

Technical Document Query System using
Transformer Model-based Machine Reading

Comprehension

Amit Kumar
AU Small Finance Bank Limited

Jaipur, India
 amitjohn007@gmail.com

Friska Natalia
Information Systems Department

Universitas Multimedia Nusantara
Tangerang, Indonesia

friska.natalia@umn.ac.id

Dhiya Al-Jumeily
School of Computer Science and

Mathematics
Liverpool John Moores University

Liverpool, United Kingdom
d.aljumeily@ljmu.ac.uk

Sud Sudirman
School of Computer Science and

Mathematics
Liverpool John Moores University

Liverpool, United Kingdom
s.sudirman@ljmu.ac.uk

Abstract— Constructing a Question Answering system is a
challenging task despite a significant amount of study that has
been conducted in recent times on this topic. It is even more
difficult to provide satisfactory responses to the inquiries raised
by users in an organizational setting as opposed to in an
informal setting. We present in this paper, the results of our
study into the use of a transformer-based model in the
development of a technical document query system with
machine reading comprehension. Our method fine-tunes a pre-
trained transformer model with hyperparameter optimization
using a pre-processed training dataset and tested on a different
dataset. We experimented using eight pre-trained models from
seven different variations of the BERT transformer architecture
including BERT, RoBERTa, XLM-RoBERTa, ELECTRA,
ALBERT, MobileBERT, and MPNet using the SQuAD1.1
dataset for fine-tuning and the Oracle Knowledge
Documentation for testing. We found that the ALBERT pre-
trained model is the best model achieving 0.891, 0.950, and 0.882
performance when measured using the Exact Match, F1 score,
and Confidence Score metrics - despite its relatively small model
size.

Keywords— Question Answering, Transformer model,
Bidirectional Encoder Representations, Natural Language
Processing, Chatbot system.

I. INTRODUCTION
A Question-Answering (QA) system is a computer

program that provides acceptable responses to questions
posed in natural languages such as English or Chinese, etc.
Take for instance when a user queries, "Which team won the
first cricket world cup?” it is anticipated that the QA system
would respond with "West Indies". We will be able to access
information more quickly with the assistance of a QA system.
Constructing a QA system is a challenging task despite a
significant amount of study that has been conducted in recent
times on this topic. It is even more difficult to provide
satisfactory responses to the inquiries raised by users in an
organizational setting as opposed to in an informal setting.
Automated chat assistants are becoming more popular among
businesses as a means to manage conversations including
technical help and customer support. However, these
technologies are only able to effectively troubleshoot the

problems on which they were trained, which presents a major
difficulty for corporate QA procedures today. Some typical
scenarios where question answering is being used are in
customer and technical support.

In this paper, we present our methodology to develop a chatbot
system to query a technical document using a transformer
model-based machine reading comprehension system. The
transformer model is developed by fine-tuning an existing pre-
trained model. Several models were considered and evaluated
on the Oracle technical documentation as a use case. The
chatbot system is implemented using Python Flask and
Webhooks. The final fine-tuned models are saved online for
easy download and replication of results.

II. LITERATURE REVIEW
In the past few years, most of the research has been

centered around enhancing the existing model performance on
high-performance datasets available in the market. However,
the interplay between context and question was modeled for
the very first time using a model called the Bidirectional
Enhanced Attention Flow (BiEAF) model [1]. This endeavor
is a landmark achievement in this field of study. However, the
BiEAF approach only takes into account the connection
between sentences and it does not take into consideration the
relationship within the phrases themselves [2]. A different
approach called Knowledge-Based Question Answering has
also been proposed. Its application in a chatbot framework
whose goal is to enhance the framework's capacity to
recognize and answer informal and natural language patterns
through the use of well-structured relational information
between entities is reported in [3]. A different solution was
proposed in [4] by storing the lexical, semantic, and syntactic
features of the words and phrases using distributional
representations and using Convolutional Neural Network
(CNN) to rate the possible responses. Several other machine
learning techniques have been proposed to perform the feature
classification task in this context including Support Vector
Machine (SVM) [5], Recurrent Neural Network (RNN) [6],
Deep Feature Matching [7], and Conditional Random Field
(CRF) [8]. Many of the proposed methods here are reported to
have achieved high performance on different datasets.

The transformer model in Natural Language Processing
(NLP) is a novel architecture that aims to solve sequence-to-
sequence understanding problems while handling long-range
dependencies. The method is relatively new compared to the
more established Long-Short Term Memory (LSTM)
approaches. It relies on the self-attention mechanism to
compute representations of its input and output without using
sequence-aligned convolution networks. The encoder and
decoder are the two systems that make up the transformer
architecture. The input text is encoded by the encoders, and
the decoder examines the encoded text in order to comprehend
the contextual information that lies behind the sequence. Each
encoder and decoder in the stack make use of an attention
mechanism to evaluate each input in conjunction with every
other input to balance the relative significance of the inputs.
The encoder then works in conjunction with the decoder to
construct the output sequence. The attention method in this
case makes it possible to grasp the characteristics of the
incoming text and dynamically highlight parts of it.

Different tasks require different uses of the encoder, the
decoder, or both. Certain tasks, such as the QA task, the
Masked Language Model (MLM) task, and the Next Sentence
Prediction (NSP) task, require only the encoder part while
others may require the decoder part or both. One of the most
popular types of encoder-only transformer models is BERT,
which stands for Bidirectional Encoder Representations [9].
The BERT architecture has given birth to many other BERT-
like models such as RoBERTa [10], XLM-RoBERTa [11],
ELECTRA [12], ALBERT [13], MobileBERT [14], and
MPNet [15]. The original, or cased, BERT model uses 12
layers of transformers block with a hidden size of 768 with 12
self-attention heads and has around 110 million trainable
parameters. Due to its huge size, the training process is quite
computationally intensive. The QA, MLM, and NSP tasks are
just a few of many different tasks in which training processes
capture the bi-directional understanding of the sentences. The
model used in MLM hides part of the values taken from the
input and then uses the context to make an educated guess as
to what the hidden (or missing) word is. As mentioned
previously, the BERT model has been used to derive many
other transformer models and in conjunction with other
approaches. Many of these approaches are developed and
tested on publicly available datasets including the Stanford
Question Answering Dataset (SQuAD) [16], NII Testbeds and
Community for Information Access Research (NTCIR)
dataset [17], Semantic Textual Similarity Benchmark (STSB)
dataset [18], Microsoft Research Paraphrase Corpus (MRPC)
dataset [19], Sentences Involving Compositional Knowledge
(SICK) dataset [20], and Microsoft Wikipedia QA (WikiQA)
dataset [21]. A selection of some of the works in this regard
and the datasets they are developed and tested on is provided
in Table I below.

TABLE I. PREVIOUS STUDIES USING THE TRANSFORMER MODEL, THE
DATASET THEY ARE DEVELOPED AND TESTED ON, AND REPORTED RESULT

Authors Dataset used Techniques Reported Results

Day et. al.
[5]

NTCIR-12
QA-Lab2
Japanese
University
entrance exams

Stanford NER
and Stanford
POS tagger
from Stanford
Core using NLP
+ SVM
classifiers

1) Accuracy =
0.835 (on
balanced dataset),
2) Accuracy =
0.90 (on
imbalanced
dataset)

Anhar et.
al. [6]

Indonesian
public corpora
chat

1) RNN, 2)
LSTM, and 3)
Bi-LSTM

1) Technique #1
accuracy = 0.523,
2) Technique #2
accuracy = 0.871,
3) Technique #3
accuracy = 0.909

Vekariya
et. al. [7]

STSB dataset,
MRPC dataset,
SICK dataset,
and WikiQA
dataset.

Word vector
model, Versatile
global T-max
pooling, Deep
LSTM, and
Efficient DFM

1) Wikipedia
QA dataset
(Accuracy =
0.853, Recall =
0.812), 2) MRPC
dataset (Accuracy
= 0.873, F1 =
0.832), 3) SICK
dataset (Accuracy
= 0.881, Recall =
0.863), 4) STSB
dataset (Accuracy
= 0.832, Recall =
85.5)

Cai et. al.
[22]

CCKS2018
dataset

word2vec +
CNN + Bi-
LSTM + Co-
attention
mechanism.

1) Precision =
0.860, 2)
Accuracy = 0.864,
3) Recall =
0.872, 4) F1 Score
= 0.866

Day et. al.
[23]

Delta Reading
Comprehension
dataset

BERT + Q-EAT
+ Answer type
classification
model

1) Exact Match =
0.802, 2) F1 Score
= 0.894

Wang et.
al. [8]

Proprietary
DieaseQuestion
and
DieaseBase
datasets

BERT + Bi-
LSTM layer +
CNN layer +
CRF layer

Accuracy = 0.824

Yang [2] SQUAD
dataset

Encoder-
decoder
mechanism with
attention flow

1) Exact Match =
0.685 and 2) F1
Score = 0.777

Japa and
Rekabdar
[3]

Web question
dataset

BERT + CNN F1 Score = 0.564

Singh et.
al. [4]

Text Retrieval
Conference
(TREC) QA
dataset

(NLP methods
of pattern
matching and
information
retrieval) +
CNN

1) Mean Average
Precision (MAP)
= 0.635 and 2)
Mean Reciprocal
Rank (MRR) =
0.657

Arora et.
al. [24]

SQUAD
dataset

1) GloVe +
bidirectional-
LSTM, 2)
InferSent + XG
Boost and
Multinomial
Logistic
Regression

1) Technique #1
accuracy = 0.603,
2) Technique #2
accuracy = 0.660

Lan et. al.
[25]

Chinese
complex
question and
answer corpus

BERT-LSTM F1 Score = 0.825

Sharath
and
Banafsheh
[26]

Web-Questions
dataset
gathered from
Google
Suggest
API, and the
manually
labeled
answers from
Amazon
Mechanical
Turk.

BERT+CNN+
Attention
mechanism

F1 Score = 0.554

Xiao [27] SQUAD
dataset

Embedding
layer +
Transformer
layer +
Attention layer

1) Exact Match =
0.687 and 2) F1
Score = 0.779

Wang and
Lu [28]

The
NLPCC2018
KBQA task
dataset

BERT +
BiLSTM + CRF F1 Score = 0.901

Zheng et.
al. [29]

Wiki QA and
a certain
municipal
power grid
customer
service system
dialogue
material
knowledge
base

BERT +
LSTM_CGN +
Attention
mechanism

Accuracy = 0.754

As can be seen in the table, a significant amount of study has
been conducted in recent times on this topic. The study is
being carried out with the assistance of a variety of datasets,
which are either publicly available or proprietary. In addition
to this, the researchers employed sophisticated processes such
as deep learning or machine learning strategies to construct
their models. Additionally, Webhook and Flask are being used
to implement some aspects of the models. In terms of
performance measurement, accuracy, precision, recall, and F1
score are four of the most popular metrics used. All of these
approaches are taken into consideration in the design of our
proposed methodology, which is described in the next section.

III. MATERIAL AND METHOD
An overview of the proposed methodology is provided as

a flowchart in Figure 1. In general, the method involves fine-
tuning a pre-trained transformer model with hyperparameter
optimization using a pre-processed training dataset. The
resulting fine-tuned model will then be tested on a different
dataset and the performance will be measured and analyzed.

Fig. 1. An overview of the proposed methodology

For the training, the SQuAD1.1 dataset is used. This
dataset was developed initially to test reading comprehension.
The are several versions of this dataset, with SQuAD1.1 and
SQuAD2.0 being the main ones. The questions and answer
pairs in this dataset were formulated via the use of crowd-
sourcing with Wikipedia serving as the foundation. The
SQuAD 1.1 dataset comprises 107,785 question-answer pairs
on 536 articles whereas the SQuAD2.0 dataset combines the
questions and answers that are in SQuAD1.1 with an
additional 53,775 unanswerable questions – i.e., questions
whose answers do not exist in the provided context. The
dataset has been used by many researchers and has been
shown to provide a good benchmark since not only are
systems required to provide answers to questions when it is
feasible to do so, but they must also be able to discern when
no response can be supported by the provided context and
refrain from providing an answer. The Oracle technical
documentation that will be used as the testing dataset contains
information on products, industries, resources, customers,
partners, developers, and events that provide an excellent use
case for the developed methodology.

The input data for QA tasks may either be in the form of JSON
files or a Python list of dictionaries that have been formatted
appropriately. The structure of both forms is the same, for
example, the input may be a string referring to a JSON file that
contains a list of dictionaries, or it could be the list of
dictionaries themselves. The most challenging aspect of this
step is producing labels for the response to the question. These
labels will indicate the beginning and ending locations of the
tokens that match the answer inside the context. For this, we
used a tokenizer to transform the text that is included in the
input into entities that can be understood by the model. We
provide our tokenizer with pairs of inquiry and context and it
will correctly insert special tokens to build a sentence for us.
The labels represent the indexes of the tokens that start and
finish the response, and the model will be given the job of
predicting one start and one end logits for each token in the
input, in the following format: [CLS] Question [SEP] Answer
[SEP].

Many of the samples that are included in the dataset have
extremely lengthy contexts that will go above the maximum
length that we have set. We deal with lengthy contexts by
extracting multiple training features from a single sample and
inserting a sliding window in between each of these features.
By doing this, we can train the system on a more diverse set
of circumstances. In our case, we set the length limit to 100
and use a sliding window with 50 tokens. An example label is
shown in Figure 2 below.

Fig. 2. An example of output labels produced by the data pre-processing
stage.

In this example, this particular information from the sample
has been separated into four distinct inputs. As we can see,
each of these inputs has the same question but different
contexts. It is important to take note of the fact that the correct
response, i.e., "Bernadette Soubirous" does not appear in any
of the inputs but the last one. This provides an example where
the training instances contain a response that is not part of the
context which will need to be fixed manually. We fix these
cases by setting the text start position equal to the finish
position which equals 0. A similar solution is applied in the
event of the answer being cut short, leaving us with just the
beginning (or the conclusion) to work with. However, if it is
possible to find the correct response in its entirety inside the
context, the labels will be the index of the token that
corresponds to the beginning of the answer and the index that
corresponds to the end of the answer.

After our training data has been thoroughly pre-processed, we
can finally aggregate it into a function that can be applied to
the whole dataset. Given that most contexts will be large (and
the associated samples will be split into multiple features), we
do not find it necessary to perform any dynamic padding. The
SQuAD1.1 dataset includes several questions that have been
modified by having blank spaces added to either the beginning
or the end of the question. Since we do not contribute any
additional information to the dataset, we eliminated those
additional spaces because there is no use in keeping them.

The subsequent data-splitting stage divides the pre-processed
dataset into training and validation sets by a 70:30 ratio,
respectively. The training set is used exclusively to fine-tune
the model and the validation set is used to determine when the
process should stop. The fine-tuning stage is performed by
first replacing the last fully connected output layer of the pre-
trained model with a new output layer with a randomly
initialized set of weights. The modified model is then trained
on the training set using a set of hyperparameter values. At
certain intervals, the model is saved and the training loss and
validation loss are calculated. If the validation loss is less than
the training loss and a pre-determined low value, then the
model is considered as the final fine-tuned model, otherwise,
the process is repeated after making adjustments to the
hyperparameter values. This fine-tuning stage is illustrated in
Figure 3.

Fig. 3. A flowchart detailing the model fine-tuning stage.

The final fine-tuned model will be tested on a testing set
derived from a different set of data, which is the Oracle
Knowledge Documentation [30]. We perform the same data
pre-processing step on this training dataset to prepare them for
the subsequent model testing stage.

When tested, the model generates logits that correspond to the
starting and ending positions of the answer in the input IDs as
its output for each query. The raw output has to undergo
several post-processing steps, similar to those in the pre-
processing stage we described previously to ensure the
integrity of the returned results. These steps are carried out by
removing any start and end logits that correspond to tokens
that are outside the context range, removing any responses that
have zero length, and removing any responses that are longer
than the maximum value (set to 30 characters long).

Three metrics are used when evaluating the model
performance, they are Exact Match (EM), F1 Score (F1), and
Confidence Score (CS). The Exact Match metric is calculated
as an average of a binary scoring system that produces either
one if the model output is identical to the expected output, or
zero otherwise. The F1 score is calculated by comparing the
number of common words in the model output and the
expected output. Two measurements need to be calculated
before the F1 Score can be determined, they are Precision (P)
and Recall (R). Precision is the ratio of the number of shared
words to the total number of words in the model output
whereas Recall is the ratio of the number of shared words to
the total number of words in the expected output. The F1
Score is then calculated as:

The calculation of the CS metric uses the probability of
start and end logits produced by the model derived from the
expected outputs. A Soft Max function is used to transform
the start and end logits into probabilities. These values are then
multiplied to get the overall score for each pair of tokens. In
practice, the model produces multiple candidate answers with
varying CS values. The one with the highest value is
considered the best and selected as the output of the model.
This highest CS value is the one recorded for this metric. A
high CS value (> 0.9) typically corresponds to a near-exact

match of the expected output and a low value (< 0.3) signifies
low confidence that the produced answers relate to the
expected output.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS
The proposed methodology is implemented in Python 3.6

with Tensor Flow 2.0 on Jupyter Notebook hosted by Google
Colab. The training datasets, pre-trained transformer models,
and data tokenizer function are obtained via the Hugging Face
platform [31]. Eight pre-trained models from seven different
variations of the BERT transformer architecture are used. The
seven architecture variations are the original, or cased, BERT
[9], RoBERTa [10], XLM-RoBERTa [11], ELECTRA [12],
ALBERT [13], MobileBERT [14], and MPNet [15]. The
description of the eight pre-trained models including the
dataset on which they were pre-trained is given in Table II.
The rightmost column of this table has the URL where the
fine-tuned models can be downloaded and tested.

TABLE II. DESCRIPTION OF THE EIGHT PRE-TRAINED MODELS AND
THE URL CONTAINING THE FINE-TUNED MODELS

Transformer
Models

Pre-trained model
description

URL of the final fine-
tuned model

CasedBERT
(SQuAD2.0)

A cased BERT model
pre-trained on
SQuAD2.0 dataset

https://huggingface.co/a
mitjohn007/simplebert-
base-finetuned-squad

CasedBERT
(BookCorpus
Wiki)

A cased BERT model
pre-trained on
BookCorpus, a dataset
consisting of 11,038
unpublished books and
English Wikipedia
(excluding lists, tables,
and headers).

https://huggingface.co/a
mitjohn007/bert-
finetuned-squad

RoBERTa
A base RoBERTa model
pre-trained on
SQuAD2.0 dataset

https://huggingface.co/a
mitjohn007/roberta-base-
finetuned-squad

XLM-
RoBERTa

A multilingual large
XLM-RoBERTa pre-
trained on SQuAD2.0
dataset

https://huggingface.co/a
mitjohn007/xlm-roberta-
base-finetuned-squad

ELECTRA
A base ELECTRA
model pre-trained on
SQuAD2.0 dataset

https://huggingface.co/a
mitjohn007/electra-
finetuned-squad

ALBERT
A large ALBERT model
pre-trained on
SQuAD2.0 dataset

https://huggingface.co/a
mitjohn007/albert-
finetuned-squad

MobileBERT

A thin version of the
cased BERT model pre-
trained on SQuAD2.0
dataset

https://huggingface.co/a
mitjohn007/second-
mobil-bert-finetuned-
squad

MPNet
A base Microsoft MPNet
model pre-trained on a
COVID-19 dataset.

https://huggingface.co/a
mitjohn007/mpnet-
finetuned

Each model’s fine-tuning process takes a little more than an
hour on the Google Colab Pro version. It is also worth noting
that at the end of each epoch, a snapshot of the model and its
training loss is stored in the Hugging Face repository. The
values of the training loss of each model after the first, second,
and third epoch are shown in Table III.

TABLE III. TRAINING LOSS AFTER EACH EPOCH

Epoch 1 2 3
BERT (SQuAD2.0) 0.61 0.40 0.27
BERT (BookCorpusWiki) 1.27 0.78 0.57

RoBERTa 0.74 0.55 0.42
XLM-RoBERTa 0.66 0.46 0.29
ELECTRA 0.57 0.38 0.23
ALBERT 0.38 0.17 0.05
MobileBERT 0.64 0.53 0.46
MPNet 1.05 0.73 0.59

The performance of the fine-tuned models as measured using
Exact Match, F1 score, and Confidence Score metrics on the
test dataset is shown in Table IV. For analysis purposes, we
also include the model size, in megabytes, in the rightmost
column.

TABLE IV. THE PERFORMANCE OF THE FINE-TUNED MODELS

Metrics EM F1 Score CS Size
BERT (SQuAD2.0) 0.799 0.881 0.812 431
BERT (BookCorpusWiki) 0.810 0.887 0.626 431
RoBERTa 0.855 0.921 0.627 497
XLM-RoBERTa 0.858 0.926 0.680 2240
ELECTRA 0.874 0.940 0.594 1340
ALBERT 0.891 0.950 0.882 823
MobileBERT 0.814 0.893 0.583 93
MPNet 0.858 0.923 0.505 438

From the table, we can see that the ALBERT model produces
the best performance in all three metrics, despite having a
relatively small model size (823 MB compared to the smallest
i.e., 93 MB and the largest, i.e., 2240 MB).

To finish off, we show here the query chatbot system that was
implemented using Webhooks in Python Flask. Flask is a
microweb framework written in Python whereas Webhooks is
an HTTP-based callback function that allows lightweight,
event-driven communication between two application
programming interfaces (API). A screenshot showing an
example user interface of the chatbot is shown in Figure 4.

Fig. 4. An example screenshot of the developed chatbot’s user interface.

V. CONCLUSION
We have presented in this paper the results of our study

into the use of a transformer-based model in the development
of a technical document query system with machine reading
comprehension. Our method fine-tunes a pre-trained
transformer model with hyperparameter optimization using a
pre-processed training dataset and tested on a different dataset.
Eight pre-trained models from seven different variations of the
BERT transformer architecture are used. The seven
architecture variations are the cased BERT, RoBERTa, XLM-
RoBERTa, ELECTRA, ALBERT, MobileBERT, and MPNet.
The fine-tuning process uses the SQuAD1.1 dataset whereas
the testing is performed using the Oracle Knowledge

Documentation. We found that the ALBERT pre-trained
model is the best model to use when its performance is
measured using the Exact Match, F1 score, and Confidence
Score metrics - despite its relatively small model size.

REFERENCES
[1] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional

attention flow for machine comprehension,” arXiv Prepr.
arXiv1611.01603, 2016.

[2] Y. Yang, “BiEAF: An Bidirectional Enhanced Attention Flow Model
for Question Answering Task,” in 2021 2nd International Conference
on Information Science and Education (ICISE-IE), 2021, pp. 344–
348.

[3] S. S. Japa and B. Rekabdar, “Memory Efficient Knowledge Base
Question Answering with Chatbot Framework,” in 2021 IEEE
Seventh International Conference on Multimedia Big Data (BigMM),
2021, pp. 33–39.

[4] D. Singh, K. R. Suraksha, and S. J. Nirmala, “Question Answering
Chatbot using Deep Learning with NLP,” in 2021 IEEE International
Conference on Electronics, Computing and Communication
Technologies (CONECCT), 2021, pp. 1–6.

[5] M.-Y. Day and C.-C. Tsai, “A study on machine learning for
imbalanced datasets with answer validation of question answering,”
in 2016 IEEE 17th International Conference on Information Reuse
and Integration (IRI), 2016, pp. 513–519.

[6] R. Anhar, T. B. Adji, and N. A. Setiawan, “Question classification on
question-answer system using bidirectional-LSTM,” in 2019 5th
International Conference on Science and Technology (ICST), 2019,
vol. 1, pp. 1–5.

[7] D. V Vekariya and N. R. Limbasiya, “A novel approach for semantic
similarity measurement for high quality answer selection in question
answering using deep learning methods,” in 2020 6th International
Conference on Advanced Computing and Communication Systems
(ICACCS), 2020, pp. 518–522.

[8] X. Wang and Z. Wang, “Question answering system based on diease
knowledge base,” in 2020 IEEE 11th international conference on
software engineering and service science (ICSESS), 2020, pp. 351–
354.

[9] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language
understanding,” NAACL HLT 2019 - 2019 Conf. North Am. Chapter
Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 1,
no. Mlm, pp. 4171–4186, 2019.

[10] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M.
Lewis, L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A Robustly
Optimized BERT Pretraining Approach,” no. 1, 2019.

[11] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F.
Guzmán, E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov,
“Unsupervised cross-lingual representation learning at scale,” Proc.
Annu. Meet. Assoc. Comput. Linguist., pp. 8440–8451, 2020.

[12] C. D. Manning, “ELECTRA: Pre-training Text Encoders as
Discriminators Rather Than Generators,” Iclr 2020, pp. 1–18, 2020.

[13] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: a Lite Bert for Self-Supervised Learning of Language
Representations,” 8th Int. Conf. Learn. Represent. ICLR 2020, pp. 1–
17, 2020.

[14] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “MobileBERT:
A compact task-agnostic BERT for resource-limited devices,” Proc.
Annu. Meet. Assoc. Comput. Linguist., pp. 2158–2170, 2020.

[15] K. Song, X. Tan, T. Qin, J. Lu, and T. Y. Liu, “MPNet: Masked and
permuted pre-training for language understanding,” Adv. Neural Inf.
Process. Syst., vol. 2020-December, no. NeurIPS, pp. 1–14, 2020.

[16] Stanford University, “The Stanford Question Answering Dataset
(SQUAD),” 2023. [Online]. Available:
https://rajpurkar.github.io/SQuAD-explorer/. [Accessed: 24-Oct-
2023].

[17] NTCIR, “NII Testbeds and Community for Information Access
Research,” 2016. [Online]. Available:
https://research.nii.ac.jp/ntcir/ntcir-12/data.html. [Accessed: 24-Oct-
2023].

[18] H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and T. Zhao, “Smart: Robust
and efficient fine-tuning for pre-trained natural language models
through principled regularized optimization,” arXiv Prepr.
arXiv1911.03437, 2019.

[19] Microsoft, “Microsoft Research Paraphrase Corpus,” 2016. [Online].
Available: https://www.microsoft.com/en-
us/download/details.aspx?id=52398. [Accessed: 24-Oct-2023].

[20] L. Zhang, S. R. Wilson, and R. Mihalcea, “Multi-label transfer
learning for multi-relational semantic similarity,” arXiv Prepr.
arXiv1805.12501, 2018.

[21] Microsoft, “Microsoft Research WikiQA Corpus,” 2016. [Online].
Available: https://www.microsoft.com/en-
us/download/details.aspx?id=52419. [Accessed: 24-Oct-2023].

[22] L.-Q. Cai, M. Wei, S.-T. Zhou, and X. Yan, “Intelligent question
answering in restricted domains using deep learning and question pair
matching,” Ieee Access, vol. 8, pp. 32922–32934, 2020.

[23] M.-Y. Day and Y.-L. Kuo, “A study of deep learning for factoid
question answering system,” in 2020 IEEE 21st International
Conference on Information Reuse and Integration for Data Science
(IRI), 2020, pp. 419–424.

[24] R. Arora, P. Singh, H. Goyal, S. Singhal, and S. Vijayvargiya,
“Comparative question answering system based on natural language
processing and machine learning,” in 2021 International Conference
on Artificial Intelligence and Smart Systems (ICAIS), 2021, pp. 373–
378.

[25] J. Lan, W. Liu, Y. Hu, and J. Zhang, “Semantic Parsing and Text
Generation of Complex Questions Answering Based on Deep
Learning and Knowledge Graph,” in 2021 4th International
Conference on Robotics, Control and Automation Engineering
(RCAE), 2021, pp. 201–207.

[26] J. S. Sharath and R. Banafsheh, “Conversational question answering
over knowledge base using chat-bot framework,” in 2021 IEEE 15th
International Conference on Semantic Computing (ICSC), 2021, pp.
84–85.

[27] Y. Xiao, “A transformer-based attention flow model for intelligent
question and answering chatbot,” in 2022 14th International
Conference on Computer Research and Development (ICCRD), 2022,
pp. 167–170.

[28] H. L. Wang and X. X. Lu, “Question Answering System with
Enhancing Sentence Embedding,” in 2022 11th International
Conference of Information and Communication Technology
(ICTech)), 2022, pp. 521–524.

[29] C. Zheng, Z. Wang, and J. He, “BERT-Based Mixed Question
Answering Matching Model,” in 2022 11th International Conference
of Information and Communication Technology (ICTech)), 2022, pp.
355–358.

[30] ORACLE, “Oracle Knowledge Documentation,” 2023. [Online].
Available: https://www.oracle.com/technical-
resources/documentation/knowledge-documentation.html.
[Accessed: 13-Oct-2023].

[31] Hugging Face, “Hugging Face. The AI community building the
future. The platform where the machine learning community
collaborates on models, datasets, and applications.,” 2023. [Online].
Available: https://huggingface.co/. [Accessed: 19-Oct-2023].

