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Abstract: Safe path planning is essential for the autonomous operation of robotic road-
header in narrow underground tunnels, where limited perception and the robot’s geometric
constraints present significant challenges. Traditional path planning methods often fail to
address these issues. This paper proposes a collision prediction-integrated path planning
method tailored for robotic roadheader in confined environments. The method comprises
two components: collision prediction and path planning. A collision prediction model
based on artificial potential fields is developed, considering the non-convex shape of the
roadheader and enhancing scalability. By utilizing tunnel design information, a composite
potential field model is created for both obstacles and the roadheader, enabling real-time
collision forecasting. The A* algorithm is modified to incorporate the robot’s motion con-
straints, using a segmented weighted heuristic function based on collision predictions. Path
smoothness is achieved through Bézier curve smoothing. Experimental results in both
obstacle-free and obstacle-laden scenarios show that the proposed method outperforms
traditional approaches in terms of computational efficiency, path length, and smoothness,
ensuring safe, efficient navigation in narrow tunnels.

Keywords: robotic roadheader; path planning; collision prediction; narrow tunnel; artificial
potential field model; improved A*

MSC: 68T40

1. Introduction
Safe path planning is essential for enabling autonomous navigation of robotic road-

header, playing a critical role in enhancing automation and operational efficiency in coal
mining [1]. Robotic roadheaders are commonly used in tunneling operations in complex
conditions, as shown in Figure 1. These machines consist of a mobile tracked chassis and a
cutting arm, with position control managed by the chassis and cutting performed by the
swinging arm. During operation, they face challenging environments with low lighting and
high dust, which hinder real-time perception. The narrow tunnel spaces further limit au-
tomation and intelligence development. Consequently, path planning in such confined areas
with limited perception is particularly difficult [2]. Ensuring safe path planning in narrow
tunnels is a critical challenge in current robotic roadheader autonomous control research.
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location path planning for robotic roadheader using reinforcement learning, demonstrat-
ing effectiveness in confined environments [7]. However, this method requires a pre-es-
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proach for path adaptation, though potentially limited by perception system reliability in 
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problem solved using adaptive dynamic programming and artificial potential fields, 
which provides a robust theoretical framework, though its computational complexity may 
limit real-time application. While these methods perform well in indoor environments, 
they face robustness challenges in low-light, harsh mining conditions, where vision-based 
and Lidar-based perception systems often struggle [13], revealing a significant limitation 
in practical mining applications. Cui et al. [14] presents a multi-sensor fusion positioning 
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mines, though its robustness may be affected by varying conditions and vibrations. Ren 
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Current research on path planning and control for robotic roadheader mainly focuses
on pose adjustment and deviation correction, with an emphasis on localized motion control.
Fang et al. developed a dynamic attitude compensation method for real-time control [3],
which offers effective adjustment but may be limited by its focus on localized motion neglect-
ing global path planning challenges. Li et al. proposed a fuzzy neural network PID control
method for attitude adjustment to address trajectory deviations [4], offering adaptability but
potentially suffering from high computational cost and the need for extensive parameter
tuning. Ji et al. proposed a path rectification and tracking algorithm using particle swarm
optimization, considering road conditions and roadheader performance [5]. While it effi-
ciently explores search spaces, it may struggle with convergence in dynamic environments.
Zhang et al. designed a reduced-order active disturbance rejection controller to compen-
sate for pose deviations [6], which rejects disturbances but might struggle with complex
multi-objective tasks in constrained tunnel environments. Despite these advances, most
robotic roadheader rely on localized motion control, which is inadequate for autonomous
operation, especially in narrow tunnel environments. Our team explored relocation path
planning for robotic roadheader using reinforcement learning, demonstrating effectiveness
in confined environments [7]. However, this method requires a pre-established environment
model for training and entails high computational complexity [8]. In coal mining, research
on autonomous control of robotic roadheader has mainly focused on cross-sectional cutting,
with less emphasis on body motion control. Effective motion planning must consider the
robot’s dimensions, tunnel environment, and motion constraints.

Recent studies have combined path planning algorithms with environmental per-
ception to develop local dynamic path planning methods [9,10]. Chou et al. employed
intelligent perception technologies to update optimal paths [11], providing a promising
approach for path adaptation, though potentially limited by perception system reliability
in challenging environments. Li et al. [12] formulated path planning as an optimal control
problem solved using adaptive dynamic programming and artificial potential fields, which
provides a robust theoretical framework, though its computational complexity may limit
real-time application. While these methods perform well in indoor environments, they
face robustness challenges in low-light, harsh mining conditions, where vision-based and
Lidar-based perception systems often struggle [13], revealing a significant limitation in
practical mining applications. Cui et al. [14] presents a multi-sensor fusion positioning
system using EKF and UKF to accurate positioning in GPS-denied underground coal mines,
though its robustness may be affected by varying conditions and vibrations. Ren et al. [15]
proposed a graph SLAM optimization method using GICP 3D point cloud registration with
roadway constraints to enhance localization in underground mining environments, though
its effectiveness may be hindered by noise and occlusion in dynamic conditions. Thus,
path planning for robotic roadheader in limited-perception environments can be defined
as global path planning with spatial constraints in narrow tunnels. Traditional methods
often rely on idealized models, such as grid maps or feature maps, often neglecting the
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robot’s geometric and environmental constraints [16,17], leading to suboptimal paths that
require real-time adjustments or collision detection, increasing system complexity. Narrow
tunnels present unique challenges due to the non-convex geometry and complex motion
constraints, making traditional methods inadequate.

In this context, collision prediction becomes critical for ensuring safe robotic operation.
By tracking the position of robots and obstacles in real time, collision prediction enables
dynamic path adjustments to avoid collisions. Herrmann et al. introduced deep collision
probability fields for autonomous driving, laying the foundation for path planning [18],
though its applicability in mining environments with irregular and constrained spaces, may
require further adaptation. Ji et al. proposed a virtual danger potential field for collision-free
path planning [19], offering an innovative solution but may be computationally expensive
and less effective in dynamic environments. Wang et al. [20] designed a motion planning
method to mitigate collisions in emergencies, which is effective in critical situations but
may lack a proactive, continuous solution for path planning. Chen et al. developed a
path tracking and stability control strategy for extreme driving conditions [21], providing
robust performance in difficult conditions, though its reliance on specific driving scenarios
might limit its broader applicability. Path smoothness is another crucial aspect, particularly
in narrow tunnels where smooth paths directly influence motion efficiency and stability.
Techniques such as Bézier curves have been widely applied for path smoothing [22,23],
offering a useful method for generating smooth trajectories but often requiring additional
computational resources in real-time applications. Bi et al. [24] proposed a dual-Bézier
transition method for simultaneously smoothing translational and rotational tool paths,
improving robot stability, which provides an effective solution but may be complex to
implement in systems with strict real-time performance requirements.

In summary, while existing research has made progress in path planning, collision
prediction, and path smoothing, significant gaps remain. Most methods focus on local
dynamic path planning, neglecting the safety of global static planning, especially under
complex environmental constraints and with consideration of robot geometry. This study
addresses these challenges by proposing a collision prediction-integrated path planning
method for robotic roadheader. The method establishes a collision prediction model using
artificial potential fields and calculates collision probabilities based on robot pose. It
improves the A* algorithm to generate safe paths and offers a new perspective for solving
path planning problems in narrow tunnels. The main contributions of this study are
as follows:

(1) A collision prediction-integrated path planning method is proposed to address the
safety challenges of robotic roadheader in narrow coal mine tunnels, providing a
foundation for achieving autonomous control.

(2) A collision prediction model based on artificial potential fields is developed. Using
prior tunnel design information, the model constructs a mathematical tunnel repre-
sentation and composite potential fields for tunnels, obstacles, and the robot, enabling
real-time collision prediction.

(3) An improved A* method for robotic roadheader is presented. By incorporating
collision prediction factors, designing a segmented weighted heuristic function, op-
timizing search neighborhoods, and applying Bézier curve smoothing, the method
enhances path planning efficiency, safety, and smoothness.

The rest of this paper is organized as follows. Section 2 describes safe path planning
problem for robotic roadheader in narrow tunnels. Section 3 depicts the method of safe path
planning based on collision prediction. Section 4 presents the experimental verification and
analysis of related methods. Section 5 provides the discussion of the results. Finally, the
conclusion and future work are presented in Section 6.
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2. Problem Statement
The robotic roadheader consists of two subsystems: the mobile chassis and the cutting

arm. Its operation involves two main tasks: moving and cutting. The mobile chassis moves
the robot to the target position, while the cutting arm handles sectional cutting. This study
focuses on the safe path planning of the mobile chassis, excluding the cutting task during
movement. The starting point D1 is typically positioned on one side of the roadway to
allow space for transportation and row formation. Left and right cutting positions are
designed, multiple cuts may be required when the cutting space is smaller than the target.
as multiple cuts may be required when the cutting space is smaller than the target. After
the cut is complete, it is necessary to stop at D2, which advances a target section depth
relative to D1. As illustrated in Figure 2, the robotic roadheader operates within a confined
tunnel, requiring several movements to complete the cutting plan.
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Figure 2. Safe movement path of the robotic roadheader.

Specifically, the motion of robotic roadheader follows a cyclic cutting process, as each
cut is time-consuming and requires safety support. In each cycle, the robot starts from the
initial position D1, moves to the first cutting point O1, waits for the cut to finish, moves to
O2, and then cuts the remaining target area. Afterward, it returns to the stopping point D2,
and the next cycle begins from there. The autonomous operation of the robotic roadheader
in narrow tunnels presents two main challenges for safe path planning:

(1) Limited Environmental Perception: The harsh conditions of coal mines, including low
lighting and high dust levels, pose significant challenges for environmental perception
systems, limiting awareness of the surroundings.

(2) Constrained Operational Space: In narrow tunnels, spatial limitations restrict the
movement and maneuverability of robotic roadheader, unlike in open environments.

In this context, safe path planning for the robotic roadheader can be framed as a local
path planning problem, considering the robot’s geometric constraints without real-time
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environmental perception. The robot’s dimensions, including the operational mechanism
size, directly affect the feasibility and safety of the planned path.

The goal of path planning for the robotic roadheader is to find the shortest collision-
free path on a known map from a starting point S to a target point G. In general, obstacles
may exist between S and G, but in the narrow tunneling space discussed in this paper, there
are no obstacles. The space is semi-enclosed with defined boundaries, so a collision-free
path ensures the roadheader avoids collisions with the tunnel boundaries. Given the low
likelihood of obstacles, they are considered static in this scenario.

P = (pi, θi) = {(S, 0), (p1, θ1), · · · , (G, 0)} (1)

When the robot is at position pi with a heading angle of θi, it must avoid colliding
with the boundaries and the line connecting to the adjacent position. The first step is to
consider the robot’s size, heading, and tunnel constraints in developing a suitable path
search method. Collision detection should also be performed during the search to ensure
the path remains safe and collision-free.

Geometric Constraints. Based on the position and orientation information of the robotic
roadheader, combined with its shape and size parameters, the coordinates of key points on
the boundary contour of the tunnel boring machine are calculated in real time to form the
size constraints of the robot. Figure 3 presents a simplified model of the robotic roadheader.
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Figure 3. Key points and parameters of the robotic roadheader.

Each protruding point is identified as a key point Ki(i = 1, 2, . . . , 9), which will be used
for collision calculations during the planning process. Figure 3 also includes the roadway
Oh − XhYh and body coordinates Ob − XbYb, along with key dimensional parameters of the
robotic roadheader, for use in subsequent simulations and calculations.

When the robot moves in a narrow tunnel, treating it as a point mass results in a path
that is a straight line between the start and target, as shown by the blue segment in Figure 4.
Using this as a reference path for control would cause a collision, as illustrated in the figure.
Therefore, considering the robot’s geometric parameters is essential in narrow tunnels.

Heading Constraints. The robotic roadheader is a tracked robot. In general, tracked
robots can rotate in place and move forward in any direction. However, in this confined
scenario, due to the limited space and the coordination with equipment such as the transport
plane, the robot’s rotation angle is restricted to a certain limit to avoid danger. That is,
θ ≤ θmax.

Tunneling Scenario Constraints. The tunnel space is narrow and pre-designed. While
minor construction deviations may occur, strict standards ensure these errors remain within
a controllable range, allowing accurate modeling of the tunnel boundaries and centerline.
The model focuses on the left and right boundaries, as they directly affect the machine’s
lateral motion. The vertical direction, with sufficient clearance, is stable and negligible for
planning. Thus, the digital model of the tunnel boundaries and centerline is as follows:



Mathematics 2025, 13, 522 6 of 26


xl = −0.5Wh, yl ∈ [0, Lh]

xr = 0.5Wh, yr ∈ [0, Lh]

xmid = 0, ymid ∈ [0, Lh]

(2)

where (xl , yl) and (xr, yr) represent the coordinates of the left and right tunnel boundaries,
respectively, and (xmid, ymid) represents the coordinates of the tunnel centerline.
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3. Materials and Methods
3.1. Overall Framework

This paper aims to develop a safe path planning method for robotic roadheader in
narrow tunnels, enabling autonomous and efficient navigation in challenging underground
environments. The approach includes two components: collision prediction and path
planning. The overall framework is shown in Figure 5.

Part I of this study uses digital models of the tunnel, roadheader, and obstacles
to create a composite artificial potetial field for collision prediction. The roadheader
calculates potential differences at key points along its boundary in real time to predict
collisions. Given the limited environmental perception in coal mine tunnels, this real-time
prediction is essential. We propose a model based on artificial potential fields to handle
the roadheader’s non-convex shape and the complex tunnel environment. Using prior
tunnel design data, the model constructs a mathematical representation of the tunnel
and integrates the potential fields for the robot, obstacles, and tunnel. By tracking the
robot’s pose, the model dynamically predicts potential collisions, allowing for timely
path adjustments.

In Part II, we adjust the A* heuristic search based on the roadheader’s heading con-
straints in narrow tunnels for a more accurate trajectory. We then integrate the collision
prediction results from Part I into a safety-aware heuristic. To improve efficiency, a distance
threshold and a segmented heuristic function are introduced to reduce computational load
while maintaining safety. Bézier curve smoothing is applied to the turning points of the
path, eliminating sharp corners and enhancing stability.

By combining collision prediction with optimized path planning, this method ensures
the roadheader can navigate narrow tunnels safely and efficiently, even in environments
with limited perception and static obstacles. The method provides a comprehensive solution
for autonomous navigation in complex underground spaces, laying the foundation for
future advancements in robotic mining operations.
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3.2. Collision Prediction Model Using Artificial Potential Field

We designed artificial potential fields for narrow tunnels, obstacles, and the boundaries
of the robot, among others. By integrating these potential fields, a composite potential field
is constructed to calculate the real-time variation of the robot boundary potential field. By
integrating these potential fields, a composite potential field is constructed to calculate the
real-time variation of the robot boundary potential field. Based on these changes, we can
evaluate the likelihood of a collision.

3.2.1. Design of Tunnel Potential Field

According to different risk levels, a piecewise function is established to represent the
tunnel space constraint potential field [25]. It is assumed that the high-risk area is within t
m from the side wall of the tunnel, and the other locations are low risk areas. A rapidly
changing exponential function is used to establish the spatial constraint potential field of
the tunnel in the high-risk area. In the low-risk area, trigonometric functions are used to
establish the spatial constraint potential field of the tunnel.

Uroad =


ηroad1[e|2(x−t)| + ψ] , 0 ≤ x ≤ t

ηroad2[sin(ψ1x + ψ2)π + 1] , t ≤ x ≤ Wh − t

ηroad1[e|2(x−(Wh−t))| + ψ] , Wh − t ≤ x ≤ W

(3)

where ηroad1 is the repulsive potential field coefficient of the high-risk region; ηroad2 is the
repulsive potential field strength coefficient in the low-risk region. Define ηroad1 = 10,
ηroad2 = 20, Wh = 6, ψ = 1, ψ1 = 5/22 and ψ2 = 9/11, and establish the spatial constraint
potential field diagram of the tunnel according to Equation (3), as shown in Figure 6.
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potential field is 0, and the strength of the potential field gradually increases along the direction of
the red arrow.

According to Equation (3) and Figure 6, the potential field intensity is large and
changes rapidly on both sides of the approaching tunnel. The potential field intensity in
the area near the middle of the tunnel is small, and the change trend is relatively slow. The
intensity of the potential field at the center line of the tunnel is 0.

3.2.2. Design of Obstacle Potential Field

Obstacles in narrow underground environments are often irregular in shape. For
simplicity, this paper models them as circular protrusions, though the approach can be
extended to other shapes. Inside the obstacle, a uniform potential field Uin is assigned a
constant value. Beyond the obstacle’s maximum effective range, the potential field rapidly
diminishes to zero. Between the boundary and the maximum range, the potential field
value increases as the distance decreases, which is modeled using an exponential function
to ensure that the field strength grows closer to the obstacle and decays with distance.

Furthermore, a smoothing factor, denoted as s, is introduced to ensure a smoother
transition in the potential field. The piecewise potential field distribution function for
obstacles can be expressed as:

Ur =


Uin, r ≤ R

Uin · exp
(
−s · ( r−R

Rde
)

2
)

, R < r ≤ R + Rde

0, r > R + Rde

(4)

In the equation, r represents the distance from the current point to the center of the
obstacle, s denotes the smoothing factor, R signifies the radius of the obstacle, and R + Rde

indicates the maximum effective range of the potential field of obstacles.
The design follows the principle that the potential field strength increases as the

distance to the obstacle decreases. While the model uses circular approximations for
simplicity, the approach can be adapted to irregularly shaped obstacles by adjusting the
potential field function to reflect the impact of distance, maintaining similar exponential
behavior. Figure 7 shows the artificial potential field distribution of obstacles. The potential
is at a maximum inside the obstacle and decreases with distance from its boundary. Once
the distance exceeds a certain threshold, the potential becomes zero.
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3.2.3. Design of Potential Field for Robotic Roadheader

The coordinate origin is established at the center of the robotic roadheader, with the
x-axis pointing forward and the y-axis pointing laterally. The coordinates of key points
K1 ∼ K9 are illustrated in Figure 3. By calculating the coordinates Pk of these key points in

the current position, the center coordinates
[

x0 y0

]T
and heading angle θ of the robotic

roadheader can be obtained.

Pk =

[
xi

yi

]
=

[
cos θ sin θ

− sin θ cos θ

][
xbi

ybi

]
+

[
x0

y0

]
, i = 1, 2 . . . 9. (5)

where
[

xbi
ybi

]
represents the coordinates of the key points of the roadheader boundary

in the body coordinate system, which can be calculated by the fuselage size. Utilizing
the aforementioned methodology, the coordinates of the boundary points of the robotic
roadheader can be computed in real time based on its current pose and position. By
acquiring the potential difference at these points, one can ascertain whether a collision will
occur at the current path point, thereby enabling early assessment of the path. Between
the key points defining the external contour, a linear interpolation approach is employed
to derive the precise coordinates of the entire boundary contour. To guarantee a thorough
evaluation of the robotic collision potential energy, a fixed potential field value U f is
assigned to each coordinate on the outer contour, and U f = 55.

Ub(xi, yi) = U f , i = 1, 2 . . . 9. (6)

3.2.4. Collision Predictor

The composite potential field distribution of obstacles in a narrow tunnel can be
represented as a combination of two potential fields. Assuming there is a point (x, y) within
the passage, the original potential field value at this point is denoted as Uroad, and the
potential field value of the obstacle is denoted as Ur. The superposition method can be
expressed as:

Ucomplex(x, y) = max(Uroad(x, y), Ur(x, y)) (7)

Therefore, based on the composite artificial potential field described in the previous
section, the potential difference at any point within the boundary of the robotic roadheader
in the composite artificial potential field is designed as follows:

Ud(x, y) = Ub(x, y)− Ucomplex(x, y) (8)
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Based on the known composite potential field distribution of tunnel and obstacles, the
potential field difference Ud at the boundary of the lane where the robot is located can be
accurately and rapidly calculated. Definition of the collision predictor PU :

PU =

(
1 − Ud(x, y)

Ub(x, y)

)
× 100% (9)

Based on practical considerations, we set a threshold parameter T for collision warning.
When the collision predictor PU > T, it indicates that the robot is about to collide with
other objects and requires timely adjustments.

To assess the collision probability for the entire outer contour of the robot, we select
the maximum value max(PU) as the criterion for determining whether a collision will occur.
In this process, the composite potential field distribution of the narrow tunnel and obstacles
is crucial prior data.

To better illustrate the processing steps of the proposed method, we provide pseu-
docode for calculating the collision prediction factors (see Algorithm 1).

Algorithm 1: Calculate collision predictor

1: function CollisionPrediction(X_lane, Y_lane, U_lane, digital_bmt)
2: input: X_lane, Y_lane, U_lane: Grid coordinates and lane potential field; digital_bmt:
Robot’s coordinates
3: output: Pu_max: Maximum collision potential; point_oc: Corresponding point where the
maximum collision po tential occurs.
4: // Initialize robot’s coordinates
5: bx, by = digital_bmt(1, :), digital_bmt(2, :)
6: // Get interpolated points and robot’s bottom trajectory
7: [interp_points, interpolated_Z_all] = Robot_btm(bx, by)//Interpolate the robot boundary
key points
8: nearest_indices = zeros(size(interp_points, 1), 2)
9: U_lane_with_obstacle = U_lane
10: PU = []
11: //For each interpolated point
12: for each i in 1 to size(interp_points, 1)
13: distances_squared = (X_lane(:) − interp_points(i, 1))2 + (Y_lane(:) − interp_points(i, 2))2

14: min_index = min(distances_squared)
15: [row_idx, col_idx] = ind2sub(size(X_lane), min_index)
16: nearest_indices(i, :) = [row_idx, col_idx]
17: U_lane_with_obstacle(row_idx, col_idx) = interpolated_Z_all(i) − U_lane(row_idx,
col_idx)
18: end for
19: //Calculate collision potential for each nearest point
20: for each j in 1 to size(nearest_indices, 1)
21: U_lane_with_obstacle2 = U_lane(nearest_indices(j, 1), nearest_indices(j, 2))
22: PUt = (interpolated_Z_all(j) − U_lane_with_obstacle2)/interpolated_Z_all(j)
23: PU(j) = 1 − PUt
24: end for
25: // Find the maximum collision potential and the corresponding point
26: Pu_max, max_index = max(PU)
27: point_oc = nearest_indices(max_index)
28: return Pu_max, point_oc
29: end function
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3.3. Improved A* Path Planning Method Integrating Collision Prediction
3.3.1. Adjusting the Search Neighborhood

Considering the scenario where robots may navigate in narrow tunnels while trans-
porting additional support equipment, the presence of maximum steering constraints poses
challenges to the direct application of the A* search method. Therefore, an improved search
methodology is necessary to balance computational efficiency and operational feasibility.
In practice, the robotic roadheader moves at a very slow speed within a confined working
space, typically covering distances of around 10 m. Additionally, coal mine tunnel con-
struction typically requires boundary errors to be controlled within 10 cm, making precise
body control crucial for accurate excavation.

In the left subplot of Figure 8, the search grid has a resolution of 1 m × 1 m, which is
appropriate for typical tunnel widths of approximately 5 m. Directly applying higher path
precision could jeopardize safety and computational feasibility. Using a lower-resolution
search grid would significantly increase computation time, thus reducing operational
efficiency. Therefore, we further subdivided the 1 m × 1 m search grid to improve path
planning accuracy while managing computation time, as demonstrated in the right subplot
of Figure 8.
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The left figure demonstrates the conventional A* algorithm’s search neighborhood, while the right
figure shows optimized path planning with heading constraints, where orange markers denote
split-generated waypoints and blue arrows indicate permissible heading orientations.

Assuming that the maximum swing angle of the robotic roadheader is θ, and as the
robot advances one unit distance along the y-axis, the maximum penetration distance in
the x-axis is denoted as 1. By discretizing the x-axis, a new search neighborhood L can be
obtained. Simultaneously, by connecting the discrete candidate path points with the base
point, a new path is formed. At the juncture, the path is oriented. Assuming the coordinates
of the discrete path point at this location are (xi, yi) and the base point coordinates are
(0, 0), the travel direction can be calculated as θi = tan−1(xi, yi)(i = 1, 2, . . .). Note that this
direction has a sign, as illustrated in Figure 8.

The A* search neighborhood is depicted in the left-hand side of Figure 6, with search
steps of 1 in both the x-axis and y-axis. The original neighborhood points in the x-axis are
evenly divided into five equal segments, as shown in the right-hand side of Figure 6.

3.3.2. Design of the Heuristic Function

The A* search algorithm is a widely used pathfinding and graph traversal algorithm
known for its efficiency and accuracy. It combines the strengths of Dijkstra’s algorithm and
Greedy Best-First Search by using a cost function:
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f (n) = g(n) + h(n) (10)

where g(n) represents the cost to reach the current node n from the start node, and h(n) is
a heuristic estimate of the cost from n to the goal. The algorithm prioritizes nodes with the
lowest f (n), ensuring that it explores the most promising paths first. A* guarantees the
shortest path if the heuristic h(n) is admissible and consistent. It is commonly applied in
robotics, video games, and navigation systems.

Despite its advantages, the traditional A* algorithm has limitations when applied
to narrow underground environments, particularly for robotic roadheader. The method
does not account for the posture or orientation of the robot, which can significantly affect
the feasibility and safety of the planned path in constrained spaces. To address these
limitations, we propose an enhanced weighted A* algorithm that incorporates roadheader
posture and collision prediction into the heuristic function.

To enhance search efficiency, a weighted A* algorithm modifies the heuristic function
by introducing a weight b, which adjusts the influence of the heuristic estimate on the
search process. The heuristic function for the weighted A* algorithm is defined as:

f (n) = g(n) + b × h(n) (11)

Here, b is a weight factor that balances exploration and exploitation. A higher b
value prioritizes heuristic estimates, potentially increasing search speed but at the cost
of accuracy. During the search process of the A* algorithm, the node with the smallest
f (n) value is selected from the priority queue as the next node to be traversed. However,
this process does not consider the posture of the roadheader. To address this limitation,
the posture is incorporated into the heuristic function and simultaneously subjected
to weighting.

f (n) = g(n) + b × h(n) + k × |θc − θe| (12)

Specifically, the parameter k serves as a weighting coefficient that determines the
impact of posture on the heuristic. To further improve safety, we introduce a collision
predictor PU into the heuristic function. Additionally, to enhance responsiveness and
improve performance in narrow tunnel environments, an exponential function ePU is
adopted to further ensure safety. The predictor assesses the proximity of the roadheader
to obstacles and dynamically adjusts the heuristic value to prioritize safer paths. The
enhanced heuristic function is defined as:

f (n) =

{
g(n) + b × ePU × h(n) + k × |θc − θe| PU > PT

g(n) + b × h(n) + k × |θc − θe| PU ≤ PT
(13)

Given a segmented threshold PT , the heuristic function incorporating the collision
factor is utilized to dynamically adjust the heuristic process. To ensure flexibility, we
introduce a segmented threshold PT for the collision predictor. When the distance to
an obstacle falls below PT , the collision factor is activated, dynamically adjusting the
heuristic to emphasize obstacle avoidance. The segmentation allows the algorithm to
balance efficiency and safety across different regions of the environment.

To better explain the proposed the proposed improved A* path planning method
integrating collision prediction, we provide the pseudocode for its implementation (see
Algorithm 2).
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Algorithm 2: Improved A* method based on collision-prediction

1: function Evaluation(n)
2: if Pu > PT Then
3: f(n) = g(n) + b ×ePU × h(n) + k × |θc − θe|
4: else
5: f(n) =g(n) + b × h(n) + k × |θc − θe|
6: end if
7: return f(n)
8: end function
9: function updateState (n, n’)
10: c(n, n’) = abs(n. x − n’. y) + abs(n. y − n’. y) //Calculate the cost of going from n to n’
11: collision_risk = CollisionPrediction() //Perform collision prediction for n and n’
12: if n’ is an obstacle OR n’ ∈ CLOSED OR collision_risk > threshold then
13: ignore this n’ //Ignore nodes with high collision risk
14: else
15: if n’ ∈ OPEN then
16: // Already in the open list, check if there is a better path
17: if g(n’) > g(n) + c(n, n’) then
18: parent(n’) = n
19: g(n’) = g(n) + c(n, n’) //The cost of updating n’
20: Evaluation(n’) / Reevaluate node n’
21: else
22: ignore this n’
23: end if
24: else
25: // Insert node n’ into the open list
26: OPEN. Insert(n’, Evaluation(n’))
27: parent(n’) = n
28: g(n’) = g(n) + c(n, n’)
29: end if
30: end if
31: end function
32: function Main()
33: g(nstart) = 0
34: OPEN = ϕ

35: CLOSED = ϕ

36: OPEN.Insert(nstart, Evaluation(nstart)) //Insert start node with its evaluation
37: while OPEN ̸= ϕ do
38: n = OPEN.minEvaluation(n) //Extract node with minimum evaluation (f(n))
39: CLOSED = CLOSED ∪ n //Move node from OPEN to CLOSED
40: if n = ngoal then
41: return “Path found”
42: else
43: n’ are neighbors of n //Get neighbors of current node n
44: for all n’ do
45: updateState(n, n’) //Update the state and evaluate each neighbor
46: end for
47: end if
48: end while
49: return “Path planning failed” //No path found
50: end function
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3.4. Smoothing Process

The proposed path planning method exhibits obvious inflection points when avoiding
obstacles, which adversely affects the movement of the robot. Bezier curves achieve smooth
processing of polylines through a set of control points, making the path more feasible.
Therefore, this paper adopts Bezier curves to smooth the line segments. The general
formula for Bezier curves is as follows:

B(t) = ∑
n
i = 0

(n/t)(1 − t)n−itiPi (14)

where i is the parameter, with a value range between [0, 1]. The notation n/t represents the
binomial coefficient, which is the number of ways to choose i elements from n elements.
This formula implies that the point B(t) on the curve is a weighted combination of the
control points P0, P1, P2, . . . , Pi. The weights are controlled by (1 − t)n−i according to the
binomial coefficients.

While cubic Bezier curves are generally preferred due to their simplicity and stability,
higher-order Bezier curves may be necessary to handle paths with closely spaced inflection
points. Specifically, we adopt a combination of third-order Bezier curves, fourth-order
Bezier curves, and fifth-order Bezier curves, selecting the appropriate order based on the
spacing between inflection points to ensure smoothness and avoid path overlap. The
cubic Bezier curves are primarily used for most segments of the path because they offer a
balance between stability and flexibility, as shown in Figure 9a. However, when the interval
between two inflection points is one path point, a fourth-order Bezier curve is applied to
provide additional control, ensuring a smoother transition and eliminating overlaps, as
shown in Figure 9b. Similarly, when the interval between inflection points is two path
points, a fifth-order Bezier curve is used for smoothing, offering even finer adjustment, as
illustrated in Figure 9c.
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The path optimization process begins by analyzing the change in heading angle
between adjacent nodes, which helps identify significant polylines. For these nodes,
additional control points are selected near them, and the appropriate Bezier curve is applied
based on the interval between inflection points. Finally, the smoothed road segments are
combined with the original path to form an optimized, continuous path. This method
ensures a balance between smoothness, obstacle avoidance, and stability while achieving
an efficient and safe path in complex environments.
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4. Experimental Validation
To validate the effectiveness of the path planning method integrating collision predic-

tion, we designed two experimental platforms: one for path planning in an obstacle-free
environment and another for path planning in an environment with obstacles. These
platforms were used to experimentally verify the path planning performance and the actual
operational results based on the planned paths. To better compare and demonstrate the
algorithm’s effectiveness and scalability, we modified the collision detection process of the
original A algorithm. Specifically, the collision detection was changed from the original
grid occupancy-based method to the collision prediction approach used in this study. This
modified process was applied in both operating scenarios. The performance of the pro-
posed path planning method integrating collision prediction was evaluated by comparing
metrics such as execution time, path length, and maximum turning angle. Additionally,
the safety of the operational process was assessed and analyzed.

4.1. Path Planning Validation in Obstacle-Free Tunnels
4.1.1. Experimental Setup in Obstacle-Free Tunnels

The experiment was conducted to validate the path planning in the coal mine exca-
vation face environment. The environment is obstacle-free scenario. Due to the large size
of the excavation machine, it occupies a significant portion of the tunnel space, further
restricting the already narrow tunnel, which presents challenges for motion control and
potential safety risks. Based on the parameters of the robotic roadheader and tunnel, the
motion path planning for robotic roadheader is carried out using the proposed improved A*
path planning method integrated with collision prediction. In this process, the performance
of path planning is validated by simulating the robot’s actual motion. Both the proposed
method and the improved original A* method is used for path planning, with performance
analyzed in terms of planning time, path length, maximum turning angle, and safety
assessment. Finally, the planning results are applied to the actual tracking control, and the
validity of the path planning is verified by monitoring the robot’s actual motion process.

4.1.2. Experimental Scene and Metrics in Obstacle-Free Tunnels

To further validate the practical application of the planned path, we designed a path
tracking experiment, as shown in Figure 10. This platform consists of a robotic roadheader,
a visual-inertial navigation system [26], and a total station tracking system (IX1000, Beijing
Ance Keyi Photoelectric Technology Research Institute, Beijing, China) and PC (i5-8250U,
MX150, 8G, Lenovo, Beijing, China). The visual-inertial navigation system, consisting
of a visual positioning system and an IMU, is used to monitor the real-time pose of the
excavation machine. The total station tracking system is employed to track the real-time
position of the excavation machine.
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The tunnel parameters used in the experiment are shown in Table 1.

Table 1. Parameters of tunnel.

Para. Wh/m Hh/m Lh/m Start Point/m End Point/m Depth/m Section Num

Tunnel 6 3 3000 (0, 0) (0, 3000) 1.0 20

The parameters of the robotic roadheader used in the experiment are shown in Table 2.

Table 2. Parameters of robotic roadheader.

Para. Wb/m Lc/m La/m Lb1/m Lb2/m Wbc/m θmax/◦

roadheader 3.5 0.8 4.0 3.25 1.325 1.0 20

Based on the pose planning results, the robotic roadheader is controlled to move along
the planned path. During the movement, the total station tracking system records the
real-time position of the excavation machine, and these position data are compared with
the planned path to analyze the practical application of the planned route. The table below
lists the equipment and parameters used in the path tracking experiment.

It should be noted that, since the robotic roadheader is unable to complete the cutting
in a single pass, we have designed a machine relocation path for the current tunnel. Based
on the path point coordinates obtained in the previous sections, six segments of the reloca-
tion path were generated: Segment 1: D1(−0.5 m, 5 m) 7→ O1(−0.67 m, 11.2 m) ; Segment
2: O1(−0.67 m, 11.2 m) 7→ M(0 m, 6 m) ; Segment 3: M(0 m, 6 m) 7→ O2(0.67 m, 11.2 m) ;
Segment 4: O2(0.67 m, 11.2 m) 7→ M(0 m, 6 m) ; Segment 5: M(0 m, 6 m) 7→ O1 (−0.67 m,
11.2 m); Segment 6: O1(−0.67 m, 11.2 m) 7→ D2(−0.5 m, 6 m) . The movement along these
six segments is shown in Figure 11.
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Here, D1 represents the trajectory point before the start of each cutting pass, and D2

is the stop point after completing the current tunnel section cutting, which also serves as
the next trajectory point. Typically, the distance between D1 and D2 corresponds to the
depth of one tunnel section. The cutting process is performed sequentially, forming a set
of trajectory points for tunnel excavation. Precise control of this trajectory ensures the
accuracy of the tunnel alignment. In the figure, O1 and O2 are the stopping points after two
cutting passes. However, due to the dynamic characteristics of the excavation machine,
it is not possible to directly translate from O1 to O2, and thus, an intermediate transfer
point is needed. The point M in Figure 11 represents this transfer path point, acting as a
bridge between O1 and O2. For ease of control, the excavation machine is assumed to have
a heading angle of 0◦ at these trajectory points, aligning with the designed tunnel direction.
This allows for the creation of a complete relocation path, from the initial cutting start point
to the cutting completion point, as shown in the figure. The full relocation path of the
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roadheader can be divided into two parts: D1–O1–M–O2 and O2–M–O1–D2. Although the
target points for machine relocation are defined, their exact positions remain uncertain. The
determination of cutting location points O1, O2, and the transfer path point M is crucial
and forms the basis for planning the relocation path.

4.1.3. Performance of Path Planning in Obstacle-Free Tunnels

Using the previously mentioned tunnel and robotic roadheader parameters, along
with the six-segment path of the roadheader, we applied the proposed safety path planning
method with collision prediction. The resulting path, compared to the previous method, is
shown in Figure 12. The background color bar in the figure represents the artificial potential
field values of the environment. The robot’s path is shown with a red line, with solid lines
marking the start and end points, and dashed lines illustrating the motion path. Key points
on the robot’s outline are also highlighted.
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Figure 12. The result of path planning before and after improvement is compared with the local
detail method. (a) For the path D1 7→ O1 , the left image is the result before the improvement and
the right image is the result after the improvement; (b) for the path O1 7→ M , the left image is the
result before the improvement and the right image is the result after the improvement; (c) for the
path M 7→ O2 , the left image is the result before the improvement and the right image is the result
after the improvement; (d) for the path O2 7→ M , the left image is the result before the improvement
and the right image is the result after the improvement; (e) for the path M 7→ O1 , the left image is
the result before the improvement and the right image is the result after the improvement; (f) for the
path O1 7→ D2 , the left image is the result before the improvement and the right image is the result
after the improvement.

As shown in Figure 12a, both the original and improved path planning methods
ensure the safe movement of the robotic roadheader from the starting point. That can
be observed from the zoomed-in regions of the left and right images. The key difference
is that the boundary points on the left side of the robot in the improved method are
further from the tunnel boundary, marked by black circles, indicating a safer path. The
improved path also shows smoother motion. In Figure 12b, both methods ensure safe
movement, but in the improved method, the left boundary points are farther from the
tunnel boundary, suggesting a safer path. Figure 12c shows that, while both methods allow
safe movement, the right boundary points of the improved path are farther from the tunnel
boundary, indicating a safer path. In Figure 12d, both methods ensure safe movement,
but the boundary points on the right side of the robot in the improved path are farther
from the tunnel boundary, suggesting greater safety. Figure 12e shows that both methods
safely guide the robot, but the boundary points on the left side in the improved method are
farther from the tunnel boundary, demonstrating a safer path. Finally, Figure 12f shows
that both methods ensure safe movement, but in the improved path, the boundary points
on the left are further from the tunnel boundary, again illustrating a safer path.

Furthermore, a performance comparison of the method proposed in this study was
conducted, considering factors such as computation time, path length, and maximum
turning angle. The results are presented in Table 3.

As shown in Table 3, compared to the previous path planning algorithm, the improved
method reduces the average runtime by 0.7186 s, the average path length by 0.00957 m,
and the average maximum turning angle by 0.1059 rad. Therefore, the improved method
not only results in a shorter path and reduced computation time but also significantly
enhances path smoothness, providing a solid foundation for further autonomous control of
the robotic roadheader.
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Table 3. Performance comparison of the proposed path planning method in obstacle-free tunnels.

Path Method Time (s) ∆T Length (m) ∆L Max Turning
Angle (rad) ∆Angle

D1 7→ O1
Before Improved 0.94591

0.8014
6.2122

0.0051
0.1489

0.0857After Improved 0.14178 6.2071 0.0632

O1 7→ M Before Improved 0.84571
0.7256

5.0812
0.0054

0.1618
0.1044After Improved 0.12015 5.0758 0.0574

M 7→ O2
Before Improved 0.84141

0.7293
5.2627

0.0067
0.1685

0.1110After Improved 0.11212 5.2560 0.0575

O2 7→ M Before Improved 0.86984
0.7088

5.2622
0.0263

0.1803
0.1191After Improved 0.16102 5.2359 0.0612

M 7→ O1
Before Improved 0.83585

0.7037
5.2607

0.0094
0.1573

0.1122After Improved 0.13211 5.2513 0.0451

O1 7→ D2
Before Improved 0.75853

0.6429
5.2122

0.0045
0.1489

0.1031After Improved 0.11567 5.2077 0.0458

4.1.4. Application of Path Tracker Control of Robotic Roadheader

To better demonstrate the effectiveness of the proposed path planning method in the
unobstructed robotic roadheader working scenario, the planned path was applied to the
autonomous control of the robotic roadheader. The position and orientation data of the
robotic roadheader during its movement were collected using a total station. A comparison
between the actual movement and the planned path is shown in Figure 13.
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It can be observed that the actual motion paths of the robotic roadheader are generally
consistent with the planned path trends, albeit with some deviations. However, these devi-
ations essentially demonstrate the effectiveness of the path planning method. Furthermore,
the robot safely reached the designated positions, laying the foundation for carrying out
other tasks.

4.2. Path Planning Validation in Obstacle-Filled Tunnels
4.2.1. Experimental Setup in Obstacle-Filled Tunnels

In the underground tunnel environment of coal mines, obstacles often exist that affect
the normal passage of robotic systems. Therefore, to ensure safety, obstacle avoidance
must be integrated into the robot’s movement to allow safe navigation. Unlike excavation
robots, these robots are smaller in size, enabling them to maneuver more freely within the
tunnel. Applying the proposed collision-prediction-based path planning method to such
scenarios effectively generates safe paths. In the process of simulating the tunnel, the tunnel
coordinate system is set up, and the VICON tracking system makes the coordinate system
coincide through the initial calibration. Robot motion tracking is achieved by placing
marker balls on the robot to create rigid body information. Before the experiment, we set
up a narrow and long passage of 0.6 m× 2.5 m, five obstacles at fixed positions, and other
information. We then provided different starting points, endpoints, and other controls
for the robot to complete path planning and move to the target position. The obstacle
coordinates are A (−0.15 m, 0.3 m), B (0.2 m,0.6 m), C (−0.15 m, 1 m), D (0.18 m, 1.5 m),
and E (−0.15 m, 2 m).

4.2.2. Experimental Scene and Metrics in Obstacle-Filled Tunnels

To evaluate the obstacle avoidance performance of the path planning method proposed
in this study, we designed the experimental validation scenario shown in Figure 14.
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Figure 14. Verification of path planning method for narrow tunnel with obstacles.

In the obstacle-filled experiment, a tunnel with parameters shown in Table 4 was set
up, and the robot parameters used in the experiment are provided in Table 5. Additionally,
the equipment used in the experiment includes a mobile robot and a VICON motion capture
system. The VICON motion capture system collects the position of the robot’s rigid body,
constructed with Induction balls, in the same scene using six industrial cameras. The mobile
robot is equipped with an encoder and an STM32f103C8T6 processor (STMicroelectronics



Mathematics 2025, 13, 522 22 of 26

NV, Geneva, Switzerland), which transmits the planned results to the robot for tracking
control. The validity of the path is verified by comparing the path planning results with
the actual tracking results.

Table 4. Parameters of tunnels.

Para. Wh/m Hh/m Lh/m Start Point/m End Point/m Depth/m Section Num

Tunnel 0.6 0.3 3000 (0, 0) (0, 3000) 1.0 20

Table 5. Parameters of robot.

Para. Wb/m Lc/m La/m Lb1/m Lb2/m Wbc/m θmax/◦

roadheader 0.2 0.05 0.05 0.1325 0.1325 0.1 20.0

4.2.3. Performance Testing

Figure 15a,b show the following: the left images depict the paths generated by the
proposed method without optimization, the middle images show the paths with smoothing
applied, and the right images present the paths using the weighted A* method. As seen
in the figures, applying multiple Bezier curves for path smoothing effectively avoids
over-smoothing. The inclusion of obstacle avoidance in the proposed method makes the
paths safer near obstacles compared to the improved A* method. To further evaluate the
proposed approach, we compared the methods based on running time, path length, average
curvature, and maximum turning angle.

Figure 15a shows that both the improved and original path planning methods allow
the robot to move from the starting point without collisions. The robot avoids obstacles A,
C, and E, and no collisions occur near obstacles B and D, as shown in the zoomed-in view.
The main difference is that the path in the right image is smoother.

In Figure 15b, the starting point is closer to obstacle A, but both methods avoid
collisions with obstacles A, C, and E. The robot gets close to obstacles B and D, but no
collisions occur, as seen in the zoomed view. This highlights the effectiveness of the path
planning method, which accounts for the robot’s size constraints.
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To further assess the performance of the proposed method, we compared it with the
original algorithm based on runtime, path length, and maximum turning angle, as shown
in Table 6.

Table 6. Performance comparison of the proposed path planning method in obstacle-filled tunnels.

Path Method Time (s) ∆T (s) Length (m) ∆L (m) Max Turning
Angle (rad) ∆Angle (rad)

(0.07, 0.15) to
(1, 2.1)

Before Improved 3.751
3.483

1.9722
0.0039

0.2971
0.2657After Improved 0.268 1.9683 0.0314

(0.02, 0.15) to
(1, 2.1)

Before Improved 3.889
3.606

1.9736
0.0052

0.2948
0.2590After Improved 0.283 1.9684 0.0358

Table 6 shows that the improved method reduces the average runtime by 3.5445 s, the
path length by 0.0485 m, and the maximum turning angle by 0.26235 rad, compared to the
original algorithm. This results in a shorter path, reduced computation time, and smoother
movement. The collision-prediction-based path planning method also provides excellent
obstacle avoidance.

4.2.4. Application

The obstacle avoidance path generated by the planning algorithm was applied to the
automatic control of a tracked robot in a simulated narrow tunnel, as shown in Figure 16.
During the autonomous operation of the robot based on the planned trajectory, the VICON
system was used to track the robot’s motion. The resulting trajectory comparison is shown
in Figure 16. The parameters of the obstacles, robot, and other settings in the figure are
consistent with those in Section 4.2.2.
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and (1, 2.1). (c) Planned path and actual path error for (0.07, 1.5) and (1, 2.1). (d) Planned path and
actual path error for (0.02, 1.5) and (1, 2.1).

To validate the planned path, we reduced the robot’s speed to minimize the control
system’s impact. As shown in Figure 16a,b, the robot safely reached the target and followed
the planned path closely. A comparison of the tracked and planned trajectories revealed a
path tracking error, as shown in Figure 16c,d. The maximum errors were 0.0045 m along
the x-axis and 0.003 m along the y-axis.

5. Discussion
This study presents an optimized path planning algorithm for robotic roadheaders,

improving path accuracy in narrow tunnels. Traditional methods often overlook the robot’s
dimensions, requiring sensitive perception systems in confined environments. However,
the low illumination and high dust levels in coal mine excavation sites make environmental
sensing difficult. To address this, we propose an enhanced A* algorithm that incorporates
collision prediction, accounting for the robot’s size and other parameters under limited
perception. We validated the method in both unobstructed and obstructed scenarios,
comparing performance based on computation time, path length, and maximum turning
angle. The results show significant improvements over previous methods.
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Despite these successes, real-world deployment in tunnels still faces challenges, such
as sensor noise, variable tunnel conditions, and the need for real-time adaptation to dy-
namic environments.

6. Conclusions
This paper addresses safety and adaptability in path planning for a robotic roadheader

in a narrow tunnel. We propose a method that integrates collision prediction with an
artificial potential field model, enabling real-time collision detection. The classical A*
algorithm is enhanced by a segmented weighted heuristic function and Bezier curve
smoothing for safer and smoother paths. We evaluated the method through tests in both
obstacle-free and obstacle-filled scenarios with different robot sizes. In the obstacle-free
scenario, the method reduced average runtime by 0.7186 s, path length by 0.00957 m,
and maximum turning angle by 0.1059 rad. In the obstacle-filled scenario, improvements
were more significant, with reductions of 3.5445 s in runtime, 0.0485 m in path length,
and 0.26235 rad in turning angle, along with better obstacle avoidance. The planned path
also showed a 0.0045 m deviation in tracking control. This method is effective for robotic
roadheaders in narrow tunnels and can be extended to other applications, laying a strong
foundation for autonomous cutting systems in constrained tunnel spaces.

Future work can extend to more complex tunnel geometries, such as branching struc-
tures and steep inclines, to improve the generality of the method. Additionally, the ap-
proach can be integrated with the cross-section shaping cutting process to enable a fully
autonomous cutting operation, enhancing the overall autonomy and efficiency of robotic
roadheaders in mining environments.
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