 
The aim of this study was to investigate potential associations 
between physical performance levels and metabolic parameters 
by comparing the metabolic profiles of participants categorized 
according to their difference in the 6-minute walking distance into 
low, medium, and high. We demonstrated that a low response to 
exercise training, evidenced by minimal improvement in the 6-min-
ute walking distance, has been associated with elevated levels of 
N-lactoyl amino acids.

The 6-minute walking test is a valuable tool for evaluating func-
tional capacity and fitness. The test provides insights into various 
bodily systems during exercise, including the pulmonary and cardio-
vascular systems, blood circulation and metabolism [23]. The dif-
ference in 6-minute walking distance (Δ6-MWD) between pre- and 
post-training provides insight into the person’s exercise response.

The results of the multivariate analysis showed that low Δ6-MWD 
was associated with an increase in metabolites belonging to N-lac-
toyl amino acids. Moreover, univariate analysis showed that N-lac-
toyl phenylalanine (Lac-Phe) and N-lactoyl valine have a significant 
inverse relationship with Δ6-MWD. These results were further vali-
dated by the enrichment analysis which showed a significant asso-
ciation between N-lactoyl amino acids pathway and the Δ6-MWD.

N-lactoyl-amino acids represent a new and uncharacterized class 
of mammalian metabolites which are found in many tissues and can 
approach micromolar concentrations in human plasma. N-lactoyl-
amino acids are synthesized by the cytosolic non-specific dipepti-
dase (CNDP2) also called carnosine dipeptidase-2 through a pro-
cess called reverse proteolysis [24].

N-lactoyl amino acids have been recently associated with various 
physiological and pathological conditions. Yet, data in the literature 
about these metabolites is very scarce.

Two studies reported a marked increase in all measured N-lacto-
yl amino acids in obese type 2 diabetes participants compared to 
obese non-diabetics [25], and in diabetic retinopathy patients com-
pared to diabetics without retinopathy [26]. Additionally, Sharma 
et al. [27] revealed that N-lactoyl-amino acids levels were signifi-
cantly increased in patients with mitochondrial encephalomyopathy 
lactic acidosis and stroke-like episodes compared with controls, sug-
gesting an important involvement of these metabolites in mitochon-
drial disorders. Relatedly, N-lactoyl phenylalanine, the most repre-
sentative of N-lactoyl amino acid, was shown to be associated with 
mitochondrial dysfunction [28] and overload [29].

Interestingly, N-lactoyl phenylalanine was recently demonstrated 
to be one of the top exercise-regulated metabolites in humans [30]. 
Moreover, this exercise-inducible metabolite was demonstrated to 
act as a blood-borne signalling metabolite to suppress feeding and 
obesity, and influence systemic energy balance [30].
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Our results showed also a significant difference in glutamine con-
jugate of C9H16O2 between the 3 groups. Glutamine plays a crucial 
role in various physiological processes, including energy production 
and glutathione synthesis. Interestingly, glutamine has been shown 
to have an anti-fatigue function, and its role has been widely inves-
tigated in sports nutrition [38]. Relatedly, glutamine supplementa-
tion was shown to benefit athletes by enhancing strength, perfor-
mance, recovery, and immune function [39]. Moreover, glutamine 
metabolism is upregulated in cardiomyocytes under oxidative stress 
to maintain ATP and glutathione levels, thereby exerting a cardiopro-
tective effect [40]. The increased levels of the glutamine conjugate 
in the high-response group could suggest enhanced glutamine syn-
thesis, which may contribute, at least partially, to the improved re-
sponse in this group. However, glutamine conjugates are partially 
characterized molecules, and further research is needed to fully elu-
cidate the role of these metabolites.

While the 6-MWT is effective for monitoring changes in aerobic 
capacity over time in both healthy beginners and sedentary individ-
uals with limited exercise experience or technique, it is important to 
recognize that our study evaluated exercise response solely based on 
changes in 6-minute walking distance, which is a noted limitation. 
Additionally, although all participants were encouraged to maintain 
a balanced diet, they did not adhere to a specific, predefined dietary 
regimen, and this could be considered a limitation of this study. Fur-
thermore, the validation cohort exhibited a significantly different age 
range compared to the exercise intervention group, which may con-
tribute to the limitations of this study. The study also did not address 
the potential role of pulmonary and cardiovascular responses in the 
variability of exercise tolerance, which could also be important fac-
tors alongside the metabolic markers studied highlighting addition-
al limitation in this study.

CONCLUSIONS 
In this study, a low response to exercise training, as indicated by 
limited improvement in the 6-minute walking distance, has been 
linked to elevated levels of N-lactoyl amino acids. This association 
suggests a potential role for N-lactoyl amino acids in influencing 
exercise performance and adaptation. We hypothesized that low 
levels of Lac-Phe, a specific N-lactoyl amino acid, may be indicative 
of a metabolic state that favors enhanced aerobic capacity. This 
raises the intriguing question of whether these N-lactoyl amino acids 
merely serve as biomarkers reflecting heightened levels of lactate, 
phenylalanine, and BCAA, or if they play a more active role as protec-
tive agents, working to counterbalance and eliminate the surplus of 
these molecules. Further investigation into the mechanisms underly-
ing this relationship could provide valuable insights into optimizing 
exercise training outcomes and tailoring interventions for individuals 
with varying metabolic profiles. By understanding how N-lactoyl 
amino acids impact aerobic capacity, we may uncover novel strate-
gies to improve exercise responsiveness and overall fitness levels. 
The identification of N-lactoyl amino acids as metabolic biomarkers 

opens up numerous avenues for research and practical applications 
in sports science. By leveraging these findings, future studies can 
significantly enhance our understanding of exercise physiology and 
improve interventions aimed at maximizing exercise tolerance across 
diverse populations.
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APPENDIX

SUPPLEMENTARY TABLE (S1). Demographic characteristics of participants categorized by tertiles of 6-minute walking test and 
before and after training.

Variable Tertile 1 (n = 15) Tertile 2 (n = 14) Tertile 3 (n = 14) P*

Height m 1.59 (0.04) 1.59 (0.06) 1.6 (0.08) 0.999

Age 22 (19.5–22.5) 20.5 (20–25.25) 21 (20.25–22) 0.995

Before After p Before After p Before After p

6WT Distance m 563.6 (45.58)
601.07 
(45.87)

0.000 585 (86.15)
719.57 
(78.54)

0.000
535.07 
(81.74)

858.6 
(156.77)

0.000 0.204

BMI 23.88 (5.35) 23.81 (5.17) 0.553 27.5 (5.69) 27.26 (5.58) 0.113 25.52 (6.01) 25.43 (5.37) 0.664 0.241

Weight Kg 60.19 (14.04) 60.21 (13.6) 0.962 69.56 (15.07) 69.1 (14.76) 0.261 65.63 (17.65) 65.65 (16.36) 0.964 0.279

Body fat 0.29 (0.1) 0.28 (0.1) 0.369 0.36 (0.09) 0.36 (0.08) 0.500 0.31 (0.09) 0.31 (0.09) 0.908 0.105

Fat free mass Kg 41.83 (3.91) 41.89 (3.55) 0.754 45.65 (3.86) 45.68 (3.57) 0.921 44.34 (5.38) 44.4 (4.54) 0.881 0.073

Fat mass Kg 17.71 (10.31) 18.38 (10.28) 0.353 27.44 (10.19) 28.44 (12.45) 0.503 21.81 (13.27) 21.61 (12.74) 0.659 0.080

muscle mass Kg 39.68 (3.72) 39.75 (3.38) 0.724 43.32 (3.68) 43.36 (3.39) 0.898 42.07 (5.11) 42.15 (4.32) 0.845 0.072

MET
1286.33 

(1355.61)
1295.5 

(570.12)
0.979 1520.29 (860.71)

2549.96 
(1361.78)

0.017
1676.57 
(764.18)

2839.68 
(2358)

0.087 0.597

Handgrip L 20.83 (4.6) 22.21 (5.29) 0.028 23.69 (5.69) 26.17 (6.22) 0.017 23.28 (4.28) 26.49 (5.65) 0.052 0.243

Handgrip R 22.37 (5.82) 23.09 (5.39) 0.411 24.54 (5.58) 28.86 (7.86) 0.017 25.79 (3.5) 29.87 (5.79) 0.038 0.199

Insulin mU L 15.73 (7.66) 14.37 (6.48) 0.338 13.87 (8.1) 13.21 (6.43) 0.532 12.36 (5.05) 10.21 (2.1) 0.124 0.446

FBS mmol L 5.14 (0.4) 5.33 (0.57) 0.231 5.09 (0.35) 5.11 (0.44) 0.832 4.84 (0.26) 4.94 (0.23) 0.200 0.058

HOMA IR 3.67 (1.98) 3.2 (1.5) 0.200 3.19 (1.98) 3.03 (1.51) 0.561 2.92 (1.38) 2.18 (0.44) 0.057 0.537

Total Cholesterol g dl 195.2 (32.43)
191.27 
(36.53)

0.468 176.74 (31.26) 174.71 (26) 0.574 173 (19.98)
174.57 
(21.34)

0.743 0.092

Triglycerides g dl 78.07 (42.27) 85.8 (59.31) 0.257 64.93 (16.51) 71.07 (23.55) 0.212 68.57 (32.73) 63.57 (22.58) 0.280 0.536

HDL g dl 60.93 (17.21) 60.6 (16.8) 0.641 64.16 (12.29) 62.14 (11.63) 0.341 61.71 (11.19) 59.29 (11.48) 0.200 0.812

LDL g dl 120 (33.97)
113.67 
(35.89)

0.331 99.62 (29.2) 99.07 (26.62) 0.861 97.5 (19.73)
103.43 
(15.79)

0.115 0.073

HbA1C 5.18 (0.55) 5.24 (0.3) 0.520 5.04 (0.34) 5.16 (0.46) 0.242 5.03 (0.22) 5.29 (0.35) 0.116 0.632

Total cholesterol HDL 
ratio

3.37 (1.09) 3.38 (1.16) 0.214 2.81 (0.59) 2.91 (0.65) 0.202 2.89 (0.57) 3.03 (0.48) 0.073 0.138

SOD u ml 1.22 (0.56) 1.45 (1.03) 0.222 0.97 (0.63) 1.03 (0.17) 0.724 1.02 (0.4) 1.13 (0.32) 0.396 0.422

Catalase u ml
19.72 

(19.07–20.17)
20.07 

(19.74–20.23)
0.148

19.59 
(19.08–20.1)

19.99 
(19.63–20.2)

0.346
20.16 

(19.85–20.25)
20.25 

(20.11–20.32)
0.187 0.091

IL 8 CXCL8 pg ml
2.94 

(1.12–2.94)
4.48 (3.6) 
(4 missing)

0.771 1.12 (0.96–3.15)
2.19 (2.52) 
(8 missing)

NA
1.12 

(0.49–2.25)
2.55 (2.53) 0.202 0.412

IL 10 pg ml
0.63 

(0.42–3.23)
0.71 (0.81) 
(11 missing)

0.356 0.08 (0.08–0.08)
0.26 (0.32) 
(11 missing)

NA 0.08 (0)
0.35 (0.39) 
(12 missing)

NA 0.643

IL 1RA pg ml
736.01 

(833.82)
686.89 

(720.13)
0.838

241.53 
(105.25–434.66)

438.31 
(378.01)

0.297
512.7 

(562.38)
604.77 

(633.35)
0.673 0.288

TNF alpha pg ml
0.43 

(0.43–3.95)
3.95 

(0.43–3.95)
0.719 0.43 (0.43–3.95)

3.95 
(0.43–3.95)

0.983
0.43 

(0.43–3.95)
3.95 

(0.43–3.95)
0.171 0.532

MCP 1 CCL2 pg ml
326.62 

(230.19)
448.15 

(266.66)
0.054 311.96 (168.87)

349.54  
(202.93)

0.233
279.5  

(188.89)
435.95  

(324.58)
0.036 0.812

Data are presented as mean ± SD/ median (IQR) for parametric/non-parametric variables. Baseline clinical measurements between 
the tertiles were compared using ANOVA/Kruskal Wallis test based on the normality status of the variables (denoted by P*). Before 
and after measurements in each tertile were compared using Paired Students’ t/Wilcoxon matched pairs test (p).
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SUPPLEMENTARY TABLE (S2). Results from the linear regression analysis, correcting for age, BMI, and training period.

Metabolites Super-pathway Sub-pathway Estimate SE p-value FDR

N-lactoyl phenylalanine Amino Acid Lactoyl Amino Acid -0.314 0.063 1.54 × 10−5 0.016

glutamine conjugate of C9H16O2 (1)*
Partially Characterized 

Molecules
Partially Characterized Molecules 0.731 0.159 4.97 × 10−5 0.026

N-lactoyl valine Amino Acid Lactoyl Amino Acid -0.448 0.107 1.65 × 10−4 0.05

N-lactoyl leucine Amino Acid Lactoyl Amino Acid -0.277 0.076 7.74 × 10−4 0.170

pyruvate Carbohydrate
Glycolysis, Gluconeogenesis, and 

Pyruvate Metabolism
-0.267 0.073 8.21 × 10−4 0.170

gamma-glutamylglutamate Peptide Gamma-glutamyl Amino Acid 0.302 0.086 1.24 × 10−3 0.202

N-lactoyl tyrosine Amino Acid Lactoyl Amino Acid -0.378 0.110 1.43 × 10−3 0.202

N-lactoyl isoleucine Amino Acid Lactoyl Amino Acid -0.258 0.076 1.56 × 10−3 0.202

glycoursodeoxycholic acid sulfate (1) Lipid Secondary Bile Acid Metabolism -0.818 0.259 3.11 × 10−3 0.358

2-oxoarginine* Amino Acid
Urea cycle; Arginine and Proline 

Metabolism
-0.281 0.093 4.58 × 10−3 0.425

1-linolenoyl-GPC (18:3)* Lipid Lysophospholipid -0.242 0.081 4.86 × 10−3 0.425

N-acetyl-2-aminoadipate Amino Acid Lysine Metabolism -0.329 0.110 4.92 × 10−3 0.425

tetradecadienedioate (C14:2-DC)* Lipid Fatty Acid, Dicarboxylate 0.329 0.117 7.87 × 10−3 0.627

1-stearoyl-2-dihomo-linolenoyl-GPC (18:0/20:3n3 or 6)* Lipid Phosphatidylcholine (PC) -0.230 0.086 1.11 × 10−2 0.668

3-formylindole Xenobiotics Food Component/Plant -0.169 0.064 1.17 × 10−2 0.668

isobutyrylglycine (C4) Amino Acid
Leucine, Isoleucine and Valine 

Metabolism
-0.198 0.075 1.25 × 10−2 0.668

1-oleoylglycerol (18:1) Lipid Monoacylglycerol -0.216 0.082 1.25 × 10−2 0.668

xanthurenate Amino Acid Tryptophan Metabolism -0.418 0.160 1.30 × 10−2 0.668

glucose Carbohydrate
Glycolysis, Gluconeogenesis, and 

Pyruvate Metabolism
-0.044 0.017 1.33 × 10−2 0.668

2-methylcitrate/homocitrate Energy TCA Cycle -0.090 0.035 1.36 × 10−2 0.668

1-dihomo-linolenoyl-GPC (20:3n3 or 6)* Lipid Lysophospholipid -0.188 0.073 1.42 × 10−2 0.668

phenylpyruvate Amino Acid Phenylalanine Metabolism -0.150 0.059 1.51 × 10−2 0.668

lignoceroyl sphingomyelin (d18:1/24:0) Lipid Sphingomyelins -0.169 0.066 1.53 × 10−2 0.668

metformin Xenobiotics Drug – Metabolic -0.183 0.072 1.58 × 10−2 0.668

decadienedioic acid (C10:2-DC)** Lipid Fatty Acid, Dicarboxylate 0.299 0.119 1.63 × 10−2 0.668

1-stearoyl-2-oleoyl-GPC (18:0/18:1) Lipid Phosphatidylcholine (PC) -0.163 0.065 1.68 × 10−2 0.668

1-myristoyl-2-arachidonoyl-GPC (14:0/20:4)* Lipid Phosphatidylcholine (PC) -0.295 0.120 1.85 × 10−2 0.675

gamma-glutamylcitrulline* Peptide Gamma-glutamyl Amino Acid 0.150 0.062 2.00 × 10−2 0.675

isoursodeoxycholate Lipid Secondary Bile Acid Metabolism -0.563 0.232 2.01 × 10−2 0.675

2-arachidonoylglycerol (20:4) Lipid Monoacylglycerol -0.409 0.169 2.06 × 10−2 0.675

HWESASXX* Peptide Polypeptide -0.411 0.172 2.19 × 10−2 0.675

cholesterol sulfate Lipid Sterol -0.105 0.044 2.20 × 10−2 0.675

1-palmitoyl-2-dihomo-linolenoyl-GPC (16:0/20:3n3 or 6)* Lipid Phosphatidylcholine (PC) -0.182 0.076 2.20 × 10−2 0.675

taurolithocholate 3-sulfate Lipid Secondary Bile Acid Metabolism 0.482 0.202 2.23 × 10−2 0.675

glycerophosphoglycerol Lipid Glycerolipid Metabolism -0.112 0.047 2.33 × 10−2 0.675

undecenoylcarnitine (C11:1) Lipid
Fatty Acid Metabolism (Acyl 
Carnitine, Monounsaturated)

0.368 0.156 2.36 × 10−2 0.675

1-palmitoylglycerol (16:0) Lipid Monoacylglycerol -0.303 0.131 2.59 × 10−2 0.675

2-methylserine Amino Acid
Glycine, Serine and Threonine 

Metabolism
0.189 0.082 2.64 × 10−2 0.675

1-palmitoyl-2-oleoyl-GPC (16:0/18:1) Lipid Phosphatidylcholine (PC) -0.099 0.043 2.65 × 10−2 0.675

pristanate Lipid Fatty Acid, Branched -0.446 0.194 2.72 × 10−2 0.675
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Metabolites Super-pathway Sub-pathway Estimate SE p-value FDR

palmitoyl-linoleoyl-glycerol (16:0/18:2) [2]* Lipid Diacylglycerol -0.422 0.186 2.89 × 10−2 0.675

fructosyllysine Amino Acid Lysine Metabolism -0.083 0.037 2.94 × 10−2 0.675

N-behenoyl-sphingadienine (d18:2/22:0)* Lipid Ceramides -0.374 0.165 2.97 × 10−2 0.675

deoxycholic acid 12-sulfate* Lipid Secondary Bile Acid Metabolism -0.482 0.213 2.98 × 10−2 0.675

linoleoyl-linolenoyl-glycerol (18:2/18:3) [2]* Lipid Diacylglycerol -0.419 0.186 3.03 × 10−2 0.675

beta-alanine Nucleotide
Pyrimidine Metabolism, Uracil 

containing
-0.172 0.076 3.04 × 10−2 0.675

4-ethylphenyl sulfate Xenobiotics Benzoate Metabolism 0.372 0.167 3.16 × 10−2 0.675

gamma-glutamylglutamine Peptide Gamma-glutamyl Amino Acid 0.072 0.032 3.23 × 10−2 0.675

phenylalanine Amino Acid Phenylalanine Metabolism -0.064 0.029 3.24 × 10−2 0.675

1-linoleoylglycerol (18:2) Lipid Monoacylglycerol -0.187 0.084 3.26 × 10−2 0.675

1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) -0.344 0.156 3.32 × 10−2 0.675

picolinoylglycine Lipid
Fatty Acid Metabolism (Acyl 

Glycine)
-0.270 0.123 3.51 × 10−2 0.688

1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)* Lipid Phosphatidylcholine (PC) -0.158 0.073 3.66 × 10−2 0.688

1-oleoyl-2-dihomo-linolenoyl-GPC (18:1/20:3)* Lipid Phosphatidylcholine (PC) -0.128 0.060 3.82 × 10−2 0.688

5-hydroxyindole sulfate Amino Acid Tryptophan Metabolism -0.368 0.172 3.91 × 10−2 0.688

phenyllactate (PLA) Amino Acid Phenylalanine Metabolism -0.124 0.058 4.05 × 10−2 0.688

behenoyl sphingomyelin (d18:1/22:0)* Lipid Sphingomyelins -0.117 0.055 4.09 × 10−2 0.688

ursodeoxycholate Lipid Secondary Bile Acid Metabolism -0.466 0.221 4.17 × 10−2 0.688

1-stearoyl-2-oleoyl-GPE (18:0/18:1) Lipid Phosphatidylethanolamine (PE) -0.373 0.177 4.21 × 10−2 0.688

ribitol Carbohydrate Pentose Metabolism -0.074 0.035 4.27 × 10−2 0.688

1-stearoyl-2-linoleoyl-GPC (18:0/18:2)* Lipid Phosphatidylcholine (PC) -0.109 0.052 4.27 × 10−2 0.688

oleoyl-linoleoyl-glycerol (18:1/18:2) [2] Lipid Diacylglycerol -0.219 0.105 4.30 × 10−2 0.688

picolinate Amino Acid Tryptophan Metabolism -0.239 0.115 4.46 × 10−2 0.688

4-hydroxyphenylacetylglutamine Peptide Acetylated Peptides -0.279 0.134 4.48 × 10−2 0.688

delta-CEHC Cofactors and Vitamins Tocopherol Metabolism -0.360 0.174 4.54 × 10−2 0.688

1-linoleoyl-GPA (18:2)* Lipid Lysophospholipid -0.196 0.095 4.60 × 10−2 0.688

1-stearoyl-GPC (18:0) Lipid Lysophospholipid -0.112 0.054 4.61 × 10−2 0.688

2-hydroxy-3-methylvalerate Amino Acid
Leucine, Isoleucine and Valine 

Metabolism
-0.139 0.068 4.65 × 10−2 0.688

tyramine O-sulfate Amino Acid Tyrosine Metabolism -0.401 0.195 4.68 × 10−2 0.688

myristoylcarnitine (C14) Lipid
Fatty Acid Metabolism (Acyl 

Carnitine, Long Chain Saturated)
-0.105 0.051 4.71 × 10−2 0.688

1,2-dipalmitoyl-GPC (16:0/16:0) Lipid Phosphatidylcholine (PC) -0.115 0.056 4.78 × 10−2 0.688

palmitoyl-linoleoyl-glycerol (16:0/18:2) [1]* Lipid Diacylglycerol -0.376 0.183 4.78 × 10−2 0.688

linoleoyl-arachidonoyl-glycerol (18:2/20:4) [2]* Lipid Diacylglycerol -0.361 0.177 4.88 × 10−2 0.692

SUPPLEMENTARY TABLE (S2). Continue
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SUPPLEMENTARY TABLE (S3). Results from the linear regression analysis (treating the difference in 6-minute walking difference as 
continuous variable), correcting for age, BMI, and training period.

Metabolites Super-pathway Sub-pathway Estimate SE p-value FDR

N-lactoyl phenylalanine Amino Acid Lactoyl Amino Acid -0.139 0.032 0.00012 0.13

N-lactoyl leucine Amino Acid Lactoyl Amino Acid -0.138 0.036 0.00053 0.15

N-lactoyl isoleucine Amino Acid Lactoyl Amino Acid -0.135 0.035 0.00054 0.15

N-lactoyl valine Amino Acid Lactoyl Amino Acid -0.198 0.043 0.00065 0.15

Glutamine conjugate  
of C9H16O2

Partially Characterized  
Molecules

Partially Characterized  
Molecules

0.287 0.054 0.00075 0.15

Phenylalanine Amino Acid Phenylalanine Metabolism -0.099 0.085 0.0017 0.29

Pyruvate Carbohydrate Glycolysis, Gluconeogenesis, and 
Pyruvate Metabolism

-0.041 0.029 0.002 0.29

N-lactoyl tyrosine Amino Acid Lactoyl Amino Acid -0.120 0.013 0.0033 0.43

SUPPLEMENTARY FIGURE (S4): Lactate levels when compared 
among the three groups using ANOVA.


