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Abstract

Cataclysmic Variables (CVs) are a class of binary star systems consisting of a white dwarf

accreting matter from a main sequence companion star. The diversity in their physical

properties causes them to exhibit a wide range of observable phenomena, including

dwarf nova outbursts and novae explosions, making them crucial for the study of binary

evolution and accretion physics. The discovery and characterisation of CVs have been

greatly facilitated by wide-field time domain surveys, such as the Catalina Real-Time

Transient Survey (CRTS) and the Zwicky Transient Facility (ZTF). They can detect

significant changes in the brightness of astrophysical objects on various timescales to

generate alerts. Due to the continuing advancements in survey technology, alert rates

are on the rise, with the Rubin Observatory expected to generate of order 107 alerts per

night. Given the large alert rates, classifying these events by the class of astrophysical

transient responsible can no longer be solely performed manually. Moreover, follow-up

facilities are too few to characterise all events, therefore, follow-up time will be reserved

for the rarest of events.

Source classification and the search for the rarest of events in this deluge of alerts requires

the automation provided by Machine Learning (ML). ML-based source classification is

an active research field, with the distinction between many classes of transient possible

(e.g., supernovae, active galactic nuclei, and variable star subtypes). However, ML-based

searches for CVs is an underdeveloped field; furthermore, an emphasis on the identifica-

tion/classification of CV subtypes with ML is unexplored. Given the diversity present

within the CV transient class and the under-representation of certain subtypes, such as

those with strongly magnetic white dwarfs and ultra-short period helium accreting CVs,

a ML-based pipeline specifically purposed for such a task is much needed. The objective

of this research has been to address this gap, whilst also identifying the factors that

hinder this objective.
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On this pathway transient sources published by the Gaia Science Alerts program (GSA)

were explored with ML. Utilising the technique of light curve feature extraction and with

the aid of source metadata from the Gaia survey a ML model based on the Random

Forest algorithm was produced. It is capable of distinguishing CVs from supernovae,

active galactic nuclei and young stellar objects with a 92% precision score (fraction of

those predicted as CV belonging to the class). Of 13,280 sources within GSA without

an assigned transient classification, the model predicts the CV class for ∼2800, of which

spectroscopic confirmation has been acquired for 15 so far.

During the next research phase, the higher cadence, multi-band survey of the Zwicky

Transient Facility (ZTF) was explored. A two-stage ML pipeline was developed that

comprises and alerts filtering stage aimed at removing non-CVs, followed by an ML

classifier tasked with dividing the filtered sources into their CV subtypes based on fea-

tures extracted from their light curves in combination with Gaia DR3 data. During the

month of June 2023 alone, 51 candidates of the CV class were discovered, 14 of which

are candidates of either the rare AM CVn or polar CV subtypes. Representations of

the ML classifier’s prediction patterns, input into the Generative Topographic Mapping

algorithm, indicate the influence of CV evolutionary factors. CV evolution and the con-

sequential blending of boundaries that separate CV subtypes from one another, is found

to be a major factor in the difficulty of distinguishing between CV subtypes.

To conclude the research, dimensionality reduction techniques were explored with the

ZTF dataset. The findings reaffirm the view that CV evolution plays a major factor in

the difficulty in distinguishing between subtypes, as do the intricacies of the ZTF survey

photometry. In addition, the reduced dimensionality representations were found to be

particularly valuable in approximating a subtype classification, with distinct locations

of strongly eclipsing CVs as well as polars a particular highlight.
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Chapter 1

Introduction

Cataclysmic variables (CVs; Warner 1995; Hellier 2001) are compact accreting binary

systems consisting of a white dwarf accreting matter from a Roche-lobe filling donor. In

most cases, the donor is a low-mass, late-type, main-sequence star. CVs are a large and

easily observed population, providing ideal laboratories for the study of binary evolution

and the physics of accretion. For example, they represent a possible single degenerate

pathway towards type Ia supernovae (SNe Ia) — events that serve as ‘standard candles’

to determine distances to other galaxies and constrain our cosmological models (Phillips,

1993). A greater understanding of CV evolution may elucidate our understanding of the

multiple progenitor scenarios believed to produce those SNe Ia events that deviate from

the ‘normal’ (Jha et al., 2019). As laboratories for the study of accretion, CVs probe

extreme conditions. For example, the white dwarf in ∼ 20 − 25% of CVs (Ferrario

et al., 2015) possesses a magnetic field sufficiently strong to divert the flow of matter

arriving from the donor star out of the orbital plane before accretion onto the white

dwarf’s magnetic poles (Cropper, 1990; Patterson, 1994). The AM CVn subclass of

CVs (Solheim, 2010) are ideal for examining helium accretion, whilst also serving as

laboratories for examining accretion from a semi-degenerate/degenerate companion, and

accretion occurring at ultrashort periods (between 5 and 65 minutes).

One of the main methods of CV discovery is via their photometric variation. Recent

decades have seen a dramatic increase in the potential for their discovery due to the

development of wide field, high cadence and panchromatic surveys that repeatedly image

huge areas of the sky at high rates. Surveys include the (intermediate) Palomar Transient

1
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Factory (iPTF; Cao et al. 2016), the Optical Gravitational Lensing Experiment (OGLE;

Udalski et al. 2015), and newer surveys such as Catalina Real-time Transient Survey

(CRTS; Drake et al. 2009), the Zwicky Transient Facility (ZTF; Bellm et al. 2019),

the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014), and

Gaia Science Alerts (GSA; Hodgkin et al. 2021). They adopt the difference imaging

technique (Kerins et al., 2010), in which the new sky image is subtracted from a reference

image, to reveal objects that have changed in brightness. Plots of brightness over time

(light curves) of said objects may be used to deduce the astrophysical transient class

responsible. Examples of the effectiveness of these surveys include the detection of

705 new CV candidates from 5 years of CRTS data (Drake et al., 2014), the 497 CV

candidates uncovered from two years of ZTF transients (Szkody et al., 2020, 2021), and

nine outbursting examples of the AM CVn CV subclass found by van Roestel et al.

(2021), also from ZTF transients.

These examples involve a heavy focus on the manual inspection of large amounts of data

to distinguish CVs from other time-varying sources (e.g., supernovae, variable stars,

and active galactic nuclei). This practice is becoming ever more time-consuming and

infeasible due to the large numbers of transient events reported every night, events that

also include artefacts from difference imaging (e.g., poorly subtracted galaxies, cosmic

rays, and defective pixels (Goldstein et al., 2015). In the case of ZTF, transient alert

rates can exceed a million per night (Patterson et al., 2019), a rate set to be dwarfed by

the Rubin Observatory (Ivezić et al., 2019). As a further side effect, facilities devoted

to the follow-up of transient events are not enough in number to investigate them all,

therefore time on such facilities is limited. Since the majority of genuine astrophysical

sources may serve only to reaffirm our current understanding of the transient classes to

which they belong, follow-up time will be reserved for the minority, those that present

a challenge to or help further our understanding.

Machine learning (ML) is ideally suited to address these challenges, with the vetting

of artefacts now heavily reliant on automated pipelines (e.g., Goldstein et al. 2015; van

Roestel et al. 2021). Applications for transient source identification/classification are

becoming ever more abundant. For example, van Roestel et al. (2021) describes the

ZTF Source Classification Project, a hierarchical ML pipeline that aims to group ZTF

alerting transients into both variability types and transient classes that include Active

Galactic Nuclei (AGN), young stellar objects (YSOs), variable stars and CVs based on
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photometry. Neira et al. (2020) generated ML classifiers to distinguish between AGN,

Blazars, CVs, supernovae, and non-transients (amongst others) from CRTS source light

curves. Alert brokers have been used by ZTF to ingest and classify alerts, serving

them to the astronomical community. The ALeRCE (Automatic Learning for the Rapid

Classification of Events; Förster et al. 2021) broker makes use of science, reference and

difference images for rapid classification of events (Carrasco-Davis et al., 2021), and

multiband light curves for classification of events with longer-term observations into

several transient classes including CVs, supernova subtypes, AGN, and variable stars.

Sun et al. (2021) focused on spectroscopic data, searching for CVs within Data Release

6 (DR6) of the LAMOST survey (Cui et al., 2012) containing nearly 10 million low-

resolution spectra.

These examples focus on the identification/classification of CVs as a broad class. How-

ever, CVs are a diverse class of accreting binaries, with a correspondingly diverse range

of photometric (and spectroscopic) behaviour, therefore significant human vetting is still

required to make these important distinctions. The ability to automatically group CVs

into their respective subtypes, and/or identify rare subtypes remains an underdeveloped

research field. Such a classifier/pipeline should dramatically reduce the time required

for human vetting, which will become all the more important as transient source detec-

tion capabilities improve with time. The following work describes the journey towards

the creation of such a pipeline that aims to serve the CV research community with

a regular supply of interesting candidates. However, before taking you on this jour-

ney, I use Chapter 2 to provide an extensive overview of CVs, including their diverse

subtypes and significance in astrophysical research. Chapter 3 delves into the machine

learning techniques and methodologies used in this study, while in Chapter 4, I discuss

the importance of transient surveys in CV research, the impact of machine learning in

managing survey data, and the gap in source classification research that I aim to fill.

These chapters set the stage for the subsequent focus on developing an automated source

classification pipeline tailored to the CV community’s needs.



Chapter 2

Cataclysmic variables

2.1 Introduction

Cataclysmic variables (Warner, 1995; Hellier, 2001) are a class of binary star systems

consisting of a white dwarf (WD or primary) and typically a low-mass main sequence

star (donor or secondary). The binary components orbit very close to one another with

separations of less than a few solar radii and orbital periods typically less than half a

day. The strong gravitational pull of the WD causes the donor to transfer matter to the

primary via Roche lobe overflow at rates ranging from 10-11–10-8 M⊙ yr-1 (Patterson,

1984). The hydrogen-rich matter from the donor star is accreted onto the WD surface

via, in most cases, an accretion disk which forms around the WD. Alternatively, if the

magnetic field of the WD is sufficiently strong, the formation of an accretion disk is

either completely or partially inhibited, with the matter flowing along the field lines

to the magnetic poles of the WD — which occurs for ∼ 20 − 25% of the observed CV

population (Ferrario et al., 2015). Focusing on the non-magnetic case for simplicity

(Figure 2.1), the point of interaction between the incoming stream of matter from the

donor and the outer accretion disk is referred to as the bright spot. The boundary layer

is defined as the region between the inner accretion disk and the WD surface. The donor,

the WD, accretion disk, bright spot and boundary layer each contribute to emission that

spans the electromagnetic spectrum from X-ray to infrared.

4
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Figure 2.1: Taken from Giovannelli (2008), this is a sketch of a non-magnetic CV
with all components responsible for the energy emission: WD, donor star, accretion

disk, bright spot, and boundary layer.

2.2 Emission Components

White dwarf

White dwarfs are the end point of stellar evolution for stars of main-sequence mass of

10M⊙ or less. They are the hot dense cores of their main sequence progenitors, supported

against their gravity by electron degeneracy pressure. Pala et al. (2021) found that CV

white dwarf masses are within the range 0.35M⊙ and 1.25M⊙, with a mean average

of 0.81M⊙, greater than that of single white dwarfs (0.6M⊙). CV white dwarfs tend

to be hotter at longer periods, reflecting the higher rates of accretion. Their effective

surface temperatures generally lie within the range ∼ 12000K and ∼ 40000K with radii

approximately that of the Earth. The peak of their spectral energy distribution occurs

at far-ultraviolet wavelengths.

Donor star

The donor stars of CVs are typically red dwarf stars with spectral types of late K or

M type. The spectral type is strongly dependent on the orbital period, where shorter

period systems are typically of a later spectral type (Knigge, 2006; Knigge et al., 2011).

This is shown in Figure 2.2, where it can also be seen that the spectral types of CV
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Figure 2.2: Spectral Type versus Orbital Period for CV donors and single main
sequence stars. The MS stars are assigned an orbital period based on their mass and
radius via the period-density relation for Roche lobe filling stars (Equation 2.10). The
blue dots represent CV donors whose spectral types are empirically derived, while the

red dots are the main sequence stars. Taken from Knigge (2006)

donors are systematically later than isolated main sequence stars of the same mass. This

is believed to be due to mass loss driving donors slightly out of thermal equilibrium,

causing them to be bloated compared to MS stars of the same mass. Donor radii span a

range from ∼ 0.1R⊙ to ∼ 0.6R⊙, while masses are in the range ∼ 0.05M⊙ to ∼ 0.6M⊙

(excluding evolved donors). CV donors are cool, with effective temperatures typically

below 4,000 K, although they can range from 500 K to 4200 K (Knigge et al., 2011).

One side of the donor is heated by the hot WD causing the temperature on this side to

reach ∼ 7,500 K, which may result in smooth brightness variations in high inclination

systems.
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Accretion Disks

Accretion disks (Frank et al., 2002) are usually responsible for the majority of optical

emission. The surface temperature, Tsurface, of accretion disks is a function of the disk

radius r, and approximately follows Tsurface ∝ r−3/4. One may model the emission

of the accretion disk at various frequencies by assuming each disk annulus emits as a

blackbody of a particular temperature and summing the blackbody contributions from

each annulus (weighted by its area).

Optical lines (usually in emission) in CV spectra are believed to be of disk origin with

broad Balmer emission usually most prominent. Under optically thick disk conditions,

absorption may be observed, while optically thin conditions give rise to broad Balmer

emission. Double-peaked emission profiles may be observed with the extent of the feature

more pronounced at higher orbital inclinations. This can be understood by considering

the disk as a collection of small emission regions. As matter in the disk circles the WD,

the emission from one half of the disk will be blue-shifted, whilst that from the other

half will be red-shifted. The combination of decreasing velocity with increasing radius

and the smaller disk area at smaller radii gives rise to the profile shown and further

explained in Figure 2.3.

Bright Spot

This is the region where the matter stream from the donor impacts the outer rim of

the accretion disk (Hellier, 2001; Warner, 1995). The impact, at supersonic speeds,

shock-heats the region and radiates possibly as much or more energy in the optical than

the other components combined (primary, donor, disk) via thermal blackbody emission.

This can be deduced through observations of orbital humps present in light curves of

high inclination systems, for example, IY UMa in Figure 2.4. The humps are caused by

our changing view of the bright spot throughout the orbit (Patterson et al., 2000).

Boundary Layer

The Keplerian velocity just above the white dwarf surface (∼ 3000 km/s) is much faster

than the white dwarf surface rotation speed (∼ 300 km/s). Therefore, matter in the

inner disk decelerates to match the white dwarf rotation. This transition region is known

as the boundary layer (Frank et al., 2002). The kinetic energy of the slowing matter is

converted to heat and radiated away through Bremsstrahlung radiation (Mukai, 2017).
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Figure 2.3: (a) A Keplerian accretion disk with different velocity regions as viewed by
an observer situated below the plot. (b) The resultant double-peaked profile. Emission
in the shaded velocity bins arise from the corresponding regions of the disk in (a). The
highest velocity regions in the disk produce the lowest emission due to their low surface
area. The lowest velocity regions originate from disk material aligned with our line of

sight, moving tangentially to it.

Figure 2.4: A light curve of IY UMa showing ‘orbital humps’ due to the changing
view of the bright spot. Also present are the deep eclipses, with orbital hump peaking

before each eclipse (Patterson et al., 2000).
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At high accretion rates, the layer becomes optically thick, emitting as a blackbody at

temperatures of ∼ 200, 000 K (extreme UV to soft X-ray). The situation alters at low

accretion rates (≤∼ 5 × 1010M⊙yr
−1); the high-temperature matter is too diffuse to

efficiently radiate energy and cool down. In response, the matter expands, making it

even less capable of cooling, causing further expansion and the evaporation of the inner

disk into a hot (∼ 108 K), optically thin, diffuse ‘corona’ that emits hard X-rays. The

transition between high and low accretion rates occurs during dwarf nova outbursts (see

Section 2.4.1). During an outburst a high accretion rate is present, the boundary layer

is optically thick and emits extreme UV/soft X-rays. In quiescence (low accretion rate),

the boundary layer evaporates into a corona producing hard X-ray emission. The anti-

correlation between extreme UV/soft X-ray and hard X-ray emission during outbursts

has been observed in SS Cyg (Wheatley et al., 2003). The optically thin corona that

flows outwards over the disk is believed to be a major source of emission lines in dwarf

nova spectra during quiescence.

Spectral energy distribution

The spectral energy distribution of CVs comprises contributions from each of the afore-

mentioned emission components. At high energies, the emission will originate from the

boundary layer at X-ray to extreme UV wavelengths, while the white dwarf contribution

will be largely concentrated in the ultraviolet with a diminishing contribution towards

longer wavelengths. However, if the boundary layer is optically thick, white dwarf emis-

sion is obscured by boundary layer emission. The red dwarf emits most strongly in the

infrared. In the majority of cases, the accretion disk will dominate the spectrum in the

optical, with higher and lower energy emission generated from the inner and outer disk

edges respectively. The bright spot contribution will depend on the brightness, temper-

ature and orbital inclination, though emission will largely be confined to the optical.

The combined emission from these components from the infrared to UV will usually

resemble a blackbody flattened by the optical emission of the accretion disk. Should

the contribution of one or both stars be significant in comparison to the disk, a notice-

able increase in emission will appear towards both/either the UV and/or the IR regime.

Figure 2.5 shows a schematic spectrum of a CV showing the contributions of the white

dwarf, donor and accretion disk.
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Figure 2.5: Schematic spectrum of a CV showing contributions from the white dwarf,
red dwarf (donor) and accretion disk (Hellier, 2001).

2.3 Formation and evolution

2.3.1 Roche lobe Geometry

To aid in explaining CV formation and evolution, a description of Roche lobe geometry

is required. Carroll & Ostlie (1996) and Frank et al. (2002) provide a detailed description

that is summarised here. Most binary systems have orbital separations large enough such

that the only interaction between the components is through their mutual gravitational

attraction. However in close binaries such as cataclysmic variables, tidal forces become

non-negligible, distorting the geometry of one or both stars and the transfer of matter

from one star to the other. This can be understood within the context of the Roche

lobe, defined as the region around a star in a binary within which orbiting material is

gravitationally bound to that star.

Consider a frame of reference corotating with two stars of mass M1 and M2. The origin

is coincident with the system’s centre of mass, where a circular orbit about this origin

is assumed for each star. The stars are at rest in this non-inertial frame at positions r1

and r2, with their mutual gravitational attraction balanced by the outwardly directed

centrifugal forces. A test mass located at r will experience a potential ϕ (potential

energy per unit mass) that is the sum of the gravitational potentials of each star and the
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centrifugal potential due to a rotating frame of reference. The total potential experienced

by the test mass at any point can be expressed in vector form as:

ϕ(r) = − GM1

|r− r1|
− GM2

|r− r2|
− 1

2
(Ω× r)2 (2.1)

The first two terms on the right refer to the gravitational potentials of each star. The

third term accounts for the centrifugal potential, where the angular velocity of the binary,

Ω, can be expressed using Kepler’s third law as:

Ω =
2π

Porb
=

[
G(M1 +M2)

a3

]1/2
e (2.2)

where Porb, a, and e are the orbital period, binary separation, and a unit vector per-

pendicular to the plane of the binary, respectively. If we were to consider a test mass

located on the plane of the orbit, as shown in Figure 2.6, Equation 2.1 can be expressed

as:

ϕ = −GM1

s1
− GM2

s2
− 1

2
Ω2r2 (2.3)

From the law of cosines the distances s1 and s2 are given by:

s21 = r21 + r2 + 2r1r cos θ (2.4)

s22 = r22 + r2 + 2r2r cos θ (2.5)

Equations 2.2–2.5 in combination with r1 + r2 = a and M1r1 = M2r2 can be used to

define the gravitational potential at every point on the orbital plane. Points in space

that share the same ϕ form an equipotential surface. Several such surfaces are shown in

Figure 2.7 for a specific set of values for M1, M2, and a. The shape of the equipotential

surfaces is governed entirely by the mass ratio q ≡ M2/M1, while the binary separation

a accounts for the overall scale.
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Figure 2.6: Taken from Carroll & Ostlie (1996). Corotating coordinates for a binary
star system. The masses M1 and M2 are separated by a distance a. The stars are
located on the x-axis at distances r1 and r2, respectively, from the centre of mass,

which is placed at the origin.

Figure 2.7: Taken from figure 4.3 of Frank et al. (2002). Sections in the orbital
plane of the Roche equipotentials ϕR = constant, for a binary system with mass ratio
q = M2/M1 = 0.25. Shown are the centre of mass (CM) and Lagrange points L1–L5.

The equipotential surfaces are labelled 1–7 in order of increasing ϕR.
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The Lagrange points, L1–L5 are locations where a test mass m experiences no force, i.e.,

the gravitational forces on m due to M1 and M2 are precisely balanced by the centrifugal

force. More succinctly they are balance points where dϕ/dx = 0. The motion of m will

be dominated by the gravitational pull of the dominant star, the potential ϕ can be

described as having two deep valleys at r1 and r2. As we move further from each star

their shapes become distorted into ‘teardrop’ shapes due to the combined gravitational

effects of M1 and M2 until they finally meet at the inner Lagrange point, L1. The

surfaces that meet at L1, are the Roche lobes of each of the components, depicted by

the emboldened equipotential surface forming a figure of eight in Figure 2.7. L1 can be

seen as a saddle point, akin to the lowest mountain pass between the two deep valleys,

it is the easiest path by which matter can pass between the two stars. At even greater

distances the surfaces assume a ‘dumbbell’ shape, surrounding both the masses.

The appearance of a binary depends upon which equipotential surface is filled by each

star. As a star evolves to larger radii, it will take on the shape of successively larger

equipotential surfaces. Binary stars with radii much less than their separation take

on nearly spherical shapes. These stars evolve nearly independently of one another

and the binary is described as detached. Should one of the stars expand beyond the

equipotential surface defining its Roche lobe, then material from that star may enter

the lobe of its companion via the L1 Lagrangian point. Such a system is described

as a semi-detached binary. A contact binary is formed when both stars fill or

expand beyond their respective lobes. These stars now share a common envelope and

are bounded by a dumbbell-shaped equipotential surface that encompasses both stars,

e.g., that which passes through L2. Cataclysmic variables spend the majority of their

lives in the semi-detached state with the less massive donor star just overfilling its Roche

lobe. A consequence of this is the donor will become tidally locked to the orbital period,

i.e., the donor’s spin period equals the system’s orbital period.

The Roche lobe treatment of binary interaction allows for a quantitative description of

important binary properties, such as the correct interpretation of the shape of eclipses

or the rate of mass transfer. To do this one requires a calculation of lobe geometry (e.g.,

sizes of the lobes and distances to the L1 point). The form of Equation 2.1 is complicated

requiring numerical solutions to achieve this. However, analytical approximations are

available, a few are provided as follows. Roche lobes are non-spherical, so an average

radius must be found: this is done by approximating this to the radius of a sphere that
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has the same volume as that of the lobe (or volume radius). The volume radius of the

donor lobe, Equation 2.6, provided by Eggleton (1983) is accurate to better than 1%. It

is dependent on the mass ratio, q, between the two stars, defined as q ≡ M2/M1, where

M1 and M2 are the primary (more massive star) and secondary star masses respectively

(substituting q with q−1 in equation 2.6 yields the volume radius for the lobe of the

primary).

R2

a
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
(2.6)

Paczyński (1971) provides a simpler and easier to interpret form of Equation 2.6 for

0.1 ≤ q ≤ 0.8 (Equation 2.7).

R2

a
=

2

34/3

(
q

1 + q

)1/3

= 0.462

(
M2

M1 +M2

)1/3

(2.7)

The ratio of the primary and secondary lobe volume radii is accurate to better than 5%.

For mass ratios 0.03 ≤ q ≤ 1 this is:

R1

R2
=

(
M1

M2

)0.45

(2.8)

The distance b1 of the L1 point from the centre of the primary is found using:

b1

a
= 0.500− 0.227 log q (2.9)

The mean density ρ̄ of the secondary can be found solely from the orbital period P by

using Equation 2.6 and Kepler’s third law. For q ≤ 0.8 this is given by:

ρ̄ =
3M2

4πR3
2

∼=
35π

8GP 2
∼= 110P−2

hr g cm−3 (2.10)

Equation 2.10 shows that for periods in the range ∼ 1 − 10 hours, late type main

sequence secondaries (ρ̄ ∼ 1 − 100 g cm−3) can fill their Roche lobes. Rearranging of

Kepler’s third law gives an approximation of the binary separation in terms of the mass

ratio and orbital period (Equation 2.11).
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a = 3.53× 1010(M1/M⊙)
1/3(1 + q)1/3P

2/3
orb (h) cm (2.11)

2.3.2 CV birth and Mass Transfer

When one of the stars in a binary overfills its Roche lobe, material from that star will

enter the lobe of its companion via the L1 Lagrangian point. Mass transfer between

binary components usually results in changes to the orbital separation and in turn the

Roche lobe radii of the components, where mass ratio q plays an important role. Mass

transfer occurs during two separate phases of evolution, i.e., on the path to becoming a

CV, and during the CV phase (see e.g., Hellier 2001; Frank et al. 2002; Warner 1995).

During the pre-CV phase, the binary consists of two main sequence stars of unequal

mass. The more massive star (primary) evolves off the main sequence first, expands in

radius, and fills its Roche lobe, thus leading to the transfer of mass to the less massive

companion (secondary). The centre of mass of the binary is closer to the primary, so

the lost mass is moving away from this centre of mass, thereby increasing the angular

momentum of the material. For the conservation of angular momentum to hold, the

binary separation must decrease. A decreased separation leads to a reduction in the size

of the Roche lobe (see Equation 2.6 and replace q with q−1 for the lobe radius of the

primary), further increasing mass transfer. This positive feedback causes the unstable

situation of accelerating mass transfer that eventually leads to an extended atmosphere

around both stars, referred to as a common envelope phase. In this phase, matter is

transferred too quickly for accretion onto the secondary such that not only are both

Roche lobes filled but matter extends out to fill equipotential surfaces larger than that

enclosed by the lobes. The common envelope that engulfs the binary acts to inhibit

orbital motion, draining the binary of orbital angular momentum. The energy acquired

by the envelope leads to its outward expulsion from the system, whilst also causing the

binary orbit to shrink from ∼ 100R⊙ to ∼ 1R⊙. Once the envelope has dispersed we

are left with either a semi-detached binary in the form of a cataclysmic variable or a

detached binary, depending upon whether the orbital separation has shrunk enough for

mass transfer from the secondary to the primary. In the former case, the primary will

emerge as a white dwarf (typically of carbon-oxygen composition) accreting from its

main sequence donor of lower mass.
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In our newly formed CV, the transferred mass from the secondary (or donor) undergoes

a loss in angular momentum as it moves close to the centre of mass of the system,

which results in an increase in separation for the conservation of angular momentum

to hold. Referring back to the Roche lobe radius equation (Equation 2.6), an increased

separation causes an increase in the size of the donor’s Roche lobe to the point where

the donor can no longer fill it, and subsequently mass transfer ceases. To sustain mass

transfer, the donor must either undergo further expansion due to nuclear evolution, or

a mechanism must be present to shorten the orbital period and decrease the size of the

lobe. The former is highly unlikely as the masses of secondaries are less than a solar

mass, with slow evolution, the latter, however, can be achieved as a result of orbital

angular momentum loss due to magnetic braking or gravitational radiation.

2.3.3 Disk Formation

The angular momentum loss sustained mass transfer produces an almost constant matter

stream entering the primary Roche lobe through L1. Frank et al. (2002) provide a

detailed account of the stream trajectory and disk formation which is summarised here.

The stream is subject to Coriolis forces due to the rotating frame of reference. More

specifically, the L1 point is orbiting perpendicular to the motion of the stream causing

the stream to bypass the primary and swing around it whilst also being accelerated

by the primary’ gravitational potential well. The stream loops around the primary to

intersect itself resulting in shocks that dissipate energy. Despite this, the stream cannot

so easily rid itself of the angular momentum it had upon entering the lobe via L1. It

therefore settles into the lowest energy orbit for its angular momentum, a circular one.

The radius of this orbit corresponds to the specific angular momentum the stream had

upon entering the lobe at L1, referred to as the circularisation radius, Rcirc, (Equation

2.12), where G, P , a, b1, and q are the gravitational constant, orbital period, binary

separation, distance from the primary’s centre to the inner Lagrange point L1, and the

mass ratio of the secondary to the primary, respectively. Rcirc is always smaller than

the lobe radius of the primary by a factor of 2–3.

Rcirc

a
=

(
4π2

GM1P 2

)
a3
(
b1
a

)4

= (1 + q)[0.500− 0.227 log q]4 (2.12)
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Within the ring particle collision and shocks will heat the gas and cause energy to

be radiated away. The energy comes from the gravitational potential so some of the

gas responds by sinking deeper into the gravitational potential well of the primary, i.e.

orbiting more closely. This inward-flowing matter entails a loss of angular momentum,

though this can only occur with a transfer of angular momentum outwards to particles

at larger radii in the ring, causing them to move to larger orbits. The situation is

illustrated in Figure 2.8. The disk will spread until the inner edge transitions to the

boundary layer above the surface of the primary. The outwards spread will be halted

by tidal interactions with the donor.

2.3.4 Period Evolution via Angular Momentum Loss

The subsections above have established that once formed CVs must be subject to angular

loss mechanisms for the donor to maintain contact with its Roche Lobe and mass transfer

to continue. This results in an evolution of CVs from long periods (∼ 6 hours or longer)

to shorter periods followed by a rebound after a minimum orbital period is reached.

Detailed accounts of hydrogen CV evolution can be found within Knigge et al. (2011),

Hellier (2001), and Warner (1995). The following subsections aim to summarise these

accounts.

Magnetic Braking

At the longest periods (Porb > 3 hrs), magnetic braking (Verbunt & Zwaan, 1981;

Spruit & Ritter, 1983) is believed to be the angular momentum loss mechanism that

dominates. Magnetic braking involves the stellar wind and magnetic field of the CV

donor. The magnetic field origin is poorly understood, though it is thought that a

dynamo mechanism is established within the star when convection causes bubbles of

gas into circular motions. The field is usually strongest in quickly rotating stars as in

the red dwarfs of CVs that rotate at the orbital period of the system (hours). When

the high-energy, ionised particles of the stellar wind approach the donor’s magnetic field

they cannot cross it, they are forced to spiral around the field lines, corotating with the

secondary. The magnetic field accelerates the particles to the point where they can be

flung from the system, taking away angular momentum from the donor. Since the donor

is tidally locked to the primary, the angular momentum is taken away from the binary

system itself, shrinking the orbit.
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Figure 2.8: The figure above from Verbunt (1982) illustrates the formation of a ring
and the evolution into a disk.
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Period Gap: Disrupted magnetic braking

It emerged during the 1970s and early 1980s that there was a gap in the orbital period

distribution of CVs between 2 and 3.12 hrs - referred to imaginatively as the ‘period

gap’. CVs in this period range were rarely observed (Figure 2.9). While the physical

origin of this gap is still debated, current theories point to changes in the rate of angular

momentum loss as the donor gradually loses mass to the WD (Knigge et al., 2011;

Garraffo et al., 2018). With mass loss, the donor evolves to later and later spectral

types. At the upper boundary of the period gap, the secondary will have become a

fully convective dwarf star of spectral type M. This leads us to the theory of disrupted

magnetic braking (Spruit & Ritter, 1983), currently the most popular explanation for

the period gap. The magnetic dynamo that gives rise to magnetic braking is believed to

occur at the boundary between the convective zone and the radiative interior. Therefore,

when the star approaches the state of being fully convective the mechanism’s effectiveness

is greatly reduced or halted. Subsequently, the star shrinks to a radius appropriate for

its mass, and loses contact with its Roche lobe, thereby halting mass transfer. The

system becomes a detached binary; without the significant emission from the accretion

disk or bright spot, the system becomes faint and less likely to be observable, hence

the period gap. From here, gravitational wave radiation drives the system to shorter

periods.

Re-establishment of mass transfer; Gravitational wave radiation

In the detached state, the continued evolution to shorter periods occurs via gravita-

tional wave radiation (Paczyński, 1967; Paczynski & Sienkiewicz, 1981), which shrinks

the Roche lobe of the donor. Gravitational wave radiation can be explained in the con-

text of the theory of general relativity. Matter causes the fabric of spacetime to warp.

Gravitational wave radiation refers to the ripples in this fabric caused by the accelera-

tion of massive objects. These ripples (or waves) are more pronounced for objects with

strong gravitational fields. In orbiting bodies, the waves propagate outwards at the

speed of light, carrying away energy. In CVs, this results in angular momentum loss

causing the orbit to shrink in a manner following Equation 2.13, where d ln J/dt is the

time derivative of the natural logarithm of the total angular momentum of the binary,

and P , G, c, M1, and M2 are the orbital period, gravitational constant, speed of light,
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Figure 2.9: The orbital period distribution of 454 CVs from Ritter & Kolb (2003),
V7.6, (white) and the distribution of 137 SDSS CVs from Gänsicke et al. (2009) (grey).
The grey-shaded region represents the 2–3 h orbital period gap. The ultracompact
(Porb < 65 mins) hydrogen-deficient AM CVns (subsection 2.4.3) are excluded from

the plot. Plot taken from Gänsicke et al. (2009).

and masses of the primary and secondary, respectively. Gravitational wave radiation is

negligible for most binaries, though becomes significant for the shortest-period systems.

d ln J

dt
= −32

5

(
2π

P

)8/3 G5/3

c5
M1M2

(M1 +M2)1/3
(2.13)

Continued evolution to shorter periods in the detached state eventually leads to a re-

connection of the donor surface with its Roche lobe and a resumption of mass transfer

at a period of ∼ 2 hrs.

Period minimum and final long period evolution
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The evolution to shorter periods via gravitational wave radiation continues until the

donor mass becomes too low to sustain hydrogen burning, and the donor starts to

become degenerate. Its response to further mass loss now becomes similar to that

of white dwarfs, an increase in radius. Under non-degenerate conditions, mass loss

to the high mass primary causes an expansion of the orbit, and an expansion of the

Roche lobe that causes a cessation of mass transfer, only for the aforementioned angular

momentum loss mechanisms to force the orbits to shrink and maintain sustained mass

transfer. However, with this degeneracy, the donor expands with mass loss because such

stars are no longer supported by the pressure of the gas but instead by the pressure

of degenerate electrons, causing a reduction in mass to lead to an expansion of the

radius (Lamers & Cassinelli, 1999). This allows the donor to maintain contact with its

Roche lobe allowing for steady mass transfer despite an expanding orbit (and expanding

lobe), without a requirement for angular momentum loss. Therefore, upon the onset of

degeneracy, the orbital period increases with time. Such systems are often referred to

as ‘period bouncers’.

As a consequence, CV evolutionary theory predicts the existence of a minimal orbital

period (e.g., Paczynski & Sienkiewicz 1983; Knigge et al. 2011) where, due to longer

evolutionary timescales of shorter period systems, a spike in the number of CVs should

be present around this minimum (or period spike). Theoretical estimates based on the

standard model of CV evolution that invoke the angular momentum loss mechanisms

described place the period minimum at around Pmin = 65 − 70 mins (Kolb & Baraffe,

1999; Howell et al., 2001). However, the observed minimum period/period spike occurs

at longer periods, with Gänsicke et al. (2009) finding a value in the range 80 < Porb < 86

mins with the aid of SDSS data thus implying an angular momentum loss in addition

to gravitational wave radiation at short periods.

The evolution of the system from this point leads to the end of the system’s time as a CV

(Hellier, 2001). At the minimum period, the donor will resemble a brown dwarf star with

a mass that will have dropped to only ∼ 0.06M⊙. As the orbital period increases again

the donor mass continues to decrease until at around 100 minutes, where its mass will

only be around 0.02M⊙. By this time the evolution has slowed and the mass transfer

rate falls to levels that make the binary faint and difficult to detect and ultimately we

end up with a Jupiter-like object orbiting a white dwarf. Alternatives to this endpoint

depend upon the donor and/or white dwarf mass and accretion rate. For example, a
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type Ia supernova may occur under conditions of a high mass white dwarf accreting at

high rates (Hillman et al., 2016; Kato & Hachisu, 2012); or the CV may evolve into

an ultracompact binary, where the donor transitions to transferring helium instead of

hydrogen (Podsiadlowski et al., 2003).

System parameters through evolutionary stages

These evolutionary stages lead to an estimated donor mass evolution from ∼ 0.6M⊙

at Porb ∼ 6 hrs to below ∼ 0.04M⊙; and a mass transfer rate transitioning from ∼

10−8M⊙yr
−1 to∼ 10−9M⊙yr

−1 above the period gap and from a few times 10−10M⊙yr
−1

to below ∼ 10−11M⊙yr
−1 below the gap (Knigge et al., 2011). Knigge et al. (2011) also

estimated that for a 0.6M⊙ donor where mass transfer was initiated at 6 hrs, the upper

edge of the period gap is reached after ∼ 2.4× 108 yr, evolution through the gap takes

0.4 Gyr, while the minimum period is reached after ∼ 2.6 Gyr. Beyond the period mini-

mum, the evolution is much slower such that longer evolutionary timescales are expected

(Howell et al., 2001).

2.4 CV classification structure

The above discussion on emission components and the formation and evolution of CVs

highlights the diversity of this transient class with systems lying somewhere on the

continuum of orbital periods, mass transfer rates, mass ratios, and donor spectral types.

The diversity is enhanced by the systems with a strongly magnetic white dwarf or

a donor that is degenerate/semi-degenerate and helium-rich, which will be discussed

shortly. The processes of mass transfer and orbital evolution under such a variety of

conditions give rise to a diverse set of observable characteristics/phenomena witnessed

in time series photometry and spectroscopy. Observational and subsequently derived

physical properties of these systems allow for the division of CVs into several classes

and sub-classes, which are often named after a prototype that is characteristic of its

class/sub-class. The following classification structure is usually adopted.

• Dwarf Nova: Display semi-regular short-duration (days to weeks) outbursts.

Main subclasses: U Gem, Z Cam, SU UMa;
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• Nova-like: High accretion rate CVs; no outbursts; VY Scl subtype observationally

distinct;

• Nova: Undergo thermonuclear eruptions with long (typically 104 − 105 yr) recur-

rence times

• AM CVn: ultra-compact (∼ 5 < Porb < 65 min) helium-rich CV

• Polar: Strongly magnetic WD; magnetically controlled accretion; accretion disk

formation suppressed;

• Intermediate Polar: mildly magnetic WD; partial accretion disk formation.

In the following subsections, I will provide a more detailed description of these classes/sub-

classes. My descriptions of observational phenomena will largely be confined to the op-

tical regime of the electromagnetic spectrum with an excursion to different wavelength

regimes where necessary to explain the underlying physics. This will be in keeping with

the wavelength regime that has been the focus of this research.

2.4.1 Dwarf novae

Dwarf novae (Warner, 1995; Hellier, 2001) show semi-regular brightenings, or outbursts

that are typically 2-5 magnitudes in amplitude, recurring on timescales of days to years.

Each outburst typically lasts a few days to a week, though longer durations are also

seen. The values of amplitude, recurrence times, and duration are characteristic of a

given system. Most outbursts have a rapid rise (several hours to a day) and a more

gradual decline, though more symmetric profiles can also be seen. A variety of outburst

profiles have been observed, as well as a variety of outbursting patterns, as shown in

Figures 2.10, 2.11, and 2.12. To explain such variety as well as the characteristics that

define dwarf nova subclasses, an understanding of the basic disk instability model is

required. The model is widely believed to explain the majority of outburst phenomena.

2.4.1.1 Disk Instability Model

Current models of dwarf nova outbursts are based on the disk instability model (DIM),

first proposed by Osaki (1974) and developed in the decades since (see Buat-Ménard



Chapter 2 Cataclysmic variables 24

Figure 2.10: Light curve of unfiltered observations of SS Cyg from AAVSO spanning
1 year. While overall the system displays a semi-regular pattern of outbursts, both
symmetric and non-symmetric dwarf nova outburst profiles may be seen. The rises are
either fast (∼ 2 days) or slow (∼ 8 days), while the declines are all ∼ 8 days long.

Plateaus are also present in 2 of the outbursts that last ∼ 10 days.

Figure 2.11: Light curve of unfiltered observations of Z Camelopardalis from AAVSO
spanning 1 year. The system displays periods of rapid outbursts interspersed with pe-
riods of relatively constant brightness a few tenths of a a magnitude lower in brightness

than max brightness (referred to as standstills).

Figure 2.12: Kepler Light curve of V1504 Cyg showing two outbursts of longer dura-
tion and larger brightness with regular outbursts in between.
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et al. 2001a and Hameury 2020 for detailed reviews and Hellier 2001 for a comprehen-

sive summary). According to the DIM, for a disk in a low-viscosity state, the rate of

mass transferred by the donor exceeds the rate of flow through the disk and onto the

white dwarf, causing a build-up of matter in the disk. The temperature increases as a

consequence, which leads to an increase in disk viscosity causing friction between adja-

cent annuli. In the Keplerian velocity structure, matter in outer annuli will be sped up

(increasing its angular momentum), while inner annuli matter will be slowed (reducing

its angular momentum). The outward travelling angular momentum causes the majority

of matter to fall inwards, though a proportion travels outwards to transport the angular

momentum. However, accretion disks are so diffuse that viscosity is too weak for such

a process, a mechanism that acts as disk viscosity is required.

Viscosity

In 1973, Shakura & Sunyaev (1973) proposed that turbulence within accretion disks

causes blobs of material to be transferred between adjacent annuli, transferring angular

momentum, thus acting as disk viscosity. To model the turbulent viscosity in accretion

disks, the alpha viscosity was introduced, defined as:

ν = αcsH (2.14)

where ν represents the viscosity, while the terms α, H, and cs, refer (respectively) to

a dimensionless parameter that defines the strength of the viscosity (number between

0 and 1), the disk scale height, and the local sound speed. The ‘alpha viscosity’ can

be combined with equations for gas dynamics to generate models of accretion disks (or

alpha disks). Such disks have heights much smaller than their radii; are slightly concave

— flared at the outer edges; and have a mass negligible compared to the central WD.

An alpha value of between ∼ 0.01 − 0.02 is expected in a cold disk during quiescence,

increasing to > 0.1 for a hot disk during a dwarf nova outburst (Frank et al., 2002).

This alpha approximation though gives no clue as to the origin of the turbulence which

creates the necessary viscosity.

Magnetic turbulence

Magnetohydrodynamic (MHD) instabilities are believed to be the origin of the turbu-

lence (Hawley & Balbus, 1998). Consider a weak vertical (perpendicular) magnetic field
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Figure 2.13: The figure from Hellier (2001) illustrates the growth of the Balbus
Hawley instability that is sequenced from left to right. Small kinks in the field (perpen-
dicular to the plane of the accretion disk) are amplified by differential matter flow. This
increases the strength of the field until a reconnection occurs to dissipate energy. Since
the ionised material follows the field lines, bubbles of gas are transported to different

radii.

within the disk; free charges within the ionised disk matter may flow along field lines

but cannot easily cross them, while field lines can be stretched by the motion of ionised

matter. A small radial kink in an otherwise vertical field will be subject to two opposing

forces: magnetic tension will act to straighten out the kink while the differential velocity

of matter in annuli on either side of the field line acts to stretch out the kink. Matter in

the annulus immediately inside of the field line (at a smaller radius) moves faster than

that within the annulus immediately outside the line. This stretches the kink in the line.

However, inner annulus matter is slowed by the field, loses angular momentum, and falls

to shorter radii, while the outer annulus matter is sped up by the field, increases in

angular momentum, and moves to larger radii. This stretches the magnetic field further

(making it stronger), thus enhancing the matter redistribution (or magnetic turbulence).

This process is referred to as the Balbus-Hawley instability that provides the necessary

viscosity. This situation is illustrated in Figure 2.13.

S Curve

When the accretion disk is hot, the material is readily ionised allowing particles to in-

teract with the magnetic field instigating the Balbus-Hawley instability and an outburst

state. The instability shuts down in cool, neutral disks, corresponding to a dwarf nova in

quiescence. The alternating between neutral (cool) and ionised states (hot) is required

for dwarf nova outbursts. The S Curve can be used to describe these transitions in terms

of a cycle describing a dwarf nova outburst. The S curve is a plot of disk surface density

Σ versus surface temperature Tsurf (Figure 2.14).

Quiescence corresponds to point A in Figure 2.14 - a cold, neutral, low-viscosity disc.

As matter piles up in the disk, the surface density increases. This increases particle
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Figure 2.14: The figure from Hellier (2001) shows the dwarf nova cycle plotted as
disk surface temperature T as a function of disk surface density Σsurf . The S-curve

forces the disk to follow the cycle from A ⇒ B ⇒ C ⇒ D ⇒ A.

interaction (or viscosity), which in turn raises the hydrogen-rich disk temperature to

around 7000 K. The temperature is sufficient to partially ionise the gas, boosting its

opacity. Free electrons can then combine with neutral hydrogen to create H- ions that

are particularly effective at absorbing photons. Any further increase in temperature

will now lead to a large increase in opacity. An increase in surface density drives this

increase in temperature and thus opacity and in turn a runaway temperature increase.

The timescale for heating is far shorter than that required for the viscous exchange

of matter such that the surface density remains roughly constant through this phase

as the temperature rises until the hydrogen is completely ionised, point C. This new

equilibrium state of higher luminosity due to increased temperature is maintained by the

higher inward flow of material driven by the increased viscosity of the ionised material.

This state is temporary as the rate of flow of matter through the disk now exceeds the

rate of matter arriving from the donor. Therefore, the surface density drops as does the

surface temperature resulting in the system moving to point D - the disk returns to a

partially ionised state. The high opacity now traps heat in the mid-plane rather than the

surface of the disc due to the decreased surface density. The disc surface temperature
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therefore plummets, the ions recombine, the viscosity drops, and the disc returns to a

cold quiescent state, point A. This cycle repeats itself on timescales largely governed

by the time taken for matter to build in the disk again - the rate of mass transfer. A

mathematical prescription of this process is provided within Hellier (2001).

Heating and cooling waves

The transition from quiescence to outburst state described above does not happen across

the whole disc in unison, rather, the process usually begins at a particular annulus. This

would be the annulus that first reaches point B in Figure 2.14 corresponding to a critical

surface density Σmax. The higher viscosity spreads hot material from this annulus to

adjacent annuli generating thermal instability throughout the disc in a domino effect.

This ‘heating wave’ spreads throughout the disc driving the system into outburst. Should

Σmax be met first in the inner disk, the heating wave propagates outwards, creating an

‘inside-out’ outburst (or type B outburst), whereas, if Σmax is met in the outer disk

first, the heating wave propagates inwards, creating an ‘outside-in’ outburst (Type A).

Type A outbursts usually result in an asymmetric outburst profile, with a rise more rapid

than the decline. This occurs because viscosity causes more material to flow inward than

outward, and annuli at larger radii have a higher surface density and volume of matter

compared to those at smaller radii. Combined, these factors enable the inward-running

heating wave to quickly overwhelm the next annulus, propagating rapidly through the

disk. Type B outbursts, on the other hand, tend to have a symmetric profile with a

slower rise rate. This is due to the same factors, which impede the outward-running

heating wave’s progress. The enhanced accretion rate drains material until Σ is reduced

to Σmin at some annulus, usually in the outer disk. This annulus falls out of outburst

instigating a cooling wave spreading inwards and placing the system into quiescence.

Outside-in outbursts occur if the time scale for matter accumulation at the outer disc

edge is shorter than the timescale for the viscous diffusion of matter to short radii, and

are therefore associated with high mass transfer rates. Type B outbursts are associated

with low mass transfer rates for the inverse of the reasons for type A outbursts. The

significance of the annuli at which the outburst is instigated is believed to determine

the shape of a dwarf nova outburst. This is explored in the following subsections on the

different classes of dwarf nova.
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2.4.1.2 Dwarf Nova: U Geminorum (U Gem)

U Gem dwarf novae (e.g., Figure 2.10) only display semi-regular dwarf nova outbursts.

These systems usually lie above the period gap (> 3.12 hrs) with mass transfer rates

≥ 10−9M⊙yr
−1. Estimates of typical outburst amplitudes, durations, and cycle lengths

(time between successive outbursts) of individual dwarf nova systems have been mea-

sured by Otulakowska-Hypka et al. (2016) based on available light curve data. Otulakowska-

Hypka et al. (2016) estimated the following properties for U Gem systems in their

dataset: optical amplitudes range from 1.25 to 6 magnitudes (although high orbital in-

clinations, where the disk is viewed closer to edge-on, may lead to underestimations);

recurrence periods vary between 5 days and 250 days; and the duration of outbursts

ranges from 2–3 days to 23 days.

2.4.1.3 Dwarf Nova: SU Ursae Majoris (SU UMa)

The SU UMa subclass of dwarf novae (see e.g., Warner 1995; Hellier 2001; Osaki & Kato

2013) are typically short orbital period systems residing below the period gap. In addi-

tion to the ‘normal’ outbursts exhibited by U Gem stars, they also exhibit especially long

outbursts called “superoutbursts” that are ∼ 1 mag brighter with a typical duration of

about two weeks in contrast to the several-day durations of the shorter normal outbursts

(Figure 2.15). The supercycle length (time between successive superoutbursts) of any

given system is always longer than its cycle length. Superoutbursts coincide with the

peak of an underlying modulation of the light curve, called superhumps, whose ampli-

tudes are on average a few tenths of a magnitude with periods a few percent longer than

the orbital period (Smak, 2010). The precession of an ellipticity in the disk, brought

about by tidal interactions with the donor star, as described by the tidal-thermal insta-

bility model (Whitehurst, 1988; Osaki, 1989), is the commonly accepted explanation for

superoutbursts and superhumps. Typical properties of individual SU UMa stars mea-

sured by Otulakowska-Hypka et al. (2016) are summarised as follows: normal outburst

amplitudes within the range of 1 and 6 magnitudes in the optical; cycle lengths within

the range of 4 and 398 days; superoutburst amplitudes between 1.5 and 7 magnitudes;

supercycle lengths between 50 and ∼2000 days; and superoutburst durations around 10

to 30 days.
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(a) VW HYi

(b) V1504 Cyg

Figure 2.15: (A) Light curve of the SU UMa type dwarf nova VW HYi showing both
normal and superoutbursts. Data taken from the Royal Astronomical Society of New

Zealand. (B) Kepler light curve of V1504 Cyg (Osaki & Kato, 2013).

SU UMa subclass: ER UMa

SU UMa systems with very short supercycle lengths are referred to as ER UMa stars.

They have extremely high outburst frequencies (3-4 day outburst cycle), supercycle

lengths between 19 and 48 days, and the presence of superhumps (Kato et al., 2013).

Based on only 11 systems, Smak (2010) found normal outburst amplitudes lie between

1 and 3 magnitudes with recurrence times between 2.8 and 5.6 days; superoutburst

amplitudes between 2 and 4 magnitudes with recurrence times between 17.8 and 80

days; normal outburst amplitudes lie between 1.5 and 3.2 magnitudes; superoutbursts

between 2 and 4 magnitudes; outbursts duration of normal outburst within 1 and 4 days;

and superoutburst duration between 10 and 30 days.
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Figure 2.16: VSNET optical light curve of WZ Sge’s 2001 superoutburst (Georganti
et al., 2022). Three different regions are highlighted: the plateau (yellow), the dip

(orange), and the echo-outburst phase (green).

SU UMa subclass: WZ Sagittae

The WZ Sge subclass (see Kato 2015 for an extensive review) have supercycle lengths

of order years, where observations reveal a median of 11.5 years and a majority below

40 years. Other defining characteristics are: the absence of normal outbursts; large

amplitude outbursts (typically ∼ 8 magnitudes) at least greater than 6 magnitudes;

slow declines from superoutbursts (weeks as opposed to days); in addition to ‘normal’

superhumps, double-wave modulations at the orbital period that last at least several

days during the early stage of the outburst - referred to early superhumps; and the

presence of multiple rebrightenings on the fading tail of the superoutbursts have been

considered supporting evidence. A light curve of WZ Sge is provided in Figure 2.16.

Most systems have orbital periods shorter than ∼86 minutes and comprise the ‘period

minimum spike’ distribution of CVs (Gänsicke et al., 2009) between 80 and 86 minutes.

These have very low accretion activity owing to brown dwarf donors.
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Figure 2.17: Light curve of Z Cam formed with AAVSO visual band data

2.4.1.4 Dwarf Nova: Z Camelopardalis (Z Cam)

Z Cam-type dwarf novae (Simonsen et al., 2014) are characterised by periods of outburst

activity with short cycle lengths, spending little time in quiescence (Figure 2.17). These

periods are interrupted by standstills (instigated by an outburst), where the system

maintains a brightness between outburst maximum and quiescent minimum for days to

weeks. Standstills end by returning to quiescence on a timescale of order the decline

rate of the outbursts. Otulakowska-Hypka et al. (2016) and Simonsen et al. (2014) find

typical cycle lengths are between ∼5 and ∼56 days; outburst amplitudes are generally

lower than SU UMa and U Gem systems, within a range of 2.3 and 4.9 magnitudes; and

outburst durations between 2.5 and 25 days are seen, with a majority shorter than 15

days. Furthermore, the orbital period distribution of Z Cam systems shows they reside

above the period gap with a range of 3.1–8.4 hours (Simonsen et al., 2014), the average

is around 5.3 hours.

To explain the standstill phenomenon, one may refer to a critical mass transfer rate (see

e.g., Dubus et al. 2018) that is a function of the orbital period. Above this critical rate,

the accretion disk is hot and stable (in a high state). In contrast, below this rate, the disk

is cool and unstable to dwarf nova outbursts whereby a low state is present most of the

time but interrupted by brief excursions into a high state (dwarf nova outburst). Figure

2.18 shows the stability criterion marked by the red line. Z Cams tend to possess mass

transfer rates higher than other dwarf novae and are expected to lie close to this stability

limit (Meyer & Meyer-Hofmeister, 1983; Buat-Ménard et al., 2001b). The standstills are

thought to be due to fluctuations of the mass transfer rate of 10-30% bringing it very
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Figure 2.18: Mass transfer rates of CVs compared to stability criterion. Systems
above the (red) upper solid line are hot and stable while systems below the lower (blue)
line indicate cold, stable disks. Square symbols indicate Z Cam systems; (red) stars
indicate nova-likes (discussed shortly). Z Cams tend to lie close to the red line (Dubus

et al., 2018).

close to or above the stability limit; the origin of the mass transfer rate variations is

uncertain.

2.4.2 Nova-likes

Nova-like systems (Warner, 1995; Meyer & Meyer-Hofmeister, 1984; King & Cannizzo,

1998) are characterised by high mass transfer rates and are typically found above the

period gap. Nova-likes, U Gems and Z Cams seem to overlap in orbital period ranges,

implying that mass transfer rates can vary significantly for different systems with similar

orbital periods. Apart from the VY Scuptoris subclass, nova-like systems show little

photometric variability in comparison to all other CV types. They typically exhibit

no outburst activity, varying only slightly about their mean level unless the system

inclination is sufficiently high to generate an eclipse. For a given orbital period their

mass transfer rates are sufficiently high to allow the disk to be maintained in a high
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state - or permanent outburst state (see Figure 2.18 for the location of these systems

with respect to the critical mass transfer rate). According to the definition of Warner

(1995), nova-likes include all non-eruptive CVs, so conceivably they could include pre

and post-novae (see subsection 2.4.5) or Z Cams in standstill, where our observational

timeline is too short to reveal any outburst. Magnetic CV types (Section 2.4.4) are

sometimes included with nova-likes, but are usually treated separately.

There exist subtypes of nova-likes: SW Sextantis stars have the highest mass transfer

rates, and along with the UX Ursae Majoris and RW Trianguli subclasses may only be

spectroscopically distinguished. VY Scultoris (VY Scl) systems are the only subclass

photometrically distinguishable from the others. Therefore, the remainder of this sub-

section is focused on them due to the focus of my research on automated classification

based on photometric variability.

The VY Scl subclass appears mostly above the period gap, at the 3–4 hours range.

They display pronounced low states with depths up to (and occasionally exceeding) 5

magnitudes that interrupt high states at irregular intervals (Honeycutt & Kafka, 2004).

The transition from high to low state usually occurs on timescales of weeks to months.

The low states are believed to be caused by a temporary reduction or cessation of mass

transfer from the donor. While low states also occur in strongly magnetic CVs, I restrict

the use of ‘VY Scl’ to non-magnetic CVs. A possible cause of such states, put forward

by Livio & Pringle (1994) is the migration of a star spot or multiple star spots on the

donor to a region directly underneath the inner Lagrangian point (L1) that connects

the binary components; this theory is currently believed the most viable (Honeycutt &

Kafka, 2004). Figure 2.19 shows the light curves of VY Scl systems MV Lyr and TT

Ari (Leach et al., 1999). Both display clear low state excursions; in MV Lyr, the low

state is ∼4–5 magnitudes lower than the high state, while in TT Ari the low state is ∼6

magnitudes fainter than the high state.

2.4.3 AM Canum Venaticorum (AM CVn)

The AM Canum Venaticorum stars (Solheim, 2010; Levitan et al., 2015) are ultra-short

period (5-65 minutes) binaries where the donor star is of mostly helium composition.

They remain rare, with 56 known systems reported during the last review (Ramsay

et al., 2018), and recent discoveries (e.g., van Roestel et al. 2021, 2022) increasing the
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(a) MV Lyr (b) TT Ari

Figure 2.19: Light curves of VY Scl type nova-likes (A) MV Lyr and (B) TT Ari.

number of published systems to approximately 80 (a small fraction of the thousands of

CVs currently discovered, e.g., Breedt et al. 2014). The donor composition is uncertain

but theorised to be either another white dwarf of lower mass, a stripped semi-degenerate

helium star, or an evolved CV donor. They are characterised by their blue colour, due

to the accreting WD dominating the flux contribution over an extremely low mass donor

(within Gaia DR3; Gaia-Collaboration et al. 2022) the BP-RP colour is typically less

than 0.6). Strong helium emission and the absence of hydrogen within their spectra are

a key property.

2.4.3.1 Formation and evolution

The formation of AM CVn differs slightly from that of hydrogen CVs. Three possible

channels exist for the evolution of the donor in an AM CVn, with the relative impor-

tance of each rather uncertain. One possibility is another WD of lower mass, rich in

helium (Paczyński, 1967; Faulkner et al., 1972). Another is a helium star donor (Iben

& Tutukov, 1987). The final scenario is the remnant of a low-mass main sequence star

that has lost most of its hydrogen during its life as an ordinary CV (Podsiadlowski

et al., 2003). Initially, all involve a close main sequence binary going through one or

more common envelope phases as the stars evolve off the main sequence. Figure 2.20

is a schematic representation of possible pathways to becoming an AM CVn (Solheim,

2010).
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Figure 2.20: The possible evolutionary pathways in AM CVn stars from close binaries
to supernova explosions or a cooling white dwarf with a companion (Solheim, 2010).
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We begin with two main sequence stars, each with masses low enough to develop WD

cores. The more massive star (primary) will be the first to evolve into a giant (or su-

pergiant), and should the binary separation be short enough, the first common envelope

(CE) phase will be established. This phase draws the binary closer together. Following

the CE phase, the primary will emerge as a white dwarf with a helium or carbon core.

It is from here we explore the three pathways.

For a white dwarf donor, the eventual donor mass after the first CE phase should be

M2 ≤ 2.3M⊙. Then following its evolution to a giant and through the second CE phase

it will emerge as a helium white dwarf and make up the subset of double white dwarf

AM CVns (Paczyński, 1967; Faulkner et al., 1972); this is shown as the left branch of

the Figure 2.20. Once gravitational wave (GW) radiation has shrunk the orbits to a

minimum of around 5 minutes, the less massive WD will begin to transfer mass via

Roche lobe overflow. Shortly after the start of mass transfer, the orbital evolution will

reverse, causing the binary separation to increase. The binary is most likely observed

after the orbital period minimum.

The helium star channel is much the same as for the double white-dwarf channel except

that the secondary emerging from the first CE phase and causing the second CE phase

is more massive 2.3M⊙ ≤ M2 ≤ 5M⊙, and goes on to become a helium star donor

(Savonije et al., 1986; Iben & Tutukov, 1987) rather than another WD. This is shown as

the right branch of Figure 2.20. Donor helium burning begins shortly after the second

CE phase. Mass transfer begins once GW radiation has brought the systems close

enough together, usually around Porb ∼ 10 minutes, soon after which the orbital period

increases. The helium star will become increasingly degenerate as it evolves to longer

periods.

For an evolved donor (Podsiadlowski et al., 2003) a second CE phase (involving the

secondary) does not occur, but the donor fills its Roche lobe and begins mass transfer

near the end of its main sequence lifetime (terminal age main sequence or TAMS).

Therefore, they appear as CVs with evolved donors in their early evolution. Magnetic

braking brings the system to ultrashort periods dependent on when mass transfer begins

in relation to the TAMS. Systems which evolve this way may be observed either before

or after the minimum period is reached (between 5 and 70 minutes). These donors are
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initially assumed to have some hydrogen on their surface, though become increasingly

degenerate and helium-rich.

Mass transfer in AM CVn systems is expected to continue until one component becomes

a dark sub-stellar object, though a type Ia or .Ia supernova may be another possible

endpoint should the accreting WD reach the Chandrasekhar mass.

2.4.3.2 Photometric behaviour

As with hydrogen CVs, the photometric behaviour of AM CVns tends to be governed

by the mass transfer rate, which is a strong function of the orbital period (Cannizzo &

Nelemans, 2015; Solheim, 2010; van Roestel et al., 2021). At orbital periods, Porb < 10

minutes, high mass transfer rates are present, and the accretion stream directly impacts

the accreting white dwarf — so no accretion disk is present. They can be detected

through their X-ray emission modulating at the orbital period (e.g., in HM Cnc Roelofs

et al. 2010). An accretion disk may form for systems with slightly longer periods (∼

10 < Porb <∼ 22 minutes). Mass transfer rates are high enough to sustain the disk in

a constant high state (Green et al., 2018). At intermediate periods (22 ≲ Porb ≲ 45

minutes), the accretion disk is unstable to the kind of outbursts and superoutbursts

present in hydrogen CVs (van Roestel et al., 2021). As the orbital period increases within

this range, outburst recurrence times increase exponentially, while the luminosity of the

disk decreases (Levitan et al., 2015; Nelemans et al., 2004). At Porb > 45 minutes the

mass transfer rate is so low that the accretion disk is cool, optically thin, and outbursts

are rare.

Kato & Kojiguchi (2021) defined a set of photometric variability criteria/characteristics

by which one may identify a system as an outbursting AM CVn (these criteria are by

no means strict).

• Rapid fading in any part of the light curve (more than 1.5 magnitudes/day);

• Short duration superoutbursts of usually 5-6 days (in hydrogen CVs this is typically

greater than 10 days);

• superoutburst amplitudes of 4-6 magnitudes (generally lower than in hydrogen

CVs due to smaller disk);
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• Double superoutburst where a rapid fading after the first outburst is a signature

of an AM CVn and worth observing for a second superoutburst;

• Emergence of superhumps following second superoutburst if present;

• long fading tail after superoutbursts (100-200 days);

• multiple rebrightening events on the fading tail;

• rebrightenings show a rapid decline with a rate of more than 2 mags per day;

• lack of red excess during this fading tail;

• strong UV excess, or blue colour in quiescence;

• faint absolute magnitude (significantly fainter than +4) of outburst is a sign of an

AM CVn-type superoutburst.

Figure 2.21 shows a selection of AM CVn outbursts for a variety of systems.

2.4.4 Magnetic CVs

2.4.4.1 Magnetically controlled accretion

In around ∼ 25% of CVs, the magnetic field of the WD is strong enough to affect the

motion of the charged particles within the accretion stream arriving from the donor.

As described by Hellier (2001), at large distances from the WD the kinetic energy of

the stream exceeds that associated with its interaction with the field. Matter within

the stream will continue its trajectory unaffected by the field (dragging the field along

with it). Close to the WD, the energy of the matter-field interaction exceeds the kinetic

energy of the matter stream. The charged particles will be diverted out of the orbital

plane and be forced to spiral around and move along the field lines to the white dwarf

surface.

Since the strength of the magnetic field declines with distance from the white dwarf,

there is a transition region/radius between the two scenarios. This transition may be

referred to as the magnetospheric boundary within which matter is forced to follow

the field lines in corotation with the WD and eventually impact the WD surface at or
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(a) ASASSN20eq (b) ASASSN20gx

(c) ASASSN20jt (d) ASASSN20ke

(e) ASASSN20la (f) ASASSN20lr

Figure 2.21: Light curve of several AM CVns during outburst (Kato & Kojiguchi,
2021).

near one or both of the WD poles. The strength of the boundary is aided by magnetic

screening, where it induces a current in the plasma that counteracts the effect of the

field, screening the field from matter further out that is unaffected by the field.

The spin period of the WD tends to adjust itself to match the circular Keplerian velocity

of the matter just outside the magnetosphere. This marks an equilibrium situation where

there will be no large jump in velocity at the boundary. As a consequence, the lowest

field WDs have the smallest magnetospheres and the shortest spin periods, while the

highest field WDs will have the largest magnetospheres with spin periods matching the

slowest moving regions of the binary. Since diverting the stream out of the plane of the

orbit requires energy, the WD magnetic axis will tend to align itself with the direction

from which the stream is coming. Polarisation of the light from polars can be used to

deduce the orientation of the magnetic axis with respect to the spin axis.
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Figure 2.22: Schematic of a Polar CV from Cropper (1990)

2.4.4.2 Polars

Physical properties

Where the WD possesses a strong magnetic field, B > 10MG, the radius of the magne-

tospheric boundary is larger than the circularisation radius - the radius of a Keplerian

orbit with the same angular momentum as the accretion stream at the L1 point (Frank

et al., 2002). Consequently, the formation of an accretion disk is completely inhibited,

instead, the accretion stream is directed out of the orbital plane and follows the magnetic

field lines directly onto one or both of the WD’s magnetic poles. Referred to as polars,

or AM Herculis stars (Cropper, 1990; Thorstensen et al., 2020), the WD rotates syn-

chronously with the orbital period causing the accretion flow to always interact with the

same field lines (see Figure 2.22). Polars get their name from the linearly and circularly

polarised light they produce. This polarisation can be used to deduce the geometry of

the accretion (Hellier, 2001). The majority of polars exist below the period gap, though

generally, they lie within the period range of 80 minutes to 4 hours (Thorstensen et al.,

2020).

Photometric properties

As the matter stream impacts the white dwarf surface at ∼ 3000 km/s, an accretion

column forms that extends to 0.1RWD above the WD surface. Both soft and hard X-

ray emission are generated in this region, with the majority being soft X-rays. These
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originate from dense blobs of matter that plunge deeply into the white dwarf’s surface.

Their kinetic energy is absorbed by the white dwarf and subsequently percolates to the

surface, emerging as blackbody radiation at a temperature of 200,000 K (Cropper, 1990).

As the accretion spot/column comes in and out of view during the system orbit, the

emission may be observed to vary at the orbital period (Hellier, 2001; Thorstensen et al.,

2020). The obscuration of the accretion flow or spot behind the limb of the WD and/or

donor star can also lead to optical variability on similar timescales (Thorstensen et al.,

2020). Polars are also characterised by long-term variations in the total brightness,

where they switch between high and low states. AM Her shows a mixture of long and

short, low and high states. Low states can last several days to months, while high states

may last several months to years with no obvious pattern. This kind of behaviour is

evident in many polars with brightness ranges of several magnitudes (Sun et al., 2021;

Kalomeni, 2012) (see Figure 2.23). Due to the absence of an accretion disk, the cause

of low states in polars has been attributed to a suppression of mass outflow from the

donor. Mechanisms put forward to account for this suppression include: a change in the

topology of the magnetic field at the L1 point set by the WD and donor (Wu & Kiss,

2008); the migration of star spots underneath the L1 Lagrangian point (Livio & Pringle,

1994); and an interaction between the fields of the donor and WD in the presence of

starspots (Duffy et al., 2022).

2.4.4.3 Intermediate Polars

Intermediate polars (or DQ Herculis stars; Patterson 1994; Ramsay et al. 2008) represent

the intermediary between polars and non-magnetic CVs with magnetic field strengths

of between 1 and 10 MG. The radius of the magnetospheric boundary is believed to

be smaller than the circularisation radius, therefore a partial accretion disk may form

with the inner disk truncated by magnetically controlled accretion (see Figure 2.24).

The field strengths of the WD are insufficient to cause synchronous rotation, with spin

periods typically within the range 0.01Porb < Pspin < 0.1Porb (de Martino et al., 2020).

Intermediate polars mostly lie above the period gap, with the majority of sources residing

at 3–6 hours. Intermediate polars tend to produce harder (more energetic) X-rays than

their polar counterparts. This emission is due to accreting material being channelled

onto the magnetic polar regions of the white dwarf, where a strong shock develops. The

resulting hot post-shock gas cools via thermal bremsstrahlung radiation as it settles onto
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Figure 2.23: Light curves of four polar CVs taken with ZTF data coloured red and
black to denote r and g band photometry, respectively (Duffy et al., 2022). (a) AM
Her with both long and short-duration states, (b) SDSSJ154104 + 360252 shows only
long-duration state changes, (c) MT Dra shows only short-duration state changes, and

(d) AP CrB shows only short-duration state changes to a higher state.

the white dwarf surface, producing the observed hard X-rays (Patterson, 1994; Anzolin

et al., 2008).

Misalignment between the magnetic and spin axes of the WD causes the strength of the

magnetic field at a given radius to vary with the spin cycle. The material flowing to the

upper pole is picked up from the region of the disk to which it points, while the material

flowing to the lower pole is picked up from the opposite side of the disk (see figure 2.25).

Accretion onto both poles creates a fundamental difference between intermediate polars

and polars. For a two-pole accretor, when accretion onto one pole is obscured, accretion

onto the other will be visible such that the X-ray flux never reaches zero.

Photometric variability

Light curves may contain multiple short timescale periodicities due to the orbital period,

spin period of the WD and the beat period between the spin and orbital period. A major

contributing factor stems from disk material being fed onto multiple field lines covering

a range of azimuth angles. Our changing view of the curtains of matter lifted out of the

orbital plane, can produce modulations from X-ray to the optical (Rosen et al., 1988).
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Figure 2.24: Schematic diagram of an intermediate polar (Giovannelli, 2008)

Figure 2.25: The pattern of field lines leading from the inner edge of the disk to the
white dwarf (Hellier, 2001).
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Figure 2.26: Optical light curve of GK Per over the years 1970–2000. Upper limits of
brightness are represented by the v symbols; empty circles mark the maxima of three

outbursts that fall in data gaps (see Šimon 2002 for details).

Figure 2.27: Light curve of V1223 Sgr (data from AAVSO). The unfiltered visual
magnitude with the Bessel V zeropoint, CV, is shown in blue; the red points show the
unfiltered red magnitude CR with Bessel R zeropoint plus 0.3 (Hameury et al., 2022).

According to the application of the DIM to intermediate polars, dwarf nova outbursts

should still be possible despite the truncation of the inner accretion disk (Hameury &

Lasota, 2017). GK Per, for example, has been observed to undergo ‘normal’ outbursts

recurring every ∼ 3 years, with an amplitude of 2–3 magnitudes and durations of 50–60

days (Figure 2.26) (Šimon, 2002). In general, dwarf nova outbursts are not a common

feature among IPs (Hameury & Lasota, 2017), however, some IPs display short outbursts

(several hours) that cannot be explained by the DIM. For example, for ∼ 6 months in

2020, V1223 Sgr underwent a series of outbursts each with a typical duration of several

hours and a ∼ 6 day recurrence period (Figure 2.27), which Hameury et al. (2022)

attributed to the magnetic–gating instability model proposed by Spruit & Ronald (1993).

The model describes a repeating cycle in which material accumulates at the disk’s inner

edge, where the centrifugal barrier created by the WD magnetic field prevents accretion

onto the star. As the surface density increases, the material overcomes the barrier and

accretes onto the star.
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(a) DW Cnc (b) RX J2133.7+5107

Figure 2.28: (A) AAVSO light curve of DW Cnc from 2015 to 2021 taken in a clear
filter mapped onto the V band (CV). Decline to low-state began around MJD ∼ 58080,
before reaching its lowest flux (CV ∼ 17.5) around MJD ∼ 58400. Rise began soon
after, recovering to its typical flux (CV ∼ 15.5) by MJD ∼ 58850. (B) AAVSO light
curve of RX J2133.7+5107 from 2010 to 2021. The inset is an ASAS-SN band light
curve from 2020 to 2021 with two short-lived drops in flux. The colours represent the

different epochs used for timing analysis. From Covington et al. (2022)

.

A more prevalent feature of intermediate polars is the presence of transitions from an

average (or high) brightness state to a low state that may last weeks to years with depths

of 0.5 magnitudes or more. Such state transitions are less common than in polars (Cov-

ington et al., 2022; Šimon, 2021). As with polars, the temporary reduction/cessation of

mass transfer due to star spot migration is the most popular theory (Livio & Pringle,

1994). Observed changes in the X-ray and optical light curve periodicities during low

states have led to proposals that systems may switch from the typical disk-fed accretion

to either purely stream-fed, where the accretion stream flows directly onto the WD mag-

netosphere (Hellier & Beardmore, 2002), or simultaneous stream and disk-fed accretion

(Hellier, 1993) onto the WD (Covington et al., 2022). Figure 2.28 shows examples of

systems entering low states of different durations.

2.4.5 Novae

Novae are modelled as thermonuclear runaway events within the accreted layer of hy-

drogen on the WD surface (e.g., Bode & Evans 2008; Munari 2012; Chomiuk et al.

2020; Darnley & Henze 2020), they produce a sudden high amplitude (8–15 magnitudes

typically) increase in optical brightness with a long duration decline (weeks to years).

Typically, the donor is a late-type main sequence star, though there is a small group
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where the donor may be more evolved, e.g., a sub-giant or red giant, and magnetically

controlled accretion plays a role (Darnley et al., 2012). Novae are inherently recurrent

with recurrence times largely dependent on the WD mass and donor mass transfer rate.

Novae may be grouped by recurrence times. Recurrent novae (RNe) have been observed

to undergo more than one nova eruption, with recurrence times below 100 years, while

classical novae have only been observed to undergo a single eruption with recurrence

time extending up to 100,000 years.

2.4.5.1 The nova eruption

As hydrogen-rich material accumulates on the surface of the WD, it instantaneously

becomes electron degenerate due to the compression caused by the strong WD gravity.

As the envelope thickens, the conditions of temperature and pressure at its base will

reach values sufficient to initiate hydrogen burning first via the proton-proton chain

and then via the CNO cycle whose energy generation rate is extremely sensitive to

temperature ϵCNO ∝ T 18. The burning heats the layer, however, it cannot react by

expanding because of the decoupling of temperature from pressure under degenerate

conditions. Consequently, an increase in temperature leads to an increase in the nuclear

energy generation rate, which in turn leads to an exponential increase in the temperature

of the envelope in what is referred to as thermonuclear runaway or TNR.

On a timescale of order seconds to a minute, temperatures reach and exceed ∼ 7×107K,

enabling degeneracy to be lifted. The subsequent recoupling of temperature and pressure

causes a violent expansion and cooling of the envelope (Starrfield et al., 2016; Jose,

2016). This causes the envelope to become optically thick generating continuum emission

initially observable as a short, bright, soft X-ray flash before the peak of the spectral

energy distribution shifts from UV to the optical (Kato & Kojiguchi, 2021). The envelope

comprises ejecta with escape velocity and a remainder that recedes back to the WD.

The peak of optical emission occurs when together they have the largest radius, after

which the ejecta continues to expand becoming optically thin and decouples from the

remaining photosphere, which recedes back to the WD. The clearing view of the receding

photosphere causes the peak of the spectral energy distribution to shift back from the

optical to higher energies. If the ejecta become transparent before the shell nuclear

burning has ceased, the super-soft X-rays source (SSS) may be revealed (Hachisu et al.,
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Figure 2.29: Morphology of an optical light curve of a typical nova (Bode & Evans,
2008).

2006; Krautter, 2008), a phase that may continue for weeks to decades (Henze et al.,

2014; Kato & Hachisu, 2020).

2.4.5.2 Photometric behaviour

A schematic diagram for a nova is shown in Figure 2.29. After an initial rapid rise (a

few hours to a day) to peak, nova light curves are well described by a broken power law,

where a rapid decline is followed by one that is more gradual. Peak absolute magnitudes

can be anything within the range of −10 < MV < −5 (Shafter, 2017; Özdönmez et al.,

2018). One much-used measure of a light curve’s properties is the time it takes to decline

by 2 or 3 magnitudes (t2 or t3) from peak with values that can range from t2 < 10 days

to t2 = 150−200 days for the very fast and very slow speed classes, respectively (Shafter,

1997; Burlak & Henden, 2008; Payne-Gaposchkin, 1964).

A more detailed look at the light curves reveals an initial rise to within 1-2 magnitudes of

the nova’s maximum luminosity. This is followed by a pre-maximum halt that may last

several hours to several days (Hounsell et al., 2016). The light curve will then quickly

rise to its maximum with amplitudes typically in the range of 8–15 magnitudes in the

optical. The speed class will determine the duration of maximum light, which can be
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between hours and days. Following maximum, fast novae show an early decline, while

slow novae may show some oscillations. Some may experience a large dip in the light

curve due to dust formation in the ejecta that absorbs optical emission and re-emits in

the infrared. Comparison of optical and infrared light curves during this time will show

an anti-correlation. A catalogue of 93 well-observed novae (almost all V band) light

curves from the AAVSO is presented in Strope et al. (2010), which explains an array of

light curve shapes that deviate from a picture of a gradual decline from peak (see Figure

2.30). Of the 93 analysed, 38% followed the smooth declines (e.g. CP Lac, V1668 Cyg,

V2275 Cyg) one would expect from the simple light curve model, the remainder showed

post-peak features such as:

• Plateus - smooth decline interrupted by a long-lasting nearly flat interval followed

by a steeper decline, e.g. V633 Sgr, CP Pup, and RS Orph (21%);

• Dust dips - decline interrupted by sharp dip and recovery to just below the original

decline, e.g., DQ Her, FH Ser, V705 Cas (18%);

• Cusp-shaped secondary maxima - secondary maxima with steepening rise then

steep decline, e.g., V2362 Cyg, V1493 Aql, V2491 Cyg (1%);

• Quasi-sinusoidal oscillations superimposed on otherwise smooth decline, e.g., V603,

GK Per, GK Per, V1494 Aql (4%);

• Flat-topped LCs - smooth light curve with an extended interval at the peak with

near constant brightness, e.g., DO Aql, V849 Oph, BT Mon (2%);

• Jitters/flares superposed on the decline — substantial short duration variability

brightenings, e.g., DK Lac, HR Del, V723 Cas (16%). Apart from dust-dips, most

of the other features lack strong theoretical explanations.

2.5 Spectroscopic properties of CVs

The optical spectra of dwarf nova systems in quiescence will exhibit strong/broad Balmer

emission lines originating from an optically thin accretion disk. Less prominent lines of

neutral and singly ionised helium may also be present along with further quiescent
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Figure 2.30: Examples of nova light curves displaying differences in their post-peak
profiles. These differences have allowed nova light curves to be grouped into different

categories (see Strope et al. 2010).
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(a) AC LMi quiescent spectrum

(b) U Gem outburst spectrum

Figure 2.31: Dwarf novae spectra during quiescence and outburst. Spectral lines are
marked by different colours for each element, these include HI, HeI, HeII, FeII and OI.

characteristics (Hou et al., 2020). These include: Hβ emission at least ∼twice as strong

as HeII λ4686; weak or blended CIII/NIII λ4650; and the presence of Fe emission lines

such as FeII λ5169, λ5317, and λ4924 blending with HeI λ4922. During outburst,

absorption lines of Balmer lines and HeI λ4471 with similar widths as in quiescence, as

well as He II λ4686 in emission is present. Narrow emission cores can appear within

the broad absorption lines which may indicate a decline from an outburst or a CV

system with low disk contribution with emission from the underlying stars producing

the luminosity. Figure 2.31 provides an example of a dwarf nova in quiescence and

outburst.

Higher excitation conditions are present in nova-likes than in dwarf novae such that HeII

λ4686 and CIII/NIII λ4650 features are relatively stronger, and the HeII λ4686/Hβ

emission ratio may exceed unity (Warner, 1995; Hou et al., 2020). Apart from FeII

emission which is rarely seen, many of the optical lines displayed by dwarf novae are

also present for nova-likes, with a few additional weak lines of OII, SiII, CII, and CIV.

Some nova-likes may display absorption line spectra, these are usually the UX UMa

subtype.
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Figure 2.32: Mean spectrum of Gaia18aya from 2018 September and November, with
the prominent cyclotron hump at ∼ 5500 Å. The characteristic Balmer and HeI and

HeII emission lines are present.

The optical spectra of AM CVn stars tend to be dominated by helium emission dur-

ing quiescence and helium absorption during outburst, showing little trace of hydrogen

(Solheim, 2010).

The spectra of polars show strong Balmer, HeI and HeII emission along with strong

HeII λ4686A emission comparable to Hβ (Thorstensen et al., 2020). The motion of

particles in the accretion stream around the field lines produces cyclotron emission at the

cyclotron frequency and harmonics thereof. Variations in the strength of the magnetic

field with position and time cause cyclotron frequency variation about some fundamental

frequency. The cyclotron emission therefore varies about this fundamental frequency and

harmonics thereof. This may be seen in the spectra of some polars as cyclotron humps,

the presence of which may be used to deduce the strength of the magnetic field (Hellier,

2001) (see Figure 2.32).

The spectral lines of intermediate polars generally resemble polars (Warner, 1995; Hou

et al., 2020). Aside from the usual Balmer emission lines, prominent lines of HeI, HeII,

and the CIII/NIII λ4650 blend will be present. The strength ratio Hβ/HeII λ4686 can

be used to separate intermediate polars from polars. For polars, these two lines are

comparable in strength, while for intermediate polars, HeII λ4686 is generally slightly

weaker than Hβ.

All novae show Balmer lines. There are two distinct types of nova spectra (seen during

the rise and early decline): FeII spectra show numerous singularly ionised iron lines
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Figure 2.33: The optical evolution of nova V906 Car (a) the optical (R-band) light
curve, (b) optical spectra, and (c) close-ups detailing spectra around the Hα line. Panel
(b) is split into three subpanels, i, ii, and iii, marking 5 days before light curve maxi-
mum (peak), 3 days after peak, and more than a year after maximum. (b,i) shows a
photospheric spectrum with relatively narrow P Cygni profiles.(b,ii) shows the strength-
ening and broadening of emission lines, with absorption components from the previous
spectrum still superimposed on the emission lines. (b,iii) shows a nebular spectrum
dominated by high-excitation and forbidden emission lines. Panel (c) is split similarly

(Chomiuk et al., 2020).

with velocities < 2500 km/s, believed to have formed because the ejecta have ploughed

into the secondary/circumbinary material; He/N spectra display HeI/II and NIII lines

with velocities > 2500 km/s which occurs due to unimpeded ejecta. Nova spectra make

the transition from being absorption line-dominated to emission line-dominated as the

ejecta make the transition from being optically thick to optically thin. P Cygni profiles

are present as the system rises to optical maximum (Chomiuk et al., 2020). An example

of the optical evolution of FeII type nova V906 Car is provided in Figure 2.33.

2.6 Examples of active research areas

2.6.1 Disk Instability Model

The research into CVs has led to a significant advancement in our understanding of

binary evolution and mass transfer, and has opened the door to many interesting areas of

research. For example, the DIM, and variants thereof, help explain dwarf nova outburst

diversity. Adjustments to the model even provide a possible explanation for outbursts in
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a subclass of low-mass X-ray binaries — soft X-ray transients — that consist of a neutron

star accreting from a low-mass main sequence companion (Hameury, 2020). However,

despite its successes, a satisfactory variant of the DIM has yet to be found to explain

the outburst profiles of WZ Sge systems (Kato, 2015) or the diverse outburst behaviour

seen in AM CVns (e.g., Rivera Sandoval et al. 2022; Duffy et al. 2021). In the latter

case, Duffy et al. (2021) studied systems with 22.5 ≤ Porb ≤ 26.8 minutes and found

that AM CVns deviated from the expectation that systems with similar orbital periods

exhibit similar outburst activity. They proposed that the uncertain nature of the donor

star or the formation channel is a major contributing factor (another important research

avenue).

2.6.2 Mass Growth in White Dwarfs

On the topic of CV evolution, specifically type Ia supernova progenitors, the validity of

the single degenerate pathway hinges on whether the white dwarf will eject less mass

than is accreted at the end of each nova cycle (time between successive nova eruptions),

and subsequently grow to the Chandrasekhar mass limit (1.4M⊙). Many such studies

have been undertaken to ascertain the possibility of WD mass growth with recurrent

novae seen as strong candidate type Ia progenitors, these are described as possessing high

mass WDs accreting at high rates. Work by Kato et al. (2015) supports the possibility of

one such system, M31N 2008-12a (or ‘12a’; Darnley et al. 2016, 2015) as a Ia progenitor.

Kato et al. (2015) calculated the supersoft X-ray source (SSS) phase duration for several

white dwarf masses under the condition of a 1-year recurrence period (that of ‘12a’). The

SSS phase is the period under which the ejecta from the eruption becomes optically thin

allowing us to see the supersoft X-ray emission from the steady hydrogen burning on the

WD surface. For the 2014 eruption of M31N 2008-12a, the SSS phase lasted 12 seconds.

For this duration, the white dwarf mass would need to be 1.38M⊙. After modelling the

optical/UV and supersoft X-ray light curves based on this mass and an accretion rate

of 1.6 × 10−7M⊙yr
−1, the ejected mass was calculated to be 6 × 10−8M⊙. Thus Kato

et al. (2015) found the white dwarf is increasing in mass over each nova cycle. Hillman

et al. (2015) conducted numerical hydrodynamical simulations to identify the range of

accretion rates under which the WD mass may grow towards the Chandrasekhar limit.

They found that accretion rates in the range 0.3 − 6.0 × 10−7M⊙yr
−1 led to gradual

mass growth for a 1.4M⊙ WD, while WDs in the range of 1.0 − 1.4M⊙ accreting at
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5 × 10−7M⊙yr
−1 were also found to grow in mass. In an extension of this research

Hillman et al. (2016) incorporated helium shell ejections that arise due to the products

of previous shell hydrogen burning episodes from past novae. They found mass growth

is possible despite such occurrences. However, as Kato et al. (2015) pointed out, the

gradual reduction in accretion rate as the system evolves is not accounted for in these

simulations.

2.6.3 Transitions Between High and Low-States

The physical origin of the transitions between high and low states of brightness with

no discernable pattern is poorly understood, particularly for magnetic CVs. Livio &

Pringle (1994) suggested the cause of state transitions to be the migration of star spots

to regions close to the L1 Lagrangian point causing a reduction in the mass-transfer

rate. In an extension of this theory, Wu & Kiss (2008) proposed that low states in AM

Her, the archetypal polar, were due to a realignment of the system’s magnetic field in

response to the change in mass-transfer rate. However, it does not explain how low-

mass M stars generate sufficient amounts of star spots, and what would cause their

migration towards the L1 region (a topic explored in Hessman et al. 2000). Duffy et al.

(2022) examined polar photometry of several systems finding that short-lived states are a

relatively common occurrence and proposed that they are due to an interaction between

the magnetic field of the white dwarf and donor star spots.

2.6.4 Expanding the Cataclysmic Variable Sample

The above serves to highlight the importance of this class of transient, in fact, the

discussed research areas represent only a fraction of the numerous open questions sur-

rounding these systems. If we are to constrain models of binary evolution and accretion,

and better understand the physical origins of the observable characteristics of CVs, one

requires a large sample of such objects, especially rare types such as AM CVns and

strongly magnetic systems. Since properties such as orbital period, mass-transfer rate,

accretion rate, donor composition, and orbital inclination form a continuum of values, a

greater CV sample size is important to explore the true diversity of examples associated

with each class of CV and also those examples that exist at class boundaries in such a

parameter space.



Chapter 3

Machine Learning

3.1 Introduction

Machine learning (ML) is a field of Artificial Intelligence focused on algorithms that

learn patterns from data to make predictions (Hastie et al., 2003). Several fields of ML

exist, with the fields of supervised and unsupervised learning being the main focus of

this thesis. Supervised learning involves learning a mapping between a set of input vari-

ables, X = [x1,x2,x3, ...,xN ], and output variables, Y = [y1, y2, y3, ..., yN ], such that

given new input data, X′, prediction of the output variables Y′ can be made. Supervised

learning can be split into the tasks of classification and regression. Classification refers

to problems where the output variable, yi, corresponding to the example, x1, is one of

a set of class labels (e.g., dog, cat, squirrel), whereas the output is a non-discrete (con-

tinuous) variable in the case of regression. Unsupervised learning focuses on identifying

inherent patterns, relationships, or structures within the data without using output la-

bels. The branch of unsupervised learning I focus on in this work is dimensionality

reduction. Dimensionality reduction is concerned with projecting data that exists in a

high-dimensional space onto a lower-dimensional plane (usually 2D or 3D), such that

examples that are close together in high-dimensional space are also close in the lower-

dimensional space, thereby conserving the relationship between examples. It is useful

for viewing relationships between examples in a lower-dimensional space.

56
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3.2 Input Data

Machine learning algorithms can handle various types of data, each with its own set of

characteristics and challenges. Here, I briefly discuss three common types of data used

as input in machine learning and the role of feature engineering in this context.

3.2.1 Data Types

Image data, presented as a grid of pixels, is prevalent in the field of computer vision,

where algorithms such as convolutional neural networks (CNNs; Kwak 2016) process

pixel values and their spatial relationships to extract meaningful information such as

patterns and objects within images. This extracted information can then be used for

object detection, image classification, or scene understanding (Chollet, 2021). Time

series data consists of observations collected at regular or irregular time intervals (e.g.,

weather data, astronomical light curves). Algorithms such as recurrent neural networks

(RNNs; Sherstinsky 2020) and variants thereof are effective at capturing patterns and

trends by processing such data sequentially and retaining information from previous

observations. Structured data tables are widely used in ML. They are organised such

that rows represent data instances, while columns represent attributes (or features) of

each instance. The generation of features involves the field of feature engineering which

includes, but is not limited to, the process of extracting useful information from raw

data (e.g., time series data), and manipulating such data to generate features that can

be used as input for algorithms.

3.2.2 Astronomical time series data representations

Astronomical time series data of the kind used in this research is irregularly sampled due

to factors such as weather conditions, seasonal gaps, instrument availability, observing

schedules, and limiting magnitude. Furthermore, lengths of light curves also differ,

sometimes by as much as several hundred data points. Several methods have been

developed to effectively compare light curves from different astrophysical sources such

that these factors do not unduly influence machine learning models.
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A widely used method is to extract features from the light curves such that the data is

presented to algorithms in tabular form. Richards et al. (2011) contains an extensive

set of features that are robust in the presence of the kinds of heterogeneities present

in astronomical time series data. They were used in the classification of variable stars.

Such work forms the basis for many of the features present in feature extraction packages

such as FATS (Feature Analysis for Time Series; Nun et al. 2015) and FEETS (FEature

Extractor for Time Series; Cabral et al. 2018). The features comprise those that de-

scribe statistical properties, percentile-based features, as well as periodicities within the

light curves. Examples include Fourier component extractors that identify amplitudes

and phases of frequency components and their harmonics from the Lomb Scargle Peri-

odogram; the ratio of magnitude percentile ranges; colour, where multiband photometry

is present; and simple measures of magnitude variability such as kurtosis, skewness and

amplitude.

Another, and more recent alternative is ‘dmdt’ mapping introduced by Mahabal et al.

(2017). This is a two-dimensional mapping of the light curves whereby for each pair of

points the change in magnitude (dm) and change in time (dt) is calculated. These dmdt

pairs are then binned into ranges of dm and dt to generate a 2D histogram. Each 2D bin

corresponds to a pixel within a grid, whose pixel intensities are based on counts. These

dmdt representations of the data serve as input for CNNs that automatically extract

salient patterns in a form of automated feature extraction that can be used for training

and prediction.

3.2.3 Train, test, validation sets

The dataset is usually split into separate training, validation and test datasets. The

training set is used to train machine learning models using the algorithms. The validation

set is used to test the performance of the model. From the performance of the model as

tested on the validation set, adjustments are made to the model in the form of algorithm-

specific parameters (or hyperparameters) for fine-tuning. The validation set is only used

to check performance to make further adjustments to the model. The test set takes no

part in the training or model tuning process and is used to assess the generalisation

error of the model — how well the model performs on completely unseen data.
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The above splitting is typically performed before any pre-processing, feature selection, or

data augmentation procedures are performed to prevent the risk of data leakage (Singhi

& Liu, 2006; Demircioğlu, 2021). Data leakage occurs when training data contains

information that would not be present when the model is used for real-world prediction.

This can lead to biased and inaccurate estimations of model performance. By conducting

the train-test split before any data manipulation steps, and only performing the fitting

procedure for such steps on the training data, we preserve the integrity of the training

process.

3.3 Algorithms

Before delving into data preprocessing, feature selection, and data augmentation tech-

niques used before model training, the algorithms used in this research are introduced

along with their associated hyperparameters — parameters that control how the algo-

rithms learn from the dataset, set before the learning process. Tuning hyperparameters

can improve model performance whilst reducing the risk of overfitting (i.e. learning the

noise in the training data).

3.3.1 Decision Tree-based Ensemble Learning

Algorithms such as Random Forest, AdaBoost, and XGBoost that are used in this re-

search are built with an ensemble of Decision Trees (DT; Rokach & Maimon 2008). In

the task of classification, given a dataset consisting of features (characteristics) describ-

ing each example within the dataset, and an associated classification, the Decision Tree

will recursively perform binary partitions of the dataset based on features and associated

thresholds in a way that the class homogeneity of resultant subsets (or nodes) is max-

imised. Gini impurity or entropy guides the selection of the best feature and threshold

at each node. Gini impurity measures class impurity using the formula:

Giniimpurity = 1−
c∑

i=1

p2i (3.1)

where pi represents the proportion of samples belonging to class i, and c is the number

of classes. Lower values indicate nodes purer in class — less mixing or diversity of
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class labels. Entropy (Equation 3.2) acts similarly, where higher values indicate higher

disorder — classes are more evenly distributed.

Entropy = −
c∑

i=1

pi log2(pi) (3.2)

For each feature and all possible thresholds to split the data, the impurity of the subsets

of each potential split is calculated. To measure the quality of a split via Genie impurity

or entropy, the weighted sum of the impurities/entropies of the child nodes are compared

to the impurity/entropy of the parent node to measure the decrease in impurity/entropy.

The weights are proportional to the number of samples in each node. Where entropy

is used, the subtraction of the entropy of the child nodes from the parent is typically

referred to as the information gain. The combination of feature and threshold which

brings about the greatest reduction in impurity/entropy is used. The recursive partition-

ing continues until the stopping criteria is met, such as the minimum number of samples

in a node, or no further decrease in impurity is possible. The resulting tree structure

(model) serves to predict class labels of new examples. To do so, new examples traverse

the tree based on their feature values, arriving at a leaf node (a terminal node without

child nodes). The predicted class label is determined by the mode of class labels within

the leaf node of the trained model, while the probability of belonging to that class is

computed as the proportion of instances within that node belonging to the predicted

class.

The most important hyperparameters of DTs are: the maximum depth of the tree

(max depth), where the depth is the number of decision nodes from the root node to the

farthest leaf; the minimum number of samples required to split a node (min samples split ;

the minimum number of samples required to be a leaf node (min samples leaf ); and the

maximum number of features to consider when making a split (max features). Re-

ducing the max depth increases computational efficiency while also reducing overfit-

ting. min samples split and min samples leaf also help control overfitting. Adjusting

max features helps to increase the diversity of the trees.

Random Forest

Random Forest (RF; Breiman 2001) operates by employing a voting mechanism, us-

ing predictions generated by multiple uncorrelated Decision Trees. The class with the
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highest number of votes becomes the prediction of our model. Using the bootstrap

aggregation technique, each tree in the ensemble is trained on a sample drawn with re-

placement (i.e., a bootstrap sample) of the original training set. Additionally, a random

subset of features is used during this process to ensure the trees remain uncorrelated.

Several crucial hyperparameters come into play, these are those associated with DTs

with a notable addition - the number of trees in the ensemble. Increasing the number

of trees enhances the model’s ability to generalise to new data, albeit at the expense of

added complexity and computational time.

Adaboost

AdaBoost (ADB; Freund & Schapire 1997) combines Decision Trees sequentially. It

is designed to improve the performance of each successive tree by iteratively focusing

on instances that are difficult to classify using a weighting mechanism. The procedure

starts by assigning uniform weights, wi to each example in the original dataset such that

wi = 1/N , N being the number of examples. A bootstrapped sample with weighted

sampling is then generated. On the first iteration, the weights are all equal, therefore,

each sample has an equal chance of being selected. AdaBoost trains a DT model and then

evaluates its performance by calculating the weighted error — the sum of the weights of

the misclassified samples. Based on its performance, an importance is assigned to the

model; a model with a lower weighted error is given a higher importance in the ensemble

based on the formula:

LearnerImportance =
1

2
log

(
1− weightederror

weightederror

)

Next sample weights are updated such that the weights of incorrectly classified samples

are increased while those of correctly classified examples are decreased. Such adjust-

ments ensure that subsequent trees focus more on previously misclassified examples.

The process is then repeated for as many iterations (or boosting rounds) as specified.

The final prediction is computed as the weighted sum of the predictions of all the trees.

Hyperparameters for AdaBoost are the same as for DTs with the addition of n estimators

that specifies the number of iterations to perform the boosting over; and learning rate

applies a weight to each tree at each boosting iteration, where a higher learning rate

increases the contribution of each tree. Increasing n estimators can improve performance
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though at the expense of an increase in computation time and may lead to overfitting.

Lower learning rate require more trees (iterations) but may improve the generalisation

ability of the model.

Extreme Gradient Boosting (XGBoost)

XGBoost (Chen & Guestrin, 2016) is another example of sequentially combining Decision

Trees (or weak learners). Where ADB uses weights to improve performance, XGBoost

employs a gradient-boosting approach. In gradient boosting, each new weak learner is

trained to minimise some loss function (that describes the classification performance)

with respect to the previous ensemble’s predictions. In this way, XGBoost iteratively

improves its performance with each tree addition by utilising information from the prior

round’s prediction accuracy. The final prediction model is the sum of M weak learners,

F (x) =
∑M

i=1 fi(x), where fi(x) corresponds to weak learner i trained on data x. XG-

Boost utilises parallelised tree building and hardware optimisation to improve runtime,

and regularisation to reduce overfitting. Delving deeper, the algorithm follows these

basic steps:

Step 0) Given a training set of N examples, [x1, ..., xN ], and corresponding labels

[y1, ..., yN ], a differentiable loss function Li(yi, ŷi), where ŷi is the model prediction for

training example xi, and M weak learners, the algorithm is initialised by a base model,

f1(x), such that the predictions are the same value of class probability for each example.

Step 1) Compute the derivative of the loss, L, of f1(x) for each instance, ri,j , these are

referred to as pseudo-residuals, where j represents the iteration step or model number.

ri,j = −∂Li(yi, ŷi)

∂ŷi

Step 2) Train a weak learner (DT) on a dataset where the target values are replaced by

the pseudo-residuals {(xi, ri,j)}Ni=1 of the previous model. This produces our next model

f2(x).

Step 3) We can then add some contribution γ̂2 of f2(x) to f1(x) to produce our new

ensemble F (x) = f1(x) + γ̂2f2(x). The contribution is determined using:
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γ̂2 = argminγ

[
N∑
i=1

L (yi, f1(xi) + γf2(xi))

]

Steps 1-3 are repeated for M iterations such that F (x) = f1(x)+γ̂2f2(x)+, ...,+γ̂MfM (x).

Hyperparameters include those mentioned for RF with the addition of parameters such

as the learning rate that controls the loss function step size at each iteration, and the

regularisation rate to adjust model generalisation — regularisation adds a penalty term

to the loss function proportional to the absolute values or squared values of the model

parameters.

Feature Importance

Decision Tree methods are very useful for identifying the most relevant features for clas-

sification. Feature importance scores may be obtained from the trained model. The

scores are a measure of how much each feature contributes to decreasing the class im-

purity at each node in the decision trees. The features leading to the greatest decrease

in impurity, when considering all trees in the ensemble, are considered more important.

3.3.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA; Hastie et al. 2003) is a dimensionality reduction

technique also used for classification purposes. Class predictions are obtained using

Bayes’ rule by finding the class, k, that maximises the posterior probability:

P (y = k|x) = P (x|y = k)P (y = k)

P (x)
=

P (x|y = k)P (y = k)∑
l P (x|y = l) · P (y = l)

Class distributions are modelled as multi-variate Gaussians assumed to have the same

covariance matrix Σk = Σ for each class. This assumption reduces the log of the posterior

probabilities to linear functions, which leads to a further assumption, linear separability,

since locations where the functions are equal define linear class decision boundaries. This

leads to the formula:

logP (y = k|x) = −1

2
(x− µk)

tΣ−1(x− µk) + logP (y = k) + constant
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with sample x and mean µk.

3.3.3 Support Vector Machines

Support Vector Machines (SVM; Cortes & Vapnik 1995) works by finding the ideal

hyperplane that best distinguishes between two classes in feature space while maximising

the margin between the classes under the assumption of linear separability (Figure 3.1).

The margin is defined as the distance between the hyperplane and the nearest data

points from each class (also known as support vectors). Each data point is represented

by a feature vector, xi, in feature space together with its class label, yi, whose values are

either 1 or -1 to indicate class. To find the ideal hyperplane the optimal weight vector, w,

and bias term, b, are found such that wTx+b = 0 defines the decision boundary between

the two classes. Mathematically, the margin is proportional to 1/||w||, so maximising

the margin is equivalent to minimising ||w||, which is the objective of the classifier.

The minimisation can be performed using Lagrangian multiplier methods or gradient

descent. Multiclass classification is achieved by splitting data into one class versus all

others, performing this for all classes, or framing the problem as multiple cases of one

class versus another.

Figure 3.1: SVM representation in 2D. The hyperplane is the red line, while margins
are represented by a line on either side. Samples on the margin are called the support

vectors.
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SVM uses the kernel trick, to handle non-linear decision boundaries by effectively trans-

forming the data/feature space into a higher dimensional space allowing for linear sep-

aration. Mapping to higher dimensional space is computationally expensive, so rather

than computing this mapping a kernel function is applied to perform this efficiently and

implicitly. The kernel function, K(xi,xj), computes the inner product of the data points

xi and xj in the implicit higher-dimensional feature space. A widely used kernel is the

Radial Basis Function (RBF): K(xi,xj) = exp
(
− ||xi−xj ||2

2σ2

)
.

The most influential hyperparameters are: the choice of kernel, (typically RBF) to model

nonlinear decision boundaries; Kernel Coefficient (γ), which governs the influence of in-

dividual training examples on the decision boundary, higher γ values produce more

complex boundaries, potentially leading to overfitting, while lower values allow better

generalisation; and Error Penalty (C), that controls the cost of miss-classification on the

training data, a smaller C value yields a softer margin, allowing for more misclassifica-

tions but better generalisation, whereas a larger C enforces a hard margin, which may

lead to overfitting.

3.3.4 Gaussian Naive Bayes

Gaussian Naive Bayes (GNB; Zhang 2004) is a probabilistic machine learning model

used for classification, based on Bayes theorem (Equation 3.3). Given two events A and

B, the probability of event A occurring given that event B has occurred (conditional

probability) is given by:

P (A|B) =
P (B|A) · P (A)

P (B)
(3.3)

Where P (A) is the prior probability of event A, which represents our initial belief in

the likelihood of A occurring. P (B|A) is the likelihood of observing event B given that

event A has occurred. P (B) is the marginal probability of observing event B, which

represents the total probability of observing B regardless of the occurrence of A. P (A|B)

is the posterior probability of event A given that event B has occurred. It represents

our updated belief in the likelihood of A occurring after observing B.
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For a machine learning classification dataset of n examples we have X = [x1,x2, ...,xn]

and target labels y = [y1, y2, ..., yn]. The aim is to predict the target label, y, given m

features for each data point, x = [x1, x2, ...xm]. The formula can be written as:

P (y|x1, x2, ..., xm) =

∏m
i=1 P (xi|y) · P (y)∏m

i=1 P (xi)

Here, we make the naive assumption that the variables/features are independent, hence

naive Bayes. Values can be obtained by looking at the dataset and substituting them

into the equation. The denominator can be treated as a constant as it does not depend

on the class label, remaining constant across different classes, such that:

P (y|x1, x2, ..., xm) ∝
m∏
i=1

P (xi|y) · P (y)

For multiclass classification we need to find the class, y, that maximises the posterior

probability, therefore the formula for the predicted class, ŷ, is:

ŷ = argmax
y

(
P (y) ·

m∏
i=1

P (xi|y)

)

For non-discrete feature values (continuous), we assume the values are sampled from a

Gaussian distribution, such that the formula for conditional probability changes to:

P (xi|y) =
1√
2πσ2

y

exp

(
−(xi − µy)

2

2σ2
y

)

where µy is the mean of feature xi for class y and σ2
y is the variance of feature xi for

class y.

3.3.5 K Nearest Neighbours

K Nearest Neighbours (KNN; Zhang 2016) stores the feature-space position vectors of

the training set examples. When making class predictions for new examples, it identifies

the mode of the classes among the k nearest neighbours from the training set based on
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some distance metric, assigning that mode as the prediction for the new example. The

hyperparameters that impart the greatest influence on model performance are the num-

ber of nearest neighbours, the distance metric (e.g., Euclidean, Manhattan, Minkowski),

and the weighting of individual examples such that close neighbours of a query point

have a greater influence than those further away.

3.3.6 Artificial Neural Networks

Artificial Neural Networks (ANN; LeCun et al. 2015) comprise interconnected layers

of nodes, commonly referred to as neurons (Figure 3.2). This architecture consists of

an input layer that receives feature values, an output layer responsible for generating

predictions, such as class probabilities, and one or more hidden layers in between. The

hidden layers sequentially transform the initial feature values into predictions by apply-

ing non-linear functions to linear combinations of previous inputs. The learning process

revolves around minimising a loss function, where adjustments to the model parameters

are made through an iterative process known as backpropagation in combination with

the gradient descent algorithm until convergence to loss minimum is achieved.

Backpropagation computes the gradient of the loss function, J(θ), with respect to each

parameter, θ, using the chain rule of calculus. The gradient descent algorithm utilises

these gradients to iteratively adjust the parameters of the model in the direction opposite

to the gradient of the loss function with respect to those parameters until convergence is

achieved. Mathematically, it can be represented as θ = θ−α·∇J(θ), where α denotes the

size of the weight update step (learning rate). The adjustments of the model’s weights

are performed in reverse order from the output layer to the input layer.

The term Deep Learning is used where multiple hidden layers are used (hence deep). A

multi-layer perceptron (MLP; Figure 3.3) is one of the simplest Deep Learning models

consisting of an input layer, several hidden layers and an output layer.
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Figure 3.2: Neuron architecture. Takes as input a linear (weighted with wt) combi-
nation of the inputs (feature values xi) along with a bias term (constant b) and puts it
through an activation function ϕ(z) that introduces non-linearity to produce output y,

where z = x1x1, ..., wmxm + b.

Figure 3.3: Architecture of a multi-layer perceptron. Each circle represent a neuron
that takes in a linear combination of the previous layers’ inputs and passes that through
an activation function to produce its output that serves input to each neuron in the

following layer (Pérez & Zingaretti, 2019).
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To tune the model one usually adjusts the number of hidden layers and the number

of neurons per hidden layer. Set these too high (increased complexity) and overfitting

may occur. The choice of activation function can impact the capacity of the network

to learn complex patterns. Options include the sigmoid function, σ(x) = 1/(1 + e−x),

that outputs values between 0 and 1, and the Rectified Linear Unit (ReLU), ReLU(x) =

max(0, x), that outputs 0 for negative inputs and the input value for positive inputs.

The learning rate controls the step size of parameters during the gradient descent op-

timisation process. Higher values will speed convergence to a loss minimum at the risk

of overshooting the minimum, while lower values may get caught in a local minimum

and slow down training. In addition to these hyperparameters are the batch size — the

number of samples to propagate through the network before updating the weights, and

the number of epochs — the number of times the entire dataset is passed forward and

backward through the network during training. The batch size determined how noisy

the updates are with larger values producing more stability but may slow convergence.

Training for a larger number of epochs may lead to overfitting.

Convolutional Neural Network

Convolutional Neural Networks (CNN; Kwak 2016) comprise convolutional layers whose

outputs feed into an ANN. They are distinguished from regular neural networks by their

unique property of translational invariance. This property allows convolutional layers to

automatically learn relevant features directly from raw input data, regardless of where

those features appear. This ability to identify patterns across different spatial locations

eliminates the need for handcrafted features. Input can be image data represented as

pixel intensities, image sequences/video, or time series data. Convolutional layers learn

local patterns in the data by sliding a grid of elements containing weight values, typically

of size 3x3 or 5x5, over the image, stopping at every location. The grid, referred to as

a filter or kernel, calculates a weighted sum of image pixel values to produce a feature

map (Figure 3.4).

There are multiple kernels for each convolutional layer, the weights associated with each

are learnt during the training process such that each resultant feature map captures

a different aspect of the data necessary to minimise the error in prediction. Feature

maps at each convolutional layer serve as representations of the input data at different

levels of abstraction, with initial layers capturing simpler features (e.g., edges, textures)
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and deeper layers capturing more complex patterns (e.g., object parts, object presence).

Convolutional layers are usually followed by pooling layers that combine elements of the

feature maps by averaging or taking the maximum to reduce their size. The output of

the final convolution operation (and accompanying pooling) will then be flattened to a

vector before input into a standard neural network (Figure 3.5). Hyperparameters of

such a network are the same as for ANNs with the addition of the number of filters and

their size, and the number of convolutional and pooling layers amongst others.

Figure 3.4: The convolutional operation uses a sliding kernel, where at each stop
element-wise wise multiplication of kernel weights with image pixel values are calculated
before summation. The resultant value corresponds to a value in the convoluted feature

on the right (Analytics Vidhya, 2021).
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Figure 3.5: Example of a CNN architecture with two convolutional layers feeding
into a fully connected neural network. Channels refer to the number of feature maps
produced which is equal to the number of convolutional kernels (Towards Data Science,

2020).

The application of kernels to local regions of the image, the use of the same weights across

different spatial locations of the input, the pooling operation, and hierarchical feature

representation due to the use of multiple convolutional layers leads to the translational

invariance — the ability to recognise objects or patterns regardless of their exact position

in the image. The technique is transferable to time series and video data by changing

the dimensions of the convolutional filters to match the input type.

3.3.7 Principal Component Analysis

Principal Component Analysis (or PCA) is a linear dimensionality reduction technique

that works by finding the vectors within data space that account for the greatest amount

of variance in the data. These will be the eigenvectors of the covariance matrix, Σ, of the

feature space, while the magnitudes of the corresponding eigenvalues represent the level

of responsibility each eigenvector has in accounting for the variance in the data. Lower

dimensional representations of high dimensional data are achieved by plotting examples

in the eigenvector space, typically the 2 or 3 which account for the greatest amount of

variance.
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3.3.8 T-distributed Stochastic Neighbourhood Embedding

T-distributed Stochastic Neighbourhood Embedding (t-SNE; Van der Maaten & Hinton

2008) is a non-linear dimensionality reduction algorithm that takes a high dimensional

data space, defined by a dataset consisting of points X = [x1, x2, ..., xn], and transforms

it into a lower dimensional representation (or mapping) as output, defined by points

Y = [y1, y2, ...yn], aiming to preserve the relationships between data points. This is

performed by converting pairwise distances between points in the data space into joint

probabilities, pij , performing similar for a randomly initialised set of matching points in

the low dimensional mapping to obtain each qij , then minimising the Kullback-Leibler

(KL) divergence that describes the divergence between the overall joint probability dis-

tribution of the data space, P , and that of the low dimensional mapping, Q, through

adjustments of the positions of mapping points Y .

The algorithm converts pairwise distances (or similarities) between data space points

into conditional probabilities, pi|j , such that the similarity of datapoint xj to datapoint

xi is the conditional probability that xi would pick xj as its neighbour if neighbours

were chosen proportional to their probability density under a Gaussian centred at xi:

pj|i =
exp[−||xi − xj ||2/2σ2

i ]∑
k ̸=i exp[−||xi − xk||2/2σ2

i ]

where σ is the variance of the Gaussian centred on xi. t-SNE symmetrises the conditional

probabilities (pj|i and pi|j) such that the joint probability pij reflects the similarity

between data points xi and xj from both perspectives.

pij =
pj|i + pi|j

2n

A Student t-distribution rather than a Gaussian distribution is used for the lower di-

mensional mapping to overcome the ‘crowding problem’ in which moderately separated

points in data space become squished together in the low dimensional mapping due to

the reduced volume of space available; this is especially problematic for densely popula-

tion areas of data space. The heavier tail of the t-distribution allows moderate distances

in data space to be represented by much larger distances in the mapping compared to
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where a Gaussian is used. Using this distribution, the joint probabilities, qij , are defined

as:

qij =

(
1 + ||yi − yj ||2

)−1∑
k ̸=l (1 + ||yk − yl||2)−1

The KL divergence (or cost function) between the joint probability distribution, P , in

data space and of the low dimensional mapping, Q, to be minimised using gradient

descent is:

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

where pii and qii are set to zero.

The most important hyperparameters for tuning t-SNE are the perplexity, learning rate,

and to a certain extent, early exaggeration. Perplexity can be thought of as setting the

effective number of nearest neighbours each point is attracted to, which effectively sets

σ for each data space point. The larger the value, the more non-local (global) structure

will be retained in the projection. Lower values tend to generate smaller clumps of

points. Perplexity is usually set to between 5 and 50, though is highly dependent on the

dataset. The learning rate sets the step size for the gradient descent algorithm performed

to minimise the KL divergence. Early exaggeration controls how tight clusters in the

data space are in the embedding space.

3.3.9 Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP; McInnes et al. 2018) is a non-

linear dimensionality reduction technique that operates similarly to t-SNE. The main

difference is how the data distributions in high and low dimensional space are defined and

the nature of the cost function to minimise. The algorithm begins with approximating

a manifold the data is assumed to (approximately) lie on. This is done by constructing

a k-nearest neighbours graph for each data point, where each point is connected to its

k-nearest neighbours. The kth nearest neighbour for each point determines the distance

scale for that point’s neighbourhood. Based on these local distance metrics, simplicial
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sets are constructed. Simplicial sets are mathematical structures composed of simplices

such that a 0-simplex corresponds to a point, a 1-simplex represents a line segment

that connects two 0-simplices, a 2-simplex forms a triangle and a 3-simplex creates a

tetrahedron, and so on. By combining these simplicial sets, a topological surface or

manifold is defined. This surface captures the connectivity and relationships between

data points in the high-dimensional space. The connections are weighted based on

the distances between data points, resulting in a fuzzy topological representation that

accounts for the flexibility in the data.

The lower dimensional space is defined similarly with the exception that distance is de-

fined uniformly across the manifold using Euclidean geometry rather than varying based

on the local neighbourhood of the data point. To find a low-dimensional representation

that closely matches the topological structure of the original data, UMAP adjusts the

layout of points in low-dimensional space by minimising a cost function given in the

form of cross-entropy. The cross-entropy for UMAP measures the dissimilarity between

the fuzzy topological structures of the high-dimensional data and the low-dimensional

representation.

Parameters for the model include n components (number of dimensions); and n neighbours

which controls the area of the local neighbourhood that UMAP looks at for each sample

when building a manifold. With smaller values of n neighbours, we focus on local struc-

ture, though with a risk of losing the bigger picture. Larger values, however, result in a

broader view, at the risk of losing the finer structure within the data. min dist controls

the distance between data points. Lower values will result in clumpier embeddings, al-

lowing you to see individual clusters more easily, while larger values enable you to see

the broader topological structure. The metric parameter just represents the formula

used to calculate the distance between points, the default is Euclidean.

3.3.10 Generative Topographic Mapping

Generative Topographic Mapping (GTM; Bishop et al. 1998) is a neural network-based

manifold learning algorithm that computes a mapping between points in a low dimen-

sional (often 2D) latent space into a higher dimensional data space such that the latent

space representation reflects the data space distribution of data points. To do this, K
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points in latent space are arranged in an equally spaced grid of nodes, x1,x2, ...,xK ,

whose probability distribution is defined by delta functions.

p(x) =
1

K

K∑
i=1

δ(x− xi)

Each node xi is mapped to a corresponding point y in data space using y(xi;W), where

W is a matrix of parameters. This situation can be viewed as an L-dimensional non-

Euclidean manifold confined within D-dimensional data space. The distribution of data

points t1, t2, ..., tN is expected to be confined to the L dimensional manifold, though this

is not true in reality. Therefore, one introduces a noise model such that the probability

of observing a data point t in data space, given node x and parameterised by W, follows

a Gaussian distribution centred at y(x;W) with a variance of 1
β :

p(t|x,W, β) =

(
β

2π

)D/2

exp

[
−β

2
||y(x;W)− t||2

]
(3.4)

Taking into account all nodes, Equation 3.4 becomes:

p(t|W;β) =

∫
p(t|x;W;β)p(x)dx =

1

K

K∑
i=1

p(t|xi;W;β)

To find W and β the maximisation of the log-likelihood is required, given by:

L(W;β) =

N∑
n=1

ln

(
1

K

K∑
i=1

p(tn|xi;W;β)

)



Chapter 3 Machine Learning 76

Figure 3.6: We consider a prior distribution p(x) consisting of a superposition of
delta functions, located at the nodes of a regular grid in latent space. Each node xi

is mapped to a corresponding point y(xi;W) in data space, and forms the centre of a
corresponding Gaussian distribution Bishop et al. 1998.

The situation is depicted in Figure 3.6. The mapping function y(x;W) takes the form

of y(x;W) = Wϕ(x), where elements of ϕ(x) consist of M radial basis functions ϕj(x),

and W is a D×M matrix. The maximisation of the log-likelihood is performed using

the Expectation Maximisation algorithm which iteratively updates the parameters W

and β of the model to maximise the likelihood of the observed data. In each iteration, it

calculates the responsibilities of each Gaussian component for every data point, defined

as:

Rin(Wold, βold) = p(xi|tn,Wold, βold)

It then updates W based on these responsibilities, and then updates β accordingly. The

2D representation of the higher dimensional data is the unfolded manifold upon which

individual data points are projected in a location reflective of nodes (or Gaussians in

data space) most responsible for them — node responsibility map.

Hyperparameters of GTM comprise the square root (sqrt) of the number of GTM nodes,

k, sqrt of the number of RBF centres, m, the RBF width factor (RBF variance), s, and the

regularisation coefficient. regul. These are associated with the Python implementation

of GTM, ugtm (Gaspar, 2018), used within this work.
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3.4 Data Preprocessing Techniques

Preparing data for input into ML algorithms, or pre-processing, is typically required

before its usage. Handling missing data and feature scaling are two of the most crucial

tasks for the production of optimal ML models.

3.4.1 Missing Data Handling

Most machine learning algorithms assume complete information for all features, no miss-

ing values (or NaNs) (Soley-Bori, 2013). Missing values in datasets derived from astro-

nomical data such as time-series and astrometric data may arise due to insufficient data

points in light curves for a feature to be extracted, data unavailability (e.g., parallax

information due to short observational baseline), and erroneous data. There are several

common approaches to addressing such issues. One may drop the entire column should

it contain a missing value, however, valuable information may be discarded. Imputation

is another strategy, in which a value is inserted based on the values in the remainder

of the column (e.g., column mean) or other relevant columns. An extension to this ap-

proach involves adding another column indicating rows of imputed values. This works

under the assumption that a missing value is informative for inference. Mean and K

Nearest Neighbour imputation methods are methods adopted in this research.

Imputation

Imputing the mean of the column values for missing data in that column is simple

and parameter-free. It is appropriate under the assumption that the data is normally

distributed and most observations are around the mean anyway. One must be careful of

its use, however, as this method ignores relationships between features and reduces the

variance of the variable thereby introducing bias to the model.

The K Nearest Neighbour imputation method (Troyanskaya et al., 2001) operates within

feature space, the N-dimensional space defined by the N dataset features/variables. For

each dataset example, each missing feature is imputed using the values from the K

nearest (based upon some distance metric, typically Euclidean) neighbours in feature

space where that feature value is present. The imputed value will be either the uniform
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or weighted-by-distance average feature value for those neighbours. The value of K is

user-defined and set to 5 as default.

3.4.2 Feature scaling and transformation

Feature scaling is used to normalise the range of values of features, while transformation

involves altering the distribution or scale of the data to suit machine learning algorithms.

Feature scaling largely comprises normalisation and standardisation. Normalisation,

also referred to as min-max scaling, consists of rescaling the range of values to lie in

the range [0, 1] using the formula x′ = (x − min(x))/(max(x) − min(x)). One may

choose to normalise to a range in any arbitrary interval [a, b], in which case we use:

x′ = a+ ((x−min(x))(b− a))/(max(x)−min(x)). Standardisation results in features

with zero mean and unit variance. With the mean x̄ and standard deviation σ of a

feature, the following formula is used for standardisation x′ = (x − x̄)/σ. Taking the

logarithm (base 10) of the data, or log transform, is useful in reducing the skewness of

heavily skewed distributions.

Normalisation is useful when the data distribution does not follow a Gaussian distri-

bution. Neural Network algorithms can be sensitive to the scale of input features,

preferring data on a 0 to 1 or -1 to 1 scale, otherwise, convergence of the algorithm to

error minimum may be inhibited. Standardisation is often used where the data follows

a Gaussian distribution. Standardisation does not have a bounding range, so, outliers

are not affected by standardisation. Where such methods are not required are Decision

Tree-based algorithms (Section 3.3.1). Such algorithms work feature by feature in their

decision-making process rather than within multi-dimensional feature space.

3.5 Feature Selection Methods

As you add dimensions (features) you rapidly increase the minimum amount of samples

required to adequately represent all combinations of feature values in your dataset. In-

creasing the dimensionality increases the complexity of the model whilst also causing

the model to become increasingly dependent on the training set, thus leading to over-

fitting. Selecting the features most informative for our task enables ML algorithms to

train faster, reduces complexity allowing for easier interpretation, reduces overfitting,
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and can improve model accuracy for the right subset of features. Feature selection tech-

niques may be grouped into filter methods that measure the relevance of features by

their correlation with the dependent variable; and wrapper methods, that examine the

usefulness of a subset of features by training a given model on them. The following

describes several methods used in the work.

To identify the optimal feature subset, the Variance Inflation Factor (VIF; Vu et al.

2015), the one-way Analysis Of Variance (ANOVA; Quirk 2012), and the mutual infor-

mation score (Quirk, 2012) methods are examined from the filter feature selection family.

From the wrapper method family, the forward feature selection method was chosen.

3.5.1 Forward Feature Selection

Forward feature selection (FFS) is an iterative method starting with a model with no

features. With each iteration, we add a feature, the one that produced the greatest

increase in a performance metric as measured on a validation set. The process continues

until no further performance increase is measured. The set of selected features may

differ based on the choice of machine learning algorithm. Different algorithms often

work best with distinct subsets of features, and the method can adapt to these individual

requirements.

3.5.2 Variance Inflation Factor (VIF)

VIF (VIF; Vu et al. 2015) is a method used to detect multicollinearity - the existence

of a linear relationship between two or more explanatory (independent) variables. It

measures how much the variance of the estimated regression coefficients are inflated as

compared to when the predictor variables are uncorrelated. It is found by regressing

each independent variable on the remaining independent variables to assess the degree

to which it is explained by the remaining variables. VIF is given by:

V IF =
1

1−R2
(3.5)

where



Chapter 3 Machine Learning 80

R2 = 1− SSres

SStot
(3.6)

where SSres is the sum of squared residuals to the line of best fit in a linear regression

model, while SStot is the sum of squared residuals to the average value. One uses this

selection method by iteratively removing features with the highest VIF and recalculating

the metric. A VIF equal to 1 represents the absence of multicollinearity, while the effects

of multicollinearity increase with increasing VIF. While it is desirable to have VIF as

close to 1 as possible, this generally leads to the removal of variables that have a high

positive impact on model performance if we are not careful with our implementation

of the technique. One must be careful to ensure the feature calculation is present in

some form within the remaining features to maintain the associated information. VIF is

particularly beneficial when dealing with feature redundancy that may arise when two

or more features describe the same characteristic.

3.5.3 One-way ANOVA

One-way ANOVA (ANOVA; Quirk 2012) compares the mean value of a variable for

each of three or more groups. It determines if any of those means are statistically signif-

icantly different from each other. The null hypothesis states that there is no statistically

significant difference between any two group means:

H0 = µ1 = µ2 = µ3 = µ4 = ... = µk (3.7)

where µ is a group mean and k is the number of groups. The alternative hypothesis

states that at least one of the groups is statistically significantly different from another

at a significance threshold of 5%. This statistic was used to identify the significance of

each feature ordered by p-value. A given algorithm was then trained using the top x% of

the most significant features and the model cross-validation performance was recorded.

This step was repeated, increasing the values of x in 5% increments from 5% to 95%,

to arrive at a subset of features where model performance was strongest. This method

is akin to forward feature selection, though with features added based on a statistical

test rather than overall model performance. The motivation for the usage of one-way
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ANOVA lies in its goal to select a set of features that hold significant importance in

differentiating between classes.

3.5.4 Mutual information

Mutual information (MI; Quirk 2012) is the application of information gain (typically

used in the construction of decision trees) to feature selection. The MI score measures

the degree to which two variables are related. A score of zero is produced if the two

variables are independent, and higher values for higher dependencies. For two jointly

discrete random variables x and y, MI takes the form:

Mutual Information =
∑
x∈X

∑
y∈Y

p(x, y) ln

[
p(x, y)

p(x)p(y)

]
(3.8)

We make use of the scikit-learn implementation, which uses a nearest neighbour method

instead of binning to handle cases where the independent variable (feature), x, is con-

tinuous, assuming a discrete target, y, (see Ross 2014). Under the MI feature selection

protocol, the most performant features were identified in the same way as for one-way

ANOVA, resulting in slight variations in the optimal subset of features for each algo-

rithm. In a similar fashion to one-way ANOVA, MI aims to select features most crucial

for class distinction. However, MI quantifies the information shared between features

and the outcome, thereby unveiling non-linear, intricate relationships.

3.6 Data Augmentation

A classification dataset with skewed class proportions is said to be imbalanced. Class

imbalance can skew model predictions, with classifiers favouring the majority class while

neglecting minority ones. Specifically, ML algorithms are usually designed to maximise

accuracy (fraction of correctly predicted examples). So for a severe class imbalance of

say 95:5, an algorithm may be inclined to classify everything as the majority class and

achieve a 95% accuracy. Data augmentation techniques, such as random oversampling,

undersampling, or synthetic data generation, aim to reduce these adverse effects by

balancing the class distribution. The algorithms are then more likely to produce pre-

dictive models better capable of accurate predictions on real-world data. The methods
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adopted in this research are majority class undersampling, class weighting and synthetic

oversampling using the ADASYN algorithm.

3.6.1 Random Undersampling

Randomly selecting a subset of the majority class is a fast and easy way to balance

a dataset. It is particularly effective in combination with using data augmentation

techniques to increase the number of examples of minority classes, that way the amount

of data lost from the majority class can be minimised. Random undersampling can be

performed with or without replacement. We implement this without replacement.

3.6.2 ADASYN

Adaptive Synthetic (ADASYN; Haibo et al. 2008), a minority class oversampling tech-

nique, is a variation of the Synthetic Minority Over-sampling Technique (SMOTE;

Chawla et al. 2002). SMOTE works by selecting a random example from the k nearest

neighbours in feature space of a randomly chosen example from the minority class (or

class of choice); draws a line in this feature space between the examples and generates

a new sample at a random point along that line. The ADASYN adaptation generates

more synthetic examples in regions of feature space where the density of minority ex-

amples is low, and fewer or none where the density is high. It does this by identifying

regions in feature space where minority class instances are sparse, calculating the local

density of minority instances around each sample as well as the imbalance ratio of mi-

nority to majority class examples in those regions. It then generates synthetic examples

in low-density regions, prioritising regions where the imbalance is higher. The samples

are generated, as with SMOTE, by interpolating between minority class examples. The

result is that more synthetic data is generated for minority class samples that are harder

to learn compared to those where many examples are available, thereby making it easier

to learn the minority class properties.

3.6.3 Class Weighting

Rather than augmenting the dataset, one may modify the algorithm to account for

skewed class distributions by giving different weights to each class depending on their
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dataset prevalence. The difference in weights influences the classification during the

training phase. The goal is to penalise the miss-classification of the minority class by

setting a higher class weight, while at the same time reducing the majority class weight.

Weightings are applied within the cost function for each algorithm such that the miss-

classification of a minority class example leads to a greater cost penalty than for a

majority class example.

Most of the scikit-learn classifiers have an in-built parameter class weight which helps

us optimise the scoring for the minority class. By default, it is set to None, i.e., equal

weights are assigned to each class. By setting this to balanced, the model automat-

ically assigns class weights inversely proportional to their proportions in the dataset.

The formula to calculate this is wj = n samples/(n classes × n samplesj), where, wj ,

n samples, n classes, and n samplesj are the weight for each class, j, total number of

dataset examples, the number of different classes, and the total number of examples of

class j. Alternatively, manually setting the class weights is an option.

3.7 Model Evaluation and Hyperparameter Tuning

Performance metrics rely on the counts of true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN). To compute these counts, one must establish

the positive class, representing the class of interest (e.g., one of the CV classes), and the

negative class, encompassing all other classes.

3.7.1 Confusion Matrix

Frequently, the counts of TP, TN, FP, and FN are organised in an N × N table referred

to as a confusion matrix, with N signifying the number of classes. This matrix provides a

straightforward means to view the quantities of TPs, TNs, FPs, and FNs. These values

are used to calculate the class-specific precision, recall, and F1-score, as well as the

balanced accuracy and the area under the curve of the receiver operating characteristic.
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3.7.2 Precision, Recall, and F1-score

The precision is defined as the fraction of examples our model predicted as belonging to

the positive class that does belong to this class: TP/(TP +FP ). In other words, it tells

us how much we can trust our model’s predictions of the positive class. The recall is the

fraction of examples of the positive class that our model correctly predicted as belonging

to this class: TP/(TP + FN). This metric assesses the model’s ability to identify all

members of the positive class. The F1-score is the harmonic mean of precision and recall

for our positive class and is useful in finding the best trade-off between these quantities.

The highest possible value of the F1-score is 1 (100%), indicating perfect precision and

recall, the lowest possible value (0) relates to a score of 0 for either precision or recall.

3.7.3 Accuracy and Balanced Accuracy

The accuracy is the fraction of all examples whose class was correctly predicted by the

model. For binary classification, this is (TP + TN)/(TP + TN + FP + FN), for a

multi-class situation we sum the number of true positives for each class and divide by

the total number of examples. The accuracy returns an overall measure of the model’s

predictive capability. Should we only be concerned with assigning the most number of

examples to their correct class, accuracy is a good metric. However, under this metric,

high classification errors for classes with few examples to their name will be hidden.

Therefore, should we be concerned with finding a model which has a strong classification

performance across all classes, we may use ‘balanced accuracy’ which can account for

this class imbalance. This is calculated as the arithmetic mean of the recalls for each

class.

3.7.4 Area under the Curve of the Receiver Operating Characteristic

(AUC)

The Receiver Operating Characteristic (ROC) curve offers a visual representation of the

trade-off between sample purity and completeness. It plots the true positive rate (TPR),

also known as recall, against the false positive rate (FPR). The FPR represents the frac-

tion of examples incorrectly classified as belonging to the positive class, calculated as

FP/(TN + FP ). This curve is generated by varying the threshold probability used to
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determine positive classifications for each example. In detail, ML algorithms provide a

class probability score for each example, and a threshold is applied to classify examples

as positive or negative. The ROC curve showcases the performance of the TPR and FPR

as this probability threshold is continuously adjusted. This tool is valuable for selecting

an appropriate threshold that aligns with the desired balance between purity and com-

pleteness, depending on the specific research objectives. In classification tasks, the goal

is to maximise TPR while minimising FPR. An area under the curve (AUC) value of 1

indicates a perfect model that correctly assigns class predictions for all examples. An

AUC of 0.5 signifies a model no better than random guessing, while an AUC of 0 implies

incorrect predictions for all examples. Although ROC curves are typically associated

with binary classification, in the case of multi-class models, they are generated using a

one-versus-rest approach. This entails designating one class as the positive class and the

remaining classes as the negative class to produce separate curves for each class.

3.7.5 McNemar’s Test

While performance metrics can be used to assess test set performance differences be-

tween two classifiers, the McNemar’s test can be utilised to judge significant differences

between their predictions on the test set and in some sense whether any performance

difference is significant. The null hypothesis states that the classifiers disagree in their

class predictions to the same amount. Should this be rejected, the alternative hypothesis

implies there is evidence they disagree in different ways. The test statistic is calculated

in the following way:

statistic =
(Y es/No−No/Y es)2

Y es/No+No/Y es
(3.9)

where Y es/No is the number of test instances that classifier 1 got correct and classifier

2 got incorrect, while No/Y es describes the opposite of this. The test statistic follows

a chi-squared distribution with one degree of freedom. The test is usually administered

in a binary classification setting, however, under the multi-class case, the correct and

incorrect classifications are performed for each class.
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3.7.6 Hyperparameter Tuning

Several of the aforementioned metrics may be used to tune hyperparameters associated

with each of the machine-learning algorithms. Adjusting the hyperparameters under

which ML models are trained can help to mitigate underfitting and overfitting. Un-

derfitting refers to the situation where the model has not captured the relationships

or intricacies within the dataset during training and performs poorly on unseen data.

Overfitting refers to the situation where the model has not only learnt patterns in the

dataset but also the noise meaning that it achieves a high accuracy on the training set

but does poorly on the validation and test sets (or in production).

Cross Validation

The validation set is used to tune algorithm hyperparameters that control how a model

is trained, while the test set is held back, taking no part in the training and model-

tuning process. Should the size of the dataset be insufficient for a separate validation

set, for example, in cases where minority class examples are few, stratified k-fold cross-

validation may be used. This involves splitting the training set into k separate subsets

(or folds) in a stratified manner — each fold contains the same class proportions as the

overall training set. A model is trained on k-1 folds and evaluated, based on a given

metric, on the remaining fold (validation fold); this step is repeated until each fold has

partaken in the validation process. The metric scores for each of the k models are mean

averaged to produce a cross-validation score. This technique allows an adequately sized

training set to be maintained.

The scikit-learn Python package offers automated methods of searching the hyperparam-

eter space for the best cross-validation score. The associated set of hyperparameters will

be those which produce the best model. Given a set of hyperparameters with associated

test values, GridSearchCV considers all parameter combinations to identify the optimal

combination. This type of search is exhaustive though can be time-consuming especially

when the grid of parameters is large. RandomizedSearchCV on the other hand, is less

exhaustive but also less time intensive. It randomly samples a user-specified number

of parameter combinations from the distribution of all those possible in the parameter

grid.



Chapter 4

Source Classification

Having provided a comprehensive overview of CVs and explored the machine learning

techniques used in this study, I will discuss how surveys have played a crucial role in

expanding our understanding of CVs and how machine learning source classification can

aid in this process through the efficient handling of vast amounts of survey data. The

chapter concludes by laying out the research problem in light of the above and provides

a brief overview of the chapters that follow.

4.1 Impact of Time Domain Surveys

Wide field time domain surveys have been responsible for the discovery of many of the

currently known list of CVs. For example, CRTS obtains unfiltered images of 30,000

square degrees of the sky with three ground-based telescopes at a ∼ 2 week cadence.

Drake et al. (2014) analysed over 5 years of CRTS data to report the discovery of 705

new CV candidates. The Gaia space mission (Gaia-Collaboration et al., 2016) observes

the whole sky (including the Galactic plane) from the L2 Lagrange point at a cadence

of 2 to 4 weeks. It publishes detections of new transients via Gaia Science Alerts (GSA;

Hodgkin et al. 2021). Over 2,500 confirmed or candidate CVs reside amongst GSA. Rare

examples can also be picked out; by eyeballing GSA lightcurves, Gaia14aae became the

first fully eclipsing AM CVn to be discovered (Campbell et al., 2015). At higher cadences,

ASAS-SN uses multiple telescopes to survey the entire visible sky every night down to

about 18th magnitude. As a consequence, the ASAS-SN alerts page (Shappee et al.,
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2014) contains over a thousand CVs or candidates within its list, with new candidates

reported via an Astronomer’s Telegram (e.g, Jayasinghe et al. 2020; Prieto et al. 2013).

ZTF observes fields north of δ = −31 deg every 2 to 3 days in two bands, ZTF-g and

ZTF-r, to depths of 20.8 and 20.6 magnitudes, respectively. Szkody et al. (2020, 2021)

filtered the ZTF transient alerts by looking for point sources with g-r colour < 0.6 and

a magnitude change ∆m >= 2 within a timescale of 2 days in the g band. This resulted

in a total of 701 known or candidate CVs over two years of its implementation that

typically displayed dwarf nova outbursts and changes in accretion state. An extension

of this filter-based approach was performed by van Roestel et al. (2021) to uncover

nine new outbursting AM CVns from ZTF. These discoveries have helped fill gaps in

our current knowledge, for example, constantly evolving models are being developed

attempting to explain the diversity of dwarf nova outbursts based on the disk instability

model (Kotko et al., 2012; Hameury, 2020); Knigge et al. (2011) was able to construct

semi-empirical models for the evolution of CVs based on donor star masses and radii.

However, discoveries also uncover new gaps, such as the detection of pulsed X-rays in

two AM CVns that not only raises the question of magnetically controlled accretion

in AM CVns but has implications for their evolutionary timescales (Maccarone et al.,

2023).

4.2 Machine Learning in Astrophysics

ML is becoming ever more present in the field of astrophysical source identification and

classification due to its necessity in characterising the vast numbers of transient events

detected by time domain surveys. The following is a selection of pertinent examples of

its usage in the literature. The ZTF Source Classification Project (van Roestel et al.,

2021) is a framework that aims to group transients based on both variability types

and transient classes. Variability types (or phenomenological classes) are comprised of

irregular, periodic, flaring and eclipsing variability (amongst others). Transient classes

include AGN, YSOs, several variable star classes, and binary stars within which CVs

are encompassed amongst other classes of binary. For each class, a classifier is trained

to distinguish between that transient and the remainder (one versus rest). Both a

‘dmdt’ mapping of g band light curves and statistical, periodicity and percentile-based

features were used within a CNN and XGBoost. Each of the models (one for each class)
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performed well when analysed against a test set, with an accuracy of no lower than 0.85

and 0.96 for CNN and XGBoost models, respectively. Performance on the test set says

little about the performance on the full corpus of ZTF light curves, which Mahabal et al.

(2017) examined. For RR Lyrae (a pulsating variable), 89% (2102) of the 34 million light

curves that were classified as RR Lyrae (with a probability > 90%), did belong to the

class after visual inspection. However, the classification of YSOs was less successful,

with only 26% of those identified belonging to the class.

Rimoldini et al. (2022) aimed to classify all sources detected by Gaia as variable into one

of 24 variability types/classes using Random Forest and XGBoost. The work provides

candidate source lists to a wide variety of research groups focusing and different classes

of transient. The classes included several types of pulsating stars, eclipsing binaries,

ellipsoidal variables, spotted stars, eruptive and cataclysmic phenomena, stochastic vari-

ations of AGNs, microlensing events, and planetary transits. Input for these algorithms

were basic statistics, photometric colours, astrometric parameters, periodicity indicators,

and combinations thereof, all extracted from the photometric time-series in the Gaia G,

BP, and RP bands. The training and test sets were formed by cross-matching sources

of known variability type from literature with Gaia DR3 variable sources. Several dif-

ferent types of classifiers (models) were trained - multi-class, binary (one versus rest),

and hierarchical classifiers. They were implemented to provide classifications for 12.4

million Gaia DR3 variable sources. Classifications were assigned to each source based

on combining the posterior probabilities (probability of class belonging) output by each

classifier. For the CV class in particular, 7,306 sources were identified as candidates,

233 of which are known to be CVs, though over 1200 known CVs were misclassified as

belonging to other variability types.

Neira et al. (2020) tested an MLP, RF, and SVM to classify 4869 CRTS light curves

into 8 transient classes (AGN, Blazar, CV, flare stars, high proper motion stars, super-

novae, non-transients, and other). Inputs for the algorithms were traditional statistical,

magnitude-based (amplitude, maximum slope, ...) and percentile-based, along with co-

efficients used for fitting polynomials to the light curves. RF performed the best though

with precision and recall scores of 49% and 70%, respectively, when averaged over all

classes. For the CV class, a precision and recall of 74 and 76%, respectively, were

achieved.
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Sun et al. (2021) searched for CVs within Data Release 6 (DR6) of the Large Sky

Area Multi-Object Fiber Spectroscopic Telescope (LAMOST; Cui et al. 2012) survey

containing nearly 10 million low-resolution spectra. The methodology was both machine

learning and visual inspection-based. The machine learning phase involved the use of

KNN to separate sources with Hα emission from those without, as broad Hα emission is

a particular feature of hydrogen CV spectra. A reduced dimensionality representation

of the flux measurements around the Hα wavelengths using UMAP was used as input

for KNN. This reduced the 10 million strong list to 169,509 Hα emitting sources that

each underwent a process of visual inspection. This involved comparison with stellar

spectral templates for further filtering and inspection for spectral features characteristic

of CVs. This process resulted in 323 CVs or candidate CVs being identified, of which

52 are new candidates.

Following on from this work, Hu et al. (2021) explored DR7 of LAMOST containing 10.6

million low-resolution spectra for CVs with ensemble learning algorithms. The dataset

comprised 567 confirmed CV spectra from SDSS and LAMOST serving as positive in-

stances, along with 20,000 LAMOST spectra categorised as non-CVs for the negative

class. The input data consisted of standardised spectral flux measurements across 3,473

wavelength bins spanning from 4000 to 8900 Åfor each spectrum, where the flux value

at a specific wavelength represented a distinct feature. Gradient Boosting algorithms

XGBoost and Light Gradient Boosting Machine (LightGBM; Ke et al. 2017) produced

the best-performing models with accuracy, precision, recall, and F1-scores all at least

above 92% (reaching ∼ 99.7% accuracy). Feature importance scores revealed the im-

portance of Balmer lines as well as HeII(4685 Å), and HeI(5876 Å). Implementing the

LightGBM model on LAMOST-DR7 uncovered 255 CV candidates, 4 of which are new

discoveries.

4.3 Research Problem

Non-ML filter-based approaches have demonstrated their effectiveness at CV identifi-

cation (e.g., Szkody et al. 2020, 2021; van Roestel et al. 2021) though the requirement

for human vetting is significant. ML-based photometric and spectroscopic approaches

have also been somewhat effective, demonstrating that searches for CVs with ML is an

active field of research. However, the ML-based approaches treat CVs as a broad class
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of transient. While broad classification/identification of CVs is important, the ability

to automatically group such targets into their respective subtypes, and/or identify rare

subtypes is the ultimate goal. In the case of CVs, rarities include the ultrashort period

(5–65 min) AM CVns (Solheim, 2010), magnetic CVs (Cropper, 1990; Patterson, 1994),

and eclipsing sources from which accurate parameters can be derived (van Roestel et al.,

2022; Wakamatsu et al., 2021; Hope & Copperwheat, 2019). Such a classifier/pipeline

should dramatically reduce the requirement from human vetting, something that is ex-

pected to become all the more important as transient/variable source detection capabil-

ities improve with time. The end goal of my research is to develop a machine learning

pipeline capable of utilising survey data to identify/classify CVs on a more granular

level, i.e., pick out the different subclasses. This is currently unexplored territory and

especially important should we aim to serve research groups that focus on specific CV

subtypes whose goal is to formulate an accurate picture of CV evolution and better

understand the processes responsible for their variability.

To address the research gap, in Chapter 5, which consists of my first publication (Mistry

et al., 2022), I embark on an exploration of ML techniques to unearth CVs within the

confines of a low cadence survey that utilises data from the Gaia spacecraft (Gaia-

Collaboration et al., 2016). The time-series photometry of transient/variable sources

provided within the Gaia Science Alerts (Hodgkin et al., 2021) resource provides the

input. The experience obtained within that work provides a platform for a more granular

approach, the identification/classification of CVs from within the ZTF alert stream; the

higher cadence provides the opportunity for subtype classification. This research forms

Chapter 6, the contents of my second publication (Mistry et al., 2023). The results of

Chapter 6 lead nicely onto an unsupervised learning approach for ZTF CVs in Chapter

7. Chapter 7 explores the high dimensional structure of ZTF CVs (using their light

curve properties) with dimensionality reduction techniques (PCA, t-SNE, UMAP, and

GTM). The thesis ends (Chapter 8) with a discussion of the key findings of my research

efforts and avenues of future research concerning automated CV searches.



Chapter 5

Gaia exploration

5.1 Introduction

In this work, I describe the exploration of data generated by the Gaia spacecraft (Gaia-

Collaboration et al., 2016) to identify new members of the CV population. Gaia is

now recognised as a powerful tool for transient detection, with Gaia Science Alerts

(GSA; Hodgkin et al. 2021) providing alerts of newly discovered transient sources at a

current rate of ∼12 per day by repeatedly scanning the whole sky. The cadence of the

associated light curves is dictated by the ‘Gaia scanning law’ (Gaia-Collaboration et al.,

2016) — typically, a pair of observations separated by 106.5 minutes are separated by

another pair two to four weeks later. The photometry is precise to 1% at G=13, and

3% at G=19. This resource therefore provides a stable platform from which to evaluate

ML-based classification. In Section 5.2, I describe the classified transients of GSA; the

methods used to extract relevant descriptive characteristics from their light curves; and

the additional metadata gathered from the survey for each source. In Section 5.3, I

describe how the resultant dataset was used to train several ML algorithms to perform

a set of classification tasks, along with a description of how the resultant models can

be evaluated. In Section 5.4, I detail the performance of each algorithm. Finally, I

discuss the outcomes of the exploration of GSA along with a description of a pilot study

involving spectroscopic classification to validate predictions made by the best-performing

model (Section 5.5).
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5.2 Dataset

5.2.1 Gaia alerts and EDR3

As of June 2021, close to 18,000 transient sources had been listed within the Gaia

transient alerts stream 1; just over 4,700 of which had been assigned class labels. The

classifications are based upon human inspection of Gaia data in combination with the

results of positional cross-matching with the Simbad (Wenger et al., 2000), NED and

VSX databases2, and YSO catalogues (see section 2.7.7 of Hodgkin et al. 2021) to

identify already-confirmed transient or variable objects. This information is aided by

the hourly parsing of 27 major transient survey websites for reported discoveries that

also contain classification information, these include Transient Name Server (TNS)3,

CRTS, ASAS-SN and Astronomer’s Telegrams4. Further details regarding the alerts

filtering and classification process are contained in Hodgkin et al. (2021).

The process of training and validating machine learning models requires accurate class

labels. Whilst the aforementioned process of class assignment can reliably provide this

accuracy, an inspection of class labels for a sample of these sources was performed for

a level of verification. Of the 2,713 supernovae, 2,530 are spectroscopically confirmed

according to TNS, Astronomer’s Telegrams contain details of spectroscopic classification

for the remainder. Of the 613 Gaia-labelled CVs, 471 are associated with known/con-

firmed CVs according to the comments associated with the Gaia classifications. Com-

parison with VSX confirms this with either a confirmation of CV status or candidate

status for the remainder through references to relevant research papers and Astronomer’s

Telegrams. Gaia’s comments associated with sources labelled as AGN and YSO show

929 of the 940 transients labelled as AGN, and 184 of the 190 transients labelled as YSOs

are associated with known/confirmed AGN and YSOs respectively. This was verified for

a sample of these sources by examining records within TNS and associated links (e.g.,

Simbad). The remaining candidate AGN and YSOs were not further considered for this

work.

1http://gsaweb.ast.cam.ac.uk/alerts/alertsindex
2The NASA/IPAC Extragalactic Database (NED) is funded by the National Aeronautics and Space

Administration and operated by the California Institute of Technology. VSX is the International Variable
Star Index database, operated at AAVSO, Cambridge, Massachusetts, USA.

3https://www.wis-tns.org/
4https://www.astronomerstelegram.org

http://gsaweb.ast.cam.ac.uk/alerts/alertsindex
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The dataset is composed of features extracted from light curves of these classified tar-

gets within Gaia’s alert stream along with their associated class labels. Supplementary

data for these targets may be available within the database of Gaia Early Data Re-

lease 3 (EDR3; Lindegren et al. 2021; Riello et al. 2021) in the form of astrometric and

further photometric data such as parallax, proper motion, and photometric colour pro-

vided by the low-resolution photometry (R=100) of blue and red photometers onboard

Gaia. A coordinate cross-match with EDR3 provides this metadata for ∼45% of sources

within the dataset. This metadata has also been incorporated as a set of supplementary

features.

Of the 4,697 classified targets incorporated into the dataset, SNe account for 58% of

classified targets, AGN make up 21%, CVs and YSOs constitute 13% and 3%, respec-

tively, while microlensing, tidal disruption events, and various other classes account for

the remainder.

The majority of GSA classifications come from dedicated spectroscopic follow-up from,

for example, the Public ESO Spectroscopic Survey of Transient Objects (PESSTO;

Smartt et al. 2015) that uses the new technology telescope (NTT; Wilson 1991) with

optical and near-infrared spectrographs; and the Spectral Energy Distribution Machine

(SEDM; Blagorodnova et al. 2018), an integral field unit spectrograph mounted on the

Palomar 60-inch telescope, utilised by the Bright Transient Survey (BTS; Perley et al.

2020) for classification of extragalactic objects brighter than 19th magnitude. These

are heavily biased towards supernova classification. The class fractions of classified

targets are generally dictated by what has been chosen to be classified, with unusual

or ambiguous examples often overlooked, and therefore it must be noted that these

fractions may not be representative of the entire sample of GSA targets.

5.2.2 Light curve feature extraction

Quantitative characteristics (or features) were extracted from source light curves to de-

scribe their variability. These included simple statistical and periodicity-based features

in Table 5.1 along with features obtainable from the feATURE eXTRACTOR FOR

tIME sERIES (FEETS) package (Cabral et al., 2018), a selection of which are shown

in Table 5.2. The FEETS package specialises in analysing astronomical time-series

data, which often exhibit irregular sampling, seasonal gaps, differences in cadence, and
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variability in the number of data points. It is designed to be robust against these chal-

lenges. For example, the Lomb-Scargle periodogram, a key tool for analysing unevenly

sampled data, forms the basis for several FEETS features, such as those which measure

the amplitude and phase of periodogram frequency components (and their harmonics).

Their derivation involves calculating the light curve periodogram, finding the strongest

periodic signal (frequency) and its harmonics, subtracting the model for that signal

(including its harmonics) from the data, repeating for several iterations to identify sev-

eral frequencies, and finally extracting the amplitude and phase for each frequency and

its harmonics. This approach accounts for measurement uncertainties through weight-

ing and discourages high-frequency artefacts (caused by noise or irregular sampling) by

penalising frequencies above the Nyquist limit. The diversity of FEETS features cap-

tures various types of variability, not limited to periodic signals. For instance, Eta e

quantifies overall variability, where high Eta e values indicate rapid, erratic changes,

while low values reflect smoother variations. This feature helps distinguish between pe-

riodic, semi-periodic, and stochastic behaviours. By combining these diverse features,

the FEETS package provides a comprehensive characterisation of light curves, facilitat-

ing more accurate classification of variability types and improving the performance of

machine learning algorithms.

5.2.3 Supplementary features

Supplementary data (or metadata) from Gaia EDR3 relating to position, photometry

and astrometry are incorporated as dataset features. Positional features consist of:

right ascension, declination, Galactic (and ecliptic) longitude and latitude, along with

associated errors. Photometric features encompass the mean flux from the red and blue

photometers (BP and RP) as well as that from G band photometry; the associated

mean magnitudes; colours (BP-RP, BP-G, G-RP) and associated errors. Proper motion

and parallax (along with their errors) are included as astrometric features. A full list

is displayed in Table 5.3, while further details are available within the Gaia EDR3

documentation5

5https://gea.esac.esa.int/archive/documentation/GEDR3/Gaia_archive/chap_datamodel/

sec_dm_main_tables/ssec_dm_gaia_source.html

https://gea.esac.esa.int/archive/documentation/GEDR3/Gaia_archive/chap_datamodel/sec_dm_main_tables/ssec_dm_gaia_source.html
https://gea.esac.esa.int/archive/documentation/GEDR3/Gaia_archive/chap_datamodel/sec_dm_main_tables/ssec_dm_gaia_source.html
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Table 5.1: Features extracted from light curves (without feets package)

Feature Description

mean mag Mean of magnitudes
median mag Median of magnitudes
std mag Standard deviation of magnitudes
mad mag Median absolute deviation of magnitudes
min mag Minimum magnitude (maximum brightness)
max mag Maximum magnitude (minimum brightness)
n obs Number of observations
diff min mean Difference between min mag and mean mag
diff min median Difference between min mag and median mag
detected time diff Time span of observations
n peaks rm x y Number of observations within a rolling window of y obser-

vations that are brighter than x magnitudes of the median
magnitude of that window (x = 1, 2, 3, 4, or 5, y = 7 ).

kurtosis Kurtosis of the magnitudes
skew Skewness of the magnitudes
pwr max Largest power value in the Lomb Scargle Periodogram
freq pwr max Frequency corresponding to pwr max
FalseAlarm prob Estimate of the false alarm probability given the

height of the largest peak in the periodogram (see
https://docs.astropy.org/en/stable/api/astropy.

timeseries.LombScargle.html#astropy.timeseries.

LombScargle.false_alarm_probability)

5.3 Method

5.3.1 Machine Learning algorithms

The dataset described above can be used to evaluate the ability of ML algorithms to

identify CVs within GSA. The algorithms whose performances are evaluated are SciKit-

Learn’s (Pedregosa et al., 2011) Python implementation of Random Forest (RF; Breiman

2001), AdaBoost (ADB; Freund & Schapire 1997), K-Nearest neighbours (KNN; Zhang

2016), and Support Vector Machines (SVM; Cortes & Vapnik 1995). Also used are the

Extreme Gradient Boosting (XGBoost) algorithm (Chen & Guestrin, 2016) and Keras

(Chollet, 2021) implementation of an Artificial Neural Network (ANN) in the form of a

Multi-Layer Perceptron — a fully connected multi-layer ANN (Kruse et al., 2022).

https://docs.astropy.org/en/stable/api/astropy.timeseries.LombScargle.html#astropy.timeseries.LombScargle.false_alarm_probability
https://docs.astropy.org/en/stable/api/astropy.timeseries.LombScargle.html#astropy.timeseries.LombScargle.false_alarm_probability
https://docs.astropy.org/en/stable/api/astropy.timeseries.LombScargle.html#astropy.timeseries.LombScargle.false_alarm_probability
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Table 5.2: A small selection of features available from the feets package. The
full list is available at (https://feets.readthedocs.io/en/latest/tutorial.html)
along with detailed explanations. Of the full list, only those requiring a magnitude and

time, or just magnitude data, were implemented here.

Feature Description

Amplitude Half of the difference between the median of the max-
imum 5% and the median of the minimum 5% mag-
nitudes

AndersonDarling The Anderson-Darling test is a statistical test of
whether a given sample of data is drawn from a given
probability distribution (normal distribution)

Autocor length Cross-correlation of a signal with itself
Eta e (ηe) Variability index η is the ratio of the mean of the

square of successive differences to the variance of data
points.

FluxPercentileRatioMidX Ratio of centred flux percentile ranges. If F5,95 is
the difference between the 95th and 5th percentile
of ordered magnitudes, then FluxPercentileRatio-
MidX = F40,60/F5,95, F32.5,67.5/F5,95, F25,75/F5,95,
F17.5,82.5/F5,95, and F10,90/F5,95, for X = 20, 35, 50,
65, and 80 respectively.

Freqi harmonics amplitude j cAmplitude of the jth harmonic of the ith frequency
component of the Lomb Scargle Periodogram

Gskew Median-of-magnitudes based measure of the skew
LinearTrend Slope of a linear fit to the light-curve
MaxSlope Maximum absolute magnitude slope between two

consecutive observations
Meanvariance Ratio of the standard deviation to the mean magni-

tude
PairSlopeTrend Considering the last 30 (time-sorted) measurements

of source magnitude, the fraction of increasing first
differences minus the fraction of decreasing first dif-
ferences

PeriodLS Period corresponding to frequency of maximum
power in the Lomb Scargle Periodogram

PercentAmplitude Largest percentage difference between either the max
or min magnitude and the median

Psi eta ηe index calculated from the phase-folded light curve
SmallKurtosis Small sample kurtosis of the magnitudes

https://feets.readthedocs.io/en/latest/tutorial.html


Chapter 5 Gaia exploration 98

Table 5.3: Supplementary data from Gaia EDR3 incorporated as dataset features
(see subsection 5.2.3)

.

Feature Description

ra, dec, ra error, dec error Right ascension, declination, and associated
standard errors

l, b Galactic longitude and Galactic latitiude
ecl lon, ecl lat Ecliptic longitude and Ecliptic latitude
bp rp, bp g, g rp BP-RP, BP-G, and G-RP colours
phot X mean flux Mean flux in the G, integrated BP, or integrated

RP bands — corresponding to X = g, bp, or rp
respectively

phot X mean flux error Error on the mean flux in the X band. Standard
deviation of the X-band fluxes divided by sqrt
of the number of observations (data points)

phot X mean flux over error Mean flux in the X band divided by its error
phot X mean mag Mean magnitude in the G, integrated BP, or in-

tegrated RP bands — corresponding to X = g,
bp, or rp respectively

pseudocolour, pseudocolour error The astrometrically estimated effective
wavenumber of the photon flux distribu-
tion in the astrometric G band, measured in
µ−1m, and standard error of pseudocolour

parallax, parallax error Gaia parallax in milliarcseconds (mas) and stan-
dard error

parallax over error Parallax divided by its standard error
pm, pmra, pmdec Total proper motion, and proper motion in

the right ascension and declination directions
(mas/year)

pmra error, pmdec error Standard error of the proper motion in right as-
cension and declination directions (mas/year)

ruwe renormalised unit weight error: expected to
be around 1.0 for sources where the single-star
model provides a good fit to the astrometric ob-
servations. A value significantly greater than 1.0
(say, > 1.4) could indicate that the source is non-
single or otherwise problematic for the astromet-
ric solution

5.3.2 Fine Tuning

To control how the algorithms learn from the dataset to generate predictive models,

their hyperparameters must be adjusted/tuned in such a manner as to improve model

performance. The hyperparameters explored for each algorithm are given in Table 5.4.
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Table 5.4: The hyperparameters explored for each ML algorithm.

RF Hyperparameters Description

n estimators Number of Decision Trees
max features maximum number of features provided to each tree
max depth maximum number of binary split levels in each tree

ADB Hyperparameters

n estimators Same as for RF
learning rate Weight assigned to each classifier at each boosting

iteration. This determines the impact of each tree
on the final outcome.

max depth Same as for RF

XGBoost Hyperparameters

n estimators Same as for RF
min child weight Minimum sum of weights of all observations in a

child node
gamma Nodes are split only when there is a reduction in

the error defined by a loss function. Gamma spec-
ifies the minimum loss reduction required to make
a split

subsample Fraction of examples to be randomly sampled for
each tree

colsample bytree Similar to max features in Random Forest
max depth Same as for RF

SVM Hyperparameters

Kernel see text: ‘Radial Basis Function (RBF)’
Kernel Coefficient (γ) Defines how far the influence of a single training

example reaches, where the values can be seen as
the inverse of the radius of influence.

Error Penalty (C) Controls the cost of miss-classification on the
training data. Small C = soft margin, large C
= hard margin.

KNN Hyperparameters

n neighbors Number of nearest neighbours to use

MLP Hyperparameters

learning rate Controls how much to change the model in re-
sponse to the error each time the model weights
are updated.

Number of Hidden Layers Number of hidden layers
Number of neurons Number of units (neurons) within a given hidden

layer.
Activation function Converts the output of a neuron into a form that

serves as input for the next. Used to introduce
non-linearity to a network.
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5.3.3 Classification tasks

The classes assigned by the Gaia team are not mutually exclusive. For example, quasi-

stellar objects (QSOs) are extremely luminous AGN. From the Gaia-assigned classes,

many variations of class grouping could be put forward for ML classification algorithms

to distinguish. Two such groupings are defined by the following classification tasks,

listed as transient class followed by the number of dataset samples in brackets:

1. Binary classification — CV (613) or not CV (4,084).

2. 4 class classification — this comprises the most populous transient types in

the dataset: AGN (which includes QSOs and BL Lac) as a single class (929), CVs

(613), all different supernova types (SNe; 2,713) and Young Stellar Objects (YSOs;

184).

The tasks are assigned to the ML algorithms and their performance is evaluated. The

classification tasks were first performed with both the light curve extracted features

and supplementary features. However, between 58% and 90% of data is missing for

supplementary features. This was either due to unsuccessful cross-matching of targets

with EDR3 — cross-matching was unsuccessful for 90% of supernovae, 23% of CVs, and

<1% of AGN and YSOs respectively — or certain metadata not being available where

cross-matching was successful. For example, parallax measurements may not be available

if the target is too faint or distant for an accurate measurement. Therefore, I felt it

necessary to also perform classification tasks with light curve extracted features alone.

These implementations can then be compared with other works where classification has

been performed using light curve-derived features alone.

5.3.4 Data pre-processing

Prior to ingestion into ML algorithms, the associated datasets require some level of

preparation. Examples within each task-specific dataset contain missing data for several

features. The strategy employed here is to replace missing values with the mean value

of the feature column (mean imputation; Khan et al. 2018). Feature scaling is employed

for all except the ensemble learning algorithms (i.e., RF, ADB, and XGBoost) so that

features with a larger range of values do not impart more influence on the model during
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training and for faster convergence to error minimum for Gradient Descent algorithms. I

standardised the data to achieve zero mean and unit variance (or equivalently, standard

deviation; Muhammad Ali & Faraj 2014).

5.3.5 Train-test split

Training and evaluation of an ML model requires a separate training and test set. The

algorithms are trained on the training set to generate a model to be evaluated on the test

set. The task-specific datasets are split 50/50 into a training set and test set in a stratified

manner — the same proportion of each class is represented in each of the training and

testing sets. The split is performed before the pre-processing (imputation and feature

scaling) stages to avoid information from the test set being present within the training set

(data leakage) and yielding extremely biased results on model performance. A validation

set was obtained via cross-validation, as described in the following subsection.

5.3.6 Optimal Hyperparameter Search

Manually testing all hyperparameter combinations to find the optimal set is compu-

tationally infeasible, particularly when using cross-validation. To address this, for the

RF, ADB, XGBoost, KNN, and SVM algorithms, the GridSearchCV and Randomized-

SearchCV functions from Scikit-learn’s model selection package (Pedregosa et al., 2011)

were employed. These functions systematically explore predefined hyperparameter com-

binations and perform cross-validation for each. The optimal set of hyperparameters

for a given algorithm is determined as the one achieving the highest balanced accuracy

cross-validation score — representing the average balanced accuracy across validation

splits. A 10-fold cross-validation approach was used (i.e., nine splits for training and

one for validation obtained from the training set).

For the ANN, a manual tuning approach was adopted. The training set was divided into

90% for training and 10% for validation in a stratified manner (mirroring the validation

split proportions for the non-ANN algorithms). All chosen hyperparameter sets were

trained for a fixed, large number of epochs (1,000), but the training was halted early

based on the validation set balanced accuracy to avoid overfitting. The model from

the epoch that achieved the highest validation balanced accuracy was saved for further



Chapter 5 Gaia exploration 102

evaluation. This approach ensured that the model did not overfit to training set noise

and maintained good generalisation to unseen data. The evaluation of validation per-

formance for each hyperparameter combination identified the optimal hyperparameters

for the ANN algorithm.

5.4 Results

Tables 5.5 and 5.6 show the model evaluation scores for the binary and 4 class classifi-

cation tasks. The scores for models trained with both light curve extracted and supple-

mentary features (full feature models) are shown without brackets, while the scores for

models trained with light curve extracted features alone (light curve only models) are

within brackets. The scores shown are the accuracy, balanced accuracy, and with respect

to the CV class, the precision, recall, and F1-score. The choice of best-performing model

is based on the F1-score for the CV class. This metric was chosen as it considers both

the need to minimise false positives (FPs), which is important for the efficient use of

telescope time for target follow-up, and a requirement to minimise false negatives (FNs).

5.4.1 Binary classification

5.4.1.1 Full feature model

The best performing binary task full feature model was XGBoost, trained with 150

Decision Trees at a learning rate of 0.1 and maximum tree depth of 6. The model

outperformed each of the others with an F1-score of 84%, the AdaBoost and Random

Forest implementations follow closely behind (81-83%). There is though little difference

between the top two models; use of the McNemar’s test to compare the XGBoost and

AdaBoost models shows both classifiers make errors in much the same proportions (for

α = 0.05; p = 0.175). The confusion matrix (top panel of Figure 5.1) indicates 69 of

the 307 CVs in the test set were miss-classified by the XGBoost model, while of the 258

examples predicted as CVs only 20 were not. The corresponding ROC curve is plotted

in the top panel of Figure 5.2, with an AUC score of 0.975. The importance of each

feature for a given model can be given by the feature importance scores. The 20 features

with the largest effect on the model’s predictive accuracy are plotted in the top panel
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Table 5.5: Binary task classification scores for ML models as measured on the test
set. Scores without brackets relate to models using both light curve and supplementary
features, while those in brackets are for models that used only light curve extracted
features. Random Forest was implemented with 100, 250, 750, and 1000 trees denoted
by RF then the number of trees; other abbreviations are ADA – AdaBoost, MLP –
Multi-Layer Perceptron, KNN – K Nearest Neighbours and SVM – Support Vector

Machine

Model Accuracy Balanced CV CV CV
Accuracy Precision Recall F1-score

RF100 0.955 0.870 0.88 0.76 0.81
(0.938) (0.824) (0.82) (0.67) (0.74)

RF250 0.955 0.870 0.89 0.75 0.81
(0.939) (0.829) (0.82) (0.68) (0.74)

RF500 0.955 0.868 0.89 0.85 0.81
(0.937) (0.827) (0.81) (0.68) (0.74)

RF750 0.955 0.867 0.89 0.75 0.81
(0.937) (0.826) (0.81) (0.67) (0.74)

RF1000 0.956 0.870 0.90 0.75 0.82
(0.938) (0.826) (0.82) (0.67) (0.74)

ADA 0.959 0.874 0.91 0.76 0.83
(0.932) (0.840) (0.75) (0.72) (0.73)

XGBoost 0.962 0.883 0.92 0.78 0.84
(0.943) (0.823) (0.86) (0.67) (0.76)

MLP 0.932 0.824 0.78 0.68 0.72
(0.932) (0.822) (0.78) (0.67) (0.72)

KNN 0.909 0.812 0.65 0.68 0.66
(0.900) (0.812) (0.60) (0.69) (0.64)

SVM 0.817 0.787 0.39 0.75 0.52
(0.871) (0.802) (0.51) (0.71) (0.59)

of Figure 5.3. The number of observations greater than 2 magnitudes brighter than the

median of a rolling window has by far the greatest influence in discriminating between

the classes.

5.4.1.2 Light curve only model

The best-performing binary task light curve-only model was XGBoost (CV F1-score of

76%). The implementation was performed with 150 Decision Trees at a learning rate of

0.2 and a maximum tree depth of 6. The Random Forest models follow closely behind

(CV F1-score of 74%); the use of McNemar’s test again shows XGBoost makes errors

in the same proportions (0.766 ≤ p ≤ 0.88). The CV F1-score performance for this

XGBoost model drops compared to the full feature model by 8 percentage points due to

an increase in the number of false negatives from 69 to 93 and an increase in the number
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Table 5.6: 4 class classification scores. Score with and without brackets, and abbre-
viations are as described in Table 5.5.

Model Accuracy Balanced CV CV CV
Accuracy Precision Recall F1-score

RF100 0.964 0.941 0.92 0.85 0.88
(0.922) (0.835) (0.80) (0.79) (0.80)

RF250 0.964 0.936 0.92 0.85 0.88
(0.924) (0.835) (0.81) (0.79) (0.80)

RF500 0.965 0.941 0.92 0.85 0.88
(0.923) (0.830) (0.80) (0.80) (0.80)

RF750 0.965 0.942 0.92 0.86 0.89
(0.923) (0.833) (0.80) (0.80) (0.80)

RF1000 0.965 0.942 0.92 0.86 0.89
(0.923) (0.833) (0.80) (0.80) (0.80)

ADA 0.959 0.925 0.90 0.82 0.86
(0.897) (0.798) (0.75) (0.75) (0.75)

XGBoost 0.962 0.928 0.91 0.84 0.87
(0.922) (0.820) (0.83) (0.77) (0.80)

MLP 0.926 0.873 0.80 0.76 0.78
(0.910) (0.793) (0.73) (0.71) (0.76)

KNN 0.895 0.795 0.90 0.48 0.63
(0.898) (0.730) (0.86) (0.67) (0.75)

SVM 0.891 0.798 0.62 0.70 0.66
(0.874) (0.758) (0.76) (0.61) (0.68)

of false positives to 36 from 20. Out of the 307 test set CVs, 214 were correctly identified

(see bottom panel of Figure 5.1). The model AUC score also drops from 0.975 to 0.9622

(bottom panel of Figure 5.2). The number of observations greater than 2 magnitudes

brighter than the median of a rolling window remains the feature that has by far the

greatest influence in discriminating between the classes (bottom panel of Figure 5.3).

5.4.2 4 class classification

5.4.2.1 Full feature model

A 750-tree Random Forest model performs equally well or better than its competitors

in each of the performance metrics evaluated for this 4-class full-feature task. The F1-

score for CV classification stands at 89% though the remaining ensemble learning models

follow closely behind. The model was trained such that only 25% of features (selected at

random) could be used within each tree, with a maximum tree depth of 25. The confusion

matrix (top panel of Figure 5.4) displays a strong performance in distinguishing CVs



Chapter 5 Gaia exploration 105

non-CV CV

Predicted label

non-CV

CV

Tr
ue

 la
be

l

2022 20

68 239

250

500

750

1000

1250

1500

1750

2000

non-CV CV

Predicted label

non-CV

CV

Tr
ue

 la
be

l

2006 36

93 214

250

500

750

1000

1250

1500

1750

2000

Figure 5.1: Confusion Matrices (CM) for the best performing binary task full feature
(top) and light curve only (bottom) models. In each case, this was an XGBoost model —
achieved the highest F1-score. The CMs show the numbers corresponding to precision,
recall and accuracy scores in Table 5.5. There are over 6 and a half times more non-CVs
in the test set than CVs, raising the overall accuracy score, the balanced accuracy score

is more able to account for this class imbalance.
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Figure 5.2: ROC curves for the full feature and light curve only binary task models
achieving the highest CV F1-scores. On the top is the curve for the full feature model,
while on the bottom is that for the light curve-only model. The full feature model
area under the curve is 0.975, for the light curve-only model this is 0.9622, indicating

a strong performance in each case.
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Figure 5.3: Feature importance scores for the 20 most influential features within the
best performing full-feature and light curve only binary task models. Feature impor-
tance refers to a class of techniques for assigning scores to input features to a predictive
model, in this case, XGBoost, that indicates the relative importance of each feature
when making a prediction. The most important feature for each of the full feature (top)
and light curve only (bottom) models is n peaks rm 2 7 — number of instances of data
points at least 2 magnitudes brighter than the median of a rolling window of 7 epochs.

Feature definitions are contained in Tables 5.1, 5.2 and 5.3.



Chapter 5 Gaia exploration 108

from other classes. Those CVs that were misclassified were mostly predicted to be of the

SNe class (39/44). The top panel of Figure 5.5 presents histograms of the probabilities

of class assignment for this model. The vast majority of test set examples, 274 out of

the 285 predicted CVs, were predicted as such with probabilities greater than 50%. 79

of the 285 were predicted as CVs with a probability of 95% or above. All but 3 examples

predicted as YSOs are classified with 50% probability or higher.

According to the feature importances (top panel of Figure 5.6) the temporal baseline

of observations (detected time diff ) has the greatest influence in discriminating between

classes. In addition to Gaia’s observing strategy and their prevalence in the dataset, this

can be partially explained by the properties of the majority class, supernova — they

are too distant for their progenitors to be observable by Gaia, and after several months

they become too faint to be observable above the light from their host galaxy. Of the

supplementary features, parallax and proper motion are expected to provide the greatest

ability in class distinction, with the ability to distinguish extragalactic sources from

those nearby. They both appear high in feature importance, as do the right ascension

and declination error features. These errors are noticeably higher for SNe (∼12.8 mas)

than for remaining classes (∼0.08-0.17 mas) attributed to the ability to measure these

properties being affected by crowding (including contamination of light from the host

galaxy).

5.4.2.2 Light curve only model

A 1000 tree Random Forest model performed the best, achieving the highest CV F1-

score (81%) for the 4 class light curve feature-only task, though the remaining ensemble

learning models follow closely behind. The model was implemented with a maximum

tree depth of 30 and 75% of randomly selected features available for each tree. While

247 of the 306 CVs have been correctly classified (bottom panel of Figure 5.4), the

contamination of other classes into those targets predicted as CV increases from 8 to 18%

compared to the full feature model. Like the full feature model, misclassified CVs are

mostly assigned the SNe label. The histograms of class assignment probability (bottom

panel of Figure 5.5) show the majority of CVs are predicted as such with greater than

50% probability, though more examples are now present in the tail of the distribution.
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Figure 5.4: Confusion Matrices for the best performing full feature and light curve
only models in the 4 class classification task. On the top is the 750-tree Random Forest
model trained with the full complement of features. 262 of the 306 CVs in the test set
were successfully classified (true positives), the majority of those misclassified, 39 of 44,
were predicted to be supernovae. On the bottom is the 1000-tree Random Forest model
trained with light curve-derived features only. Less true positives (247) compared to
the full feature model. Also an increase in the number of false positives from 23 to 56,

of which the majority were AGN and supernovae.

According to the feature importances (bottom panel of Figure 5.6) the temporal baseline

of observations (detected time diff ) also has the greatest influence in class distinction.
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Figure 5.5: The number of test set examples predicted as CV (orange), AGN (blue),
SNe (green), and YSO (red) separated in bins of probability of class association calcu-
lated for the full feature and light curve only 4 class models with the highest F1-scores.
Each tree in the Random Forest model predicts class probabilities for each example
— these are the fraction of samples of the same class in the associated leaf evaluated
during training. These probabilities are averaged for the forest prediction. Class prob-
abilities for the full feature Random Forest model (top) show nearly all examples are
assigned classes with greater than 50% probability, the majority of which are in the
95-100% bins. For the light curve only features 4 class model (bottom), one can say

likewise, however, the YSO class assignment probabilities are more uncertain.



Chapter 5 Gaia exploration 111

det
ect

ed_
tim

e_d
iff

ra_
err

or pm

dec
_er

ror

n_o
bs

par
alla

x_o
ver

_er
ror

pm
dec

par
alla

x

bp_
rp

bp_
g

Lin
ear

Tre
nd

Pe
rce

ntA
mp

litu
de

Gs
kew

n_p
eak

s_r
m_

2_7

diff
_m

in_
me

an

diff
_m

in_
me

dia
n

g_r
p

fre
q_p

wr_
ma

x

pho
t_b

p_m
ean

_flu
x_e

rro
r

Eta
_e0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fe
atu

re 
Imp

ort
anc

e S
cor

e

det
ect

ed_
tim

e_d
iff

n_o
bs

Fre
q3_

har
mo

nic
s_a

mp
litu

de_
2

Fre
q3_

har
mo

nic
s_a

mp
litu

de_
3

Lin
ear

Tre
nd

Eta
_e

freq
_pw

r_m
ax

Per
cen

tAm
plit

ude

Fre
q3_

har
mo

nic
s_a

mp
litu

de_
1

Aut
oco

r_le
ngt

h

Fre
q3_

har
mo

nic
s_a

mp
litu

de_
0

Per
iod

LS

Gs
kew

n_p
eak

s_r
m_

2_7

diff
_m

in_
me

an

Ma
xSl

ope

diff
_m

in_
me

dia
n

Psi
_et

a

pw
r_m

ax

me
an_

ma
g0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fea
ture

 Im
por

tan
ce 

Sco
re

Figure 5.6: The top 20 features based on feature importance scores for the 4 class full
feature and light curve only models with the highest F1-scores. The full feature model’s
best-performing feature (top) was the time between the first and last observation of the
target, followed by the error in the right ascension, proper motion, and the error in
declination. The same best-performing feature is present for the light curve-only model

(bottom). Feature definitions are contained in Tables 5.1, 5.2 and 5.3.

5.5 Discussion

5.5.1 Semi-regular, short duration outbursts

The light curve feature that logs the number of epochs that are at least 2 magnitudes

brighter than the median of a rolling window of 7 epochs, n peak rm 2 7, outperforms

all others in feature importance for the best performing full feature and light curve

only binary models. The semi-regular, short-duration outbursts of DNe are effectively

picked out using this feature as found during its development. Such characteristics

are more likely to be identified within Gaia’s transient alerts pipeline than the less

frequent alert-triggering features of other CV subtypes so the high ranking of the feature

may be expected. Indeed, a coordinate cross match with ‘The Catalogue and Atlas of
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Cataclysmic Variables’6 (Downes & Shara, 1993; Downes et al., 1997), reveal 77% of

successfully cross-matched dataset CVs are listed as being DNe. Exploration of the true

positives for each of the best-performing binary models reveals the majority display the

expected dwarf novae morphology (78 and 73% for the full feature and light curve-only

models respectively).

5.5.2 Limited Epoch Photometry

A significant fraction of the dataset is constructed from target light curves with few

epochs of observation, 36% of targets contain 5 or fewer datapoints in their light curves.

This is due to the combination of Gaia’s sampling frequency and systems too faint to

be observed by Gaia until a brightening event propels them into visibility. Transient

phenomena more likely to display this trait will be those exhibiting a rapid and large

amplitude brightening, for example, SNe and the CV subclasses of classical and dwarf

novae. Considering SNe comprise the majority (58%) of the dataset, this may explain

the strong performance of detected time diff (temporal baseline of observations) in class

distinction (see Figure 5.6). It may also explain the difficulty that the best-performing

4-class models have in distinguishing CVs from SNe. Of the CVs misclassified by the

best performing full feature 4 class model, 87% (39 of 45) are predicted to belong to

the SN class, while for the corresponding light curve only model, 68% (40 of 59) are

predicted as SNe. Similarly, the majority of misclassified SNe in each of those models

are predicted to be of the CV class. Inspection of the CVs misclassified as SNe reveals

the majority possess light curve morphologies that are present for the SNe samples —

those with few data points (2–10 observations) and those exhibiting an approximately

exponential decline with no pre-explosion data.

5.5.3 Metadata and high imputation

A McNemar’s test suggests the use of metadata has an impact on model performance

when comparing the full feature and light curve only XGBoost models (p = 10−7).

However, the small difference in classification accuracy between these two binary mod-

els (1.9%) indicates that the addition of survey metadata provides minimal benefit in

distinguishing CVs from non-CVs. This is also shown by the small difference in the

6https://archive.stsci.edu/prepds/cvcat/index.html

https://archive.stsci.edu/prepds/cvcat/index.html
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AUC (1.3%) between these models, with both performing strongly by this measure

(0.975 and 0.962 for the full feature and light curve only models respectively). The

feature importances for both binary models further illustrate this point — the influ-

ence of supplementary features in class distinction is dwarfed by the light curve derived

n peaks rm 2 7 feature. Either the metadata is unimportant or mean imputation has

diluted the influence this data has on class distinction. The latter seems more likely

when presented with pair plots of Figure 5.7 that show transient classes in metadata

feature space. This plot is of particular use in interpreting the performance of algorithms

that rely on class separation within feature space (e.g., KNN and SVM). Evident is the

distinction between YSOs from CVs, SNe, and AGN in colour space (bp-rp, bp-g, g-rp);

and CVs and YSOs from SNe and AGN when proper motion is considered.

The use of mean imputation has its drawbacks, it ignores relationships between features,

the correlation for example, and reduces the variance of the variable, thereby introducing

bias to the model. Furthermore, the strategy may not be suitable for several supplemen-

tary features. For example, the parallax may not be measurable because the object is

too far away (too small to measure); and a missing value for proper motion can either be

due to the object having no proper motion to measure or be due to it being too distant

to be measured. A more appropriate strategy could be to replace these with a value of

zero — a more accurate quantity for the parallax and proper motion of the most distant

sources — though this does not account for the unavailability of these features due to

an unsuccessful cross-match with EDR3. While alternative methods of handling missing

data could be employed (such as those summarised in Soley-Bori 2013), a large amount

of data is missing for the supplementary features (58-90%), this can limit the effective-

ness of any such strategy (Jäger et al., 2021). Figure 5.7 shows how photometric colour

information can be an important property for class distinction, this is readily available

in multi-band surveys such as ZTF and can be used to help alleviate the issue.

5.5.4 Comparison with other work

The results of this investigation compare favourably with similar classification attempts

where CVs are included as a class. Neira et al. (2020) experiments with CRTS light

curves in their 8 class classification model yielded an F1-score of 75% for the CV class,

while this work exceeds this in both the binary (76%) and 4 class (80%) tasks where only
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Figure 5.7: The pairplot allows us to see both the distribution of the single variables
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for a significant level of class separation. Introduction of proper motion allows for the
separation of the more distant (extragalactic) SNe and AGN from the closer (Galactic)

CV and YSO population.

light curve features are used. Sánchez-Sáez et al. (2021) evaluated 3 different algorithms

in their tiered classification attempts to distinguish between CVs, SNe subclasses, AGN,

YSOs and variable star subclasses from a dataset constructed from ZTF light curves and

colours from ALLWISE. Their CV recall scores for their implementation of the Balanced

Random Forest (Chen & Breiman, 2004), XGBoost, and Multi-Layer Perceptron classi-

fiers are 68%, 72%, and 61% respectively. This compares with 67% and 80% for my light

curve only best-performing binary and 4 class models respectively. These comparisons

do not however take into account differences in the instruments used to collect the data,

which translates to the nature of photometric data (e.g., observing cadence, waveband).

Furthermore, comparisons do not consider differences in transient classes to classify and
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ML methods employed.

5.5.5 Gaia Unknowns

5.5.5.1 Model predictions on unknown sample

The model that produced the highest CV F1-score overall — full feature 4 class model

(Random Forest with 750 trees) — is used to make class predictions of targets labelled

as ‘unknown’ (unclassified) within the Gaia alerts stream. As of December 2021, 13,241

targets were of ‘unknown’ class. Of these, the model predicted 2,833 (21%) to be of

the CV class, 1,928, 6,611, and 1,869 were classified as AGN/QSO, SNe, and YSOs,

respectively. As mentioned in Section 5.2, the unknown sample will contain several

minority classes (e.g., microlensing and tidal disruption events) not included in the test

set used to evaluate model performance. I aim to assess the impact this has on my

model’s ability to generalise to the unknown sample and new transient alerts in general.

This will require spectroscopic observations for a sufficient number of the 2,833 predicted

CVs to identify their true transient classification.

5.5.5.2 Spectroscopic follow-up

I am therefore undertaking a pilot study to assess the performance of the model and the

methods used by obtaining spectroscopic observations to classify those targets that can

be observed with the SPRAT low-resolution spectrograph (Piascik et al., 2014) mounted

on the Liverpool Telescope (LT; Steele et al. 2004). These spectra cover a wavelength

range of 4000 to 8000Å with a resolution of 18Å, corresponding to a resolving power,

R=350, at the centre of this range. A limit on telescope time and the need for high-

quality spectra requires an efficient observation strategy. Accordingly, observations are

limited to targets with a median brightness no fainter than 18th magnitude. Further-

more, only those targets that rise highest in the sky — visible for longer at a lower

airmass — are considered. Therefore, the sample is limited to those with a declination

corresponding to an altitude no lower than 50 degrees when at transit altitude. These

cuts leave a sample of 220 targets, 7.8% of the total catalogue — a representative frac-

tion with which one can validate the performance of the model. I have spectroscopically

classified 15 of this sample, all of which I can confirm are of the CV class. Details of
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Target Classification Comment

Gaia16cfn CV (Dwarf Nova) Clear Balmer and He i emission. He i λ4922 blended
with Fe ii λ4924. Characteristic of DNe subtype.

Gaia17ccv CV (Decline from
dwarf nova out-
burst)

CV on decline from outburst, Faint Hα and Hβ emis-
sion, He ii λ4686 in emission. Double peaked lines —
indicative of high inclination system.

Gaia17dfn CV Balmer and He i λ4471 lines in emission
Gaia18auz CV Clear Balmer emission with several faint He i lines in

emission
Gaia18dgt CV (Dwarf Nova) Broad Balmer emission with lines of He i. He i λ4922

blended with Fe ii λ4924. Characteristic of DNe sub-
type. Double peaked emission, possible high inclina-
tion system

Gaia18dhv CV Balmer, He i and He ii in emission
Gaia19bzn CV Clear Balmer emission; faint lines of He i and He ii
Gaia19cln CV Clear Balmer emission; Lines of He i and He ii also

present; He i λ4922 blended with Fe ii λ4924
Gaia20air CV Clear Balmer emission; Lines of He i and He ii also

present; He i λ4922 blended with Fe ii λ4924
Gaia20bjd CV Clear Balmer emission; Lines of He i also present; He i

λ4922 blended with Fe ii λ4924
Gaia20cpq CV (Dwarf Nova) Clear Balmer emission; Lines of He i and He ii also

present; He i λ4922 blended with Fe ii
Gaia21beh CV Outburst spectrum. Possible very faint Hα absorp-

tion, clear absorption in remaining Balmer lines and
He i λ4471, He ii λ4686 in emission (faint).

Gaia21cgv CV Balmer and He i emission lines, faint Fe ii λ5169
Gaia21cul CV Clear Balmer and He i emission lines
Gaia21eyb CV Balmer, He i, He ii and Fe ii emission lines, He i λ4922

blended with Fe ii λ4924

Table 5.7: Classifications based on LT SPRAT spectroscopy of several targets labelled
as ‘unknown’ (without a transient class assignment) within Gaia Science Alerts and

predicted as CV by the RF750 model.

these targets are given in Table 5.7, while the associated SPRAT spectra are shown in

Figure 5.8. Classification as a CV is based on the presence of Balmer and/or He i/He ii

lines. Where the signal-to-noise ratio of the spectrum permits, subtype classification is

performed. Full details of the spectral features used for classification are given in Szkody

(1998) and Hou et al. (2020).

5.6 Conclusions and future work

The advent of wide-field synoptic surveys has revolutionised time-domain astronomy

with their ability to detect millions of transient events per night. The use of Machine
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Figure 5.8: SPRAT spectra of targets in Table 5.7. Spectral lines are indicated in
plots, labelled in the legend for each.

Learning is recognised as the best method of source classification for this deluge of

transient sources. Machine Learning algorithms have been applied widely to data from

several surveys including CRTS and ZTF photometry. In this work, I applied ML tech-

niques to the transient stream of Gaia Science Alerts, a resource not fully explored with

ML. My focus lies in the identification of Cataclysmic Variable stars, a class of transients

providing ideal laboratories for the study of accretion and binary evolution. Using fea-

tures extracted from light curves of classified sources and associated metadata as input,

I evaluated the use of Random Forest, AdaBoost, XGBoost, K Nearest Neighbours, Sup-

port Vector Machines, and a Multi-Layer Perceptron in performing several tasks. These

are the identification of CVs in the context of binary classification (CV or non-CV) and

a 4-class task (CV, AGN, SNe, YSOs). Each of these tasks was performed with and

without metadata (e.g., Gaia parallaxes and colour) during training. By comparison of

the F1-score of all models across both tasks, the 4 class Random Forest model trained

with both light curve and metadata-based features performed the best with an F1-score

of 89% when evaluated on the test set. I applied this model to the list of unclassified

targets within GSA. The model predicted 2,833 of these ‘unknowns’ to be of the CV

class. I am now undertaking a spectroscopic observing campaign to spectroscopically

classify a representative fraction of these targets to validate the model’s performance.

So far, I have been able to spectroscopically confirm 15 targets to be of the CV class.
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The use of data beyond light curve features seems necessary in order to achieve classifi-

cation performance close to an F1-score of 90%. However, with light curve features alone

the performance of the model compared well with other works, despite more sparsely

sampled light curves. The lessons learnt during this exploration of the GSA resource and

the classified targets from my spectroscopic database of targets will be useful in the next

phase of research. This will be the application of ML to the multiband high-cadence

light curves of the ZTF survey.

The next phase will be an opportunity to explore methods of handling class imbalance

and missing data. Class imbalance, present within the dataset (see subsection 5.2.1),

tends to bias classifiers to recognise the oversampled class more than the undersampled

class. Algorithm-specific solutions exist, for example, within Random Forest one may

grow each tree with the same number of targets per class by oversampling or undersam-

pling using the bootstrap sampling process (Fernández et al., 2018). Data augmentation

methods (e.g., Wen et al. 2020) to generate new examples based on existing examples will

also be explored. The use of mean imputation for handling missing data is simple and

parameter-free. Whilst this method can cause biases (see subsection 5.5.3), I deemed the

exploration of several imputation methods beyond the scope of this work, though it is

something to be explored in work with ZTF data. The reliability of class labels will also

be important for the next research phase and once LSST becomes operational. Whilst

there is confidence in the methods employed in the labelling of examples used here (see

subsection 5.2.1), I acknowledge that labelling errors do occur. This can add noise to the

dataset, deteriorating classifier performance (Frenay & Verleysen, 2014) and reducing

the effectiveness of performance optimisation techniques such as hyperparameter tuning.

The methods employed in this work are transferable to the data available from the

ZTF survey. This data should provide the necessary information to identify subclasses

within the CV population and pick out rare varieties that further our understanding

of binary evolution. For example, the ∼2 day cadence provides the sampling necessary

to recognise the defining characteristics of DNe subtypes, such as the superoutbursts

of SU UMa systems (e.g., Szegedi et al. 2022) and the standstills of Z Cam systems

(Simonsen et al., 2014); and identify characteristics present in outbursting AM CVns,

such as the short duration rebrightenings on the fading tail of a superoutburst (Kato

& Kojiguchi, 2021). The ability to automatically distinguish between the different CV

subtypes will depend upon several factors, one of which is the quality of features. Several
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features used in this work have so far shown their effectiveness at class distinction, others

may become more significant once computed with the higher cadence data, while the

development of features geared towards the identification of specific subtypes should

provide further benefit. The prevalence of a given subtype within the dataset is another

factor that I expect to impact classifier performance. The sensitivity of a survey to

certain CV subtypes results in the under-representation of novae, AM CVns and nova-

likes compared to DNe due to the rarity of eruptions, faintness, and photometric stability,

respectively. This is where the methods of handling class imbalance described in the

previous paragraph will become invaluable. The methods used here and the lessons

learnt will aid in the goal of separating the rare CV systems from those more common

and hopefully lead to a greater understanding of binary evolution.



Chapter 6

ZTF Machine Learning

Applications

6.1 Introduction

A specific focus on the automated identification of CVs and their subtypes is an active

yet underdeveloped field of research. Examples to date include: the identification of 497

CVs from ZTF alerts using simple colour, amplitude, and variability timescale filters

(Szkody et al., 2020, 2021); an extension of this filtering approach by van Roestel et al.

(2021), which utilised Gaia and Pan-STARRS colours to identify nine outbursting AM

CVns within ZTF alerts; and the application of machine learning to identify CVs in

Gaia Science Alerts (Mistry et al., 2022).

Here are presented details of the development and application of an automated ML

pipeline to identify the various classes of CVs from the ZTF alert stream via the Lasair

alerts broker (Smith et al., 2019). I start by explaining the initial alerts filtering using

Lasair (Section 6.2.1) before moving on to describing the construction of the dataset

upon which an ML classifier is generated (Sections 6.2.2 – 6.2.5). Sections 6.2.6 – 6.2.10

describe the ML techniques adopted and algorithms tested. The results of my efforts

to generate a suitable ML CV classifier for my pipeline are presented in Section 6.3

along with its initial outcomes based on implementation. The discussion of my results

(Section 6.4) will be given in the context of light curve profiles and the underlying

physical properties of the CV subtypes.

121
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6.2 Method

6.2.1 Alerts filter

The alert stream from ZTF is ingested by alert brokers such as Lasair (Smith et al., 2019)

and Alerce (Förster et al., 2021). They provide real-time alert access, science, difference

and reference image cutouts, light curves of the associated ZTF object, contextual infor-

mation, statistics derived from source photometry, and the ability to cross-match events

with catalogued sources. Brokers provide the ability to filter alerts based on the above

to focus on those that are most relevant to their science goals. My pipeline experiments

with Lasair’s cross-matching and filtering services to focus on objects within the typical

parameter space of CVs as a first stage before implementing my ML classifier.

To remove non-CV catalogued sources, the Sherlock classification software (Smith et al.,

2020), implemented by Lasair for cross-matching, is examined. Sherlock uses a model,

generated by a boosted decision tree algorithm, that mines a database of historical

and ongoing astronomical survey data to predict the nature of the object based on the

resulting crossmatches. The database includes datasets from all-sky surveys as well

as more source-specific catalogues such as the Million Quasars Catalog (Flesch, 2019),

Downes Catalog of CVs (Downes et al., 2001), and the Ritter Cataclysmic Binaries

Catalog v7.24 (Ritter & Kolb, 2003). Sherlock assigns the label Variable Star (VS),

Cataclysmic Variable (CV), Active Galactic Nuclei (AGN), or nuclear transient (NT)

should the transient be located within the synonym radius (1.5”) of a catalogued point

source or, in the case of a NT, the core of a resolved galaxy; a supernova (SN) if not

classified as a NT but is found close enough to a resolved galaxy to be deemed physically

associated; a Bright Star (BS) if the transient is not matched against the synonym radius

of a star but is associated within the magnitude-dependent association radius; Orphan if

the transient fails to be matched with a catalogue source; or Unclear otherwise. To limit

alerts of non-CVs, I made use of Sherlock and catalogue cross-matching in the manner

described in Section 6.3.4.

The remaining sources are subject to colour and magnitude change cuts akin to those

described in Szkody et al. (2020, 2021). In those works, the ZTF alert stream filtering

involved looking for point sources with g-r colour < 0.6 and a magnitude change ∆m >=

2 within a timescale of 2 days in the g band. This resulted in a total of 701 known or
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candidate CVs over two years of its implementation that typically displayed dwarf nova

outbursts and changes in accretion state. I relaxed these constraints with respect to

Szkody et al. (2020, 2021) to maximise the number of targets for classification. In

performing a cut based on colour, attempts were made to account for several factors:

differences in the sampling between the g and r band; sampling differences between

outburst activity and quiescence; and the tendency of CVs to have bluer colours during

outbursting phases than during quiescence (a consequence of the enhanced accretion

and increased temperature of the disk during outburst). Therefore, for each source,

the colour for each night of observation was extracted (where calculable); the mean

and median averages of these were recorded along with the colour at maximum and

minimum brightness. The constraint of <= 0.7 for each of these quantities, as well as

for the overall mean colour (calculated without the epochal requirement) was utilised.

Figure 6.1 shows that a significant fraction of CVs will be recovered at or below the

epochal mean g-r of 0.7. This constraint is flexible, based on the type of CV I may

wish to focus my attention on. Constraints placed on magnitude change, ∆m, involved

experimenting with various thresholds. A higher ∆m yielded sources with more rapid

variability, e.g., Z Cam systems, while lower values increased the contribution of sources

akin to nova-likes. Given that alerting sources that the filter outputs are entered into

an ML classifier to distinguish these variability differences, foregoing a ∆m constraint

is the approach adopted.

6.2.2 Source List

The light curves and associated metadata (see the following subsection) of the sources

remaining after the Lasair filter are used as input for an ML-based CV subclass classifier.

The classifier is trained on the ZTF g and r band light curves of catalogued CVs whose

subtypes have been ascertained along with associated Gaia Data Release 3 data (Gaia-

Collaboration et al., 2022) where available. This section describes the nature of the data

set for training and testing of candidate classifiers.

To construct a dataset, I consulted the American Association of Variable Star Observers

Variable Star Index (VSX1) which is a continuously updated repository of transient

sources. Confirmed CVs from archival resources such as the Catalogue and Atlas of

1https://www.aavso.org/vsx/index.php
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Figure 6.1: Colour magnitude diagrams using Gaia G band absolute magnitude and
the colour derived from the ZTF g and r bands. The dashed red line in each plot
denotes the ZTF g-r colour threshold of 0.7. Orange points in each subplot denote
examples of a particular CV class, while the blue points represent examples belonging

to the remaining classes (labelled ‘other’).

Cataclysmic Variables 2 (Downes et al., 2001), and the Catalogue of Cataclysmic Bina-

ries, Low-Mass X-ray Binaries and Related Objects 3 (Ritter & Kolb, 2003) are contained

within the repository, as are more recent discoveries detailed in literature (e.g., Wenger

et al. 2000; Szkody et al. 2020; van Roestel et al. 2022). Each repository source has a

dedicated page where further information can be found such as their designated names in

other surveys, references to literature for that source, orbital periods, and more. The la-

belling procedure conducted by VSX involves constant review and revision of metadata,

2https://heasarc.gsfc.nasa.gov/W3Browse/all/cvcat.html
3https://heasarc.gsfc.nasa.gov/W3Browse/all/rittercv.html
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with citations for any new details and rationales behind changes fully documented. VSX

contained a list of over 15,300 targets classified as CV, of which 5,683 were successfully

cross-matched with ZTF alerts objects. I supplemented this list with novae catalogued

in the Bright Transient Survey 4 (BTS; Perley et al. 2020) and not in the AAVSO list.

This constituted an extra 28 sources making a total of 5,708 CVs. The vast majority

(4,822) were of the dwarf nova subclass. Since a more granular classification than this is

the aim, the sample is refined further to only include dwarf nova examples with further

subdivision into the U Gem, Z Cam, and SU UMa subtypes. This resulted in a dataset

of 1,568 samples.

6.2.3 Light curves

The light curves themselves are generated from observations with the 47 square-degree

camera mounted on the Samuel Oschin Telescope at Palomar Observatory in California

(Harrington, 1952). For a 30-second exposure, the median 5σ limiting magnitude is 20.8

in the g band and 20.6 in the r band. The observing strategy involves three surveys,

the g and r band data for two of which are available publicly. The Northern Sky survey

is a three-day cadence survey of all fields north of declination −31◦, while the Galactic

plane survey observes daily within a declination of 7◦ of the Galactic plane. For both

surveys, each night a field is observed, it is observed twice, once for each of the g and r

bands, and with at least 30 minutes between visits. With these cadences, superoutbursts,

whose durations range from a few days to several weeks, are well sampled, as are nova

eruptions, high and low states of brightness, and standstills. The g and r bands also

provide colour information, a further tool for class separation.

Light curves of cross-matched sources were downloaded from Lasair. Brightness values

are given in difference magnitudes, this is the magnitude derived from the positive dif-

ference between the flux in the reference image and that in the science image. Where

a source contains data points below the reference flux, the difference magnitude light

curve profile may deviate from what one would expect for its transient class. Subse-

quently, these difference fluxes were converted to apparent magnitudes where possible.

The formulae used to convert from difference magnitudes to apparent magnitudes and

associated errors are given by:

4https://sites.astro.caltech.edu/ztf/bts/bts.php
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mcorr = −2.5 log10(10
−0.4mref + sgn 10−0.4mdiff ) (6.1)

δmcorr =
(10−0.8mdiff δm2

diff)
0.5

10−0.4mref + sgn 10−0.4mdiff
(6.2)

where I simply convert the difference mdiff and reference mref magnitudes to fluxes, sum

them considering the sign of the alert (sgn) and convert the results back to magnitude

mcorr. Simple error propagation gives the error δ mcorr.

To be included in the dataset, two main vetting procedures were followed. The first

was to verify the label by checking the references associated with the source. This was

easier for the less prevalent classes such as the magnetic systems and AM CVns, where

membership can only be verified by means beyond photometry (e.g., spectroscopy, and

pulsed X-ray detection), and for dwarf novae further subdivided into the SU UMa and Z

Cam classes. For U Gem dwarf novae and those dwarf novae not divided into subclasses,

references to literature were less readily available. A second vetting procedure involved

inspection of the light curves themselves, where clear misclassifications were identified

based on subclass-defining characteristics, and their appropriateness for dataset inclu-

sion could be assessed. In assessing their suitability for inclusion I considered whether

phenomena characteristic to a given transient type (e.g., standstills or nova eruption)

were present, the number of data points, and whether colour information may be de-

rived. One must be careful to omit examples based on the number of data points, as a

limited number may be representative of sources only visible during brightening events.

With this consideration in mind, a minimum threshold of at least four points in at least

one filter was set.

Example ZTF light curves for each of the classes defined in the following section are

given in Figure 6.2. Aside from the usual observing gaps due to the time of year, the

limiting magnitude of the telescope in combination with the brightness of the source

results in a variety of observational timespans — objects below the limiting magnitude

in quiescence may briefly rise into view during episodes of activity, e.g., ZTF22abgglcz
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Class/subclass Number of targets

SU Ursae Majoris 630
Z Camelopardalis 174
U Geminorum 116

nova-like VY Sculptoris 120
nova-like non-VY Sculptoris 123

nova 46
polar 114

intermediate polar 49
AM Canum Venaticorum 46

Table 6.1: Number of targets per CV class within the dataset.

and ZTF19aavkbfk. Outbursts of different cycle lengths (time between successive out-

bursts) are evident for dwarf novae, as are superoutbursts (e.g., ZTF18abosmfh). Evi-

dent also are standstills (e.g., ZTF17aaaeepz), long-term changes (high and low bright-

ness states) due to changes in mass-transfer rate (e.g., ZTF18aasncio, ZTF18abcjzao,

and ZTF18abryuah), and the various outburst profiles of nova eruptions.

6.2.4 Classification structure

With my task firmly routed in distinguishing between the different types of CV, I settled

on a nine-class classification structure that separated the dwarf nova class into their

three main subtypes, SU UMa, Z Cam, and U Gem; distinguished between nova-likes

and nova-likes containing the VY Scl characteristic; separated the magnetic CVs into

their polar and intermediate polar subclasses; with novae and AM CVns making up

the remainder. The structure is motivated by the desire for a model that classifies to

the highest level of class granularity (to group examples by their most unique traits)

while at the same time balancing this desire with the requirement of enough examples

to represent the class. This, unfortunately, inhibits our ability to separate the WZ Sge

and ER UMa systems from their parent class (SU UMa), and separate novae by their

various light curve profiles.

Table 6.1 shows the number of examples per CV class following the vetting procedures.

The list is understandably heavily biased towards dwarf novae due to their ubiquity

within the CV population.
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Figure 6.2: Example light curves of each CV class. Green and red points indicate g
and r band observations respectively.
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6.2.5 Features

6.2.5.1 ZTF Light curve derived features

To distinguish between the classes of CV, statistical, percentile and periodicity-based

features were extracted from the g and r band source light curves. The suite of features

provided by the feATURE eXTRACTOR FOR tIME sERIES (FEETS) python package

(Cabral et al., 2018) is comprehensive enough to describe the vast majority of variability

characteristics present within the light curves. I therefore make use of them with the

addition of several features of my own that are more specifically geared towards CV

variability. Non-outbursting systems such as nova-likes and polars are generally well

characterised by the FEETS feature set. The diversity of outbursting systems, however,

is less well characterised after baseline models revealed the confusion between classes

exhibiting such behaviour.

As described in Otulakowska-Hypka et al. (2016), the typical observing cadence, sam-

pling consistency (affected by weather), limiting magnitude and the number of filters

that a survey operates under governs the ability to visually recognise and extract fea-

tures that accurately describe the different types of variability displayed by dwarf nova

exhibiting systems. Sub-optimal conditions related to the above inhibit the usefulness of

the features extracted. Given the level of classification granularity desired in this work,

I developed several simple features that may recognise the presence of phenomena such

as superoutbursts, standstills, and their properties.

The find peaks function from the scipy Python package locates signal peaks (outbursts

peaks in this case) by simply comparing neighbouring brightness values. Not all peaks

are identifiable due to undersampled outburst and quiescent phases, and intricacies of the

function, though enough useful information is present to obtain the following: an out-

burst amplitude based on the peak with the largest such value; and rise and decline rates

based on the minimum time between outburst peaks and their bases. These features were

evaluated for specific outburst amplitude ranges. Recurrence rates are estimated using

the frequency corresponding to the maximum power in the Lomb-Scargle periodogram

of the light curve. However, it is important to note that the Lomb-Scargle method is not

guaranteed to peak at the true recurrence rate if the variability is not strictly periodic.

For instance, quasi-periodic signals, irregular recurrence, or stochastic behaviour may
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result in a peak at a frequency that does not directly correspond to a recurrence rate.

Moreover, the Lomb-Scargle method will output a value even in the absence of strong

periodic signals or well-defined outbursts. To distinguish strong periodic signals from

weaker or non-periodic behaviour, the ratio of the maximum power to the mean power

is used as a diagnostic measure. Additionally, the diverse suite of features extracted

aims to capture both periodic and non-periodic variability effectively. With respect to

standstills, obvious instances can be characterised by utilising a rolling standard devia-

tion window. Sources with standstills will have windows with high standard deviation

values during outbursting periods and low values during standstills. A high ratio of the

maximum of the former to the minimum of the latter can detect this dichotomy. This

dichotomy, however, is also present in outbursting systems with well-defined quiescent

phases (without standstills). One is separated from the other by including the mean

brightness level of the window with the minimum standard deviation. A brightness level

appreciably higher than the minimum brightness aims to provide the distinction.

Colour is a useful separator of different CV subtypes. In addition to the g-r colour calcu-

lated from the average brightness in each filter, I derive the colour for each night where

both a g and r band observation was recorded. I include the mean and median of these

as features to mitigate the skewing of colour values due to sampling differences between

the bands during outburst and quiescence phases. Furthermore, I include the colour

at maximum and minimum brightness to account for bluer colours during outbursting

phases. All light curve-derived features are given in Tables 6.2 and 6.3.

Table 6.2: Features extracted from each of the g and r band light curves. Listed are
those available from the FEETS package, where for each a more detailed explanation

is provided at https://feets.readthedocs.io/en/latest/tutorial.html.

Feature Description

Amplitude Half of the difference between the median of the max-

imum 5% and the median of the minimum 5% mag-

nitudes

AndersonDarling The Anderson-Darling test is a statistical test of

whether a given sample of data is drawn from a given

probability distribution (normal distribution)

https://feets.readthedocs.io/en/latest/tutorial.html
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Autocor length Cross-correlation of a signal with itself. Informally,

described as the similarity between observations as

a function of the time lag between them, useful for

finding repeating patterns. Autocorrelation returns

a vector, the feature returns the vector length for

values less than e−1.

Beyond1Std Percentage of points beyond one standard deviation

from the weighted mean (weighted by the square of

the inverse error).

CAR mean The mean parameter used to model irregularly sam-

pled time series with the continuous-time autoregres-

sive model (Brockwell & Davis, 2002).

CAR sigma The variability parameter used to model irregularly

sampled time series with the continuous-time autore-

gressive model.

CAR tau The tau parameter used to model irregularly sampled

time series with the continuous-time autoregressive

model. Interpreted as the variability amplitude of

the light curve.

Con The number of three consecutive data points that

are brighter or fainter than 2σ and normalised the

number by N-2.

Eta e (ηe) Variability index η is the ratio of the mean of the

square of successive differences to the variance of data

points.

FluxPercentileRatioMidX Ratio of centred flux percentile ranges. If F5,95 is

the difference between the 95th and 5th percentile

of ordered magnitudes, then FluxPercentileRatio-

MidX = F40,60/F5,95, F32.5,67.5/F5,95, F25,75/F5,95,

F17.5,82.5/F5,95, and F10,90/F5,95, for X = 20, 35, 50,

65, and 80 respectively.

Freqi harmonics amplitude j Amplitude of the jth harmonic of the ith frequency

component of the Lomb Scargle Periodogram
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Freqi harmonics rel phase i The phase corresponding to

Freqi harmonics amplitude j relative to the phase of

the first frequency component.

Gskew Median-of-magnitudes based measure of the skew

LinearTrend Slope of a linear fit to the light-curve

MaxSlope Maximum absolute magnitude slope between two

consecutive observations

Mean Mean magnitude

Meanvariance Ratio of the standard deviation to the mean magni-

tude

MedianAbsDev Median absolute deviation of magnitude

MedianBRP Median Buffer Range Percentage; Fraction (¡= 1) of

photometric points within amplitude/10 of the me-

dian magnitude.

PairSlopeTrend Considering the last 30 (time-sorted) measurements

of source magnitude, the fraction of increasing first

differences minus the fraction of decreasing first dif-

ferences

PercentAmplitude Largest percentage difference between either the max

or min magnitude and the median

PercentDifferenceFluxPercentile Ratio of the difference between the 95th and 5th per-

centile of ordered magnitudes, F5,95, over the median

magnitude.

PeriodLS Period corresponding to the frequency of maximum

power in the Lomb Scargle Periodogram

Period fit The false alarm probability of the largest Lomb Scar-

gle periodogram value.

Psi CS RCS applied to the phase-folded light curve (gen-

erated using the period estimated from the Lomb-

Scargle method).

Psi eta ηe index calculated from the phase-folded light curve

Q31 Difference between the third and first quartile of the

light curve magnitudes



Chapter 6 ZTF Machine Learning Applications 133

Rcs Range of a cumulative sum (RCS) of the light curve.

Defined as: RCS = max(S) — min(S), where S =

1
Nσ

∑l
i=1(mi − m̄). N represents the number of

points, with i = 1, 2, ..., N .

Skew Skewness of the magnitudes

SlottedA length Slotted autocorrelation length — same as Auto-

cor length except that time lags are defined as in-

tervals or slots instead of single values

SmallKurtosis Small sample kurtosis of the magnitudes.

Std g Standard deviation of magnitudes.

StetsonK Robust measure of the kurtosis (Stetson, 1996).

StetsonK AC Variability index derived based on the autocorrela-

tion function of each lightcurve (Stetson, 1996).

Q31 colour Q31 applied to the difference in the g and r band

magnitudes.

StetsonJ A robust version of the Welch/Stetson variability in-

dex I (Stetson, 1996) describing the synchronous vari-

ability of different bands.

StetsonL Variability index describing the synchronous variabil-

ity of different bands that utilises both StetsonJ and

StetsonK.

Table 6.3: Additional light curve derived features implemented in this work.

Feature Description

median Median of magnitudes.

min mag Minimum magnitude (maximum brightness).

max mag Maximum magnitude (minimum brightness).

n obs Number of light curve data points.

dif min mean Difference between minimum and mean magnitude.

dif min median Difference between minimum and medium magnitude.

dif max mean Difference between maximum and mean magnitude.

dif max median Difference between maximum and median magnitude.
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dif max min Absolute difference between maximum and minimum

magnitude.

temporal baseline Duration of the light curve.

pwr max Maximum power of Lomb Scargle periodogram.

pwr maxovermean Maximum over the mean power of the Lomb Scargle pe-

riodogram of the light curve.

npeaks XtoY Number of peaks with amplitude between X and Y.

X ∈ (0.5, 1, 2) and Y ∈ (1, 2, 5). npeaks above5 for peaks

above 5 magnitudes.

rrate XtoY Maximum rise rate of peaks with amplitude between X

and Y.

drate XtoY Maximum decline rate of peaks with amplitude between

X and Y.

amp XtoY Maximum amplitude of peaks with amplitude between X

and Y.

rollstd ratio tAsB Calculate the rolling standard deviation of the light curve

with a window size B ∈ (5, 10), where the threshold for

the minimum light curve data points,A ∈ (10, 20), is met.

The ratio of the highest to lowest standard deviation of

these windows is the output.

stdstilllev tAsB Ratio of the mean magnitude of the window with the low-

est standard deviation to the magnitude range of the light

curve — i.e., standstill location relative to the maximum

brightness.

pnts leq rollMedWin20-

Cmag

Number of data points within a rolling window of 20 ob-

servations that are brighter than C magnitudes of the

median magnitude of that window, where C ∈ (1, 2, 5, ).

pnts geq rollMedWin20-

Dmag

Number of data points within a rolling window of 20 ob-

servations that are fainter than C magnitudes of the me-

dian magnitude of that window, where D ∈ (1, 2, 3).

pnts leq median-Emag Number of data points brighter than E magnitudes of the

median magnitude of the light curve, where E ∈ (1, 2, 5).
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pnts geq median-Fmag Number of data points fainter than F magnitudes of the

median magnitude of the light curve, where F ∈ (1, 2, 3).

clr mean Mean of the colours derived at each epoch (night) where

an observation in both the g and r band was obtained.

Where no epochal colour information is available for a

source, the difference between the mean g magnitude and

mean r magnitude is used.

clr median Same process as used to calculate clr mean, this time with

the median instead of mean magnitude.

clr std Standard deviation of the epochal colour.

clr bright Colour obtained from the epoch where the system is at

its brightest. Where epochal colour is unavailable, this is

the difference between the minimum g and r band mag-

nitudes.

clr faint Colour obtained from the epoch where the system is at its

faintest. Where epochal colour is unavailable, this is the

difference between the maximum g and r band maximum.

6.2.5.2 Features derived from Gaia

In addition to the light curve-based features, data from Gaia DR3 (Gaia-Collaboration

et al., 2022) is incorporated. Specifically, I utilised photometry from the G band, red

photometer (RP), and blue photometer (BP) filters, including colour indices and as-

trometric data such as parallax and proper motion, along with their associated uncer-

tainties. Distances and absolute magnitudes were also derived; however, their errors

were excluded as they were deemed redundant, given the inclusion of flux and parallax

uncertainties. These supplementary data are included as features that are described in

Table 6.4. Such metadata are not available for every source, and one would not expect

this information to be available for new sources of unknown class that one wishes to

classify. I discuss this issue in subsection 6.2.9.
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Table 6.4: Supplementary data from Gaia EDR3 incorporated as dataset features

.

Feature Description

ra, dec, ra error, dec error Right ascension, declination, and associated
standard errors

l, b Galactic longitude and Galactic latitude
ecl lon, ecl lat Ecliptic longitude and Ecliptic latitude
bp rp, bp g, g rp BP-RP, BP-G, and G-RP colours
phot X mean flux Mean flux in the G, integrated BP, or integrated

RP bands — corresponding to X = g, bp, or rp
respectively

phot X mean flux error Error on the mean flux in the X band
phot X mean mag Mean magnitude in the G, integrated BP, or in-

tegrated RP bands — corresponding to X = g,
bp, or rp respectively

parallax, parallax error Gaia parallax in milliarcseconds (mas) and stan-
dard error

pm Proper motion (mas/year)
pmra error, pmdec error Standard error of the proper motion in right as-

cension and declination directions (mas/year)
phot g n obs, phot bp n obs,
phot rp n obs

Number of observations in the Gaia G, BP, and
RP bands.

phot g mean mag,
phot bp mean mag,
phot rp mean mag

Mean magnitude in the Gaia G, integrated BP
and RP bands

distance Distance to the source derived from the inverse
parallax (parsecs)

absmag g, absmag BP, absmag RP Absolute Gaia G, integrated BP and RP magni-
tudes derived from parallax.

nu eff used in astrometry Effective wavenumber of the source. Calculated
as the photon-weighted inverse wavelength, cal-
culated from the BP and RP spectra (λ−1).

6.2.6 Training, validation and test sets

The size of the dataset is insufficient for a separate validation set, with minority class

examples numbering only a few dozen. I therefore opt for a technique designed for

such cases, stratified k-fold cross-validation. This technique allows me to maintain an

adequately sized training set and serves to assess the consistency of the model (and data).

I use a stratified train-test set split ratio of 70:30 and a 10-fold stratified cross-validation

(on the training set) procedure for hyperparameter tuning and model evaluation. The

70:30 split holds back for testing at least a dozen examples for minority classes whilst

providing a high proportion of examples for the algorithm to learn patterns during

training and for validation.
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6.2.7 Feature selection

The dataset consists of over 250 features, and with only 1,439 examples, one introduces

the ‘curse of dimensionality’ (Bellman, 1957), which refers to a set of problems aris-

ing from high-dimensionality datasets. As you add dimensions (features) you rapidly

increase the minimum amount of samples required to adequately represent all combi-

nations of feature values in your dataset. Increasing the dimensionality increases the

complexity of the model whilst also causing the model to become increasingly dependent

on the training set, thus leading to overfitting. Selecting the features most informative

for the task enables ML algorithms to train faster, reduces complexity allowing for easier

interpretation, reduces overfitting, and can improve model accuracy for the right subset

of features. To identify the optimal feature subset, the Variance Inflation Factor (VIF;

Vu et al. 2015), the one-way Analysis Of Variance (ANOVA; Quirk 2012), and the mu-

tual information score (MI; Quirk 2012) methods were examined from the filter feature

selection family that measures the relevance of features by their correlation with the

dependent variable. From the wrapper method family, which examines the usefulness

of a subset of features by training a given model on them, the forward feature selection

(FFS) method was chosen. These methods were applied to the training set only to avoid

data leakage — information about the target being present in the training set that would

not be available when the model is used for prediction (Singhi & Liu, 2006; Demircioğlu,

2021).

FFS is utilised for all but the Decision Tree-based algorithms as they naturally deter-

mine the most important features during the tree-building process. VIF is particularly

beneficial when dealing with feature redundancy that may arise when a feature is de-

rived from both the g and r bands. We experimented with VIF values of 10, 5, 2.5, and

1.5 for all but the Decision Tree-based algorithms since decision trees select features in

a greedy fashion and make no assumptions about relationships between features.

One-way ANOVA was used to identify the significance of each feature ordered by p-value.

A given algorithm was then trained using the top x% of the most significant features

and the model cross-validation performance was recorded. This step was repeated,

increasing the values of x in 5% increments from 5% to 95%, to arrive at a subset

of features where model performance was strongest. This method is akin to forward

feature selection, though with features added based on a statistical test rather than
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overall model performance. The motivation for the usage of one-way ANOVA lies in its

goal to select a set of features that hold significant importance in differentiating between

classes. Similar to FFS and VIF, this method was applied exclusively to algorithms that

do not utilise Decision Trees.

Under the MI feature selection protocol, the most performant features were identified in

the same way as for one-way ANOVA, resulting in slight variations in the optimal subset

of features for each algorithm. In a similar fashion to one-way ANOVA, MI aims to select

features most crucial for class distinction. However, MI quantifies the information shared

between features and the outcome, thereby unveiling non-linear, intricate relationships.

This feature reduction method was not employed for the Decision Tree-based algorithms

for the same reasons as above, and furthermore, MI is at the heart of the operation of

these algorithms.

6.2.8 Class balancing

Large disparities in the number of examples for each class significantly affect the perfor-

mance of a model. Differences in class prevalence cause algorithms to be biased towards

learning patterns more specific to the majority class and produce models that perform

poorly in minority class predictions. To handle the class imbalance present within the

dataset (see Table 6.1) I tested both a non-sampling method, class weighting (should the

algorithm permit such a strategy), and random undersampling of the majority class com-

bined with the minority class over-sampling technique Adaptive Synthetic (ADASYN;

Haibo et al. 2008), a variation of Synthetic Minority Over-sampling Technique (SMOTE;

Chawla et al. 2002).

6.2.9 Missing Data

Missing data due to insufficient data points during the light curve feature extraction

process accounts for as much as 20% for a given feature. Whilst that due to unavailability

of metadata accounts for up to 33%. Many machine learning algorithms do not support

missing values, therefore strategies must be implemented to address this absence of data.

The most common and simplest strategy is to replace (or impute) missing values with

the mean or median of the feature, however, this method ignores relationships between



Chapter 6 ZTF Machine Learning Applications 139

features and reduces the variance of the variable, thereby introducing bias to the model.

The following approach aims to mitigate such bias.

Firstly, the reasons for missingness are assessed. Depending on the context, I assign

either the value from the other filter (if available), a contextually relevant substitute

(e.g., the overall mean g − r colour, defined as the mean g-band magnitude minus the

mean r-band magnitude, if the epochal mean colour (clr mean) is missing), or the feature

value is left as missing. For these remaining missing values I utilise the Scikit-learn

implementation of the K Nearest Neighbour imputation method (Troyanskaya et al.,

2001). For each sample, each missing feature is imputed using the average of the values

(weighted-by-Euclidean distance) from the K nearest neighbours in feature space where

that feature value is present.

6.2.10 Machine Learning algorithms

The algorithms whose performance I evaluate are Scikit-learn’s (Pedregosa et al., 2011)

Python implementations of Random Forest (RF; Breiman 2001), K-Nearest neighbours

(KNN; Zhang 2016), Gaussian Naive Bayes (GNB; Zhang 2004), and Linear Discrimi-

nant Analysis (LDA; Hastie et al. 2003). Also used are the Extreme Gradient Boosting

(XGBoost) algorithm (Chen & Guestrin, 2016) and Keras (Chollet, 2021) implementa-

tion of an Artificial Neural Network (NN) in the form of a Multi-Layer Perceptron —

a fully connected multi-layer NN (Kruse et al., 2022). Furthermore, for model evalua-

tion and interpretability purposes, I used the Gaspar (2018) Python implementation of

Generative Topographic Mapping (Bishop et al., 1998).

The array of algorithms embodies a diverse spectrum of classification strategies chosen to

extract optimal insights from the dataset. RF is adept at navigating intricate patterns

in data through its ability to handle non-linear relationships, high-dimensional data,

and noisy features. XGBoost is known for delivering high-performance scalability, often

surpassing other algorithms and underscoring the potential of ensemble methods. KNN

adds instance-based learning to the mix, GNB adds probabilistic modelling, and LDA

is adept at discerning linear separability. Meanwhile, the multi-layer perceptron is a

fundamental deep learning architecture, these are capable of capturing intricate patterns

in data.
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6.3 Results

6.3.1 Classifiers

In this study, to distinguish between the nine CV classes, I evaluated several algorithms:

Gaussian Naive Bayes, Linear Discriminant Analysis, K-Nearest Neighbors, Random

Forest, XGBoost, and a multi-layer perceptron neural network. To address the class im-

balance, I used either the class weighting method (where possible) or the ADASYN over-

sampling technique in combination with random undersampling to balance the training

set. The training was conducted on subsets of features determined through the mutual

information score, variance inflation factor, the one-way ANOVA method, or forward

feature selection. I assessed the resultant models based on overall accuracy, macro av-

erages of precision, recall (equivalent to balanced accuracy for the macro average), and

F1-score. These are provided in the heatmap shown in Figure 6.3 within the first four

columns. The corresponding precision, recall, and F1-scores for each class are provided

in the remaining columns.

To compare the test set performance metric means of different classifier groups, I con-

ducted T-tests. The results indicate that GNB and KNN-based classifiers performed

poorly on the test set compared to the other algorithms (F1-score of 0.44 ± 0.04 and

0.54± 0.04, respectively, with a p-value of p = 8.6× 10−11 at α = 0.05). However, there

was no significant performance difference when using over/under sampling compared to

class weighting (or no such method) (p = 0.07− 0.86 for all metrics). Regarding feature

reduction methods, I observed small but not significant performance improvements when

using the one-way ANOVA and mutual information, while the use of variance inflation

factor led to a performance drop.

The class-specific performance associated with each model revealed difficulties in cor-

rectly classifying the AM CVn and intermediate polar classes, irrespective of the algo-

rithm used or any effort to address the class imbalance. These two classes, along with the

nova class, have the lowest sample size. Despite the small sample size, the light curves

(and metadata) of the novae are sufficiently distinct for the algorithms (especially NN,

RF, and XGBoost) to distinguish them from the remaining classes. All models, except

for GNB, performed well in classifying the SU UMa class.
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Table 6.5: Top 5 ranked classifiers based on the macro-averaged F1-score. Listed
are the algorithm, the method used to handle class imbalance and the method used to
reduce the number of features. The class balancing methods are abbreviated as SMPL,
WTD, or -, depending on whether over/under sampling methods, class weighting, or
no class balancing method was implemented, respectively. The only feature selection
methods in this list are those abbreviated as MUI or -, for mutual information or no

feature selection method (full list of features used), respectively.

Rank Algorithm Imbalance Feature selection F1-score

1 XGB — — 0.62
2 RF SMPL — 0.58
3 XGB SMPL — 0.57
4 NN WTD MUI 0.57
5 LDA — — 0.57

To select the model for the pipeline, I based the decision on the macro F1-score with some

consideration for the performance on the lowest sample size classes. Table 6.5 presents

the top 5 models based on the macro F1-score, while Figure 6.4 shows the class-specific

‘p-value table’ resulting from a McNemar’s test for each pair of these models. The figure

indicates no significant prediction disagreements between these algorithms for the SU

UMa, nova, and intermediate polar classes. However, models ranked in the top 3 show

significant prediction disagreements compared to models ranked 4 and 5 with regards to

Z Cam. For the AM CVn class, the XGBoost classifier, implemented without explicit

class balancing or feature reduction, significantly outperformed the other models. As

a result, I selected this XGBoost model trained with 500 decision trees at a maximum

tree depth of 14, as the classifier for the second stage of the pipeline.

It should be noted that certain aspects of the model selection, such as the variation of

examples apportioned to the training, validation, and test sets, the NN weights initial-

isation, and the feature selection for each tree of the RF and XGBoost models, were

randomly selected. Thus, different random initialisations could have led to the selection

of any of the models generated from the NN, RF, and XGBoost algorithms.

6.3.2 Performance

The per-class performance of the model as implemented on the test set is described in

Table 6.6, while the corresponding confusion matrix is shown in Figure 6.5. Evident

are the following. SU UMa is responsible for the highest precision and recall scores,

contributing greatly towards an increase in the overall classification performance, Z Cam

and VY Scl are also well picked out by the classifier. The overall performance suffers
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Figure 6.3: Presented as a heatmap are, the accuracy, and the macro average quanti-
ties of precision, recall, and F1-score for each classifier variant. Alongside these are the
precision, recall, and F1-score for each class. Classifiers are labelled as follows: clas-
sifier + class balancing method + feature selection method. Classifier abbreviations
are as described in the text, the class balancing methods are abbreviated as SMPL,
WTD, or —, depending on whether over/under sampling methods, class weighting, or
no class balancing method was implemented, respectively. Feature selection methods
are abbreviated as ANO, FFS, MUI, VIF, or —, for one-way ANOVA, forward feature
selection, mutual information, variance inflation factor, or no such implementation (full

set of features used), respectively.
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Figure 6.4: The per-class p-values from McNemar’s tests were conducted between
each pair of the top 5 ranked classifiers from Table 6.5. For ease of reference, these are,
from rank 1 to 5, XGB + — + —, RF + SMPL + —, XGB + SMPL + —, NN +
WTD + MUI, AND LDA + — + —. The significance threshold is set to p=0.05, and
the classifier descriptions and abbreviations are as described in the caption of Figure

6.3.

noticeably due to the performance of the intermediate polar class. Intermediate polars

represent a class subject to one of the largest amounts of training set oversampling, due

to a low number of examples.

Also falling within this high oversampling bracket are the AM CVns and novae. De-

spite this, they are responsible for strong precision scores such that 100% of examples

predicted as AM CVn and 64% of examples predicted as nova are true members of the

class. However, this does come at the expense of lower recall scores, 0.36 for AM CVns

and 0.50 for novae. Those true AM CVn members that are misclassified are mostly

assigned the SU UMa class, as are true members of the nova class.
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Table 6.6: Classification report for the XGBoost model. For each class of CV the
precision, recall, F1 score, and the number of test set examples are given. The macro
average (or arithmetic mean) of each metric, accuracy and balanced accuracy are also

provided.

Class Precision Recall F1 score Test set amount

AM CVn 1.00 0.36 0.53 14
SU UMa 0.81 0.90 0.85 189
U Gem 0.66 0.60 0.63 35
Z Cam 0.73 0.69 0.71 52
Intermediate Polar 0.50 0.07 0.12 15
Nova 0.64 0.50 0.56 14
Nova-like 0.67 0.77 0.72 43
Nova-like VY Scl 0.76 0.78 0.77 36
Polar 0.71 0.74 0.72 34

Macro average 0.72 0.60 0.62 432
Accuracy 0.76 432
Balanced accuracy 0.60 432
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Figure 6.5: Confusion matrix for the XGBoost model.
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The classifier performs well in distinguishing between systems that regularly display

dwarf nova outbursts (where we exclude intermediate polars) from those that do not.

Should we group those classes into those that exhibit these outbursts and those that do

not, the precision and recall scores for the dwarf nova exhibiting class would be 0.92 and

0.94 respectively, while for non-dwarf nova exhibiting systems, 0.88 and 0.83. Confusion

between dwarf nova exhibiting systems is an area where the model performance suffers.

Notable is the mislabelling of AM CVn members as SU UMa; and the contamination of

predictions of the U Gem class by SU UMa and Z Cam members. Similarly, confusion

between non-dwarf nova exhibiting systems also plays a factor: true intermediate polar

members are confused for nova-likes, VY Scl and polars; and confusion between the

nova-like, VY Scl and polar classes is present. Reverting the description of performance

back to the 9 class problem, notable is the significant misclassification of true Z Cam

members with the nova-like class and the significant contribution of false positives by

the SU UMa class towards the predictions of the nova class.

With respect to the ROC Curves (Figure 6.6), in all cases, the classifier performed much

better than a random guess, depicted by the ‘chance level’ line. An AUC score above 0.93

for all but the intermediate polar and AM CVn classes represents a strongly performing

classifier, where the resultant micro and macro averages are 0.96 and 0.92. This is a

further illustration of the findings within the confusion matrix and classification report.

The importance of each feature for DT-based models can be given by the feature impor-

tance scores. The 20 features with the largest effect on the model’s predictive accuracy

are plotted in Figure 6.7. Ranked highest is the Gaia RP band absolute magnitude

(abs mag rp); Gaia BP and G absolute magnitudes also feature within the list. ZTF

and Gaia colours feature strongly, with the brightest epochal colour (clr bright), Gaia

G-RP and Gaia BP-RP colours within the top 10. The slope of a linear fit to the ZTF

r band light curve is deemed highly relevant for classifier performance, as is the auto-

correlation length in the ZTF g band. Periodicity-based features within the list come

in the form of the frequency of maximum power in the Lomb Scargle periodogram of

the r band light curve. Features for identifying outbursts are represented by the num-

ber of points brighter than the rolling median. Features that test for the synchronous

light curve variability across both bands come in the form of StetsonJ and StetsonL

(see Table 6.2). The list therefore contains a mixture of features that cover periodicity,

photometry, and statistical descriptors.
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Figure 6.6: Receiver operating characteristics for the XGBoost classifier.

6.3.3 GTM Latent space representations

6.3.3.1 GTM for model assessment and feature relevance

One may utilise Generative Topographic Mapping to evaluate the ability of a classifier to

distinguish between classes and to identify the features responsible for the assignment of

a given class rather than an overall feature importance list that only provides the features

responsible for overall model performance. To do this I input the posterior class proba-

bilities for the training set output by the classifier into the GTM framework. Therefore

the data space is a class probability space of nine dimensions. Each example from the

training set will have posterior probabilities of belonging to each class evaluated by the
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Figure 6.7: Feature importance scores for the 20 most influential features within the
chosen classifier model. Feature importance refers to a class of techniques for assigning
scores to input features to a predictive model, indicating the relative importance of

each feature when making a prediction.

classifier, these probabilities define their location in class probability space. Distinct

clusters of these examples located in regions with high probability along a particular

probability space dimension would represent a classifier that can accurately distinguish

between classes. Since these clusters define the Gaussian centres, they are mapped to

the corresponding nodes in latent space. One may then evaluate this class separability

within the latent space representation. This representation forms a grid of squares, each

defining a node, colour-coded based on the location of the associated probability space

Gaussian centre along a given probability space axis (or particular class probability) —

these are referred to as class maps.

For feature responsibilities, I simply average a particular feature value for all examples

assigned to a given node, ‘assigned’ meaning the node with the highest likelihood of

being responsible for a given example. The average for each node can then be used to

produce a 2D histogram consisting of the same above latent space grid with squares

colour-coded by these averages, one for each feature. The distribution of mean feature

values can be analysed against the distribution of classes in the class maps to identify

class-specific features.
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6.3.3.2 Class and feature maps

Class maps generated using GTM, are presented in Figure 6.8. These latent space rep-

resentations of class probability space structures assess the class separability of our ML

model. The class maps clearly show the existence of structures that are located in fairly

distinct regions, each associated with a particular class. This is representative of a clas-

sifier that has effectively learnt patterns within the data necessary for class distinction.

These structures are extended, with their cores represented by the highest probability of

belonging to the associated class, whilst as we move away from the cores, the probabili-

ties diminish (represented by the colour scale). Structures extend into regions associated

with that of other classes, indicating some class confusion, thus reflecting observations

within the confusion matrix. The highest class probabilities are associated with the SU

UMa, U Gem, Z Cam, nova-like, and VY Scl classes — their structure cores exceed 0.80

in class prediction probability. Structures for the AM CVn, nova and polar classes are

also present, though with class probabilities no higher than 0.7 and 0.8 respectively. As

mirrored in the confusion matrix, the intermediate polar structure, though located in a

relatively distinct region, is only responsible for a core class probability of 0.62.

Another interesting feature of the maps is that outbursting systems tend to reside along

the top edge and down the left edge, while systems that are not expected to display dwarf

nova outbursts are located along the right and bottom edges of the maps. This concurs

with the observation of the effectiveness of the model in distinguishing outbursting from

non-outbursting systems. The nova class is the only one located away from any edge.

The most obvious blending between structures (or equivalently, confusion between classes)

is evident for the SU UMa class — the most prevalent class in the dataset. Its structure

extends well into the AM CVn and U Gem regions, also coming into contact with Z

Cam and nova. Z Cam is responsible for a well-defined structure (top right) that ex-

tends into nova-like class probability space, and a tenuous one (∼0.2 in Z Cam class

probability) that is more strongly associated with the nova-like, VY Scl and interme-

diate polar classes. Nova-likes are also responsible for a tenuous, secondary structure

(bottom right) more strongly associated with intermediate polars. There is also a clear

overlap between nova-like, VY Scl and intermediate polar classes, and structure blending

is evident between AM CVn, nova, and polar classes.
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Figure 6.8: GTM latent space visualisation of the class posterior probability space
from the XGBoost classifier chosen for the pipeline.

Figures 6.9a and 6.9b are a selection of feature maps for features derived from the g and

r band light curves. Several further feature maps are shown in Figure 6.10 representing

features derived from a combination of the g and r band light curves and Gaia DR3.

They represent the average feature values of examples assigned to each of the latent space

nodes. The feature maps can be used as tools to identify the features most responsible

for the assignment of a given class. This is done by comparing class map structures

with those within the feature maps. While examination of the feature maps is reserved

for the discussion section, it is clear that structures and patterns exist within them

that coincide with class-map structures. For example, high values for amplitude and

variability-based features (e.g., Amplitude, Std, MedianAbsDev, and npeaks) correspond
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(a) ZTF-g band feature maps (b) ZTF-r band feature maps

Figure 6.9: GTM-generated feature maps for the XGBoost model. Compare high and
low-value regions to class maps to pinpoint key features for class assignment. White
squares indicate empty nodes, to which no examples are assigned, determined by node

responsibility.

to outbursting systems; the fewest number of data points, n obs, are associated with

AM CVn, SU UMa and nova classes; and the bluest colours are associated with the AM

CVn class.

6.3.4 Alert stream pipeline

With the aim of the alerts filter to minimise the number of possible non-CVs and max-

imise potential CVs, this was best achieved with the following procedure. The Sherlock
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Figure 6.10: Feature maps for the XGBoost model produced using GTM. Same as
for figures 6.9a and 6.9b though for Gaia and colour related features

contextual classifier was utilised to remove sources within the synonym radius (1.5”)

of a catalogued active galactic nucleus or nuclear transient. Inspection of light curves

of alerting sources (within a 30-day period) removed under these conditions revealed

no elimination of known or candidate CVs. To filter out supernova candidates, those

sources classified as SN by Sherlock are removed should they meet the following crite-

ria: the closest matching source from the PanSTARRS catalogue (used as the reference

source) should have a Star/Galaxy score of less than 0.4 (values range from 0 to 1, where

closer to 1 implies a higher likelihood of being a star); and an angular separation from

the associated galaxy centre less than the galaxy’s semi-major axis size (in arcseconds).

Furthermore any source with a Transient Name Server name prefix with ‘SN’ was also

removed. Of the sources remaining with a contextual classification of ‘SN’, ∼ 60% dis-

played outbursting characteristics where quiescent stages were below the detection limit

(likely dwarf novae). The remaining percentage was a mixture of faint sources with no

star/galaxy score, several Mira variables, and a classified nova. For the removal of vari-

able stars, a simple cross-match with the AAVSO VSX list of Mira variables, Cepheids,

and RR Lyrae stars (amongst other classes under the variable star umbrella) was per-

formed. None of those removed with this variable star filtering method belonged to a

member of the confirmed or suspected CV family. Concerning the ∆m criteria, no such

filtering is performed to maximise the number of CVs. It was found that sources with

the least amount of variability are assigned the nova-like class, thus a motivating factor
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in this choice.

Constraining the number of alerts based on several g-r colour metrics, and not just the

overall mean, had the desired effect of retaining dwarf nova exhibiting sources. These

are outside the epochal or overall mean colour threshold of <= 0.7 during quiescence,

but within the threshold during an outburst by virtue of the colour measured at their

brightest epoch (clr bright). An approximate quantitative estimate of the effectiveness of

this strategy can be given for a month’s worth of alerts. For June 2023, 12 confirmed or

strong candidate dwarf novae were outside of this threshold based on the mean epochal

or overall colour, whereas with the inclusion of the clr bright quantity, only 1 fell outside

the threshold.

An additional criterion requiring at least four data points for either the g or r band light

curve was also imposed, allowing the majority of features to be derived. Combining

all the above criteria, the number of sources returned per night for input into the ML

classifier can be as few as 50, while on other nights over 200 may be available. During

June 2023, the filtering output 1283 sources, of which ∼ 8% are contained within the

Downes Catalog of CVs (Downes et al., 2001) and/or the Ritter Cataclysmic Binaries

Catalog v7.24 (Ritter & Kolb, 2003). Approximately 45% are contained within the

AAVSO VSX CV compilation of confirmed or candidate CVs (this includes the Ritter

and Downes catalogues). The remainder, those not contained within AAVSO, comprise:

low amplitude slowly varying (month to year-long timescales) sources (∼ 30% of the

total), a small fraction of which are eclipsing binaries; sources with similar variability to

VY Scl and magnetic CVs (∼ 3 and 4% of the total, respectively); outbursting candidates

(∼ 8% of the total); and a combination of sources that have once briefly risen above

the limiting magnitude (possible supernovae), and those with too few data points for

inference. Further inspection reveals that young stellar objects, candidate AGN, and

variable stars provide the majority of contamination. A rough estimate of between 5

and 10% contamination from these sources is found.

The output of the filter applied to the alerts for June 2023 was fed into the XGBoost

classifier with the following findings. The low variability sources are overwhelmingly

assigned the nova-like class while outbursting sources are assigned one of the dwarf nova

classes or the AM CVn label. Superoutbursting or candidate superoutbursting systems

are largely assigned the SU UMa label with a small amount of mislabelling into the U
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Gem class. Signatures of Z Cam variability are present within the list of sources assigned

to this class, while faint blue sources are generally assigned to the AM CVn class. As one

enters the low sampling regime (fewer than 20 data points) class confusion is evident,

though not where outbursting activity is present.

From the June 2023 alerts filter output, I have compiled Table 6.7. This is a list of

candidate CVs I identified that, at the time of writing, are not present in either the

Ritter or Downes catalogues, the list of CVs within AAVSO VSX, or within the literature

as far as I am aware. The prediction of class output by the classifier (along with the

class probability) for these candidates is provided. Furthermore, I assign a score based

on the strength of their candidacy as members of the CV class. A score of 1 represents

a light curve sufficiently sampled for the identification of distinguishing characteristics.

Should less well-sampled signatures of defining characteristics be present, for example,

outbursts not sampled during quiescence, a score of 2 is given. A score of 3 is given to

the examples where only faint signatures are present, possibly due to poor sampling.
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Table 6.7: New CV candidates identified by my pipeline. Given are the: ZTF object ID; equatorial coordinates at the J2000 epoch; number of
suspected dwarf nova outbursts, where (SO) is appended for possible superoutbursts amongst them; g band magnitude range, or r band (appended
with r) should insufficient g band data exist (> is prepended should no quiescence brightness be present); light curve duration in days; Gaia BP-RP
colour; mean ZTF g-r colour and in brackets, the colour at peak brightness, calculated in the manner of the clr mean and clr bright features explained
in Table 6.3; prediction of our classifier; posterior class probability output by our classifier; and the strength of CV candidacy, rated as 1 for the

strongest, 3 for the weakest candidates. The table is ordered by class prediction then probability.

ZTF ID R.A. Dec. Outb m Range Dur BP-RP g-r Clf pred Prob CV Rating

ZTF19aauxfaw 15:27:39.96 -19:48:46.17 4 > 17.9–19.1 1475 – -0.34 (-0.17) AM CVn 0.70 3

ZTF21aawqeix 18:49:31.03 -17:43:54.13 4 > 18.2–19.0 810 – -0.02 (-0.08) AM CVn 0.38 2

ZTF18ablpcfv 19:09:21.11 -20:01:03.13 6-8 > 17.5–18.7 1521 -0.60 0.03 (-0.08) AM CVn 0.37 3

ZTF23aamdode 17:08:45.64 +08:54:51.69 1 > 17.4–20.5 44 – -0.24 (-0.62) AM CVn 0.35 3

ZTF19abdmfpn 17:58:04.69 +05:28:15.54 2 > 18.9–19.4 700 – -0.44 (-0.27) AM CVn 0.33 3

ZTF19aalcaij 18:01:43.65 +23:21:11.17 4-6 > 18.9–20.6 1409 – -0.10 (-0.08) AM CVn 0.31 2

ZTF19acbwtgi 22:25:56.91 +39:26:48.97 3 > 19.3–19.7 1375 – -0.24 (-0.11) AM CVn 0.30 3

ZTF18abcysck 19:03:59.30 +32:32:37.40 12 (SO) > 18.5–19.7 1822 – -0.33 (-0.31) AM CVn 0.28 2

ZTF19aadovsk 17:44:08.17 -03:50:46.88 5-7 (SO) > 18.5–19.3 1479 – -0.16 (-0.04) AM CVn 0.26 2

ZTF21acbqaqa 14:50:11.12 +65:59:42.19 – 18.9–20.7 654 – 0.30 (0.83) Polar 1.00 2

ZTF20abpwtmi 15:38:20.42 +79:32:26.05 – 18.5–20.6 1071 – 0.38 (0.67) Polar 0.96 2

ZTF18abcwxnq 18:43:26.49 +06:08:00.90 – 17.9–21.7 1153 1.86 0.27 (0.12) Polar 0.94 2

ZTF18abmrmlu 23:01:52.75 +39:50:13.96 – 18.7–22.2 1791 0.91 0.41 (-0.12) Polar 0.80 2

ZTF18abiklxf 20:46:40.96 +22:50:36.20 – 17.4–20.3 1816 1.46 0.22 (0.62) Polar 0.77 2

ZTF18abnjsqz 17:40:39.30 -00:51:46.68 2 > 17.5–19.1 547 – -0.04 (-0.01) SU UMa 0.98 2
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ZTF18abqbbpq 17:55:15.36 +06:57:44.41 4 > 18.6–19.9 1501 – 0.22 (-0.05) SU UMa 0.98 3

ZTF19abtnbck 19:02:38.61 +26:52:44.76 3 > 18.8–19.7 1404 – 0.00 (0.00) SU UMa 0.98 2

ZTF19abdolkk 19:21:46.43 -27:54:53.91 2 > 17.8–19.0 1454 – -0.24 (-0.23) SU UMa 0.98 2

ZTF19aaprbry 19:41:32.53 -07:37:54.12 4 > 18.6–20.0 1350 – -0.05 (0.06) SU UMa 0.98 3

ZTF20acufmrl 02:51:10.20 +48:39:28.83 3 18.5–19.9 263 – -0.07 (-0.06) SU UMa 0.97 2

ZTF19abjbhmd 16:55:20.72 -18:21:58.77 5 > 18.7–19.1 1442 – -0.35 (-0.29) SU UMa 0.97 3

ZTF19aalcaij 18:01:43.65 +23:21:11.17 1 > 18.9–20.6 1409 – -0.10 (-0.08) SU UMa 0.97 3

ZTF19aaxcajp 21:44:37.10 +29:30:10.74 5 > 18.3–19.7 1499 – -0.11 (-0.02) SU UMa 0.97 2

ZTF19aailtzw 17:07:44.19 +02:56:53.04 3 > 18.2–19.6 802 0.10 -0.09 (0.02) SU UMa 0.94 2

ZTF18abcysck 19:03:59.30 +32:32:37.40 6 > 18.5–19.7 1822 – -0.33 (-0.31) SU UMa 0.93 2

ZTF21aaqwlgv 18:16:02.45 +03:07:11.79 3 > 18.3–19.5 819 – 0.05 (0.11) SU UMa 0.92 2

ZTF18abklywy 18:01:53.06 +04:07:22.51 6 > 18.6–19.9 1526 – 0.23 (0.08) SU UMa 0.91 2

ZTF19aadovsk 17:44:08.17 -03:50:46.88 3 > 18.5–19.3 1479 – -0.16 (-0.04) SU UMa 0.92 2

ZTF18aavtqlz 17:49:11.47 +23:58:27.57 5 > 19.2–20.3 1265 – -0.24 (0.07) SU UMa 0.85 3

ZTF18abthqde 19:39:04.33 +41:53:10.10 4 > 17.4–18.9 1760 – -0.21 (-0.23) SU UMa 0.83 2

ZTF20abylzfr 20:11:08.11 +84:05:19.21 2 > 17.1–19.7 1037 – -0.08 (-0.16) SU UMa 0.74 2

ZTF18absoqce 23:18:05.90 +55:58:51.90 6 > 17.9–19.4 1773 – 0.80 (0.39) SU UMa 0.69 2

ZTF18ablpcfv 19:09:21.11 -20:01:03.13 5 > 17.5–18.7 1521 -0.60 0.03 (-0.08) SU UMa 0.65 3

ZTF19ablvwcu 20:09:20.00 +00:22:28.56 5 > 17.7–18.5 1331 – 0.27 (0.19) SU UMa 0.63 2

ZTF18abjrekr 22:00:29.91 +50:08:47.44 5 > 18.1–19.7 1808 – 0.20 (0.09) SU UMa 0.62 2
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ZTF18accpsgk 21:19:34.61 +38:00:12.90 10 > 17.2–18.0 1699 – -1.30 (-0.85) SU UMa 0.59 2

ZTF19ablujxj 20:36:53.40 +21:11:06.05 7 > 18.6–20.0 1438 – -0.03 (0.00) SU UMa 0.57 2

ZTF18abndsft 17:25:12.81 -20:40:48.85 4 17.7–21.2 1474 1.69 0.74 (0.53) SU UMa 0.45 2

ZTF18abzmujj 19:11:51.25 -05:49:30.43 6 > 18.7–19.6 1730 – 0.62 (0.41) U Gem 0.85 1

ZTF18abeajjd 17:03:58.75 +15:27:31.78 8 > 18.5–20.7 1823 – 0.13 (0.18) U Gem 0.78 1

ZTF19aawxrtk 18:08:13.30 +22:51:09.39 2 16.9–17.2 1323 – -1.73 (-1.42) U Gem 0.68 2

ZTF18abloyve 19:10:41.97 -26:46:57.55 4 > 16.9–17.9 1490 – 0.44 (0.20) U Gem 0.53 2

ZTF18aazeong 22:24:05.48 +51:11:42.41 10 17.3–19.3 1847 1.15 0.20 (0.11) U Gem 0.47 1

ZTF18abnwfvw 18:53:33.53 +22:35:59.41 3 > 16.5–19.9 1422 1.64 0.54 (0.39) Z Cam 0.45 2

ZTF18abuytrt 18:13:14.20 +01:49:02.04 > 9 18.2–20.8 1552 0.93 0.33 (0.40) Z Cam 0.35 2

ZTF19aarpwtt 19:54:34.93 +46:11:08.59 10-14 > 18.8–19.8 1485 – 0.20 (0.08) Z Cam 0.31 2

ZTF19ablujxj 20:36:53.40 +21:11:06.05 12 (SO) 18.6–20.0 1438 – -0.03 (0.00) Z Cam 0.31 2

ZTF18abthqde 19:39:04.33 +41:53:10.10 5 > 17.4–18.9 1760 – -0.21 (-0.23) Z Cam 0.30 1

ZTF21aaqwlgv 18:16:02.45 +03:07:11.79 3 > 18.3–19.5 819 – 0.05 (0.11) Z Cam 0.25 2

ZTF18abnjsqz 17:40:39.30 -00:51:46.68 3 > 17.5–19.1 547 – -0.04 (-0.01) Z Cam 0.22 2

ZTF19aadospr 16:53:37.97 +00:49:11.93 4 > 18.4–19.7 805 0.36 -0.04 (-0.07) Z Cam 0.21 3
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6.4 Discussion

6.4.1 Classifier performance

The characteristics of the confusion matrix and the blending of class-specific structures

into one another can be explained in the context of the physical properties of CVs, their

evolution, and the properties of their light curves.

6.4.1.1 Class proportions

A list of thousands of cataclysmic variables accurately labelled into their subtypes based

on multi-wavelength photometry with sufficient sampling and spectroscopy for each

source is not currently available. While over 15,300 sources have been assigned the

CV class according to the AAVSO and BTS, those with ZTF counterparts represented

just over 5,700 (as of March 2023 when the dataset was constructed). A significant

proportion of these belong to the dwarf nova class (∼ 89%) of which only 19% possess

labels with the dwarf nova subclass information required. I was therefore limited to a

list of 1,439 sources with highly imbalanced class proportions.

Whilst efforts are made to account for this imbalance, the classes lowest in sample size

(AM CVn, intermediate polar, and nova) are the weakest performers. Comparisons of

light curves associated with each of these classes with the remaining classes provide

a possible reason for their misclassifications. The intermediate polar ZTF17aabhicw

(see Figure 6.2) displays long-term variability (weeks to months) as seen in polars,

nova-likes and VY Scl (e.g., ZTF18abryuah and ZTF18abmrryp), while ZTF17aabglmw

displays occasional dwarf nova outbursts. AM CVns display regular and super outbursts

(e.g., ZTF18aaawjmk) and may be faint enough to only be visible during outburst

(e.g., ZTF18adkhuxp), overlapping with SU UMa characteristics; longer-term changes

associated with changes in mass-transfer rate (e.g., ZTF18aaabbbv) may also be present.

A nova eruption decline (e.g., ZTF19aabjxpe) could be confused with SU UMa systems

with long supercycles.

Despite these issues, the ROC curves and class maps represent a classifier with strong

predictive capacity, even for the AM CVn and nova classes. This may be a consequence

of features relevant to colour, parallax and proper motion. Nova systems in our sample
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possess redder colours, while AM CVns typically lie at the blue end of the colour scale.

AM CVns are intrinsically faint and, therefore, are required to be closer than most other

CVs to be detectable and induce high values of parallax and, where tangential motion

occurs, observable proper motion.

6.4.1.2 Dwarf nova classes

Distinguishing between different classes of dwarf novae primarily hinges on the features’

ability to detect the presence of superoutbursts in SU UMa and standstills in Z Cam

systems. In a study conducted by Otulakowska-Hypka et al. (2016), an in-depth analysis

was undertaken to examine the characteristics of superoutbursts and normal outbursts

in dwarf nova systems. The research revealed that Z Cam outbursts typically exhibit a

noticeably lower amplitude range, spanning approximately 1–4 magnitudes, compared

to the superoutbursts and normal outbursts observed in SU UMa systems, which range

from 1–9 and 1–8 magnitudes, respectively. The upper limit for U Gem outbursts

falls between these two extremes, with a range of 1–6 magnitudes. Consequently, one

would anticipate significantly higher values for amplitude-related features for SU UMa

compared to the Z Cam systems. Indeed, when examining the g and r band feature maps

in Figures 6.9a and 6.9b for amplitude, the difference between the minimum (brightest)

and mean or median magnitudes (dif min mean and dif min median), and the number

of peaks with amplitudes exceeding 5 magnitudes (npeaks above5 ), the highest values

are consistently found within the region of GTM latent space occupied by SU UMa

systems (see Figure 6.8 class maps). As we shift our focus from the SU UMa region

in these class maps to U Gem and then to the Z Cam region, the feature values for

the corresponding locations in the feature maps progressively diminish. The confusion

matrix (Figure 6.5), along with those class maps, corroborates the notion that the most

pronounced distinction among dwarf nova subtypes lies between SU UMa and Z Cam.

The semi-regular outbursts in dwarf nova systems exhibit a quasi-periodic pattern when

adequately sampled. In ZTF light curves, it is notable that superoutbursts, especially

long-lasting ones, tend to receive more comprehensive sampling compared to normal out-

bursts (refer to Figure 6.2). Consequently, the strength or amplitude of signals detected

in the Lomb Scargle periodogram can serve as an effective discriminator for distinguish-

ing SU UMa systems from U Gem and Z Cam. Notably, the feature maps within Figures
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6.9a and 6.9b illustrate that the amplitude values corresponding to detected frequencies

and their harmonics (referred to as Freqi harmonics amplitude j ; see Table 6.2) are con-

sistently higher in regions associated with SU UMa systems than in U Gem and Z Cam

associated regions (refer to Figure 6.8 class maps). The peak values of these features

are most prominent in regions adjacent to those associated with the AM CVn and nova

classes, possibly due to instances where the observational timeline exclusively captures

a brightening event, such as a nova eruption or superoutburst.

Figures 6.9a and 6.9b reveal that skewness (Skew), standard deviation (Std), and the

standstill level (stdstilllev t20s10 ), may be used to distinguish Z Cams from other dwarf

novae. My analysis suggests that standstills can significantly influence the magnitude

distribution, pushing it towards brighter values. Furthermore, if these standstills persist

for an extended period, ranging from weeks to months, they can also reduce the stan-

dard deviation, aligning it more closely with that observed in nova-like systems. While

regions exhibiting low standard deviation are not exclusive to Z Cam systems, as other

dwarf novae with extended periods of quiescence also display this characteristic, what

sets Z Cams apart is the normalised brightness within these low standard deviation re-

gions. The standstill level feature aims to pinpoint these distinctive regions within the

light curve, effectively distinguishing Z Cam systems from their SU UMa and U Gem

counterparts.

When it comes to defining characteristics of U Gem systems, with orbital periods greater

than 3 hours, their more massive donor stars and greater mass-transfer rates result in

accretion disks typically larger than those of SU UMa systems, whose orbital periods

mostly lie below 2 hours. Consequently, for the equivalent orbital inclinations, U Gem

systems have a higher optical quiescent brightness. The combination of ZTF’s limiting

magnitude and this brightness disparity results in many SU UMa systems only being

detected during their outburst phases as opposed to the U Gem class in which quiescence

sampling is more likely. This is evident when examining the number of observations

(n obs) feature maps in Figures 6.9a and 6.9b, where higher values are present in the U

Gem associated region compared to that for SU UMa.

Expanding upon the topic of intrinsic brightness, sources with lower intrinsic brightness

would need to be closer for effective observation, leading to a higher parallax measure-

ment (and possibly proper motion depending on motion in the tangential plane). With
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the shortest orbital periods of the dwarf nova classes, SU UMa systems are expected

to be less luminous, (given equivalent orbital inclinations) for the reasons set out in

the previous paragraph, and possess higher parallax values (and proper motion) when

compared to their dwarf nova counterparts. These distinctions are indeed evident in the

Figure 6.10 feature maps for parallax and pm, respectively. Moreover, these arguments

align with the observation of fainter absolute magnitudes as well.

The high mass-transfer rates characteristic of Z Cam systems drive them to meet the

disk instability threshold shortly after a previous outburst. Consequently, during their

outburst phases, they tend to spend considerably less time at the minimum brightness

level in comparison to other dwarf nova types, as documented by Simonsen et al. (2014).

This leads to recurrence periods typically falling within the range of 10 to 30 days, ex-

emplified by systems like ZTF17aaaeepz. It is reasonable to anticipate that the outburst

recurrence period, a parameter that the Lomb Scargle periodogram’s maximum power

frequency (freq pwr max ) aims to characterise, could offer some level of discrimination

between Z Cam systems and their dwarf nova counterparts.

However, upon scrutinising the corresponding feature maps for freq pwr max (within

Figures 6.9a and 6.9b), it becomes evident that distinguishing between these types is

challenging. For potential insights into this challenge, one may refer to the findings

of Otulakowska-Hypka et al. (2016). Notably, while the average recurrence periods for

the U Gem class tend to be longer than those of Z Cam systems, over 50 days, there

is an overlapping range with Z Cam recurrence periods. This overlap is also observed

in the case of the SU UMa class, where recurrence periods span from 3 to 300 days.

Additionally, factors such as the presence of extended standstills in Z Cam systems (e.g.,

ZTF17aabunpt; Figure 6.2) and the limited sampling of normal outbursts contribute to

the complexity of estimating this type of periodicity.

An examination of light curves for systems that fall between the latent space nodes asso-

ciated with U Gem and Z Cam classes (see Figure 6.8) further confirms this recurrence

period overlap, as does the overlap between the SU UMa and U Gem classes. Within this

continuum also lie the rapidly outbursting SU UMa subtypes, ER UMa, underscoring

the significance of recurrence period overlap as a primary contributor to the confusion

among dwarf nova subclasses.
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6.4.1.3 AM CVn

For the remainder of Section 6.4.1, to facilitate our discussion and interpretation of the

class and feature maps, I may refer to specific nodes (squares) by a simple coordinate

system (x, y). The value of x denotes the square number (1–10) from left to right, while

the value of y signifies the square number (1–10) from bottom to top.

As previously discussed in the introduction, AM CVn systems tend to be bluer than

their hydrogen-rich CV counterparts and are generally of lower luminosity. While su-

peroutbursts are observed in AM CVn systems (Kato & Kojiguchi, 2021), they tend

to be of shorter duration, typically lasting 5–6 days, and display lower amplitude (4–6

magnitudes) in contrast to superoutbursts in SU UMa systems, which often extend be-

yond 10 days and can, in the case of the WZ Sge subclass of SU UMa, reach amplitudes

exceeding 6 magnitudes. Additionally, normal outbursts have also been observed in AM

CVn systems, occurring on the fading tail of superoutbursts (Duffy et al., 2021).

Upon scrutiny of feature maps, it becomes apparent that features such as the mean,

median, minimum, and maximum magnitude derived from g-band light curves (Figure

6.9a) do not strongly differentiate AM CVn systems from other classes, contrary to the

expectation of higher (and consequently fainter) values. Similar observations hold for

the r-band (Figure 6.9b), except for the minimum magnitude in the r-band (min mag r),

where notably elevated (i.e., fainter) values cluster around node (1,4), associated with

the highest AM CVn probability (see Figure 6.8 class maps). One possible explanation

for these findings is that accretion discs in AM CVns are smaller than those in hydrogen

CVs, truncated by the smaller Roche lobe geometry. As emissions in the r-band primarily

originate from the cooler outer regions of the accretion disc, the effective surface area of

these regions is considerably smaller for the compact AM CVn discs.

To become detectable, AM CVn systems would be required to be situated at closer dis-

tances, thereby inducing higher parallax measurements and, in cases where tangential

motion occurs, observable proper motion (pm). While node (1,4) within the correspond-

ing feature maps in Figure 6.10 may not contain the highest values (which are located at

node (3,7) and associated with the SU UMa region), they still exhibit values sufficiently

high enough to align with expectations when compared to regions associated with other

classes.
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The average ZTF g-r colours, along with Gaia colours (involving RP data), are strong

discriminators effectively separating AM CVn systems from other classes, as evident in

Figure 6.10. However, when it comes to outburst-specific features (e.g., npeaks 2to5 ;

Figures 6.9a and 6.9b), their effectiveness diminishes. Contributing factors to this re-

duced performance may the scarcity of AM CVn examples within the dataset, coupled

with variations in observational time-spans and the sampling of their light curves. Con-

sequently, this diversity results in a variety of light curve profiles, as depicted in Figure

6.2, where the number of sampled outbursts ranges from several to none at all. An exam-

ination of sources projected onto latent space regions where the boundaries between AM

CVn and SU UMa classes, as well as between AM CVn and nova classes, blend (see Fig-

ure 6.8), suggests that these factors contribute significantly to the observed classification

ambiguity.

6.4.1.4 Novae

Despite a low sample size, the nova class achieves a recall score of 0.50 and a precision of

0.64. A significant source of false-positive predictions in the nova class can be attributed

to the SU UMa class. A possible explanation could simply be due to nova dataset

examples consisting largely of extragalactic sources, visible during the time of peak

eruption brightness. These light curves bear a resemblance to those of SU UMa systems

where only one outburst (often a superoutburst) has been sampled. Consequently, a low

number of observations is associated with the class, as is the case for SU UMa systems.

Two members of the nova class within the test set have misclassifications as VY Scl.

A possible explanation could be provided by ZTF21abmbzax (example light curve in

Figure 6.2), which displays a ‘dust dip’ explained as being generated by dust in the

eruption ejecta absorbing photons and re-emitting in the infra-red (Strope et al., 2010).

This characteristic resembles a VY Scl low-state excursion. Another eruption light curve

profile mentioned in Strope et al. (2010) exhibits a ‘flat top and jitters’ — cuspy profiles

at eruption maximum. This is seen in ZTF19abirmkt and could be responsible for

misclassifications of novae as magnetic CV members. Projections of these sources onto

the GTM latent space of Figure 6.8 align with these interpretations, with ZTF21abmbzax

projected onto node (6,3), located in between the nova and VY Scl structure cores, and
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ZTF19abirmkt projected onto node (3,3) located between the nova and polar structure

cores.

6.4.1.5 Remaining classes

The separation between the intermediate polars, polars, nova-likes, and the VY Scl nova-

like subtype arises from several physical properties manifested in their light curves, as

discussed in the introduction. As just demonstrated in previous subsections, a com-

parison of the g and r band feature maps within Figures 6.9a and 6.9b with the class

probabilities depicted in the Figure 6.8 class maps, help highlight the light curve at-

tributes most relevant for class separation.

The VY Scl class stands out with its deep low brightness state excursions such that low

values of eta e appear in the relevant g and r band feature maps near node (7,1), associ-

ated with the highest VY Scl class probability (see class maps). This feature reflects the

degree of independence between successive data points, where magnetic systems exhibit

higher values due to hourly timescale variations, while VY Scl systems show lower values

due to longer timescale variations. Furthermore, VY Scl low-state excursions can induce

a high skewness in magnitudes (Skew), and due to stable and prolonged high-brightness

states, give rise to the highest standstill level values (stdstilllev t20s10 ), as feature and

class maps demonstrate.

Eclipses within the nova-like class, as exemplified by ZTF18abajshu in Figure 6.2, push

the standstill level into a range occupied by Z Cams, potentially causing confusion be-

tween these two classes. Confusion also arises between nova-likes and the SU UMa

class. The light curves of sources where such confusion occurs are marked by a limited

number of data points, this is seen in the n obs feature maps for nodes (6,6) and (6,7),

situated where the associated class structures are closest together. Based on the cur-

rent feature set, the model finds difficulty in distinguishing systems visible only during

outbursts from nova-likes with limited observational epochs, though overall, nova-likes

remain distinguishable from the other classes.

The lowest standard deviation (Std) and median absolute deviation (MedianAbsDev)

values are associated with the intermediate polar and nova-like classes, as seen in the
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feature maps. This aligns with the less frequent low-state excursions observed in inter-

mediate polars and nova-likes compared to polars and VY Scl systems in the ZTF light

curves.

As explained by Hameury & Lasota (2017), most intermediate polars possess accretion

disks truncated at inner radii due to the white dwarf’s magnetism. This may lead to

dwarf nova outbursts characterised by lower amplitudes and shorter durations. The mix-

ture of outbursting and non-outbursting intermediate polars, coupled with less distinct

outburst profiles, contributes to feature maps displaying lower amplitude and variability-

related values for intermediate polars compared to dwarf novae. Non-outbursting inter-

mediate polars may explain the confusion with polars, indeed, this is supported by the

projection of intermediate polar ZTF18abaiuvj (Figure 6.2) onto a region associated

with polars within the GTM latent space (Figure 6.8).

6.4.1.6 Evolutionary factors

Separating cataclysmic variables into distinct classes is one that is a challenge for ex-

perts on the subject who must wrestle with the fact that as these systems evolve, they

transition from displaying traits characteristic of one class to another such that bound-

aries between classes are blurred (e.g., Warner 1995; Hellier 2001; Förster et al. 2021;

Paczyński 1971; Shafter 1992).

The shortening of orbital periods, donor composition changes, and shrinkage of the

accretion disk amongst several other factors drive the class transitions. Nova-likes have

mass-transfer rates high enough to be stable against dwarf nova outbursts. As the mass-

transfer rates drop, the accretion disk straddles the stability threshold, below which

the disk is cool, non-viscous and unstable to dwarf nova outbursts (Shafter, 1992).

The Z Cams, which lie close to this threshold, provide a link between non-outbursting

and regularly outbursting dwarf novae, with periods of standstill, akin to nova-likes,

and outbursting episodes typical of dwarf novae. The continuing evolution induces an

unstable disk, where a transition to the semi-regular outbursts of U Gems and then the

superoutbursting SU UMa systems occurs. The ER UMa subtype of SU UMa dwarf

novae may cause confusion with the Z Cam class, where above-average mass-transfer

rates lead to short superoutburst recurrence periods and rapid-fire normal outbursts. As

with hydrogen CVs, helium CVs (AM CVns) undergo an evolution (to longer periods)
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that results in observational changes, during which accretion may transition from direct

(no disk), to hot stable, then unstable disks subject to the He CV equivalent of dwarf

nova outbursts (Nelemans, 2005; Solheim, 2010).

To add to the difficulty in assigning class labels is the presence of nova eruptions —

a possibility for all systems should conditions for hydrogen fusion be present under

degenerate conditions on the WD surface; this is far more likely to occur for the highest

mass-transfer rate systems with high mass WD accretors (e.g., Munari 2012; Chomiuk

et al. 2020; Darnley et al. 2006; Darnley & Henze 2020). The presence of strong magnetic

fields for the intermediate polar or polar label requires observations of pulsed X-rays

and/or polarimetry to complicate matters further. In addition to the above, one must

factor in the orbital inclination that determines the overall emission contribution from

the accretion disk and thereby impacts measurements such as colour and brightness.

The evolutionary changes are evident in many of the light curves in my dataset. CR Boo

(ZTF18adkhuxp; Figure 6.2), is an AM CVn with a standstill to its name (Kato et al.,

2023); high mass-transfer rate systems residing amongst the U Gem class manifest as

dwarf nova outbursts with very short recurrence times indicative of a Z Cam class; the

ER UMa subclass (Kato et al., 2013) of SU UMa systems may also be confused with

the Z Cam class due to their high mass-transfer rates and rapid outbursts. Concerning

intermediate polars a range of light curve morphologies are possible (e.g., Šimon 2021).

Short duration low state transitions, dwarf nova outbursts and more stable long-term

light curves are present within our light curve sample, consequently, confusion with any

of the other classes is possible. Constructing a classifier in light of these intricacies

will naturally produce class confusion despite incorporating a wide-ranging feature set

inclusive of astrometric data and an attempt to produce a dataset with accurate class

labels. The confusion matrix and class maps in combination with the example light

curves displayed in Figure 6.2 are a visual representation of this very aspect of CV

classification.

6.4.2 Pipeline implementation

A substantial portion of the alert stream filter consists of either known or candidate

CVs (according to the AAVSO VSX list). This is positive news, indicating that the
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filter effectively retains them in the stream. Consequently, the undiscovered CV candi-

dates have a promising likelihood of being contained within the remaining alerts that

have successfully passed through the filter. The approximate class proportions of the

confirmed or candidate objects are as follows: 20% SU UMa (including the WZ Sge and

ER UMa subtypes), 4% Z Cam, 3% U Gem, 59% dwarf novae without further subdi-

vision, 3% magnetic CVs, 6% nova-likes (including subclasses), and less than 1% AM

CVn. The remaining confirmed or candidate CVs form a mixture of several sources

labelled as novae due to an eruption that may have occurred before ZTF observations,

a recurrent nova, and CVs without further subdivision. These proportions stem from

a variety of factors that may include: the frequent occurrence of alert-triggering events

in dwarf novae leading to their relatively higher representation; the inherent faintness

of short (or ultrashort) period CVs, making their detection less probable; the need for

supporting evidence, such as periodic variability on short timescales (minutes to hours),

polarimetry, and/or X-ray emission, to confidently confirm a CV as magnetic; and the

establishment of specific thresholds in the alert filtering, e.g., excluding CVs with a g-r

colour index exceeding 0.7.

The substantial contribution of low-variability sources among the remaining filter tar-

gets results from the omission of a magnitude change condition. Nevertheless, it was

observed that incorporating such a condition restricted the detection of confirmed/can-

didate outbursting CVs unless a considerably low threshold was applied. Notably, our

classifier overwhelmingly assigns the nova-like label to low (or slowly varying) sources,

thereby enabling the classifier to allocate the remaining higher variability sources into

distinct classes. Nonetheless, we retain the option to implement a magnitude change

criteria should we choose to focus on specific variability types.

Referring to Figure 6.1, configuring the filter to retain alerting sources with a ZTF g-r

colour of <= 0.7 is expected to encompass the vast majority of the shortest period

systems, SU UMa, and AM CVn candidates, along with a significant portion of the re-

maining classes. However, expanding the filter to include all examples would inevitably

lead to a rise in contamination from non-CVs, such as Mira variables and AGN candi-

dates (as observed in the June 2023 sample). Similar to the magnitude change filtering,

I am actively exploring the option to adjust the colour constraint, aiming to focus on

specific CV subclasses.
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The ML classifier demonstrates its greatest strength when applied to the filter output

by effectively distinguishing between outbursting and non-outbursting sources, a char-

acteristic mirrored in the test set predictions. Also mirroring the test set results is the

further separation of confirmed, candidate, or likely (from inspection) SU UMa from Z

Cam sources; and the separation of light curves with polar and VY Scl-like variability

assigned to those respective classes. However, when we enter the low sampling regime,

the classifier struggles to assign alerting sources into what I would consider the appropri-

ate class. For example, several poorly sampled though likely outbursting systems (where

quiescent magnitudes are not sampled) are assigned the nova-like or polar classes. How-

ever, on the whole, these sources tend to be assigned one the dwarf nova classes or the

AM CVn class (should an especially blue colour be calculated).

6.5 Conclusions

In this paper, I developed and applied a machine learning pipeline to detect and cate-

gorise cataclysmic variables (CVs) and their subtypes from the ZTF alerts stream. The

pipeline’s alert filtering stage effectively retains both known and potential CVs across

various subclasses, thanks to a multi-parameter g-r colour threshold and the omission

of a magnitude change condition. This approach accommodates colour changes during

dwarf nova outbursts.

The performance of the ML classifier is largely dependent on the ability of the dataset

to provide an accurate representation of the diversity within the CV population. This

diversity is present in the example light curves (see Figure 6.2), however, imbalance in

this diversity (class imbalance) and commonalities in the types of photometric variability

between classes renders CV subtype classification a particularly challenging task. Evo-

lutionary factors drive the difficulty in arriving at concrete class labels both for experts

in the subject and the ML classifier. The challenge is compounded by inadequate sam-

pling of light curves. Despite these difficulties, an exhaustive examination of several ML

algorithms, trained with a comprehensive feature set, and operating under a selection

of class balancing and feature selection techniques, yielded a classifier with a prediction

pattern that can be understood in the context of CV evolution.
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Latent space representations of this prediction pattern using GTM (class maps) provide

an easily interpretable avenue for visualising this evolution. The accompanying feature

maps provide a convenient method of finding those features most relevant for a model’s

assignment of a given class. They also provide us with the properties that contribute to

classification error, where in many cases the answers are linked to evolutionary factors.

Though not explored in this work, these feature maps provide a method to pare down the

feature set by eliminating features that provide little benefit for discrimination between

classes.

Implementation of the pipeline on the ZTF stream has, over the period of June 2023

alone, yielded a sample of 51 new CV candidates, These are largely outbursting, with

several magnetic CV candidates. With further improvements to the pipeline underway,

such as filter threshold adjustments and the inclusion of computer vision techniques to

provide an automated interpretation of salient light curve characteristics, I aim to reduce

contamination of non-CVs (e.g, Mira variables and active galactic nuclei) and produce

an ML classifier with greater class distinction powers.

Given the fuzzy boundary between CV subclasses for the reasons mentioned, it may be

prudent to apply stricter criteria for dataset inclusion, focusing only on clear examples

of a given class. With this approach, one relies less on definitive class labels, but more

on the probability of class belonging. Alternative approaches may include adopting a

multi-label approach that takes into consideration class boundary crossing variability,

or an unsupervised learning strategy that does away with existing class labels, tasking

algorithms with finding similarities, differences and structure in the data itself.



Chapter 7

Unsupervised Learning

7.1 Introduction

In the field of machine learning classification, label noise (or incorrect class labels) im-

pacts the training of models and can lead to suboptimal classification performance.

Label noise may arise due to many reasons, for example, human error, insufficient/in-

complete data, ambiguity in defining class boundaries, examples with diverse and com-

plex behaviour; or examples exhibiting characteristics of multiple classes. Adopting an

unsupervised learning strategy can help to address these issues. Dimensionality reduc-

tion is especially useful in this regard. By projecting the data into a lower dimensional

space the intrinsic structure of the data can be revealed enabling a comparison with

our preconceived classification structure. This intrinsic structure may then be further

analysed to understand the similarities and differences of properties (features) between

any groups of examples present. Clustering algorithms may also be useful in defining a

classification structure based on the data alone which can be compared to existing class

labels. However, fuzzy class boundaries can make it difficult to identify the appropriate

number of clusters.

7.1.1 Unsupervised Learning Examples in Time Domain Astronomy

Within the field of time-domain astronomy, unsupervised learning has been applied for

examining the validity or substructure of classification schemes, assessing the usefulness

of features, and as an initial step in a classification pipeline that can identify particular

169
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classes/groups of time-varying objects from survey data. Several recent examples exist.

Particularly relevant to this research is the search for CVs within Data Release 6 (DR6)

of the LAMOST survey containing nearly 10 million low-resolution spectra (Sun et al.,

2021). The search revolved around their classification based on the presence of Hα

emission lines. The process involved a training set comprising a set of 392 LAMOST

CV (or candidate CV) spectra showing Hα emission and 973 non-CV LAMOST spectra

without Hα emission. The flux measurements in the Hα region (6530–6600Å) were

used as input for UMAP to reduce the input to 3 dimensions. The UMAP output

is used as input for the K Nearest Neighbours algorithm to output a classifier tasked

with distinguishing between Hα emission spectra and spectra without Hα emission.

Implemented on the DR6 data, 169,509 of the ∼10 million spectra were identified as

possessing Hα emission. From here a combination of spectral model fitting and manual

inspection resulted in 323 CVs or candidate CVs being identified, of which 52 are new

candidates. The utilisation of UMAP helped considerably in paring down a large dataset.

Another example is related to the field of Gamma-Ray Bursts (GRBs). The tradi-

tional picture of long GRBs (>2s) originating from core-collapse supernovae (Woosley

& Bloom, 2006; Hjorth & Bloom, 2012) and short GRBs from compact binary mergers

involving a neutron star (NS) leading to kilonovae (Paczynski, 1986; Goldstein et al.,

2017) has been challenged by recent observations (Rossi et al., 2022; Lü et al., 2022),

requiring a more detailed classification structure. Dimple et al. (2023) chose to exam-

ine this problem by using Swift XRT light curves as input for PCA initialised UMAP

and t-SNE algorithms. They subsequently employed AutoGMM, a clustering algorithm

that utilises a Gaussian mixture model to represent the data as a combination of Gaus-

sian distributions. AutoGMM is employed to determine the optimal number of clusters

within the dataset. Dimple et al. (2023) found that five distinct clusters of GRBs exist,

of which the kilonova-associated GRBs are located in two separate clusters. Their use

of unsupervised learning led to an interpretation that these may be due to different

progenitors — subclasses of binary neutron star and/or NS–black hole mergers.

Narayan et al. (2018) employed PCA initialised t-SNE to examine the usefulness of a

set of statistical features extracted from OGLE and the Open Supernova Catalog light

curves. They aimed to distinguish between several variable star classes and supernovae.

The t-SNE representation divided large sample size classes (eclipsing binaries and RR
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Lyrae) into subclusters, which for RR Lyrae turned out to be a reflection of their sub-

classes, while Cepheid variable classes were fairly well separated. However, much class

overlap remained and low sample size classes were not well distinguished. Narayan et al.

(2018) re-implemented the procedure, this time with a dataset balanced with a combina-

tion of random undersampling and oversampling with a SMOTE variant. Narayan et al.

(2018) used the clearer separation in the resultant projection as a visual representation

of the adverse effects of class imbalance within their data.

The ZTF source classification project detailed in van Roestel et al. (2021) describes a

hierarchical ML pipeline for the classification of transient/variable star sources detected

by the ZTF transient alert stream. The training set classes included YSOs, different

classes of variable stars, and AGN. The application of t-SNE was a means to reveal the

dataset structure based on their feature set. While the separation of variable sources

from non-variable ones is clear, the separation of the aforementioned classes revealed a

representation with a complicated substructure and class overlap (especially for classes

with fewer examples).

7.1.2 Unsupervised Learning for Cataclysmic Variables

The above are examples of how one may implement dimensionality reduction for explor-

ing classification structures, aiding in classification, and examining feature relevance.

However, to the best of my knowledge, no research explores the diverse range of vari-

ability within the CV family with unsupervised learning methods. While Sun et al.

(2021) used UMAP to help identify CVs from the LAMOST spectroscopic survey, fur-

ther examination of the Hα emission spectra for substructure was not explored. Feature

validity for several broad transient classes was explored by Narayan et al. (2018), though

this has yet to be explored for CV subclasses. In this chapter, I address these gaps in

the CV literature. Here, dimensionality reduction is explored in an attempt to: eluci-

date the true diversity of examples within the CV dataset; assess the relevance of the

features used in the classification models; and identify new members of particular CV

subclasses from a list of sources with only a broad classification. So far I have cited

instrumental and evolutionary factors as a cause for the challenges faced when adopting

the existing classification scheme. Explicitly, inconsistent or sparse light curve sampling,

telescope limiting magnitude, label noise, CVs transitioning between classes (or similar
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evolutionary factors), class imbalance, and defining class characteristics not always be-

ing present during the observational timespan. I provide a more detailed examination of

the challenges faced through the examination of outputs from dimensionality reduction

algorithms PCA, t-SNE, UMAP, and GTM.

PCA is concerned only with linear separability within the data, identifying the princi-

pal components (dimensions) that account for the greatest amount of variance in the

data. PCA tends to preserve the global structure of high-dimensional space in its low-

dimensional projection at the cost of local structure. For non-linear methods, t-SNE

is focused on pairwise distances in data space, thereby preserving local structure at

the expense of global structure. UMAP represents a middle ground between the global

structure-focused PCA and the local structure-centric t-SNE. A major advantage of us-

ing UMAP over t-SNE is that UMAP results in a model for inference. A probabilistic

model of the higher dimensional distribution of examples can be constructed using GTM.

Through associated reference maps, one may visualise this probability distribution and

identify where in feature space our clusters lie. They provide a method for comprehen-

sively understanding the data distribution allowing the properties of similarly grouped

CVs to be easily identified. With this selection of algorithms, I aim to cover the bases

of linear and non-linear representations, global and local structure preservation, and

interpretability of clusters.

The structure of this chapter is as follows. Section 7.2 covers the construction of the

dataset, data preprocessing, the algorithm optimisation procedures and the tasks ex-

plored. Section 7.3 displays the resultant projections and their analyses with the aid

of feature projections and reference maps. In section 7.3.5, I project example CVs not

used during the training of the PCA, UMAP and GTMmodels, onto the low-dimensional

space learnt by UMAP. These CVs have not previously been assigned subclass labels,

therefore, their locations on the low-dimensional space provide an update to their present

classification status whilst also providing an assessment of the generalisation ability of

the models. The chapter concludes with Section 7.4, where the findings are discussed in

the wider context of the research into CVs.
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CV class Count

Dwarf nova: SU UMa 378
Dwarf nova: WZ Sge 32
Dwarf nova: ER Uma 25
Dwarf nova: U Gem 115
Dwarf nova: Z Cam 168

Nova-like 138
Nova-like (VY Scl) 117

Polar 110
Intermediate polar 49

AM CVn 35

Table 7.1: A breakdown of the classes of CV present with the dataset for unsupervised
learning analysis.

7.2 Method

7.2.1 Dataset construction

The features derived from the light curves, as described in Chapter 6, each require a

minimum number of data points to be calculable otherwise null values are recorded.

Furthermore, having more data points allows for a more detailed and accurate charac-

terisation of the light curve. Therefore, a minimum data points threshold is set for an

example to be included for dimensionality reduction analysis. In addition to this, the

impact of the addition of Gaia DR3 data is also assessed. Therefore, for each algorithm,

2D projections under the following conditions were obtained:

• 1) Minimum data points threshold of 20 in either the g or r band and without the

use of Gaia DR3 data;

• 2) Minimum data points threshold of 20 in either the g or r band with the use of

Gaia DR3 data.

While experimentation with stricter thresholds (above 20 points) and applied to both

rather than either filter band was conducted, any difference between projections was min-

imal to none. Also, one reduces the number of examples under consideration. Therefore,

only the above conditions are explored in this chapter. For those conditions, Table 7.1

provides the number of examples for each class of CV.
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7.2.2 Data preprocessing

The following strategy has been adopted to handle features with outliers, missing data,

and heavily skewed distributions. Each feature is inspected for outliers to determine

if they are erroneous, such as data points falling outside the accepted range. I handle

outliers by capping feature values based on their correct range or using the interquartile

range method. In the interquartile range (IQR) method, values above Q3 + q × IQR or

below Q1− q × IQR are capped at these boundary values. Here, Q1 (the first quartile)

marks the 25th percentile, Q3 (the third quartile) marks the 75th percentile, and q is

assigned a value between 1.5 to 3 (inclusive), depending on the feature distribution.

Missing data in light curve-derived features is addressed using the approach outlined in

Section 6.2.9. Specifically, missing values are imputed using feature values derived from

the light curve of the other filter or a closely related feature (e.g., the overall mean g− r

colour if the epochal mean g−r colour is unavailable). Any remaining missing values are

handled using the K-Nearest Neighbors (KNN) imputation method, with the number

of neighbours set to 5. Heavily skewed distributions can adversely affect the outcome

of dimensionality reduction algorithms, for example, PCA is sensitive to the scale of

features such that principal components are influenced by the tail of the distribution

possibly leading to biased representations. Handling heavily skewed features with log

transform can help to mitigate these effects and help with feature scaling, therefore this

is the approach adopted.

7.2.3 Hyperparameter Optimisation

The quality and interpretability of the reduced-dimensional representations depend on

the choice of hyperparameters, as small changes can lead to significantly different out-

comes. Adjusting the hyperparameters allows us to balance the representation of local

versus global structure in the data, prevent overfitting, and identify the optimal range

where small adjustments or different random initializations do not lead to drastically

different results. A reminder of the associated hyperparameters of the dimensionality

reduction algorithms is summarised here.

• PCA:
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– n components sets the number of dimensions in the low-dimensional repre-

sentation. Set to 2.

– no other adjustments

• t-SNE:

– perplexity effectively sets the number of nearest neighbours each point is

attracted to, where the larger (smaller) the value, the more global (local)

structure will be present in the projection.

– early exaggeration controls the initial exaggeration of similarities between

data points, helping to make clusters better separated during the early stages

of optimisation.

– learning rate controls the step size of the gradient descent function as applied

to the KL divergence loss function. Adjustments help to avoid getting stuck

in a bad local minimum.

– n iter without progress sets the maximum number of iterations without re-

duction in the loss function before optimisation is aborted.

– metric controls the method used to measure point-to-point distances in data

space. Set to default of ‘Euclidean’.

• UMAP:

– n neighbours sets size of local neighbourhood (in terms of the number of

neighbouring sample points) used for manifold approximation. Larger values

= more global structure emphasis, smaller values = more local structure

emphasis.

– min dist sets the minimum distance apart that points are allowed to be in the

low dimensional representation. Lower values result in clumpier embeddings

useful for fine topological structure analysis, while large values are useful for

broad structure analysis.

– learning rate controls the optimisation step size.

– metric is as defined for t-SNE, and set to ‘euclidean’.

• GTM:

– k sets the square root of the number of GTM nodes
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– m is the square root of the number of radial basis function (RBF) centres

that approximates the data space probability distribution

– s sets the RBF width factor to tune the width of the RBF functions.

– regul is the regularisation coefficient.

7.3 Results and analysis

For each algorithm, projections generated with and without Gaia DR3 data features

are shown, each colour-coded by class and feature values. To be more specific, the first

figure for each algorithm presents projections (subplots) generated without Gaia DR3

data features. Each subplot displays data points colour-coded based on whether they

belong to a specific CV class (one versus rest), with the final subplot colour-coded in

a multi-class format. The second figure follows the same layout but shows projections

generated with the inclusion of Gaia DR3 data features. These plots are referred to as

‘class projections.’

The third figure for each algorithm displays the same projections (subplots) as the first

(generated without Gaia DR3 data features) but with the data points colour-coded by

their value for a particular feature (scaled between 0 and 1). One subplot is provided

for each of a selection of non-Gaia DR3 features. The fourth figure uses the same

layout as the third, but the projections are generated using Gaia DR3 data features,

and subsequently, subplots are provided also for Gaia DR3 data features. The third and

fourth figures will be referred to as ‘feature projections.’

For GTM, instead of feature projections, reference maps are shown, which will be ex-

plained later. These maps offer a clearer method than the feature projections for eluci-

dating the properties of clusters within the low-dimensional space.

Finally, projections of example CVs that were not used during the training of the PCA,

UMAP, and GTM models are shown on the low-dimensional space learnt by UMAP

(both with and without Gaia DR3 data features) to update their current classification

status. These CVs have either not been assigned a CV subclass label or have been

classified as a dwarf nova without a specific dwarf nova subtype label.
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7.3.1 PCA
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Figure 7.1: PCA 2D projection of dataset where a minimum points threshold of 20
in either the g or r band was set and no external (DR3) data was utilised. They are
colour-coded by class, and presented in a one-versus-rest manner apart from the plot

on the bottom right, which combines the preceding plots.
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Figure 7.2: Same as Figure 7.1, though with the inclusion of external data from Gaia
DR3
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Figure 7.3: PCA projections without inclusion of Gaia DR3 data (see Figure 7.1)
colour coded by feature values for selected features and scales to between 0 and 1.
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Figure 7.4: PCA projections with inclusion of Gaia DR3 data (Figure 7.2 colour-
coded by feature values for selection Gaia DR3 features and scaled to between 0 and 1.

7.3.1.1 PCA Class Projections

The projections with and without the use of Gaia DR3 data (see Figures 7.1 and 7.2)

are very similar. SU UMa systems are absent from the far left region when Gaia data is

used; this seems to be the only major difference between them. The first two principal

components account for only ∼24% of the variance in the dataset (with and without

Gaia DR3 features), therefore much information is lost in 2D, possibly leading to a lack

of separation of examples into distinct clusters. When the object classes are considered,
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some degree of class separation is present, specifically between the Z Cam and SU UMa

classes, though significant overlap between classes exists. A transition from long-period

to short-period CVs occurs as we shift our focus from the bottom left to the top right of

the projections (nova-likes to WZ Sge and AM CVns) whether Gaia DR3 data is used or

not. Signs of evolutionary factors are therefore evident in these global structure-centric

projections.

7.3.1.2 PCA Feature Projections: Outbursting Characteristics

The feature projections from the case without and with the use of Gaia DR3 data are

shown in Figures 7.3 and 7.4, respectively. One may use them as a guide to compare

the properties of examples in different regions of each projection.

Amplitude-related features as well as simple variability measures, tend to increase in

values from left to right, though with a slight downward inclination. These include

Amplitude, and Std (Figure 7.3). This concurs with the class projections in which

nova-like systems (no dwarf nova outbursts) are located farthest to the left and SU

UMa systems (with their superoutbursts) reside farthest to the right; U Gems reside

somewhat in between with their semi-regular normal dwarf nova outbursts.

Amplitude range-specific features display a class-specific value distribution (Figure 7.3).

Outburst amplitudes for Z Cams tend to be smaller than those for U Gems, and smaller

still compared to SU UMa systems (Otulakowska-Hypka et al., 2016). This pattern

is reflected in the features npeaks pt5to1, npeaks 1to2, npeaks 2to5, and npeaks above5,

which represent the number of peaks in the light curve within specific amplitude ranges.

As the amplitudes defining each range increase, the highest values for these features

progressively move from the bottom left (for the smallest amplitudes, npeaks pt5to1 ) to

the bottom (for the mid-range amplitudes, npeaks 1to2 and npeaks 2to5 ), and then to

the lower right (for the largest amplitudes, npeaks above5 ). These trends align with the

amplitude characteristics of the different dwarf nova subtypes and their corresponding

locations in the projections. Furthermore, the values for the feature that defines the

maximum amplitude of peaks between 2 and 5 magnitudes (amp 2to5 g) increase diag-

onally from top left to bottom right, corresponding to the transition from nova-likes to

Z Cams and then to SU UMa systems.
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Figure 7.3 shows that period (and frequency)-based features, derived using a Lomb-

Scargle periodogram, exhibit a trend along the diagonal from bottom left to top right.

For instance, the amplitude of the first harmonic of the strongest Lomb-Scargle fre-

quency, Freq1 harmonics amplitude 1, reaches its highest value in the top right of the

corresponding subplot. This pattern holds for all harmonics across the various frequen-

cies. This region corresponds to examples where only a single outburst or eruption has

been observed in the light curve, typically with an observational timespan covering only

that event, leading to fewer data points (n obs). Such light curves tend to produce high-

amplitude frequencies due to their simplicity. The main CV types found in this region

include WZ Sge, novae, and several SU UMa systems. This is the case in each of the class

projections (Figures 7.1 and 7.2). As we shift from the upper right towards the lower

left of projections, strong periodic signals are less common, such that more frequently

outbursting and lower outburst amplitude sources begin to dominate. Therefore, we

shift from SU UMa to U Gem, then Z Cam, until stable non-outbursting systems are

predominant. This concurs with the approximate trend seen in the PeriodLS feature —

the period increasing from bottom left to top right.

The synchronous variability of the g and r band light curves, captured by the StetsonL

variability index, tends to be higher in regions where semi-regular outbursts occur and

where the period measurement is larger (longer), these will be systems with well-sampled

outbursts in both bands — SU UMa systems with their superoutbursts are representative

of such qualities.

The range of cumulative sum features Rcs and Psi CS display a clear trend of increasing

values from bottom to top (Figure 7.3). To induce low values of this feature, the light

curves display symmetry in points above and below the mean magnitude, such as is seen

in frequently outbursting systems with minimal time spent in quiescence (e.g., Z Cams).

While high values tend to be exhibited by light curves lacking this symmetry (e.g., dwarf

novae with low n obs due to single sampled outburst and VY Scl systems). LinearTrend,

seems effective in picking out those light curves where only a single outburst/eruption

is captured such that the light curve will show a positive magnitude change trend when

applying a linear fit, these typically correspond to nova and WZ Sge light curves. MaxS-

lope, the maximum gradient between any two consecutive points, shows an unclear trend,

though the highest values tend to align with the rapidly outbursting Z Cams systems as

one may expect.
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7.3.1.3 PCA Feature Projections: Colour and brightness

ZTF colour related features (clr mean, clr bright and clr faint) do not show any clear

trend in Figure 7.3. Neither do the Gaia colours, bp rp, bp g, and g rp shown in Figure

7.4. All that can be said is that ZTF colour values show a faint trend decreasing

in the direction from the lower left to the upper right. This aligns with the upper

right belonging to some of the shortest periods and bluest systems (see Figures 7.1

and 7.2). Gaia absolute magnitudes, apparent magnitudes and fluxes (e.g., absmag g,

phot g mean mag and phot bp mean flux ) show a clear linear trend corresponding to

a transition from the intrinsically or apparently brightest systems to those that are

intrinsically or apparently faintest (e.g., nova-likes to SU UMa and AM CVns).

7.3.1.4 Magnetic CVs

The analysis so far has yet to touch upon the population of magnetic CVs, namely the

intermediate polars (IPs) and polars. The IPs reside farther left than the polars, in

both the with and without Gaia DR3 representations, though much scatter is present

for both classes. Little more can be said of the location of these objects but that

the lack of locality may just point to the diversity of light curve profiles. Such profiles

include outbursts in several IPs, long-term fluctuations in brightness due to mass-transfer

rate changes (more prominent in polars than from IPs), and eclipses from periodic

occultations of different parts of the accretion geometry. Diversity in light curve profiles

may also play a factor in the lack of locality of AM CVs.

7.3.1.5 Factors Impacting Projections

Many of the feature projections show a clear and linear trend, these tend to provide

the greatest clarity in interpreting the class projections. However, several features show

significant scatter, providing less clarity for interpretation. One significant factor would

be the wide range of orbital inclinations. This impacts multiple measurable properties,

including the depth of eclipses, and the apparent and absolute brightness, which is also a

function of wavelength, colour measurements, and outburst amplitudes. Another factor

could simply be the need for non-linear dimensionality reduction analysis to assess the

relevance of such features. Non-linear algorithms are now explored.
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7.3.2 t-SNE
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Figure 7.5: t-SNE 2D projection of dataset where a minimum points threshold of 20 in
either the g or r band was set and no external (DR3) data was utilised. They are colour-
coded by class, and presented in a one-versus-rest manner apart from the plot on the
bottom right, which combines the preceding plots. The hyperparameters for the model
were set as follows: perplexity=20, learning rate=10, n iter=1e6, early stopping=1000,

early exageration=12
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Figure 7.6: Same as figure 7.5 but with external (DR3) data. Hyperparameters
are as follows: perplexity=20, learning rate=10, n iter=1e6, early stopping=1000,

early exageration=12
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Figure 7.7: t-SNE projections without inclusion of Gaia DR3 data (see Figure 7.5)
colour coded by feature values for selected features and scales to between 0 and 1.
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Figure 7.8: t-SNE projections with inclusion of Gaia DR3 data (see Figure 7.6 colour-
coded by feature values for selection Gaia DR3 features and scaled to between 0 and 1.
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7.3.2.1 t-SNE Implementation

To optimise the projections with t-SNE, the perplexity was adjusted in increments of 5

from 5 to 100, with subsequent adjustments of the learning rate and early exaggeration

parameters for fine-tuning. The choice of optimal parameters was based upon the degree

of cluster separation, and the repeatability of the separation of examples belonging to

specific classes under different random initialisation states. The projections from the

use of t-SNE, both without and with Gaia DR3 data (Figures 7.5 and 7.6), display

a separation of examples into clusters of higher example densities, unlike PCA. The

cluster separations are not as clear as one would hope, with a fair amount of blending.

However, when considering the class labels, one can see clear and almost distinct loca-

tions for several of the classes. During the optimisation process, it became evident that

consistent patterns concerning the separation of classes were always present regardless

of hyperparameter values, as I will now describe.

7.3.2.2 Nova-likes

Gaia DR3 data or not, there always exist two distinct regions heavily populated by

nova-like systems (olive green in Figures 7.5 and 7.6). One region belongs to examples

whose light curves display clear eclipses with depths typically a magnitude or greater.

Other classes also reside within or very close to this region, all of which exhibit signs of

eclipsing behaviour.

Referring to the feature projections of Figure 7.7, one can see that high values of the

standard deviation of colour (clr std) are associated with this eclipsing region. Eclipses

impact the g and r bands differently based on the components being obscured. Typically,

eclipses of the accretion disk lead to redder colours, while eclipses of the secondary star

result in bluer colours. The interplay between these effects in CVs produces complex

colour variability, which can be characterised by clr std. Low values of the percentile

range ratio FluxPercentileRatioMid50 are also associated with this region. This ratio

provides insight into the distribution of flux values, specifically how concentrated or

spread out the majority of the flux values are within the light curve. A low ratio

indicates that the flux variation within the central 50th percentile range is relatively

small compared to the total flux variation, i.e., that most of the light curve’s variation
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is concentrated at the extremes. In this case, caused by the sharp flux drops during

eclipses and relatively stable flux levels outside of them.

The other nova-like region is always populated by several Z Cams and a concentrated

area of intermediate polars, where the Z Cams and intermediate polars usually display

some separation. Here the light curve variability is restricted to within 1 magnitude or

less. Consequently, low values of Amplitude are a marker for this region. For this region,

the Z Cams possess low amplitude high-frequency outbursts, while where intermediate

polars are most prominent, a slightly more stochastic variability takes place.

7.3.2.3 VY Scl systems

VY Scl systems (cyan in Figures 7.5 and 7.6) are well separated from other classes regard-

less of the use of Gaia DR3 data. Referring to feature projections without Gaia DR3 data

(Figure 7.7), the region is associated with the longest Lomb Scargle period (PeriodLS )

presumably due to long intervals between low state excursions; and a high value for the

standstill level, stdstilllev t20s10, a consequence of the long featureless high states. In-

terestingly, one may divide this region into two based upon Freq1 harmonic amplitude 0,

where high values correspond to an almost constant light curve with only the beginning

or the end of a single low state excursion present, while low values are associated with

multiple or complete low state excursions.

7.3.2.4 Polars

For the projections without Gaia DR3 data, a distinct concentration of polars is consis-

tently observed, separate from other classes (just below the centre in Figure 7.5). While

some contamination from VY Scl systems exists, the variability in their light curves

closely resembles that expected from polars. In the feature projections (Figure 7.7),

this region is associated with high values of PeriodLS, potentially reflecting long-term

high and low state fluctuations. Additionally, it exhibits a pocket of relatively low Me-

dianBRP values, which represent the fraction of data points within amplitude/10 of the

median magnitude, indicative of high variability.

When Gaia DR3 data is incorporated (Figure 7.8), two relatively distinct clusters of

polars emerge, further separating them from other classes. These clusters differ primarily
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in the amount of variance present in the light curves. The cluster furthest to the left in

Figure 7.6 is characterised by significantly higher variance (short timescale variability),

whereas the other cluster, located slightly lower and to the right of the centre, exhibits

less variance. This distinction is best captured by the CAR sigma feature, as shown in

Figure 7.8.

7.3.2.5 Z Cams

Three clusters of Z Cam systems typically emerge, one smaller than the other two,

regardless of whether Gaia DR3 data is included. These clusters are not well-defined,

displaying significant scatter and blending between them. The two larger clusters are

generally positioned on either side of the eclipsing nova-like region mentioned earlier,

with a portion of one of these clusters overlapping with a significant number of U Gem

systems.

In the case without Gaia DR3 data (Figure 7.5), the two larger clusters are located on

either side of the centre, while the smaller cluster is situated furthest to the left. When

Gaia DR3 data is used (Figure 7.6), the two larger clusters tend to blend more, lying

on either side of a population of nova-likes, with the smaller cluster shifting toward the

top left. Among the larger clusters, one is characterized by higher amplitude outbursts

compared to the other. This distinction is best captured by features such as the number

of peaks with amplitudes between 2 and 5 magnitudes (npeaks 2to5 ) and the number

of data points falling below (or above) the median of a rolling median window with a

1-magnitude threshold (pnts leq rollMedWin20-1mag or pnts geq rollMedWin20+1mag)

(Figure 7.7).

The smaller Z Cam cluster, as noted earlier, is mixed with low-amplitude nova-like sys-

tems and exhibits low-amplitude outbursts or variability. However, the clear separation

of sources based on the presence of standstills remains elusive. Where standstills are

present, they appear to be more pronounced in the lower-amplitude large Z Cam cluster.

7.3.2.6 SU UMa systems

SU UMa systems occupy several regions in the projections, regardless of whether Gaia

DR3 data is included (Figures 7.7 and 7.8, respectively). One of these regions overlaps
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with a significant number of U Gem systems, which is unsurprising given the challenge

our features face in distinguishing these two classes. This difficulty arises primarily from

the similarity between superoutbursts and normal outbursts, which can often be hard

to differentiate.

The distinct SU UMa regions, whether or not Gaia DR3 data is used, appear to be

separated based on factors such as the level of quiescent sampling, outburst amplitude,

and outburst recurrence period. For example, in the projection without Gaia DR3

data (Figure 7.5), the concentrated SU UMa region around tSNE1 = 10 and tSNE2 =

10 is populated by systems with high outburst amplitudes and well-sampled quiescence.

Consequently, the Amplitude feature shows high values in this region, while the standstill

level (stdstilllev t20s10 ) is very low.

Moving leftward in this projection, outburst recurrence periods increase until reaching a

population dominated by WZ Sge systems. These systems typically exhibit only a single

observed outburst within the ZTF survey’s observational timespan but maintain good

quiescent sampling. In the northernmost SU UMa region, systems are found where no

quiescent observations have been recorded; only outbursts have been observed. Here,

the Amplitude feature remains high due to the lack of quiescent sampling, and the

stdstilllev t20s10 feature also shows high values in this region. Additionally, in the

upper-right portion of the projection without Gaia DR3 data, another group of WZ Sge

systems appears, again lacking quiescent sampling.

When Gaia DR3 data is included (Figure 7.6), the SU UMa-dominated regions exhibit

similar attribute-based separations, despite differences in their specific locations within

the projection. High outburst amplitude, recurrence period, and the extent of quiescent

sampling continue to define the substructure of these regions.

7.3.2.7 ER UMa and U Gem

ER UMa systems are short-period, high mass-transfer rate dwarf novae. As a result, their

supercycles (the time between successive superoutbursts) are exceptionally short (less

than 50 days), as are their normal outburst cycles. These rapidly outbursting systems

often overlap in location with Z Cam systems that also exhibit frequent outbursts.
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Consequently, neither the projection without Gaia DR3 data nor the one with it provides

a distinct or consistent location for ER UMa systems.

U Gem systems, regardless of random initialisation of the algorithm or the inclusion of

Gaia DR3 data, are predominantly found in a large, loosely defined cluster that links Z

Cam and SU UMa systems. Smaller numbers of U Gem systems also appear in several

other diffuse regions that are shared with other dwarf nova varieties. This distribution

suggests that the light curves and, where used, Gaia DR3 data do not provide sufficient

discriminative power to fully separate U Gems from Z Cam and SU UMa systems. This

is unsurprising, as inspecting the dwarf nova light curves in our dataset reveals significant

overlap in outburst recurrence periods and amplitudes between these classes.

Nevertheless, the majority of U Gem systems in both Figure 7.5 and Figure 7.6 are asso-

ciated with sources exhibiting the highest number of outbursts (peaks) with amplitudes

between 2 and 5 magnitudes. This trend is evident in the npeaks 2to5 feature projec-

tion (Figure 7.7). Such behaviour aligns with a defining characteristic of U Gems: their

outburst amplitudes typically fall within this range (Otulakowska-Hypka et al., 2016).

7.3.2.8 Novae

Novae predominantly occupy regions characterised by high values of the LinearTrend

feature, as illustrated in Figures 7.5 and 7.7. This feature likely captures the monotonic

decline brightness typical of post-eruption light curves. Additionally, novae are associ-

ated with low values of n obs (the number of data points in the light curve), reflecting

their limited observational window, which is often restricted to their eruption phase. In

Figure 7.5, novae are dispersed within the top third of the projection, a spread that

appears to correspond to variations in light curve amplitude.

When Gaia DR3 data is incorporated (Figures 7.6 and 7.8), novae cluster in regions asso-

ciated with high errors in positional coordinates, parallax, and proper motion (pmra error

and pmdec error). These high errors can be attributed to several factors: the absence

of pre-outburst observations, their typical placement at significantly greater distances

than other CV subtypes, and their preferential location at low Galactic latitudes. At

these latitudes, interstellar extinction is more pronounced, further complicating accurate

astrometric measurements.
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7.3.2.9 AM CVns and Other

AM CVn systems do not exhibit strong localisation in either projection, whether Gaia

DR3 data is included or not. Several factors may contribute to this lack of clustering: the

limited number of known examples, the wide range of variability patterns arising from

their evolutionary stages, their intrinsic faintness, and variations in orbital inclination.

However, in the projection with Gaia DR3 data (Figure 7.6), there is a slight indication

of localisation near coordinates (tSNE1=10, tSNE2=-5). One might expect this region

to correspond to systems with high proper motion (pm) and/or low bp rp colour values

(indicating bluer systems), but no distinctive trends in these features are evident in this

area (see Figure 7.8).

Both projections reveal regions characterised by a mixture of different classes. In the

projection without Gaia DR3 data (Figure 7.5), this region lies northwest of the centre,

while in the projection with Gaia DR3 data (Figure 7.6), it is located north of the centre.

These regions are associated with light curves that have relatively low amplitudes and

sparse sampling (n obs), reflecting cases where the data available makes it particularly

challenging to assign a definitive classification.
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7.3.3 UMAP
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Figure 7.9: UMAP 2D projection of dataset where a minimum points threshold of 20
in either the g or r band was set and no external (DR3) data was utilised. They are
colour-coded by class, and presented in a one-versus-rest manner apart from the plot

on the bottom right, which combines the preceding plots.
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Figure 7.10: Same as Figure 7.9 but with external (DR3) data.
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Figure 7.11: Feature projections for UMAP without the use of Gaia DR3 data
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Figure 7.12: Feature projections for UMAP with the use of Gaia DR3 data
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7.3.3.1 UMAP implementation

To optimise the UMAP projections, the objective was to create representations with as

distinct clusters as possible. However, as anticipated, some blending between classes is

present in the projections, both with and without Gaia DR3 data (Figures 7.9 and 7.10,

respectively). The n neighbours hyperparameter had the most significant influence on

the projections. For each value of this hyperparameter, projections were also generated

using various values of the learning rate and min dist. As n neighbours approached

100, the local structure diminished, while values in the single digits resulted in many

small clusters (typically 2–3 examples). Increasing n neighbours allowed for a better

balance between local and global structure, with further fine-tuning achieved using the

learning rate and min dist parameters. For the projection without Gaia DR3 data, an

n neighbors value of 25 appeared to be optimal, whereas for the projection with Gaia

DR3 data, a value of 30 produced a satisfactory result. Learning rates of 0.01 were used

for both sets of projections, while a min dist of 0.05 was used for the non-Gaia DR3

case and 0.01 for the projection with Gaia DR3 data. To test the repeatability of the

optimisation process, projections were generated with different random initialisations

using the same hyperparameters. Regardless of the random seed, the same clustering

patterns consistently emerged, reinforcing the reliability of the optimisation procedure.

7.3.3.2 Comparisons with PCA and t-SNE

Projections generated with UMAP show dense clusters with a clear separation between

them, as seen in Figures 7.9 and 7.10. The separation in UMAP appears more pro-

nounced than in t-SNE (and more than in PCA), although this is highly sensitive to

the choice of hyperparameters for both t-SNE and UMAP. Additionally, UMAP tends

to exhibit more filamentary connections between clusters, as opposed to the scattered

blending observed with t-SNE. The differences between UMAP projections with and

without Gaia DR3 data are minimal, though these may be influenced by the random

initialisation state and specific hyperparameter choices.

Upon adding class labels, the UMAP projections reveal the same class segregation pat-

terns observed in the t-SNE projections. Notably, two nova-like regions emerge: one with

eclipsing systems and another with less variability, which contains a significant group of
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intermediate polars along with several Z Cams. Several well-separated SU UMa clusters

appear distinct from other classes. ER UMa systems align with Z Cams, and Z Cams

surround the eclipsing nova-like systems in two larger clusters. WZ Sge systems occupy

two or three smaller regions located at the outer edges of the SU UMa clusters. A large,

well-separated cluster of VY Scl systems is also evident. U Gems overlap with some SU

UMa and Z Cams, creating a link between these two classes. There is a lack of localisa-

tion for AM CVn systems. One polar cluster is clearly separated from other classes when

no Gaia DR3 data is used, while two distinct polar clusters are present when Gaia DR3

data is incorporated. These characteristics are consistent across both projections with

and without Gaia DR3 data. The primary difference between the t-SNE and UMAP

projections lies in the relative locations of these clusters in the respective projections.

A few other notable differences also appear.

The two polar clusters in the Gaia DR3 projection differ slightly between t-SNE and

UMAP (Figures 7.6 and 7.10). In t-SNE, they are well-separated, with minimal con-

tamination, and distinguished by short-timescale variability. In UMAP, one cluster is

more distinct, while the other overlaps with nearby classes.

In the UMAP projection without Gaia DR3 data (Figure 7.9), VY Scl systems split into

two clusters: a larger one at the bottom right and a smaller one to the left. The feature

Freq1 harmonics amplitude 0 shows lower values for the systems in the bottom-right

cluster, indicating clearer periodicity in the left cluster. Light curve inspection confirms

that the left cluster contains systems better described by a periodic function.

With Gaia DR3 data (Figure 7.10), VY Scl systems are mostly concentrated in the

bottom-right region, with some subcluster separation. The Freq1 harmonics amplitude 0

feature captures this separation: higher values appear in the southernmost examples,

where a periodic function fits well the associated light curves — often marking the start

or end of a low-state excursion. Moving north, the full profile of low-state excursions is

present in the light curves. The most northerly examples of the VY Scl systems in the

bottom-right region of the projection show shallow low-state excursions.
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7.3.3.3 Feature Projections

When comparing the feature projections of UMAP with and without Gaia DR3 data

(Figures 7.11 and 7.12) to the corresponding class projections (Figures 7.9 and 7.10),

the associations between feature values and class locations observed in t-SNE are also

evident in UMAP. However, some additional observations can be made.

For projections with Gaia DR3 data, the highest values of Galactic latitude (b) are found

in regions where short-period systems, such as SU UMa and WZ Sge, are located. This

region also corresponds to some of the closest systems. The light curves of these systems

are well-sampled during quiescence. One explanation for this is that, during quiescence

SU UMa and WZ Sge are some of the intrinsically faintest objects in the optical and

would be required to be close by to be observable, this is more so the case here due to

a well-sampled quiescence. Furthermore, for nearby sources, the range of latitudes that

are ‘in the Galactic plane’ is higher than for more distant sources.

Another observation is the Gaia colours. A streak of redder colours (higher values) in

the central regions of the feature projections for bp rp, bp g, and g rp (Figure 7.12) is

associated with longer-period systems, such as Z Cams and nova-likes. Shorter-period

systems are associated with bluer colours (lower values). While the projections do not

fully clarify this, a similar pattern is discernible.
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7.3.4 Generative Topographic Mapping

Figure 7.13: GTM 2D projection of dataset where a minimum points threshold of 20
in either the g or r band was set and no external (DR3) data was utilised. They are
colour-coded by class, and presented in a one-versus-rest manner apart from the plot

on the bottom right, which combines the preceding plots.
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Figure 7.14: Same as figure 7.13 but with external (DR3) data.
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Figure 7.15: Reference maps for the GTM projection without the use of Gaia DR3
data for several features.

Figure 7.16: Reference maps for the GTM projections with the use of Gaia DR3 data.



Chapter 7 Unsupervised Learning 204

7.3.4.1 GTM Implementation

The optimisation of GTM projections primarily involved adjusting the square root (
√
)

of the number of GTM nodes (k) for the latent space representation. Hyperparameters

related to the square root of the number of radial basis function (RBF) centres (m),

the RBF width factor (s), and the regularisation coefficient (regul) had minimal to no

discernible impact on the resulting latent space projections.

Overfitting may occur when the number of nodes approaches the number of examples,

as many nodes remain unoccupied, providing no meaningful contribution to the feature

space representation. Conversely, underfitting can arise with too few nodes, leading to

an inability to capture the underlying patterns in the dataset.

A configuration of 100 nodes (k = 10) struck a balance, ensuring that most nodes were

assigned examples while minimising the number of empty nodes. This configuration

proved effective for both cases — with and without the inclusion of Gaia DR3 data.

7.3.4.2 Class Projections

Figures 7.13 and 7.14 are the projections without and with the use of Gaia DR3 data.

These are the mode projections, such that examples are assigned to the most responsible

node. The figures appear as histograms, providing an indication of the number of ex-

amples assigned to each node, also separated by class. The distribution of the different

CV classes follows a similar theme to the distributions for t-SNE and UMAP, e.g., two

nova-like regions, one or two regions of polars; a well-defined region of VY Scl; U Gems

providing a link between SU UMa and Z Cams; etc. This helps to confirm that the

projections with t-SNE and UMAP are not just a consequence of a particular set of hy-

perparameters or particular random state initialisation, but are a sound representation

of the high dimensional distribution.

7.3.4.3 The Advantage of GTM and Reference Maps

GTM offers a significant advantage over PCA, t-SNE, and UMAP by enabling the cre-

ation of reference maps, which provide a clearer and more interpretable view of feature



Chapter 7 Unsupervised Learning 205

space. Unlike the projections from t-SNE and UMAP, which are sensitive to hyper-

parameter choices and can obscure relationships due to class overlap in dense regions,

GTM’s probabilistic framework offers a structured perspective on the data distribution.

Each GTM node represents a Gaussian centred on a cluster of data points (CVs) in

the high-dimensional space, thereby modelling the probability distribution of the data.

The reference maps visualise this distribution by explicitly showing the positions of these

Gaussian centres in feature space, facilitating the interpretation of the properties of each

cluster of CVs and the relationships between them. Additionally, by providing a proba-

bilistic view of the data, the reference maps allow for a more nuanced understanding of

the dataset’s diversity.

While GTM reference maps do not directly quantify the influence of individual features,

discernible structures within these maps can suggest qualitative relationships between

features and data distribution. Features that appear unstructured in t-SNE or UMAP

projections can show clear structure in GTM reference maps (Figures 7.15 and 7.16),

therefore, reference maps can serve to highlight their relevance in defining CV properties.

7.3.4.4 Reference Maps

High values of AndersonDarling indicate that the magnitude distribution in a light

curve significantly deviates from normality. In the reference map (Figure 7.15), the

highest values correspond to light curves capturing only the decline of a single outburst

or eruption, resulting in skewed distributions. VY Scl systems also exhibit skewed

magnitude distributions and are well-represented by this feature. In contrast, low values

are associated with nova-likes or sources with nearly constant or minimally structured

light curves.

The Autocor length feature measures how quickly autocorrelation decays as the time lag

increases. VY Scl systems exhibit the longest Autocor length values, reflecting extended

correlation over time due to their sustained brightness states. In contrast, shorter values

correspond to systems with short-term variability, such as frequently outbursting dwarf

novae.
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The Con feature characterises the number of three consecutive points brighter or fainter

than 2σ of the light curve mean, normalised by the number of data points. Long and well-

sampled phases of constant brightness, interspersed with significant and well-sampled

deviations from this induce high values. Light curves of nodes where this value is highest

exhibit these characteristics — VY Scl, and SU Uma stars with quiescent sampling. The

lowest values tend to be dwarf nova without quiescent sampling and Z Cams with poorly

sampled or short standstills.

The Eta e feature quantifies the independence of successive data points in a light curve.

High values correspond to systems with rapid, short-timescale variability, such as fre-

quently outbursting dwarf novae and strongly eclipsing systems. Lower values are linked

to smoothly varying light curves, like those with only a single sampled outburst or erup-

tion. However, Eta e also accounts for the time differences between data points, so

sparse sampling reduces the feature’s value. For example, nodes in the middle-bottom

of the reference map, where values are low (Figure 7.15), correspond to sparsely sampled

Z Cam systems. In contrast, nodes on the bottom right, where values are high, represent

highly variable and well-sampled dwarf novae.

The MaxSlope feature represents the steepest slope between consecutive points in a light

curve. As expected, the lowest values are observed for low-amplitude systems, while the

highest values occur in rapidly outbursting but well-sampled dwarf novae.

The PairSlopeTrend feature measures the trend (increasing or decreasing) in the last 30

magnitude measurements (or fewer if the light curve contains fewer points). Negative

gradients can be observed when VY Scl systems exit low states, while positive gradients

occur when only the decline from an outburst or eruption is sampled. This general trend

aligns with the light curves of nodes where the feature has extreme values.

7.3.4.5 Features Revealing Structure in GTM Maps

The Lomb-Scargle period (PeriodLS ) reference map better captures light curve peri-

odicity than the t-SNE and UMAP feature projections. The Mean (mean magnitude)

reference map also better aligns with the typical brightness of the CVs. While Small-

Kurtosis shows no structure in t-SNE and UMAP projections, it displays clear structure

in the reference map; nodes with low and high values distinguish between light curves
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with less and more extreme variability, respectively. The structure function measures

the variability of a time-series signal as a function of the time separation between data

points (or time lag). StructureFunction index 31 in particular measures the slope of the

structure function over 1- and 3-day time lags, reflecting how variability changes across

timescales. The associated light curves show that long-term smooth changes induce the

lowest values, while short-timescale variability induces higher values.

The difference between the third and first quartile of the epochal colours (Q31 color)

is similar to the clr std feature but less sensitive to extreme colour values. The refer-

ence map structure highlights strong eclipsers and frequently outbursting dwarf novae

with well-sampled outbursts at their highest values. StetsonJ quantifies the correlation

between magnitudes in the g and r bands, reflecting synchronicity in variability. This

feature is most pronounced when the g and r band light curves vary in sync during

outbursts, as seen in SU UMa with well-sampled superoutbursts.

The features dif max median, dif min median, and pnts geq rollMedWin20+3mag en-

hance the amplitude feature by further categorizing high-amplitude light curves based

on brightness deviations from the average. The reference maps for rise and decline rates,

rrate 2to5 and drate 2to5, effectively distinguish between rapidly changing and slowly

varying light curves. The clr bright and clr faint reference maps show clear structural

differences, highlighting how varying stages of activity affect colour measurements.

7.3.4.6 Gaia DR3 Reference Maps

When Gaia DR3 data is used, both parallax and proper motion (pm) show clear, similar

structures in the reference maps. The distribution of examples aligns with the most

distant sources, such as nova-likes and Z Cams having the lowest parallax and proper

motion, and the closest sources, such as the SU UMa and the WZ Sge subtype, having

the highest values — required to be closer to be observable due to their optical faintness

relative to nova-like and Z Cams.

Gaia colour features (bp rp, bp g, and g rp) display clearer structure in the reference

maps compared to t-SNE and UMAP projections. These features provide insights into

the relative contributions of different CV components, such as the white dwarf, accretion

disk, and donor.
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The level of dust and interstellar extinction, the spatial distribution of stellar popula-

tions (such as their age and metallicity), and the coverage of sky regions by surveys all

vary depending on the sky location. These factors can influence the observed properties

of CVs, such as their apparent brightness and colour. The sky location is defined using

Galactic and ecliptic coordinates (l, b, ecl lon, and ecl lat). Given these varying con-

ditions, one might expect location-based influences to result in distinct structure in the

feature projections of t-SNE and UMAP, however, such structure is only present for the

GTM reference maps. This facilitates further investigation that would not be possible

with the t-SNE and UMAP projections.

Finally, the parallax error, parallax error, is structured in such a way that the highest

values are associated with the faintest sources; they tend to be systems only observable

during heightened activity (high state or outbursts).

7.3.5 Projection of new examples

Of all the ZTF CVs identified by a cross-match with the AAVSO CV list that match

our data point threshold criteria, 236 have only a broad CV classification and 2,170

have only a broad dwarf nova classification, with no further granularity. From here

on, I refer to these sources as out-of-sample CVs and out-of-sample DNe, respectively.

In this section, I show where these out-of-sample sources lie within the learnt UMAP

projections generated with and without Gaia DR3 data. Then using the training set

examples as a guide I aim to provide a more granular classification for the out-of-sample

sources. I perform this for several locations and produce a candidate CV subclass table

with our revised classifications. Figure 7.17 shows the location of out-of-sample CVs

(middle subplot) and DNe (right subplot) when projected onto the learnt UMAP space

generated without Gaia DR3 data. They are coloured in black overlaying the training

set examples are colour-coded by their class label. The left subplot of the figure displays

the training set examples alone for easier comparison. Figure 7.18 repeats this but

for the UMAP projection generated with Gaia DR3 data. While PCA and GTM offer

alternative perspectives, the clear clustering and detail provided by UMAP demonstrate

this approach’s efficacy.
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Figure 7.17: UMAP training set projection without Gaia DR3 data with out-of-
sample example projections overlaid. The left subplot is training set projection alone,
the middle subplot is the same but with out-of-sample CVs overlaid, the right subplot is
the same as the first but with out-of-sample DN overlaid. Out-of-sample examples are
displayed as black open circles. The left plot has been annotated to indicate regions of
particular interest where out-of-sample source projections have been investigated (see

text).

Figure 7.18: UMAP training set projection with Gaia DR3 data with out-of-sample
example projections overlaid. The layout is the same as for Figure 7.17.

For both cases — without and with Gaia DR3 data — the out-of-sample CVs tend to be

located in regions where no particular class from the training set dominates, resulting

in a mixture of classes. Other key observations include: very few out-of-sample CVs

are projected onto the SU UMa and U Gem regions; out-of-sample dwarf novae (DNe)

overlap with out-of-sample CVs, extending into the U Gem territory and partially into

SU UMa territory; and very few out-of-sample sources are located where VY Scl systems

are found.

To apply a more granular class label to the out-of-sample sources, I selected several

regions from the UMAP projection generated without Gaia DR3 data and examined the

light curves of the out-of-sample sources located there. The regions are circled in the

left subplot of Figure 7.17 and correspond to polars (blue circle), rapidly outbursting Z

Cams (orange circle), eclipsing systems (olive green), WZ Sge (purple), and frequently
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outbursting SU UMa with quiescent sampling (dark green). Table 7.2 lists the sources

I identified from these regions as potential candidates for a more granular class, and

Figure 7.19 displays the associated light curves.

Despite my efforts, many of the sources I inspected remained difficult to classify beyond

the granularity provided by the AAVSO labels. Specifically, it is challenging to confirm

the presence of superoutbursts in many of the out-of-sample DNe, making it hard to

confidently assign them the SU UMa candidate label. Additionally, while many out-

of-sample DNe in the Z Cam region exhibit rapid outbursts characteristic of the class,

few show the desired standstills required for a Z Cam classification. Despite these

challenges, this exercise provides an alternative method for classifying CV sources. Like

the classification models discussed in earlier chapters, this method is significantly less

labour-intensive than manually inspecting all light curves from an alert stream.

Table 7.2: List of out-of-sample sources reclassified with candidate labels based on
their projection onto the lower dimensional space modelled by UMAP without the use
of Gaia DR3 data. The AAVSO classifications are either CV, to designate a broad CV
classification, or UG, which is an abbreviation of U Gem but is the classification tag
AAVSO uses to indicate a broad dwarf nova classification. The final column represents

the new granular classifications.

ZTF Object ID RA Dec AAVSO Class Revised candidate class

ZTF18abddipi 290.7380 42.0751 UG Eclipsing

ZTF18abzyvjx 63.3718 31.2745 CV Eclipsing

ZTF18abwkyxs 119.8600 59.8976 CV Polar

ZTF18aaagcqv 131.0167 79.7357 UG Polar

ZTF19aamwsgn 261.8045 32.2613 UG Polar

ZTF18abcnnfj 338.8415 33.0455 UG Polar

ZTF19aaaqkid 243.1549 -12.2011 CV Polar

ZTF18acmykpd 52.5621 38.1505 UG Polar

ZTF18acrcrte 61.8757 7.1383 CV Polar

ZTF18acnnteg 118.6093 -0.9256 CV Polar

ZTF17aaadqia 345.2833 -1.9679 UG Polar

ZTF17aaaehyg 331.4905 36.0586 CV Polar

ZTF18abolzdh 330.6129 40.2360 CV Polar

ZTF17aadkisd 94.5388 22.1366 CV Polar

ZTF18aayefwp 306.5040 33.6623 CV Polar
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Continuation of Table 7.2

ZTF Object ID RA Dec AAVSO Class Revised candidate class

ZTF18abydjvi 57.5447 32.5416 CV Polar

ZTF18abmarba 320.2872 30.5707 UG SU UMa

ZTF18aaaekuo 94.9769 9.3086 UG SU UMa

ZTF18abxywka 331.6161 37.7817 UG SU UMa

ZTF18aabejyh 250.9129 22.5237 UG SU UMa

ZTF17aaaiiqk 110.9465 4.1956 UG SU UMa

ZTF18aajpqbj 227.7908 57.6834 UG SU UMa

ZTF19adbqznr 105.9654 32.8988 UG WZ Sge / SU UMa

ZTF22abftmib 90.4888 39.0646 UG WZ Sge / SU UMa

ZTF18aboslis 7.2266 43.1956 UG WZ Sge / SU UMa

ZTF21abpvsig 345.6750 44.7156 UG WZ Sge / SU UMa

ZTF18abmnbne 334.3819 46.9925 CV WZ Sge / SU UMa

ZTF18abuppce 68.5023 71.4068 UG Z Cam

ZTF18abbyacy 287.4810 -22.8004 UG Z Cam

ZTF18abmoogg 84.5831 41.8565 UG Z Cam

ZTF18abmrfmb 294.9945 -4.7402 UG Z Cam

ZTF18abnpcjw 292.9549 12.7362 UG Z Cam

ZTF18abindhr 286.6716 -14.2476 CV Z Cam

ZTF18abmprgc 300.8650 20.0728 UG Z Cam

ZTF18abmefkz 305.5561 19.7838 UG Z Cam

ZTF18aaydzsl 278.5620 3.1977 UG Z Cam
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Figure 7.19: Light curves for a selection of sources identified in Table 7.2
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7.4 Discussion

This chapter explored the use of several dimensionality reduction techniques — PCA, t-

SNE, UMAP, and GTM— on ZTF light curves and their associated Gaia DR3 metadata,

to examine the potential substructure within the cataclysmic variable (CV) classification

scheme. The primary objectives were to explore the presence and nature of substructure,

to understand the challenges in classifying CVs, and to evaluate unsupervised learning

methods as an aid for CV classification (or reclassification).

7.4.1 Dimensionality Reduction Results

7.4.1.1 PCA Projections

The PCA projections revealed patterns reflecting the evolution of non-magnetic hydro-

gen CVs. These projections show a progression from long-period systems, like nova-likes,

to short-period systems such as WZ Sge systems. However, significant overlap between

different CV classes remains, and the inclusion of Gaia DR3 data only offers limited

improvement in class separation. This suggests that linear methods such as PCA may

not fully capture the complexity of CV variability and that non-linear techniques are

necessary to uncover the expected substructures.

7.4.1.2 Non-linear Algorithms

In contrast, t-SNE and UMAP produced more distinct clusters or substructures in the

data while preserving some semblance of global structure. However, substantial scatter

between the clusters remained, and it was difficult to determine which algorithm yielded

better separation — hyperparameter choices played a significant role. Gaia DR3 data

did not drastically improve cluster separation, imputation may have affected the results,

as between 10% and 30% of the Gaia-related features were missing.

CV subclass distributions were consistent across the t-SNE, UMAP, and GTM projec-

tions, irrespective of whether Gaia DR3 data was included. This consistency suggests

that the patterns are not solely a result of random initialisations or hyperparameter

choices, but rather reflect meaningful structure in the data.
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7.4.2 Interpreting the Results

Feature projections aid in understanding the properties of examples located in specific

regions of the 2D projections. However, interpretability suffers due to the overlapping

of examples and scatter with them. GTM reference maps offer a much clearer and more

interpretable method for analysis, with the ability to better assess feature relevance. For

example, features such as parallax, proper motion, and colour-related features exhibited

clear structure in the reference maps, which was not apparent in the feature projections.

The noticeable scatter between clusters in t-SNE and UMAP projections suggests that

CVs may not neatly belong to discrete classes but rather form a continuum of variability

types. This continuum is likely influenced by both observational limitations (e.g., survey

sensitivity, sampling cadence) and evolutionary factors, which the existing CV classifi-

cation framework only partially accounts for. This finding emphasises the challenges of

applying supervised learning to the ZTF CV dataset and suggests that a more nuanced

approach, such as unsupervised learning, may be needed to better capture the diversity

of CV variability.

7.4.3 Connecting Identified Features to Physical Understanding

This investigation has helped to elucidate the features that effectively distinguish be-

tween CV subclasses. The features provide significant insight into the underlying physi-

cal processes driving their behaviour. Each feature represents a measurable property of

the system, tying observational data to fundamental astrophysical phenomena.

Parallax and proper motion highlight the relationship between the intrinsic luminosity of

different CV subclasses and their detectability. Colour metrics provide a window into the

flux contributions from the white dwarf, accretion disk, and donor star. This informs our

understanding of accretion dynamics, energy distribution, and the evolutionary states of

the systems. The standard deviation of epochal colour (clr std) and the distribution of

flux values (FluxPercentileRatioMid50 ) are particularly useful in characterising eclipsing

from non-eclipsing systems, while amplitude and periodicity measures capture unique

signatures of outbursts and superoutbursts. Combined they, directly connect to orbital

geometries and disk instabilities.
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7.4.4 Opportunities for Further Research

The projection of out-of-sample sources onto the learnt UMAP low-dimensional space

resulted in candidate sub-classifications for several sources, providing a valuable method

for uncovering the nature of unclassified sources. Based on this success, the implemen-

tation of the UMAP model within our ZTF pipeline (Chapter 6) is something that can

be explored.

The localisation of eclipsing CVs and polars is crucial for advancing CV research. For

example, Polars, which make up around 2% of the AAVSO VSX catalogued CVs, are

underrepresented in confirmed CV lists. Expanding the sample size of these systems

could significantly contribute to research on magnetically controlled accretion, which

has important implications for understanding the physical processes governing CVs.

Furthermore, the ability to identify the features most influential in distinguishing such

sources from others is useful information for conducting automated searches within as-

tronomical databases.

7.4.5 Limitations of the Approach

Despite the success of unsupervised learning, several limitations remain. For example,

the localisation of AM CVn systems in the 2D projections is hindered by their relatively

small sample size and diverse variability characteristics, which could reflect ongoing

evolutionary processes (e.g., changes in outburst frequency). Also, the localisation of

intermediate polars remains incomplete, likely due to diverse variability characteristics.

This may be a consequence of a continuum in magnetic field strengths and mass-transfer

rates, leading to structures similar to those observed in non-magnetic hydrogen CVs.

Data quality issues, such as sparse or inconsistent sampling, can obscure the classifi-

cation of certain CV types. Furthermore, label noise could cause class blending in the

projections, requiring closer inspection and potential revision of class labels.

7.5 Conclusions

In summary, this chapter’s exploration of dimensionality reduction techniques has re-

vealed an intricate structure of CV types, emphasising the challenges in classification
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due to observational constraints and evolutionary factors. The observed continuum of

CV classes in the projections highlights the complexity of their evolution, suggesting

that the current classification framework oversimplifies the diversity shaped by factors

such as orbital period, accretion rate, and magnetic field strength. The clear localisa-

tion of eclipsing systems and other distinct CV subclasses, such as polars and SU UMa

systems, provides candidates for follow-up studies. These studies provide opportunities

to refine orbital and physical parameters and study specific variability mechanisms, such

as magnetically controlled accretion and superhump phenomena.

Through this analysis, unsupervised learning emerges as a powerful tool to enhance our

comprehension of these astrophysical phenomena and inform the broader field of CV

research.



Chapter 8

Discussion and Conclusions

This investigation into the effectiveness of Machine Learning in the identification/clas-

sification of CVs and their various subtypes from within wide field transient surveys

has spanned supervised and unsupervised learning techniques, and low to high cadence

photometry. In discussing this journey, I summarise and highlight the significance, ad-

dress limitations, and explain the implications of my research. I then look at how this

research may progress.

8.1 Summary and significance

The application of ML techniques to the transient stream of Gaia Science Alerts resulted

in a Random Forest model capable of distinguishing between AGN, SNe, CVs, and YSOs

based on Gaia G band light curves and Gaia metadata (parallax, proper motion, BP-RP

colour...). Evaluated on a test set, an F1-score of 89% for the CV class was achieved.

While metadata provided improvement in model performance compared to where only

light curve-derived features were used, the difference in classification performance was

only 1.9% in accuracy, demonstrating the effectiveness of the feature extraction process.

When applied to the list of > 13, 000 previously unclassified targets within GSA, the

model predicted 2,833 to be of the CV class. A spectroscopic investigation of a small

randomly selected subset of the brightest of these sources (15 out of 220) resulted in

spectroscopic confirmation of the CV class for all 15. The model demonstrated that

despite the low cadence photometry (2-4 weeks), the use of ML is valuable in paring

217
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down a large list of unclassified transients to numbers more manageable for human

inspection.

The multi-band higher cadence photometry of ZTF light curves provided the opportu-

nity to identify and distinguish between CV subclasses within the ZTF alert stream.

Alerts filtering proved to be valuable too in honing in on sources most likely to belong

to the CV class with both known and potential CVs retained in large part due to g-r

colour thresholds. The classifier itself, built using the XGBoost algorithm trained on

both g and r band light curves and Gaia DR3 metadata, achieved an AUC score of 0.92

for distinguishing between CV classes. While analysis of the GTM latent space repre-

sentations of the class posterior probability space of this classifier revealed the impact

that CV evolution may have on the prediction pattern. GTM also proved valuable in

identifying features most relevant for the identification of individual CV classes. Imple-

mentation of the pipeline on the ZTF stream throughout June 2023 provided between

50-200 sources per night for input into the classifier, 45% of which are reported as either

confirmed or candidate CVs. Despite an estimated 5-10% contamination from AGN,

YSO, and variable stars, 51 intriguing and previously unreported CV candidates span-

ning a range of CV types, including AM CVns and polars, were found. This phase of

research demonstrated the power of higher cadence and multiband photometry for delv-

ing into the identification of different CV subtypes with ML. Techniques such as GTM

class maps also highlighted the impact of CV evolution on classification.

As a continuation of the evolution theme, the use of dimensionality reduction techniques

on the ZTF dataset served to indicate that CV subtypes seem to form a continuum where

no clear class boundaries appear to exist. This is especially evident for hydrogen-rich

non-magnetic CVs for which the sample size is sufficient to see these fuzzy class bound-

aries. PCA is effective in viewing global structure in CV features space where a clear

trend of long to short-period systems is evident. With t-SNE and UMAP, the local

structure in the data becomes more evident. Whilst good separation is seen between

several classes, both the impact of particulars of the survey (limiting magnitude, sam-

pling cadence, seasonal gaps) and evolutionary factors are evident in the 2D projection

substructure. The use of GTM helped to clarify the relevance of each feature through

substructures in reference maps. The results highlight the challenges in applying super-

vised learning to our ZTF CV dataset. As a bonus, the separation of clearly eclipsing
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systems from other CVs opens up the opportunity to discover more such systems when

new data is projected onto the low-dimensional space with the UMAP models.

8.2 Comparison with existing literature

Existing literature on the use of Machine Learning for source classification within tran-

sient surveys has regarded CVs as a broad transient class without further subdivision.

Examples include a multiclass model trained on CRTS light curves (Neira et al., 2020)

achieving an F1-score of 75% for the CV class; and Sánchez-Sáez et al. (2021) achieving

CV recall scores of between 61% and 72% for models trained on ZTF light curves. My

research into GSA transient classification produced a 4-class model whose results com-

pare favourably with those examples (80% in both CV F1 and recall scores). However,

such comparisons do not account for differences in survey instruments, sky coverage, ob-

serving cadence, and waveband. Furthermore, comparisons do not consider differences

in transient classes attempted for classification and the ML methods employed. A more

relevant comparison may be made with recent work by Rimoldini et al. (2022) where

the classification of 12.5 million sources into 25 classes was attempted, achieving a CV

F1 score of 23.7%. However, this research differs from my GSA classification research

in class structure, data input, and ML methods adopted, again making comparison

difficult.

Concerning ZTF research, one may compare the CV candidates output by my pipeline

with the non-ML filter-based approach of Szkody et al. (2020, 2021), where over two

years, 497 new strong CV candidates were uncovered from ZTF alerts by applying simple

colour, amplitude and variability timescale filters. The ZTF alerts classification pipeline

of this research produces 51 new CV candidates in June 2023, which is comparable to the

output of Szkody et al. (2020, 2021). Nine of the candidates from my ZTF exploration

have been assigned the AM CVn classification with class probabilities between 0.26 and

0.70. However, there is as yet no spectroscopic confirmation of these nine, which means

that a comparison to work by van Roestel et al. (2021) may not be made. In that

work, an extension of the filter approach of Szkody et al. (2020, 2021) was performed

employing Gaia and PanSTARRS colours to identify and spectroscopically confirm nine

outbursting AM CVns within the whole corpus of ZTF alerts.
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So far as I am aware, there is no such literature focusing on ML-based CV subclass

classification or the use of unsupervised learning specifically focused on CV subclasses.

8.3 Limitations

While honing in on a population of CVs from alert streams was generally effective for

classification research with GSA and ZTF, the requirements of subclass classification

are such that low sample sizes of particular CV classes, label noise and inconsistent/low

sampling cadence impacted the classification performance.

The adverse impact of low sample size is particularly evident for the intermediate polar

class. Whilst synthetic samples from the feature space were generated to address the

class imbalance, the examples in this class displayed differences in terms of the degree of

long-term variability (weeks to months) as well as the presence or absence of dwarf nova

outbursts. Consequently, their location in feature space is not localised (as demonstrated

with dimensionality reduction techniques). Furthermore, synthetic samples generated

with ADASYN, through feature space interpolation, may have only served to exacerbate

classification performance issues.

Classifying CVs into subclasses is a challenge, even for experts in the field, due to

their complex variability, subjective interpretation of features, and incomplete data,

which often leaves key characteristics unobserved. Furthermore, the boundaries between

subclasses are often indistinct, creating overlap and complicating clear categorisation.

Despite efforts to reduce label noise in the ZTF research, these factors introduce clas-

sification uncertainties that are difficult to quantify. The exploration of unsupervised

learning with the ZTF dataset brings these challenges into focus. Not only are class

boundaries poorly defined, but examples with few data points in their light curves tend

to pool together into systems with a mixture of CV subclasses.

To address these challenges, adopting stricter inclusion criteria — focusing on well-

sampled light curves and clear examples of each class — can help define class boundaries

more effectively, simplifying the learning process. However, this approach comes at the

expense of a reduced dataset size. A cost that may be mitigated with data augmentation.

The resultant classification of unseen examples would then focus less on definitive class

labels and more on the probability of class belonging. This, however, does not address
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the issue of the diverse variability of low sample size classes, such as intermediate polars.

Adoption of a phenomenological classification approach, as in van Roestel et al. (2021),

where types of variability are the focus of classification could form another approach,

though due to multiple phenomena existing in any given light curves, this would be

handled under the multi-label paradigm, where multiple nonexclusive labels may be

assigned to each instance (Hastie et al., 2003).

8.4 Implications

My research has attempted to address a gap in ML-based time domain source classifi-

cation, that of CV subclass classification. The effectiveness of the ZTF alerts pipeline

drastically reduces the requirement for human inspection which is a significant feature

of works by Szkody et al. (2020), Szkody et al. (2021), and van Roestel et al. (2021).

The aspect of CV subclass classification provides greater depth by focusing on the CV

substructure rather than treating this diverse transient class as one group. This makes

it easier for research groups focused on particular CV subclasses to identify their sources

of interest.

In Chapter 6, the imprint of CV evolution on classification was alluded to, though made

more explicit with the use of dimensionality reduction techniques in Chapter 7. Rather

than classification into types with fuzzy class boundaries, the projection of unseen data

onto the 2D space generated by PCA, UMAP and GTM, now provides an alternative

route to understanding the nature of new CV candidates.

In the coming years, the discovery potential of CVs will be further enhanced by the

advent of new transient surveys resulting in a large increase in the rate at which new

time-varying sources are discovered. Leading the way in this respect will be the Vera

Rubin Observatory Legacy Survey of Space and Time (LSST; Ivezić et al. 2019), gen-

erating up to 107 alerts per night (Matheson et al., 2021). The research conducted has

demonstrated the success of ML applications to CV subclass identification/classification,

and such a pipeline implemented on these surveys will be vital if we are to distinguish

the rare varieties of CV from the deluge of transient phenomena.
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8.5 Future research directions

8.5.1 Extension to other surveys

The research provided the first steps into ML-based subclass identification/classification

of CVs. The research was confined to the Gaia and ZTF surveys. Exploration of and/or

inclusion of data from multiple surveys would complement the research and provide a

greater understanding of the challenges of such granular classification attempts. One

example would be the higher cadence surveys such as ASAS-SN, with nightly observation

or the Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2015) with survey

cadences of order minutes. Such an exploration may well reveal a detailed substructure

where unsupervised learning is used.

8.5.2 Alternative representations

This research has prioritised the use of light curve-derived hand-crafted features—such

as statistical, periodicity-based, and percentile-based metrics—to ensure interpretability.

However, incorporating alternative representations, such as those based on computer

vision techniques, presents a promising direction. For instance, van Roestel et al. (2021)

explored this approach in the ZTF Source Classification Project, where they classified

broad transient classes using a dmdt representation of ZTF light curves combined with

traditional hand-crafted features within a Convolutional Neural Network (CNN). The

CNN’s convolutional layers processed the dmdt image representation of the light curves,

while the hand-crafted features were appended to the final convolutional layer’s output

before entering the fully connected layers. While their results were comparable to models

using only hand-crafted features, fine-tuning the dmdt histogram binning could have

potentially improved performance.

In my experimentation with ZTF data, I explored dmdt mapping specifically for CV

subclasses. This preliminary effort did not involve optimising bin settings or integrat-

ing additional features. Sample dmdt representations and the corresponding confusion

matrix are shown in Figures 8.1 and 8.2. The visual distinctions in dmdt mappings

among CV subclasses are encouraging, indicating the potential for subclass differen-

tiation. However, intra-class variability in these mappings remains unexplored. The
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confusion matrix highlights classification patterns similar to those observed in Chap-

ter 6, with the strongest performance for dwarf nova classes, nova-likes, VY Scl, and

polars. Class-specific precision ranges from 0.19 to 0.85, recall from 0.31 to 0.63, and

F1-scores from 0.27 to 0.73. These results underscore the potential of dmdt mapping as

a complementary tool for CV classification.

Figure 8.1: The dmdt representations of a member of each of the CV subclasses. The
dm bins span the vertical axis, while the dt bins span the horizontal axis.
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Figure 8.2: The confusion matrix of the CNN model trained on dmdt representations
of the CVs in the ZTF light curve dataset filtered such that only those sources with a

g band light curve with 20 points or more are included.

8.6 Conclusions

In conclusion, this thesis has made significant contributions to the classification of cat-

aclysmic variables (CVs) through the application of machine learning (ML) techniques

to wide-field transient surveys. By automating the identification and subclassification of

CVs, the reliance on human inspection has been greatly reduced. The models developed,

including a Random Forest classifier for Gaia Science Alerts and an XGBoost classifier

for ZTF alerts, have outperformed previous attempts, achieving high F1-scores in CV

classification. Despite challenges such as low sample sizes and label noise, the research

has provided valuable insights into the substructure of CVs.
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Looking ahead, future research will focus on extending this analysis to other surveys,

such as the Vera Rubin Observatory’s Legacy Survey of Space and Time (LSST), which

promises to revolutionize transient surveys with its vast data volume. Additionally, ex-

ploring alternative representations, including computer vision techniques, could further

enhance classification accuracy. This work establishes a strong foundation for continued

advancements in ML-based CV classification and offers promising avenues for deeper

insights into these fascinating astrophysical phenomena.
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Arredondo J., Bauer F. E., Carrasco-Davis R., Catelan M., Elorrieta F., et al., 2021,

The Astronomical Journal, 161, 242

Gaia-Collaboration Prusti T., de Bruijne J. H. J., Brown A. G. A., Vallenari A., Babu-

siaux C., Bailer-Jones C. A. L., Bastian U., Biermann M., Evans D. W., et al., 2016,

Astronomy and Astrophysics, 595, A1

Gaia-Collaboration Vallenari A., Brown A., Prusti T., et al. 2022, Astronomy & Astro-

physics

Garraffo C., Drake J. J., Alvarado-Gomez J. D., Moschou S. P., Cohen O., 2018, The

Astrophysical Journal, 868, 60

Gaspar H. A., 2018, Journal of Open Research Software

Georganti M., Knigge C., Castro Segura N., Long K. S., 2022, Monthly Notices of the

Royal Astronomical Society, 511, 5385

Giovannelli F., 2008, Chinese Journal of Astronomy and Astrophysics Supplement, 8,

237

Goldstein A., Veres P., Burns E., Briggs M., Hamburg R., Kocevski D., Wilson-Hodge

C., Preece R., Poolakkil S., Roberts O., 2017, The Astrophysical Journal Letters, 848,

L14

Goldstein D. A., D’Andrea C. B., Fischer J. A., Foley R. J., Gupta R. R., Kessler R., Kim

A. G., Nichol R. C., Nugent P. E., Papadopoulos A., et al., 2015, The Astronomical

Journal, 150, 82

Green M. J., Hermes J. J., Marsh T. R., Steeghs D. T. H., Bell K. J., Littlefair S. P.,

Parsons S. G., Dennihy E., Fuchs J. T., Reding J. S., et al., 2018, Monthly Notices of

the Royal Astronomical Society, 477, 5646
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Šimon V., 2002, Astronomy & Astrophysics, 382, 910
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