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Abstract. 

Mass Finishing (MF) is a mechanical process extensively utilized to achieve the desired surface 

finish on a considerable volume of small parts or small batches of parts with complex geometrical 

feature. The adoption of MF technology is increasing as it meets the growing requirements for 

surface finish and quality, particularly in critical operations for super-finishing components in 

biomedical, auto-sport and aerospace engineering. However, understanding how to effectively 

modify or refine operations to achieve desirable outcomes for diverse parts and target criteria 

remains a challenge. This challenge stems from the considerable numbers of process variables that 

necessitate control, encompassing abrasive media type, processing time, workpiece materials and 

machine speed. In this paper, a feasible study has been conducted to optimize surface finishing 

processes on a centrifugal machine. A fuzzy rule-based system has been proposed, which involves 

defining the input and output parameters, creating fuzzy sets and membership functions, and 

defining rules that describe the relationship between the input and output parameters. The fuzzy 

logic model is implemented through the utilization of MATLAB software. The results indicate the 

effectiveness of the proposed method in modelling surface finishing processes and achieving 

consistent outcomes. 

Introduction 

Mass finishing (MF), also referred to as loose abrasive finishing, is a mechanical process used 

for burnishing, deburring, clearing, polishing, and other surface finishing operations on engineering 

components, ranging from small batches to large quantities. In recent decades, interest in this 

technology has rapidly accelerated across various sectors, driven by the need for cost-effective, 

consistent quality and precise finishing. Among the most widely used MF processes, the centrifugal 

disc finishing presents a high-energy approach that offers a compelling alternative to traditional 

vibratory processing methods. This type machining operates by immersing workpieces in a bowl 

filled with abrasive particles. The bottom disk of the bowl rotates, generating a rolling motion that 

propels the workpieces and media to flow in a helical path around the bowl. The resulting high 

pressure and relative movement between the workpieces and media produce an intensive grinding 

action. However, the centrifugal disc machine process lacks control due to its free motion manner, 

resulting in only specific areas of the samples being exposed to the finishing media. Consequently, 

this can lead to uneven treatment of the sample surface [1, 2]. Furthermore, this media-based 

finishing process is complex and often requires more energy. To enable centrifugal disc finishing as 

an effective and efficient operation, it is crucial to establish predictability so as to replace the 

commonly used traditional approach (trial-and-error) in process design. This is necessary to avoid 

the energy loss and waste of resources during the finishing process. 

Artificial intelligence (AI) refers to the simulation of human intelligence processes, 

incorporating computer science and comprehensive datasets to facilitate decision-making and 

problem-solving. The rapid progress of AI has resulted in the creation and utilization of potent 

computing tools across diverse real-world industrial domains. A notable example is the application 

of AI in abrasive surface finishing processes (AFM), where predictive modeling and optimization 

play a significant role. Previous studies have employed various AI approaches for performance 
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prediction, such as Artificial Neural Network (ANN), Fuzzy logic (FL), and Genetic algorithm 

(GA), among others [3-7]. One of the earliest studies focusing on the optimization of surface 

finishing processes was conducted by Lam and Smith [3], who employed ANN to model the 

abrasive flow machining of automotive engine intake manifolds. The study considered multiple 

input variables, including samples, AFM machining settings, media conditions, and ambient 

conditions, while the output parameter of interest was the total air flow. The results obtained from 

their preliminary ANN model indicated its capability to make predictions. Similarly, Petri et al. [4] 

developed a predictive process modeling system utilizing ANN to forecast surface finish and 

dimensional changes in an abrasive flow machining process, which was validated and confirmed to 

be reliable. Jain et al. [5] proposed a straightforward predictive model for the abrasive flow 

machining process, employing a back-propagation neural network. The model was designed based 

on conducted experiments, and the results demonstrated a notable agreement between the predictive 

model and both experimental and theoretical outcomes (with an error of only 0.25% up to 8.95%). 

However, in the realm of mass finishing processes, there has been limited research conducted on 

the application of AI modeling. To the best of the author's knowledge, Vijayaraghavan and Castagen 

[6] have made some relevant contributions in this area. They investigated power consumption and 

material removal rate in a mass finishing process utilizing a vibration machine. Their analysis 

involved two distinct approaches: Gene Expression Programming (GEP) and ANN to analyse the 

process. The findings of their study highlight the importance of effectively controlling the media 

factor to achieve an environmentally friendly mass finishing process. Furthermore, they developed a 

predictive model for surface roughness using a combined GEP–ANFIS approach in their subsequent 

studies, which yielded similar conclusions [7]. However, there was no optimization work has been 

conducted in their studies.  

This paper aims to address the existing research gap by developing a comprehensive predictive 

model for mass finishing processes, with a specific focus on centrifugal disc finishing. Additionally, 

it seeks to investigate and optimize the process parameters, including media, machine speed, 

processing time and sample material, to achieve the desired surface finish. The integration of 

predictive modeling in this study will significantly contribute to advancing the understanding of 

mass finishing processes and provide practical guidance for achieving enhanced surface finish in 

industrial applications. 

Experimental Details 

In this study, all tests were conducted using an OTEC – CF18 element series centrifugal disc 

finishing machine (Fig.1 (a)). The machine comprises an open-top bowl with a diameter of 330 mm, 

a control unit, and a manual separating unit. The workpieces used in the study were 

rectangular-shaped black mild steel, bright steel, stainless steel and additive manufactured steel, 

each measuring 50 mm × 20 mm × 5 mm. Conical-shaped plastic media and pyramid-shaped 

ceramic media were utilized for the tests. Prior to conducting the experiments, all workpieces 

underwent thorough cleaning, drying, and measuring. Surface roughness and hardness 

measurements were carried out using Taylor Hobson - Series 1 and Mitutoyo Rockwell machines, 

respectively. Each measurement was repeated three times for every individual workpiece. For the 

experimental setup, the centrifugal disc finishing machine was filled with 18 liters of media, and the 

workpieces were carefully positioned within the finishing bowl in conjunction with the media. After 

finishing, the workpieces were removed from the machine and cleaned in an ultrasonic bath to 

remove any impurities that could affect the measurements. 

 

The selection of input and output variables for this study is summarized in Table 1. Four input 

parameters were considered: workpiece material, media type, machine speed and process time. 

These variables were chosen to investigate their influence on the desired outcomes. The output 

parameters measured in the study were surface roughness (Ra). These variables were selected as 
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indicators of the quality and characteristics of the finished workpieces. Prior to constructing the 

predictive model, it is essential to perform preprocessing and analysis on the collected raw data. 

The initial step involves identifying and rectifying any inconsistencies or faults present in the 

dataset. Subsequently, a correlation analysis is conducted to examine the relationship between the 

input and output parameters. To assess this correlation, the Pearson correlation coefficient and 

p-value are used. 

 

            
       (a)   (b) 

Fig.1. (a) Diagram of a centrifugal disk finishing machine, (b) modelling of the finishing process using a 

fuzzy rule-based method 

Table 1 Input Variables for centrifugal disc finishing machine experiments 

Materials Medias Speed (rpm) Process time (mins) 

Black Mild Steel 

Bright Steel 

Stainless Steel 

Additive Manufactured Steel 
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Fuzzy rule-based systems (FRBSs) Model Development 

In this study, a data-driven modeling method is employed, utilizing fuzzy rule-based systems 

(FRBSs) to facilitate mapping and generalization capabilities as shown in Fig.1 (b). FRBSs are 

adept at learning from data and predicting complex relationships, while requiring minimal or no 

prior knowledge about the system being studied [8]. Fuzzy rule-based systems (FRBSs) offer a 

higher level of transparency and interpretability compared to many other black-box modeling 

techniques. This attribute stems from the utilization of linguistic descriptive "If-Then" rules within 

FRBSs, allowing for direct interpretation by human experts. Given the context of the present study, 

where the available dataset is relatively small, FRBSs emerge as a suitable modeling approach. An 

example of IF-Then statement is given below (Eq.1):   

             IF X1 is A1, X2 is A2... and Xn is An THEN Y is B                         (1) 

 

where X1, X2 ,…, Xn and Y are input and outputs linguistic variables, respectively. A1, A2 ,…, An is 

antecedent fuzzy sets and B is consequent fuzzy set. 

 

A conventional approach to constructing fuzzy rule-based models involves generating fuzzy 

membership functions and fuzzy rules based on knowledge acquired from field experts. However, 

the availability of experts may be limited, and their knowledge may lack accuracy, consistency, and 
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completeness. With the increasing availability of data, data-driven modeling has become feasible 

and practical. In data-driven fuzzy modeling methods, various learning, and optimization techniques, 

such as evolutionary computation and multi-objective optimization, have been demonstrated to 

effectively enhance both the structure and parameters of FRBSs [9]. This study employs two 

sequential and iterative learning mechanisms to iteratively refine the structure and parameters of the 

fuzzy models. Specifically, the Reduced Space Searching Algorithm (RSSA) is used to optimize the 

model parameters, aiming to improve the models' overall accuracy. Furthermore, the 

Multi-Objective Reduced Space Searching Algorithm (MO-RSSA) is employed to enhance the 

model structure, with the primary objectives of achieving enhanced interpretability and reduced 

complexity [10]. In the process of modeling, an initial FRBS comprising 15 fuzzy rules was 

constructed using a data-driven approach. Fig. 2 presents examples of 4 fuzzy rules used in the 

surface roughness model. This FRBS serves the purpose of predicting the surface roughness of 

diverse materials subjected to varying media and processing conditions. The model incorporates the 

four input variables as shown in Table 1. For materials, type numbers 1- 4 represent stainless steel, 

black mild steel, bright steel and additive manufactured steel, respectively. For media, type numbers 

1 and 2 represent ceramic and plastic respectively. 70% of the collected data was used for training 

and 30% of the data was used for testing. The Root Mean Square Error (RMSE) of training and 

testing for the surface roughness model are 0.3496 and 0.3664 µm, respectively.  

 
    R1 R2 R3 R4  R5 

IF Type of Material is 

 

AND Type of Media is 

AND Rotation Speed is 

AND Process Time is 

THEN Surface 

Roughness Ra is 

Fig.2. An example of the fuzzy rules of the surface roughness model 
 

   

Fig.3. Examples of the surface roughness Ra obtained using ceramic and plastic media with varying 

durations for the following materials: (a) black mild steel and (b) stainless steel. 
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Fig. 3 illustrates the relationship between surface roughness Ra and process time for black mild 

steel and stainless steel. The data clearly indicate a consistent decrease in the surface roughness Ra 

for both materials as the process time increases. This observation aligns well with the calculated 

Pearson correlation coefficient, which approximately equals 0.83, indicating a strong positive 

correlation between Ra and the process time. Moreover, it has been observed that the choice of 

media has a substantial impact on the surface finishing performance, particularly in the case of 

stainless steel. Notably, the use of ceramic media results in a more distinct reduction in surface 

roughness Ra compared to plastic media. 

 
      

         

Fig.4. (a) Predicted vs measured surface roughness Ra (µm) on both training and testing data, (b) the 

predicted surface roughness for the case of stainless steel using ceramic media with machining speed 270 

rpm and (c) for the predicted surface roughness the case of additive manufactured steel using plastic media 

with machining speed 230 rpm. 

 

          

Fig.5. Response surfaces of the developed FRBS: (a) for the case of stainless steel using ceramic media and 

(b) for the case of bright steel using media plastic. 

 

Fig.4 (a) presents the predictive performance evaluation of the developed model. The analysis 

reveals a close proximity between the predicted outputs and the measured outputs, with a majority 

of the predictions falling within the 10% error band. The error bands are calculated as the central 
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values ± 10% of the output value range, which represents the discrepancy between the maximum 

and minimum values of the measured output. Two specific instances where the model is utilized to 

forecast the surface roughness for particular processes are shown in Fig.4 (b) and (c). These 

examples demonstrate the model's significant accuracy and ability to generalize effectively. 

 

The effects of process time and machine speed on the surface roughness are plotted using 

response surfaces of the developed FRBS in Fig. 5. Fig. 5 (a) focuses on the case of stainless steel 

with ceramic media, and the model reveals an inverse relationship between the process time and the 

surface roughness. Furthermore, higher machine speeds are observed to yield improved surface 

finish. However, in the case of bright steel with plastic media, machine speed does not seem to have 

a significant impact on the process performance (Fig. 5 (b)). These findings are consistent with the 

expert knowledge and domain expertise of professionals in the field. 

 

Conclusion 

The present study employed a fuzzy rule-based systems approach to model and predicts surface 

roughness in a centrifugal disc finishing machine. The developed model demonstrated reliable 

performance, with predictions falling within a 10% error margin. Extensive analysis of process 

variables revealed material-dependent effects on finishing performance. The models indicated that 

longer process times led to significant reductions in surface roughness, while no significant 

relationship was observed between machine speed and surface roughness. These findings offer 

valuable insights into the intricate dynamics between process variables and surface roughness in 

centrifugal disc finishing. Furthermore, the presented models enable the determination of optimal 

process parameter settings for different materials, facilitating the attainment of desired surface 

finishes. This optimization contributes to improved environmental performance by minimizing 

material waste and energy consumption. 
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