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A B S T R A C T

Decision making (DM) is essential and proven to be a natural and inherent part of the success of 
transport systems, particularly given the fast growth of autonomous systems in transport. It is 
critical but remains challenging to understand and predict DM performance in transport, because 
operators’ mental states have not been effectively considered in complex DM processes such as 
ship anti-collision operations. This paper proposes an advanced decision support methodology 
that pioneers the incorporation of objective neurophysiological and subjective data to analyse 
functional connectivity in the brain and predict DM performance in ship navigation. Experiments 
were conducted using a functional Near-Infrared Spectroscopy (fNIRS) technology to explore the 
functional connectivity of two groups (low workload and high workload) and predict their DM 
performance in a ship collision avoidance situation. It brings brain science into transport engi-
neering and the results generate new contributions to the existing knowledge, including (1) the 
establishment of a methodology to detect different workload levels in safety–critical transport 
systems using psychophysiological measurement; (2) analysis of brain’s functional connectivity of 
different groups of decision makers (e.g., seafarers) with high and low workload tasks; (3) an 
advanced methodology to assess human reliability in complex scenarios and predict operational 
behaviours; (4) pioneering a human-centred approach to predict DM performance and demon-
strate its feasibility in shipping. From a practical perspective, stakeholders can utilise the findings 
of this study to rationally evaluate human performance in transport system operations, aiding in 
operator qualification and certification processes. Furthermore, it is critical for adaptive auto-
mation regarding DM support in safety–critical systems.

1. Introduction

Decision making (DM) methods have been widely applied in safety–critical systems, such as transport and smart cities, to provide 
risk-informed support for challenging scenarios (Li et al., 2021, Chakraborty et al., 2024). The decision support systems and tools make 
a significant contribution to reducing risk levels and increasing efficiency in real-life transport applications. According to the annual 
statistical report, maritime transport consists of more than 80 % of world trade by volume (UNCTAD, 2020), and its success ensures the 
lifeline of global trade and the economy. However, shipping is a high-risk endeavour, with failure leading to potentially catastrophic 
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outcomes, as evidenced by previous maritime accidents. In March 2021, the Ever Given, one of the world’s largest container ships, 
became grounded on the shores of the Suez Canal, leading to an estimated daily trade loss of around £7bn and incoming loss of up to 
£10.9 m (Michaelson and Safi, 2021). On September the 26th, 2002, an overloaded ferry (operating at nearly four times its design load) 
capsized off the coast of The Gambia, resulting in an estimated death toll of 1,864 (BBC, 2002).

Watchkeeping assigns seafarers to specific roles to navigate a ship at sea, with particular attention being given to avoiding collision 
and stranding (Branch et al., 2004). During their periods of duty, the Officer of the Watch (OOW) in taking charge of the bridge team 
and maintaining total responsibility on behalf of the ship’s Master for safe navigation, is a critical aspect of ensuring maritime safety 
(Fan et al., 2018). Generally, the mental workload of OOWs increases with task complexity in a certain range. An Inappropriate mental 
workload could exceed OOW’s capability and introduce human errors that lead to the occurrence of accidents. Obviously, the DM 
process of seafarers is critical for safe navigation, particularly in situations such as ship collision avoidance and emergency operations 
(Fan et al., 2021, Fan and Yang, 2023). However, the maritime sector is currently experiencing a paradigm shift from traditional 
manned ships to mixed traffic involving Maritime Autonomous Surface Ships (MASS). There are a limited number of studies on human 
DM in shipping, revealing an urgent need for new solutions. To ensure the safe navigation of ships now and in the future, this paper 
aims to propose an advanced DM method that focuses on the mental states of OOWs and supports prediction in DM performance.

DM in collision avoidance has long been considered a critical competency for deck officers in the maritime sector. However, with 
the development of MASS, previously established criteria and standards for evaluating seafarer competency are no longer fully 
applicable. Without appropriate modification, they cannot meet the demands of advanced automatic systems and interfaces in new 
maritime shipping scenarios. Specifically, in the past, the traditional method of assessing seafarers’ DM performance has largely relied 
on professional judgement in past centuries. However, future hybrid navigation scenarios will involve traditional ships, remote- 
controlled ships, and autonomous vessels, resulting in complex encounters that call for new theoretical solutions in DM to ensure 
safe navigation.

Several challenges arise in this context. Firstly, since there is a lack of practical experience in remote-controlled or MASS shipping, 
it is difficult for training institutions to evaluate operators’ behaviours and DM in such scenarios. Second, it is practically unrealistic to 
carry out accident data-based evaluations of seafarer DM to obtain insights for navigation safety, as there is no historical accident data 
or only scarce actual trajectory data under MASS hybrid scenarios. Third, in addition to gaining knowledge from navigating traditional 
vessels, seafarers must also familiarise themselves with MASS characteristics and adapt to different stresses and emergency scenarios 
that may arise, distinguishing them from those encountered on traditional ships. Therefore, a proactive and advanced approach is 
needed to evaluate DM performance with specific and measurable attributes.

Neuroimaging technology has made it possible to capture changes in human cognitive states and incorporate these data into de-
cision support systems. Neuroimaging technologies, such as electroencephalography (EEG) (Hou et al., 2015, Fan et al., 2018), 
functional Near-infrared Spectroscopy (fNIRS) (Fan et al., 2021, Fan and Yang, 2023, Fan et al., 2023, Li et al., 2021), and functional 
Magnetic Resonance Imaging (fMRI) (Xu et al., 2020, Browne and Walden, 2021) have been used to study human performance. 
Additionally, bio-signals such as electrocardiography (ECG) (Chen et al., 2021) and eye movements (Argyle et al., 2020) can be utilised 
to conduct physiological monitoring in operational situations. EEG has the advantages of high temporal fidelity but poor spatial 
resolution, while fMRI forces participants to lie inside a scanner and is impractical for real-world behaviour. The fNIRS offers the 
advantage of higher spatial resolution compared to EEG, and unlike fMRI, fNIRS data can be collected without restricting the position 
and movement of the participant. However, the temporal resolution of neurovascular signals is inferior to EEG. Neurophysiological 
data can be analysed in a number of different ways, and functional connectivity refers to statistical dependence between time series of 
neurophysiological activity and oxygenated blood levels in spatially separated brain regions (Babaeeghazvini et al., 2021, Mohanty 
et al., 2020). Under a traditional similarity calculation such as Pearson’s correlation, the relationship between two distinct brain 
regions can be assessed with respect to the degree to which they are functionally connected, i.e., co-activated in response to same event 
or activity.

To address the above challenges and complement human performance measurement, this paper proposes an advanced DM method 
to 1) objectively predict human performance in ship navigation and 2) evaluate DM process by incorporating both subjective and 
neurophysiological measurements. The combination of data to analyse functional connectivity can provide a more accurate solution to 
better aid DM. The results of this study will contribute to generating an objective and reliable tool to assess DM performance in real- 
time across various levels of tasks that require a decision to be made. Meanwhile, this method will pioneer a realistic approach 
concerning data acquisition and analysis for evaluating human reliability and machine states in critical scenarios such as ship en-
counters and predicting operational behaviours. Based on the findings of this study, requirements for operator DM competency in new 
scenarios can be assessed using data-driven human factor analysis. Autonomous systems can be designed and optimised in comparison 
to original systems through the evaluation of operators’ DM performance given human–machine interfaces. Moreover, it will add 
significant value to the provision of maritime training and the seafarer certification process.

This paper is organised as follows: Section 2 reviews the state-of-the-art decision support methodologies from system-centred and 
human-centred perspectives. Section 3 describes the newly proposed methodology including both the experimental method and 
analysis approaches. Section 4 illustrates the results and Section 5 presents discussions, followed by a conclusion in Section 6.

2. Literature review

2.1. System-centred decision support methodology within human factors

Decision support methodologies have been developed with increasing demands for automated systems, with no exception for 
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transport systems of different autonomy levels (Caballero et al., 2023, Li et al., 2024). Human factors have been significantly 
considered in the development of decision support systems because they are closely associated with procedures and environments. 
Adequate decision support is needed for increasing automation and demand change in logistics (Brau et al., 2024, Cedillo-Campos 
et al., 2024), road (Khosravi et al., 2022, Seet et al., 2022, Bai et al., 2024), rail (Zhou et al., 2021), aviation (Li et al., 2021) and 
maritime (Hogenboom et al., 2021, Zheng and Jiang, 2024) transports.

Decision support methodologies primarily focus on two parts: system-centred decisions and human-centred decisions. In terms of 
system-centred decisions, there are algorithms and models providing decision support for system prediction, performance manage-
ment, automation, and logistics (Moktadir and Ren, 2024, Sonar et al., 2024). For instance, the dynamic features of train delay are 
predicted using random vector functional-link networks (RVFLNs) (Zhou et al., 2021). This method is for railway schedules to provide 
DM support for dispatchers. Similarly, the Multiple Criteria Decision Making/Aid methods (MCDM/A) are concerned with road 
performance with multidimensional risks, which aggregates the information on accidents’ temporal behaviour in road networks 
(Martins and Garcez, 2021). In this way, a better allocation of traffic accident prevention resources which are limited and scarce can be 
prioritised. Similarly, a new MCDM model was generated defining relations between the ideal and anti-ideal alternatives (RADERIA) to 
rank alternatives for human resources in a transport company (Jakovljevic et al., 2021). Greenlee et al. (2022) conduct an empirical 
approach to develop and select aid activation methods for system-centred decision support design. In addition, forecasting methods 
have been proposed to assist DM, management, and maintenance. Tseremoglou et al. (2022) propose a data-driven algorithm to solve 
packing problems and predict shipment dimensions with uncertainty, which assists in both forecasting and optimising decision 
support. The freight forecasting method is developed for freight operation planning in short and long term periods using time series 
models and reinforcement learning methods (Hassan et al., 2020). The results show reduced forecast error margin in container 
shipment cases and effective freight demand prediction, which realises improved long-term forecasts.

In maritime transport and aviation, classical methods such as the cognitive reliability error analysis method (CREAM) (Pei et al., 
2024), Success Likelihood Index Method (SLIM) (Kayisoglu et al., 2022), and Bayesian network (Zhou et al., 2023), are utilised to 
calculate the probability of human-related factors, serving the decision-making model in accidents. Hogenboom et al. (2021) integrate 
ship movement dynamics and response time to address the importance of time in maritime operations, which better controls the DM 
process when considering the risk of collision. To reduce the maintenance cost, Xu et al. (2021) utilise mixed integer programming and 
heuristic methods to allocate catenary maintenance tasks with predictive maintenance (PdM) policy, which reduces costs by 25 %. In 
production and logistics systems, measured human performance contributes feedback to the design level, which incorporates human 
factors into systems from a long-term design and a short-term operation (Vijayakumar et al., 2022). In addition, negative emotion and 
inappropriate behaviours of drivers in last-mile delivery affect customers’ repurchase intentions (Masorgo et al., 2023).

System-centred decisions have concentrated on relationships between automation and human factors. Increased automation may 
result in “out-of-the-loop” problems induced by reduced human effectiveness, such as deterioration in situational awareness (SA) and 
mind wandering (Dehais et al., 2020). It addresses the significant role of human operators in automation. Therefore, adaptive auto-
mation, focusing on the allocation of control functions to accommodate changes in the physical environment and the human role, has 
been explored in the field of aviation and highway driving (Sheridan, 2011, Kaber et al., 2001). In addition, dynamic function allo-
cation which solves the “out-of-the-loop” problems by adjusting the levels of human/machine control over system functions in a gas 
power plant uses a Bayesian network to determine trigger mechanisms and allocation strategies (Atashfeshan et al., 2021). It has 
improved human SA by around 30 %, which could be applied for automated system design as DM support. To improve the scalability of 
high-level autonomous vehicles, a decision-making framework was designed from driver intelligence, environment reasoning, and 
decision algorithm aspects, which can be applied in different scenarios (Wang et al., 2023). In the case of ship collision avoidance, a 
methodology based on genetic algorithms and fuzzy logic has been proposed to develop a decision support system for ship operators to 
take actions in encounter situations, which was validated in a ship’s bridge simulator and an autonomous surface vessel (Fiskin et al., 
2021). This illustrates the cooperation between human operators and automation in shipping. Moreover, smartphones have become 
real-time sensors to help detect driver behaviours and support driver monitoring using multi-layer perceptron, support vector machine, 
and convolutional neural network (Khosravi et al., 2022). From these perspectives, system-centred decision support studies show 
critical and strong connections between humans and systems.

Previous studies on system-centred decision support methodology focusing on machine performance, fail to consider human 
performance interactions. Although automation development introduces a new trend in intelligent DM for machines to operate safely 
and reliably, the human–machine interface reveals new challenges for cognitive behaviours and processes (Kessler et al., 2024). It is 
unreliable to judge whether system automation is good in DM tasks compared to traditional systems if there is no rational and precise 
measurement for the traditional human-centred DM process. Therefore, this study proposes a novel approach to quantify the DM 
process of maritime OOWs to support DM performance in human–machine systems.

2.2. Psychophysiological and neurophysiological measurements in human-centred decision support systems

Qualitative and quantitative methods have been used for human and machine analysis in the context of human-centred decision 
support systems. The SAfety FRactal ANalysis (SAFRAN) method, as a qualitative approach, is proposed to specify the human and 
organisational factors category and represent their variability in system performance (Accou and Carpinelli, 2022). Some quantitative 
measurements are also applied for cognitive DM. Integrating mouse-tracking and EEG signals can reveal the features of binary choices 
and temporal dynamics of DM and hesitation (Chen et al., 2022). To ensure effective supply chain decision-making, the compliance 
level of operators on the standard operating procedures from the postal service industry was investigated, showing that direct 
contributing factors were workload, fatigue, and work experience (Eskandarzadeh et al., 2023). An experiment by Xu et al. (2020) to 
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measure brain activity associated with online DM shows significantly higher neural activity for high-reputation seller indicators in 
brain regions related to emotions in the prefrontal cortex. It has also been shown that investment decision-making can be improved by 
using brain information (Shimokawa et al., 2012); the neural correlates between emotional and cognitive responses and the degree of 
information recall can be studied using event-related EEG (Riaz et al., 2018).

Information behaviour is found to be closely associated with DM using information technology. Anderson et al. (2016) use eye 
tracking to study the neurophysiological manifestation of habituation which contributes to ineffective warnings. The results illustrate 
an increase of habituation with repeated security warnings, and suggest a polymorphic warning that repeatedly changes its appearance 
to effectively reduce habituation. Browne and Walden (2021) study the process of information searching and stopping decisions 
through brain activation networks and find that the patterns of stopping decisions are different from those of searching.

Moreover, some critical and timely decisions need to be made in highly complex work environments, such as aviation. It reveals age 
and expertise differences in DM performance of pilots. It is found that older pilots are more likely than younger pilots to make a 
decision to land with inadequate visibility, and faster processing speed contributes to higher landing decision false alarm rate 
(Kennedy et al., 2010). Pilots with fewer skills need more DM time on landing or go-around compared to experienced pilots (Kale et al., 
2023). In addition, age-related cognitive assessment is a reliable predictor of flight DM performance, with the beneficial effects of flight 
experience (Causse et al., 2011). Hence, this shows the critical role of psychophysical technologies in DM measurements.

DM process studies have applied psychophysical technologies in real-world operations regarding safety–critical systems. Causse 
et al. (2013) use fMRI to investigate the effects of emotion on pilot decision-making. It shows that financial incentive contributes to 
risky behaviours, and plan continuation error (PCE) behaviours for pilots are affected by emotion during DM. Zhang et al. (2020)
utilise EEG, eye movement, and ECG, to assess mental workload in maritime teams using random forests algorithm, where the low 
levels of Mean Absolute Percent Error prove accurate mental workload assessment results. Noise exposure from nighttime flight traffic 
influences airport residents’ sleep quality measured by EEG, suggesting that a night-flight ban is the most effective way to improve this 
situation (Elmenhorst et al., 2024). A combination of self-report, fNIRS, and eye tracking, is utilised to study drives’ gaze behaviour, 
working memory, and their relationship with driving performance (Broadbent et al., 2023). Also, ECG, electromyography (EMG), 
pulse, blood pressure, reaction time, and vital capacity (VC) have been used in miner fatigue identification, revealing that ECG-FD and 
EMG are the best indicators of fatigue (Chen et al., 2021). In terms of weather forecasting, an eye tracking system is used to measure 
eye movement and information usage for assessing SA (Argyle et al., 2020). The analysis reveals a relationship between SA and eye 
tracking which supports the use of eye movement to measure the DM process for weather forecasters.

Moreover, automation design in real-world operations shows an increasing need to facilitate decision support systems, which will 
significantly benefit automation design and operational procedures. For instance, the effects of three levels of automation and various 
traffic levels on eye movements, SA and mental workload for air traffic controllers are studied (Wang et al., 2021). The results show 
enhanced SA but reduced mental workload with the use of automation, revealing the impact of automation on the behaviours and DM 
process in air traffic management. The artificial intelligence (AI) integration has been investigated with different kinds of disruptions 
in supply chain management, revealing the need for cross-disciplinary study and sociotechnical perspectives (Hendriksen, 2023). Also, 
trust in Autonomous Vehicles (AV) can be evaluated through brain activity using frontal alpha EEG as a neural correlate (Seet et al., 
2022). Evidence shows that a disrupted right frontal functional clustering is associated with enhanced approach motivation (i.e., desire 
to re-engage) during Full Automation Driving malfunctions, where the brain area supports executive cognition, i.e., DM. In other 
words, trust is deteriorated by the inability of human drivers to be on-the-loop for adjustment on malfunctions or violations, rather 
than by automation malfunctions (Seet et al., 2022). In addition, safety–critical systems often require both automation and human 
input, such as air traffic control (ATC), which still values human intelligence in the DM process. To design intelligent and adaptive ATC 
systems, human factors and human performance are measured using fNIRS and subjective data for a human-centred DM approach to 
adjust decision support systems to human factors (Li et al., 2021).

Regarding navigational safety, the mental states of seafarers and their DM performance have not been well addressed in advanced 
DM processes of ship navigation. This may result from most system designs and risk assessments concentrating on historical data but 
omitting human-centred demands which are difficult to evaluate through existing quantitative methods. It leads to failures in 
incorporating the human element into system evaluation. Meanwhile, there are limited studies on advanced DM evaluation for 
navigation in terms of effective human performance measurements. To address these research gaps, a human-centred DM method for 
navigational safety systems using fNIRS has been put forward in this paper.

2.3. New contributions

Towards advanced decision support for the maritime sector, this study proposes a novel methodology to pioneer the incorporation 
of psychological and subjective data to analyse the functional connectivity of operators’ brains and predict DM performance in ship 
navigation. Although the methodology is applied to shipping safety, due to its generality, it can be tailored and used in other transport 
sectors. More specifically, the theoretical contributions to the literature include:

(1) The establishment of a methodology to detect different workload levels in safety–critical operations using psychophysiological 
measurement.

(2) Analysis of brain’s functional connectivity of different groups of decision makers (e.g., watchkeepers) during high and low 
workload tasks.

(3) An advanced methodology to assess human reliability in complex scenarios and predict operational behaviours.
(4) A pioneering human-centred approach to predicting DM performance and demonstrating its feasibility in shipping using fNIRS.
Moreover, the insights advance practices in maritime operations and training for generating a reliable tool to assess human 
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performance in real-time given tasks of various levels of decisions in maritime transport. Maritime training and education institutions 
can use the findings of this study for ongoing training and to evaluate DM performance improvement for individuals across different 
proficiency levels. In this way, seafarer competencies can be complemented and improved. In addition, the findings quantify the 
cognitive states of OOWs and analyse their DM performance across diverse scenarios to evaluate the adaptiveness of MASS automation 
levels in a smart manner.

3. Methods and materials

3.1. Participants

Ten professional watchkeeping officers (mean = 35.1 years, SD = 15.6 years) were recruited from the local branch of the Nautical 
Institute and Liverpool John Moores University, United Kingdom. All participants were males and had experience working at sea as 
qualified officers. The exclusion criteria for the participants were head injury conditions, high blood pressure, suffering from anxiety or 
receiving medication for anxiety. These were implemented as they may influence the signal quality of fNIRS (Fan et al., 2021, Fan 
et al., 2023).

3.2. Experimental design

An experiment was employed to assess the association among fNIRS, workload, and DM for ship collision avoidance during 
watchkeeping. The independent variable was the workload level within each scenario, which was presented in two conditions (low and 
high). The dependent variables comprised measurements taken by fNIRS and participants’ DM evaluation carried out by expert 
assessors.

The fNIRS measurements were dependent upon the assignment of scenarios. Two participants were assigned for each test to work as 
a group with two scenarios (low and high) in a ship bridge simulator, where the order of two scenarios was randomised. The low 
workload scenario started with a port crossing ship event, followed by a starboard crossing ship event, as shown in Fig. 1. For both of 

Fig. 1. Ship encountering scenarios for different workloads.
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these occurrences, the ships followed the collision avoidance regulations as required (IMO, 1972). In comparison, the high workload 
scenario started with a port crossing ship that adhered to the regulations, followed by a second port crossing ship that did not give way 
(the regulation requires that the port crossing ship is the give-way vessel). In addition, there was an overtaking vessel on the starboard 
quarter of the watchkeeper’s own ship (removing the option to alter course to starboard), together with several small recreational 
boats masking the approach of the port crossing ships on the radar, as shown in Fig. 1. The detailed environmental parameters and 
settings can be found in Table 1, created by experienced Master Mariner and Chief Mate using a Wartsila bridge simulator.

The two scenarios were distinguished by different workload levels. The high workload scenario was generated with reduced vis-
ibility, reduced radar range, complex traffic (i.e., an overtaking vessel and recreational boats), and involvement of a port crossing ship 
that didn’t give way. Both scenarios required participants to follow the route set out on the chart and keep safe from navigational 
dangers. The test was terminated either when there was nothing the own ship could do to avoid collision (as judged by the instructor) 
or when 30 min had passed.

After signing consents and donning fNIRS equipment, the scenarios commenced. Each scenario took an average of 25 ~ 30 min, 
followed by participants filling out a workload survey. Finally, after completing both scenarios, a debrief was given. The order of 
presentation of low and high workloads was counterbalanced across the five groups of participants. Each scenario in tests was divided 
into 5 average periods, with event 1 occurring in the first period and event 2 occurring in the third period, as seen in Table 2. The 
expected actions in each period varied between the different scenarios. For the low workload scenario, participants were expected to 
spot a port crossing ship in r1, observe the port crossing ship to safely pass, spot a starboard crossing ship and realise the responsibility 
to give way in r3, observe the starboard crossing ship and take actions to avoid collision when appropriate. In contrast, for the high 
workload scenario, participants were supposed to spot a port crossing ship in r1, observe the port crossing ship until it has passed safely 
in r2, spot another port crossing ship in r3, monitor the port crossing ship and realise she did not give way in r4, and monitor the 
situation in r5.

3.3. Subjective mental workload and behavioural measures

Participants’ mental workload was measured using a Team Workload Questionnaire (TWLQ), and their behavioural data were 
recorded using an observer-rated measurement. The TWLQ consisted of two parts, representing individual workload and team 
workload respectively. The first part was derived from the NASA Task Load Index (TLX) consisting of a questionnaire constructed 
around six elements: mental demand, physical demand, temporal demand, performance, effort, and frustration (Hart and Staveland, 
1988). This has previously been applied in the maritime sector to measure corresponding workloads (Fan et al., 2021, Fan et al., 2023, 
Fan and Yang, 2023). The second part was proposed by Sellers et al. (2014) and Zhang et al. (2020) for team workload assessment in 
bridge teamwork, including communication activity, coordination activity, time management between individuals and teams, team 
monitoring, team performance, support from team members, and team frustration.

The observer-rated measurement was a decision-making/anticipation assessment constructed upon a 5-point scale: 5 = best 
practice, 4 = good, 3 = acceptable, 2 = needs improvement, 1 = unacceptable, referring to the Nautical Institute’s guideline (Gale, 
2016). Two experts with decades of navigational experience were invited to rank and comment upon the participant’s DM performance 
in each scenario.

3.4. fNIRS Apparatus

The study used the NIRSport 2 fNIRS device for neurovascular and mental state measurements of participants. Optical density data 
were collected (10.2 Hz) with 8 sources and 8 detectors. Deoxygenated and oxygenated haemoglobin were detected at wavelengths of 
760 nm and 850 nm. The fNIRS system has a wireless connection to a laptop. These features enable the neurophysiological mea-
surement of participants in a ship’s bridge simulator without restricting their movement and interaction with each other.

The study was designed with a montage consisting of 20 standard channels and 8 short-distance channels. Typically, standard 
channels capture both cerebral and extracerebral activities, while short-distance channels capture extracerebral signals. However, only 
cerebral activities are useful for the analysis. Therefore, using both standard and short-distance channels enables the calculation of 
participants’ cerebral activities, eliminating the effect of extracerebral activity to improve signal quality (Brigadoi and Cooper, 2015). 
It is comprised of 8 sources and 7 detectors (the eighth detector is sacrificed for 8 short channels), as shown in Fig. 2, covering 
Brodmann’s areas 8, 9, 10, and 46. The montage was divided into three regions of interest (ROIs) representing left, middle, and right, 
as shown in Table 3, for connectivity analysis.

Table 1 
Experimental parameters and settings in the ship’s bridge simulator.

Scenario Visibility 
(Nautical miles)

Radar range 
(Nautical miles)

Traffic Events

Low workload 10 6; 12 No other ship Event 1: Port crossing ship 
Event 2: Starboard crossing ship

High workload 5 6; 6 Overtaking ship 
Recreational boats

Event 1: Port crossing ship 
Event 2: Port crossing ship that doesn’t give way
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3.5. Data pre-processing

The raw fNIRS data were pre-processed using Satori software with the following steps. The modified Beer–Lambert law was used to 
calculate oxygenated haemoglobin (HbO) and deoxygenated haemoglobin (Hbb) changes. 

i. Remove discontinuities: channel rejection with scalp coupling index (SCI) less than 0.75.
ii. Spike removal with a threshold of 3.5.

iii. Motion correction: Temporal Derivative Distribution Repair (TDDR).
iv. Short-channel regression with a general linear model (GLM).
v. Noise removal: temporal filtering with cut-off frequencies 0.01 Hz and 0.04 Hz (removing physiological signals such as 

heartbeat (1–1.5 Hz), respiration (0.2–0.5 Hz) and low-frequency blood pressure fluctuations (Mayer waves, 0.1 Hz)).
vi. Correlation-based signal improvement (CBSI).

vii. Z normalisation

The HbO and Hbb data were subjected to a correlation-based transformation, and the HbO and Hbb were negatively correlated after 
CBSI (Cui et al., 2010). Subsequently, the normalised data from 20 HbO channels were imported into MATLAB for further analysis.

3.6. Functional connectivity analysis and graph theory

Step 1: calculate partial correlation coefficients
The functional connectivity analysis was derived from Racz et al. (2017) using graph theory. This study modified the connectivity 

analysis by calculating partial correlation coefficients rather than Pearson correlation values between each available channel (Akın, 
2017, Fan et al., 2021). For each participant, a matrix of partial correlation coefficients was calculated for 20 standard channels across 
five periods (r1, r2, r3, r4, r5).

Step 2: generate binary functional connection network through thresholding
Thresholding was applied to each matrix to construct an appropriate binary functional connection network. Firstly, any values 

below zero were removed to keep only positive associations. Then several levels (from 0.1 to 0.6 proportional threshold) were selected 
to observe the constructed network. After comparisons, it was found that the binary functional connection network showed a sig-
nificant difference in functional connectivity parameters with 0.1442 as a criterion level. Therefore, it was selected to remove weak 
correlation while retaining critical features in the network. In this way, the original matrices were converted into binary adjacency 

Table 2 
Expected events and duties in each task period for the two groups.

Group Low workload High workload

Task period r1 Event1, Monitor Event1, Monitor
Task period r2 Monitor Monitor
Task period r3 Event2, Action selection Event2, Monitor
Task period r4 Monitor Action selection
Task period r5 Monitor Monitor

Fig. 2. Montage design with short distance channels consisting of 8 sources and 7 detectors.
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matrices after thresholding, which were prepared for graph-theoretic analysis in the next step.
Step 3: calculate functional connection network parameters
To explore the features of a functional connectivity network, the connection density (D) and local clustering coefficient (C) were 

calculated based on the binary matrices for each participant per period (Racz et al., 2017). The D represented the proportion of the 
existing channel connections to all possible channel connections, while the C measured the proportion of neighbours to a node which 
are also neighbours of one other. These two parameters were calculated per participant for each period of the trial.

4. Results

4.1. Subjective mental workload

Each of the ten participants completed two trials, generating a total of 20 pieces of data. The experimental study comprised two 
groups: one with 10 participants assigned to the low workload condition and the same 10 participants assigned to the high workload 
condition. The sequence of workload conditions was randomised. TWLQ data were analysed via the repeated measures MANOVA 
model. The analysis revealed that the differences between low workload and high workload groups were not statistically significant in 
terms of the combined dependent variables (p > 0.05). However, the univariate test showed a main effect of workload in terms of 
mental demand [F(1,9) = 7.875, p = 0.021], which showed higher mental and perceptual activity in the high workload scenario. It was 
also apparent that temporal demand (time pressure) was greater in the high workload scenario [F(1,9) = 21.246, p = 0.001]. In 
addition, levels of effort were higher for participants in the high workload scenario [F(1,9) = 6.667, p = 0.030]. Communication and 
coordination activities were higher in the high workload scenario [F(1,9) = 5.651, p = 0.041; F(1,9) = 10.756, p = 0.010], as shown in 
Table 4.

4.2. fNIRS data average

The fNIRS data were grouped into three ROI corresponding to the left, central, and right areas of the brain’s prefrontal cortex. Pre- 
processed fNIRS data for each ROI were analysed via a repeated measures ANOVA model. The HbO analysis from the left ROI failed to 
indicate any significant main effects of workload or task period. However, it revealed a significant interaction between workload x task 
period [F(4,6) = 7.192, p < 0.018, ηp2 = 0.87]. Paired-samples t tests revealed that the average HbO at the left ROI was significantly 
higher for the participants in the low workload group during r3 [t(9) = 2.992, p = 0.015] and r5 [t(9) = 5.840, p < 0.001], but 
significantly lower during r4 [t(9) = -3.658, p = 0.005] compared to the high workload group. Only for the low workload group, the 

Table 3 
20 standard channels in three ROIs.

Left ROI Middle ROI Right ROI

Channel 1 S1D1 Channel 2 S1D2 Channel 15 S6D5
Channel 3 S2D1 Channel 7 S3D4 Channel 16 S6D6
Channel 4 S2D3 Channel 8 S4D2 Channel 18 S7D7
Channel 5 S3D2 Channel 9 S4D4 Channel 19 S8D6
Channel 6 S3D3 Channel 10 S4D5 Channel 20 S8D7
 Channel 11 S5D3 
 Channel 12 S5D4 
 Channel 13 S5D6 
 Channel 14 S6D4 
 Channel 17 S7D5 

Table 4 
Statistical significance of TWLQ (N = 10).

Part Criterion F Significance

Individual Physical demand 3.768 0.084
Mental demand 7.875 0.021
Temporal demand 21.246 0.001
Individual performance 1.210 0.300
Effort 6.667 0.030
Frustration 4.765 0.057

Team Communication activity 5.651 0.041
Coordination activity 10.756 0.010
Time management between team and individual 3.768 0.084
Monitor team 0.590 0.462
Team performance 0.244 0.147
Support difficulty 0.000 1.000
Team frustration 0.310 0.591
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HbO at left ROI was significantly lower at r4 compared to r3 (p < 0.05) and significantly higher at r5 compared to r2 and r4 (p < 0.05). 
as shown in Fig. 3.

The HbO analysis from the middle ROI indicated significant interaction between workload x task period after Greenhouse-Geisser 
corrections [F(2.044,18.396) = 6.155, p = 0.009, ηp2 = 0.406]. Paired-samples t tests were conducted to analyse the significant 
interaction effects on the middle ROI. It was found that average HbO was significantly higher for participants in the high workload 
group during r1 [t(9) = -3.040, p = 0.014] and r4 [t(9) = -2.850, p = 0.019] periods; while it was significantly lower during r3 [t(9) =
2.669, p = 0.026] and r5 [t(9) = 3.042, p = 0.014] periods compared to the low workload group. For the low workload group, the HbO 
at the middle ROI was significantly lower at r4 compared to r3 (p < 0.05) and significantly higher at r5 compared to r4 (p < 0.05), as 
shown in Fig. 4.

The analysis of HbO data from the right ROI failed to indicate any significant main effects of workload or task period.

4.3. Functional connectivity

The functional connectivity of watchkeepers was calculated using Graph Theory. Then repeated measures were conducted on the 
parameter D. This model revealed a significant main effect for workload [F(1,9) = 13.393, p = 0.005, ηp2 = 0.598], but no significant 
effects for task period or any interaction. The participants in the low workload group showed a higher connectivity density than those 
in the high workload group, indicating an average higher density of brain activities for the low workload group. The effect is illustrated 
in Fig. 5.

Similarly, repeated measures ANOVA was conducted on the parameter C. This model showed no significant main effects for 
workload, task period, or interaction between workload and task period in the model.

4.4. Prediction of decision making

Based on the results from the above section, connectivity density (D) with a significant main effect for workload was used to predict 
DM performance. A regression model was created, with DM performance value as a dependent variable and D as an independent 
variable.

The Pearson (23.68) and Deviance (22.85) statistics test proved that the model was fit (p > 0.05). Chi-square statistic (Chi-square 
value = 25.47, p = 0.04) assesses the model’s fitness. It proved a significant relationship between the DM performance and D in the 
regression model. Moreover, the prediction accuracy of the regression was 75 %. The Pseudo R-Square measures were Cox and Snell (0. 
72), Nagelkerke (0.79) and McFadden (0.53). It illustrated that the model accounted for 52.7 % to 79.1 % of the variance and rep-
resents decent-sized effects. The Likelihood Ratio Test proved that the predictor variables such as D in r1 (p = 0.01) and r5 (p < 0.001) 
of the participants were significant, meaning that connectivity densities in r1 and r5 periods contributed significantly to the final 
model.

Regarding parameter estimates among the “needs improvement” participants (as identified in Section 3.3), D in r2 and r4 had a 
significant impact on DM of participants. The “needs improvement” participants were more likely to have better DM compared to 
“acceptable” participants due to an increase in r2 (b = 813.799, Wald = 68.503, p < 0.001). The “needs improvement” participants 
were less likely to have better DM compared to “acceptable” participants due to an increase in r4 (b = -187.331, Wald = 36.613, p <
0.001).

Among the “good” participants, D of r2 and r4 periods had a significant impact on DM performance of participants. The “good” 
participants were more likely to have better DM compared to “acceptable” participants, due to an increase in r2 (b = 776.737, Wald =
54.298, p < 0.001). The “good” participants were less likely to have better DM compared to “acceptable” participants due to an in-
crease in r4 (b = -200.555, Wald = 34.381, p < 0.001).

Fig. 3. The HbO analysis from the left ROI across 5 task periods.
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5. Discussions

The test simulation was associated with watchkeeping tasks followed by decision-making processes. To be specific, the watch-
keeping was a visual vigilance task where a participant must monitor the traffic around the own ship. Once the target vessel was 
spotted, the participant must observe and appraise the situation, then make a decision to avoid the collision. The scenarios were 
embedded with two kinds of ship encountering situations, i.e., port crossing ship and starboard crossing ship, where the regulation 
requires that the port crossing ship is the give-way vessel. In the study, the high workload scenario was distinguished from the low one 
in terms of reduced visibility, reduced radar range, complex traffic, and a port crossing ship that didn’t give way. During periods r1 and 
r3, participants actively monitored the target vessel approaching and appraised the possibility of collision until they formulated and 
executed an action.

The analysis of subjective mental workload revealed increased mental activity and time pressure for individuals in the high 
workload group, due to increased traffic and complex collision avoidance scenarios. Collision avoidance tasks became more 
complicated in high workload situations. However, from the team perspective, only communication and coordination activities were 
found to be significantly higher in the high workload group. This finding resonates with a report emphasising communication or 
teamwork breakdowns contributed to numerous marine incidents (Canada, 1995). Similarly, optical measures demonstrated that 
frequent communication heightened the workload in human-agent teaming scenarios (Wright et al., 2022).

The above findings suggest considerable managerial advantages given the rising tide of automation and the trend towards reduced 
crew sizes aboard vessels in the era of MASS. The industry is undergoing a profound shift, offering a new pathway to redefine the roles 
and responsibilities of maritime operators. This redefinition depends on several factors, including operators’ workplaces (whether 
onboard or ashore), the level of ship autonomy (ranging from human-in-the-loop to human-on-the-loop systems), and operators’ roles 
(as monitor, supervisor, or decision maker). This transformation inherently fosters new interactions and collaborations. It requires 
enhanced communication between OOWs and captains, between seafarers onboard and shore-based crews, and even between remote 
control operators and other decision-makers. Communication emerges as a pivotal element in these novel scenarios, particularly given 
the high workloads involved. Therefore, maritime authorities can utilise these findings to bolster communication initiatives in the case 
of high workload requirements.

Fig. 4. The HbO analysis from the middle ROI across 5 task periods.

Fig. 5. Density in two workloads across all task periods.
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Moreover, maritime education and training institutions should emphasise communication competencies for seafarers within high- 
workload exercises. Within this context, more specific illustrative examples include when training cadets in shipping, their compe-
tencies for the tasks of a certain workload can be objectively measured. It aids to 1) inform the training institutes which tasks need 
better design on the man–machine interface, if and when the majority of trainees fail to conduct them and 2) improve the scientific 
assessment of their qualifications by introducing a more scientific and objective measure. Currently, transport operators’ qualifications 
are certified mainly through subjective assessment by assessors, which could be biased, as evidenced by human errors introduced by 
certified operators who may be incompetent, contributing to transport accidents. Therefore, the findings of this study will significantly 
improve safety at sea first and other transport modes later by reducing introduced human errors due to operators’ incompetence.

The analysis of average HbO for two groups across 5 task periods in the left and middle ROIs revealed statistically significant 
interactions: (a) higher HbO during r3 (event 2 happened) and r5 in the low workload group compared to the high workload one, and 
(b) higher HbO during r4 for the high workload group compared to the low workload group. The r4 in the high workload group and r3 
in the low workload group represented the action selection with increased task difficulty. It corresponds with the findings in the 
literature, which observed a rise in HbO concentration within the dorsolateral prefrontal cortex under conditions of high task difficulty 
(Causse et al., 2024). Likewise, similar results were uncovered in the studies conducted by Zhang et al. (2021) and Li et al. (2020), 
suggesting activation of the dorsolateral prefrontal cortex during such decision-making phase.

In terms of functional connectivity analysis, a statistically significant difference was the lower D for the high workload group 
compared to the low workload group. This finding further indicated the reduced connection density in a high workload situation, 
aligning with prior research (Fan et al., 2021). It was noted that high workload was associated with reduced connection density of 
brain activity, which may imply more efficiency in high workload with more communication and coordination activities. Moreover, it 
should be noted that event 2 in the low workload group was a starboard crossing ship which required the own ship as the give-way 
vessel to take action; while in the high workload group event 2 was a port crossing ship which required the target ship as the give- 
way vessel to take action. Hence, this situation made the participants in the low workload group aware of taking collision avoid-
ance action as the give-way vessel in r3 when event 2 occurred, while participants in the high workload group expected the target 
vessel to take action in r3 period and realised the vessel did not obey the regulation to give way in r4 period. That is to say, the increase 
of HbO in r3 for the low workload group was owing to the spot of starboard crossing ship, where the regulation required the own ship 
as the give-way vessel to take action. It showed that past experience contributed to the guidance of action selection, as evidenced by 
Koechlin et al. (2003). During r4, the increase of HbO for the high workload group indicated the participants realised the port crossing 
ship did not give way and the own ship had to unexpectedly (and at short notice) take action to avoid the collision. During r5, the 
decrease of HbO for the high workload group may result from the mental overload for avoiding collisions with a port crossing ship, an 
overtaking vessel, and recreational boats simultaneously. They had nothing to do with the complex situation after the action taken at 
r4, waiting for the ship collision avoidance results (success or failure) to happen. Therefore, it implies the potential for maritime 
training institutes to utilise seafarers’ brain connectivity parameters for calibrating workload levels across diverse navigational sce-
narios. This approach can enable the customisation of competency training guidelines to better accommodate the evolving landscape 
of navigation traffic scenarios, encompassing both conventional and autonomous vessels, therefore benefiting the adaptive automation 
for human–machine interfaces towards a smart manner.

Regarding regression analyses, it was to investigate the association between functional connectivity in the PFC and decision- 
making performance of OOWs during the task simulation. From the results in the regression model, the density can significantly 
distinguish the DM performance. To be specific, it was evident that calculations of OOW’s connection density D from the port crossing 
situation (r1) and the end for scenario (r5) using fNIRS can predict their DM in collision avoidance.

These results provided great insights for OOW performance measurement and improvement. Regarding parameter estimates 
among the “needs improvement” participants, if the value of D in r2 for OOWs in the latter training increased, OOWs’ DM performance 
in the previous “needs improvement” group was more likely to be improved, compared to the “acceptable” group. It made the 
evaluation of OOWs’ DM progress possible, proving the greater progress in the previous “needs improvement” group compared to the 
“acceptable” group if there were same trends in r2. Similarly, if the value in r4 for OOWs in the latter training increased, OOW 
performance in the previous “acceptable” group was more likely to be improved in terms of DM, compared to the “needs improvement” 
group. It proved the greater progress of OOWs in the previous “acceptable” group compared to the “needs improvement” group if the D 
in r4 for both groups increased.

Regarding the “good” participants, if the value in r2 for OOWs in the latter training increased, their performance in the previous 
“good” group was more likely to be improved in terms of DM, compared to the “acceptable” group. It implied the greater progress of 
DM performance in the previous “good” group compared to the “acceptable” group with the same increase of D in r2. Similarly, if the 
value in r4 for OOWs in the latter training increased, their performance in the previous “acceptable” group was more likely to be 
improved in terms of DM, compared to the “good” group. It proved the greater progress of OOWs’ DM performance in the previous 
“acceptable” group with same increased D value in r4.

Within the maritime industry, there is an STCW code outlining the competence of seafarers, as shown by standards such as STCW 
Code Table A-II/1 and STCW Code Table A–V/2 (STCW, 2011). While this code requires diverse criteria, it fails to explain how these 
standards are objectively evaluated, especially within the context of the application of emerging MASS technologies. Even with 
adequate training based on the STCW framework, deviations in tasks by seafarers could potentially lead to hazardous situations 
(Rajapakse and Emad, 2021). It primarily addresses limited outcomes-based or behaviour-focused knowledge required by seafarers, 
revealing discrepancies between regulatory guidelines and practical performance. Therefore, the findings of this study serve as an 
objective tool for assessing seafarer competence in real-time across tasks involving different levels of DM performance in maritime 
transport and further offer operators feedback on various scenarios and new machinery designs, thereby bolstering existing industrial 
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practices. It is confident that the success of using the new findings in the maritime sector first will be spread to the other transport 
sectors given they are also undertaking the evolution brought by new autonomy and automation technologies, which requires a 
groundbreaking change of operators’ roles in transport science.

In this manner, it reveals managerial implications for maritime training and education. Maritime training institutions benefit from 
the proposed methodology using fNIRS to conduct objective performance evaluations. It can assess OOW performance for individuals 
in ongoing training and evaluate DM performance improvement for individuals across different proficiency levels by comparing their 
own historical performance records. In other words, maritime training institutions can now provide grades of OOWs’ performance 
during professional training, with the support of fNIRS measurements during DM tasks. In this way, neuropsychological indicators help 
the subjective evaluation of seafarers’ DM performance. At the same time, their improvements during different training periods can 
also be quantified by comparing fNIRS data in historical records and peer performance at varying skill levels. It serves as a practical 
record and measurement tool to improve OOW performance at sea. Therefore, it offers an advanced DM method that adapts to mental 
states of OOWs and supports autonomy design, through observing feedback from operators’ predictive response and DM performance.

6. Conclusion

This study proposed an advanced DM method to predict human performance in ship navigation, and evaluate seafarers’ DM, which 
incorporated subjective and neurophysiological measurements. Prior to the experimental study, a comprehensive literature review in 
multidisciplinary fields was conducted to investigate the state of the art on decision-making in the transport sector, and then a new 
approach (of using psychological means) beyond the state of the art was proposed. Appropriate techniques (fNIRS techniques and 
NASA-TLX questionnaire) and simulator scenarios (ship navigation scenarios with two levels of workload) were used to set up protocol 
through within-participants design. The advantage of a within-participants design is fewer participants because each person yields 
more data, which fits the nature of a low number of seafarer professionals. Next, robust procedures were implemented to ensure the 
accuracy and reliability of data. The data was collected through the oxygen level in a human brain, which has been proven to be 
reliable to measure human performance in very few selective areas (e.g. medicine) but yet in the transport sector. Specifically, the 
montage of fNIRS containing 8 short-distance channels to extract the cerebral activities of participants, can effectively eliminate the 
effect of extracerebral activity and improve signal quality.

The findings of this work revealed increased mental activity, time pressure, and efforts for individuals in high workload situations, 
due to heavy traffic and related complex collision avoidance scenarios. It also showed that communication and coordination were 
critical indicators of teamwork distinguishing two levels of workloads. It was indicated by a significantly higher level of oxygenated 
haemoglobin for the low workload group in r3 period when the own ship was the give-way vessel and required to take collision 
avoidance action. In addition, the oxygenated haemoglobin level in r4 period was significantly higher for the high workload group 
because they expected the port crossing ship to give way in r3 but had to unexpectedly (and at short notice) take action to avoid 
collision in r4. Finally, the oxygenated haemoglobin level and D in r5 period were significantly lower for the high workload group 
because the situation exceeded the participant’s ability to cope with collision avoidance (a port crossing ship, an overtaking ship, and 
multiple recreational boats simultaneously), causing cognitive overload. There was nothing they can do to deal with this situation. 
Overall, the high workload group showed lower connectivity density than the low workload group. They obtained more efficiency in 
terms of increased communication and coordination activities. Finally, a significant relationship between DM performance and 
functional connectivity was proved using a regression model. It indicated acceptable prediction results on DM performance of OOWs 
through a functional connectivity analysis. Therefore, it illustrated the beauty of using fNIRS technology to measure DM performance, 
and hence the feasibility of using it to formulate a human-centred decision support methodology for maritime safety.

To conclude, the study established a methodology to detect different workload levels using psychophysiological measurements in 
transport systems. Through the analysis of the functional connectivity of seafarers, human reliability and operational behaviours in 
critical scenarios for seafarers were assessed and predicted. The results contribute to generating an objective and reliable tool to assess 
human performance in real-time given tasks at various levels of decisions in maritime transport. This method also pioneers an 
advanced approach for data collection and functional connectivity analysis to evaluate human and machine reliabilities in critical 
scenarios and predict operational behaviours. The proposed human-centred approach to predict DM performance using fNIRS can 
therefore benefit the adaptive automation for highly automated human–machine interfaces towards a smart manner. Autonomous 
transport systems can benefit from the findings and, in particular, be designed and optimised based on improved feedback from human 
operators, given their predictive response and DM performance.
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