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Abstract— Constructing a Question Answering system is a 
challenging task despite a significant amount of study that has 
been conducted in recent times on this topic. It is even more 
difficult to provide satisfactory responses to the inquiries raised 
by users in an organizational setting as opposed to in an 
informal setting. We present in this paper, the results of our 
study into the use of a transformer-based model in the 
development of a technical document query system with 
machine reading comprehension. Our method fine-tunes a pre-
trained transformer model with hyperparameter optimization 
using a pre-processed training dataset and tested on a different 
dataset. We experimented using eight pre-trained models from 
seven different variations of the BERT transformer architecture 
including BERT, RoBERTa, XLM-RoBERTa, ELECTRA, 
ALBERT, MobileBERT, and MPNet using the SQuAD1.1 
dataset for fine-tuning and the Oracle Knowledge 
Documentation for testing. We found that the ALBERT pre-
trained model is the best model achieving 0.891, 0.950, and 0.882 
performance when measured using the Exact Match, F1 score, 
and Confidence Score metrics - despite its relatively small model 
size. 

Keywords— Question Answering, Transformer model, 
Bidirectional Encoder Representations, Natural Language 
Processing, Chatbot system. 

I. INTRODUCTION 
A Question-Answering (QA) system is a computer 

program that provides acceptable responses to questions 
posed in natural languages such as English or Chinese, etc. 
Take for instance when a user queries, "Which team won the 
first cricket world cup?” it is anticipated that the QA system 
would respond with "West Indies". We will be able to access 
information more quickly with the assistance of a QA system. 
Constructing a QA system is a challenging task despite a 
significant amount of study that has been conducted in recent 
times on this topic. It is even more difficult to provide 
satisfactory responses to the inquiries raised by users in an 
organizational setting as opposed to in an informal setting. 
Automated chat assistants are becoming more popular among 
businesses as a means to manage conversations including 
technical help and customer support. However, these 
technologies are only able to effectively troubleshoot the 

problems on which they were trained, which presents a major 
difficulty for corporate QA procedures today. Some typical 
scenarios where question answering is being used are in 
customer and technical support. 

In this paper, we present our methodology to develop a chatbot 
system to query a technical document using a transformer 
model-based machine reading comprehension system. The 
transformer model is developed by fine-tuning an existing pre-
trained model. Several models were considered and evaluated 
on the Oracle technical documentation as a use case. The 
chatbot system is implemented using Python Flask and 
Webhooks. The final fine-tuned models are saved online for 
easy download and replication of results. 

II. LITERATURE REVIEW 
In the past few years, most of the research has been 

centered around enhancing the existing model performance on 
high-performance datasets available in the market. However, 
the interplay between context and question was modeled for 
the very first time using a model called the Bidirectional 
Enhanced Attention Flow (BiEAF) model [1]. This endeavor 
is a landmark achievement in this field of study. However, the 
BiEAF approach only takes into account the connection 
between sentences and it does not take into consideration the 
relationship within the phrases themselves [2]. A different 
approach called Knowledge-Based Question Answering has 
also been proposed. Its application in a chatbot framework 
whose goal is to enhance the framework's capacity to 
recognize and answer informal and natural language patterns 
through the use of well-structured relational information 
between entities is reported in [3]. A different solution was 
proposed in [4] by storing the lexical, semantic, and syntactic 
features of the words and phrases using distributional 
representations and using Convolutional Neural Network 
(CNN) to rate the possible responses. Several other machine 
learning techniques have been proposed to perform the feature 
classification task in this context including Support Vector 
Machine (SVM) [5], Recurrent Neural Network (RNN) [6], 
Deep Feature Matching [7], and Conditional Random Field 
(CRF) [8]. Many of the proposed methods here are reported to 
have achieved high performance on different datasets. 



The transformer model in Natural Language Processing 
(NLP) is a novel architecture that aims to solve sequence-to-
sequence understanding problems while handling long-range 
dependencies. The method is relatively new compared to the 
more established Long-Short Term Memory (LSTM) 
approaches. It relies on the self-attention mechanism to 
compute representations of its input and output without using 
sequence-aligned convolution networks. The encoder and 
decoder are the two systems that make up the transformer 
architecture. The input text is encoded by the encoders, and 
the decoder examines the encoded text in order to comprehend 
the contextual information that lies behind the sequence. Each 
encoder and decoder in the stack make use of an attention 
mechanism to evaluate each input in conjunction with every 
other input to balance the relative significance of the inputs. 
The encoder then works in conjunction with the decoder to 
construct the output sequence. The attention method in this 
case makes it possible to grasp the characteristics of the 
incoming text and dynamically highlight parts of it.  

Different tasks require different uses of the encoder, the 
decoder, or both. Certain tasks, such as the QA task, the 
Masked Language Model (MLM) task, and the Next Sentence 
Prediction (NSP) task, require only the encoder part while 
others may require the decoder part or both. One of the most 
popular types of encoder-only transformer models is BERT, 
which stands for Bidirectional Encoder Representations [9]. 
The BERT architecture has given birth to many other BERT-
like models such as RoBERTa [10], XLM-RoBERTa [11], 
ELECTRA [12], ALBERT [13], MobileBERT [14], and 
MPNet [15]. The original, or cased, BERT model uses 12 
layers of transformers block with a hidden size of 768 with 12 
self-attention heads and has around 110 million trainable 
parameters. Due to its huge size, the training process is quite 
computationally intensive. The QA, MLM, and NSP tasks are 
just a few of many different tasks in which training processes 
capture the bi-directional understanding of the sentences. The 
model used in MLM hides part of the values taken from the 
input and then uses the context to make an educated guess as 
to what the hidden (or missing) word is. As mentioned 
previously, the BERT model has been used to derive many 
other transformer models and in conjunction with other 
approaches. Many of these approaches are developed and 
tested on publicly available datasets including the Stanford 
Question Answering Dataset (SQuAD) [16], NII Testbeds and 
Community for Information Access Research (NTCIR) 
dataset [17], Semantic Textual Similarity Benchmark (STSB) 
dataset [18], Microsoft Research Paraphrase Corpus (MRPC) 
dataset [19], Sentences Involving Compositional Knowledge 
(SICK) dataset [20], and Microsoft Wikipedia QA (WikiQA) 
dataset [21]. A selection of some of the works in this regard 
and the datasets they are developed and tested on is provided 
in Table I below. 

TABLE I.  PREVIOUS STUDIES USING THE TRANSFORMER MODEL, THE 
DATASET THEY ARE DEVELOPED AND TESTED ON, AND REPORTED RESULT 

Authors Dataset used Techniques Reported Results 

Day et. al. 
[5] 

NTCIR-12 
QA-Lab2 
Japanese 
University 
entrance exams  

Stanford NER 
and Stanford 
POS tagger 
from Stanford 
Core using NLP 
+ SVM 
classifiers 
 

1) Accuracy = 
0.835 (on 
balanced dataset), 
2) Accuracy = 
0.90 (on 
imbalanced 
dataset) 

Anhar et. 
al. [6] 

Indonesian 
public corpora 
chat 
 

1) RNN, 2) 
LSTM, and 3) 
Bi-LSTM 
 

1) Technique #1 
accuracy = 0.523, 
2) Technique #2 
accuracy = 0.871, 
3) Technique #3 
accuracy = 0.909 

Vekariya 
et. al. [7] 

STSB dataset, 
MRPC dataset, 
SICK dataset, 
and WikiQA 
dataset. 
 

Word vector 
model, Versatile 
global T-max 
pooling, Deep 
LSTM, and 
Efficient DFM 
 

1) Wikipedia 
QA dataset 
(Accuracy = 
0.853, Recall = 
0.812), 2) MRPC 
dataset (Accuracy 
= 0.873, F1 = 
0.832), 3) SICK 
dataset (Accuracy 
= 0.881, Recall = 
0.863), 4) STSB 
dataset (Accuracy 
= 0.832, Recall = 
85.5) 

Cai et. al. 
[22] 

CCKS2018 
dataset 

word2vec + 
CNN + Bi-
LSTM + Co-
attention 
mechanism. 

1) Precision = 
0.860, 2) 
Accuracy = 0.864, 
3) Recall = 
0.872, 4) F1 Score 
= 0.866 

Day et. al. 
[23] 

Delta Reading 
Comprehension 
dataset 
 

BERT + Q-EAT 
+ Answer type 
classification 
model 

1) Exact Match = 
0.802, 2) F1 Score 
= 0.894 

Wang et. 
al. [8] 

Proprietary 
DieaseQuestion 
and 
DieaseBase 
datasets 

BERT + Bi-
LSTM layer + 
CNN layer + 
CRF layer 

Accuracy = 0.824 

Yang [2] SQUAD 
dataset 

Encoder-
decoder 
mechanism with 
attention flow 

1) Exact Match = 
0.685 and 2) F1 
Score = 0.777 

Japa and 
Rekabdar 
[3] 

Web question 
dataset 
 

BERT + CNN F1 Score = 0.564 

Singh et. 
al. [4] 

Text Retrieval 
Conference 
(TREC) QA 
dataset 

(NLP methods 
of pattern 
matching and 
information 
retrieval) + 
CNN 

1) Mean Average 
Precision (MAP) 
= 0.635 and 2) 
Mean Reciprocal 
Rank (MRR) = 
0.657 

Arora et. 
al. [24] 

SQUAD 
dataset 

1) GloVe + 
bidirectional-
LSTM, 2) 
InferSent + XG 
Boost and 
Multinomial 
Logistic 
Regression 

1) Technique #1 
accuracy = 0.603,  
2) Technique #2 
accuracy = 0.660 
 

Lan et. al. 
[25] 

Chinese 
complex 
question and 
answer corpus 

BERT-LSTM F1 Score = 0.825 

Sharath 
and 
Banafsheh 
[26] 

Web-Questions 
dataset 
gathered from 
Google 
Suggest 
API, and the 
manually 
labeled 
answers from 
Amazon 
Mechanical 
Turk. 

BERT+CNN+ 
Attention 
mechanism 
 

F1 Score = 0.554 

Xiao [27]  SQUAD 
dataset 

Embedding 
layer + 
Transformer 
layer +  
Attention layer 

1) Exact Match = 
0.687 and 2) F1 
Score = 0.779 



Wang and 
Lu [28] 

The 
NLPCC2018 
KBQA task 
dataset 

BERT + 
BiLSTM + CRF F1 Score = 0.901 

Zheng et. 
al. [29] 

Wiki QA and   
a certain  
municipal 
power grid 
customer 
service system 
dialogue 
material 
knowledge 
base 

BERT + 
LSTM_CGN + 
Attention 
mechanism
  

Accuracy = 0.754 

 

As can be seen in the table, a significant amount of study has 
been conducted in recent times on this topic. The study is 
being carried out with the assistance of a variety of datasets, 
which are either publicly available or proprietary. In addition 
to this, the researchers employed sophisticated processes such 
as deep learning or machine learning strategies to construct 
their models. Additionally, Webhook and Flask are being used 
to implement some aspects of the models. In terms of 
performance measurement, accuracy, precision, recall, and F1 
score are four of the most popular metrics used. All of these 
approaches are taken into consideration in the design of our 
proposed methodology, which is described in the next section. 

III. MATERIAL AND METHOD 
An overview of the proposed methodology is provided as 

a flowchart in Figure 1. In general, the method involves fine-
tuning a pre-trained transformer model with hyperparameter 
optimization using a pre-processed training dataset. The 
resulting fine-tuned model will then be tested on a different 
dataset and the performance will be measured and analyzed.  

 
Fig. 1. An overview of the proposed methodology 

For the training, the SQuAD1.1 dataset is used. This 
dataset was developed initially to test reading comprehension. 
The are several versions of this dataset, with SQuAD1.1 and 
SQuAD2.0 being the main ones. The questions and answer 
pairs in this dataset were formulated via the use of crowd-
sourcing with Wikipedia serving as the foundation. The 
SQuAD 1.1 dataset comprises 107,785 question-answer pairs 
on 536 articles whereas the SQuAD2.0 dataset combines the 
questions and answers that are in SQuAD1.1 with an 
additional 53,775 unanswerable questions – i.e., questions 
whose answers do not exist in the provided context. The 
dataset has been used by many researchers and has been 
shown to provide a good benchmark since not only are 
systems required to provide answers to questions when it is 
feasible to do so, but they must also be able to discern when 
no response can be supported by the provided context and 
refrain from providing an answer. The Oracle technical 
documentation that will be used as the testing dataset contains 
information on products, industries, resources, customers, 
partners, developers, and events that provide an excellent use 
case for the developed methodology. 

The input data for QA tasks may either be in the form of JSON 
files or a Python list of dictionaries that have been formatted 
appropriately. The structure of both forms is the same, for 
example, the input may be a string referring to a JSON file that 
contains a list of dictionaries, or it could be the list of 
dictionaries themselves. The most challenging aspect of this 
step is producing labels for the response to the question. These 
labels will indicate the beginning and ending locations of the 
tokens that match the answer inside the context. For this, we 
used a tokenizer to transform the text that is included in the 
input into entities that can be understood by the model. We 
provide our tokenizer with pairs of inquiry and context and it 
will correctly insert special tokens to build a sentence for us. 
The labels represent the indexes of the tokens that start and 
finish the response, and the model will be given the job of 
predicting one start and one end logits for each token in the 
input, in the following format: [CLS] Question [SEP] Answer 
[SEP]. 

Many of the samples that are included in the dataset have 
extremely lengthy contexts that will go above the maximum 
length that we have set. We deal with lengthy contexts by 
extracting multiple training features from a single sample and 
inserting a sliding window in between each of these features. 
By doing this, we can train the system on a more diverse set 
of circumstances. In our case, we set the length limit to 100 
and use a sliding window with 50 tokens. An example label is 
shown in Figure 2 below. 



Fig. 2. An example of output labels produced by the data pre-processing 
stage.

In this example, this particular information from the sample 
has been separated into four distinct inputs. As we can see, 
each of these inputs has the same question but different 
contexts. It is important to take note of the fact that the correct 
response, i.e., "Bernadette Soubirous" does not appear in any 
of the inputs but the last one. This provides an example where 
the training instances contain a response that is not part of the 
context which will need to be fixed manually. We fix these 
cases by setting the text start position equal to the finish 
position which equals 0. A similar solution is applied in the 
event of the answer being cut short, leaving us with just the 
beginning (or the conclusion) to work with. However, if it is 
possible to find the correct response in its entirety inside the 
context, the labels will be the index of the token that 
corresponds to the beginning of the answer and the index that 
corresponds to the end of the answer.

After our training data has been thoroughly pre-processed, we 
can finally aggregate it into a function that can be applied to
the whole dataset. Given that most contexts will be large (and 
the associated samples will be split into multiple features), we 
do not find it necessary to perform any dynamic padding. The 
SQuAD1.1 dataset includes several questions that have been 
modified by having blank spaces added to either the beginning 
or the end of the question. Since we do not contribute any 
additional information to the dataset, we eliminated those 
additional spaces because there is no use in keeping them.

The subsequent data-splitting stage divides the pre-processed 
dataset into training and validation sets by a 70:30 ratio, 
respectively. The training set is used exclusively to fine-tune 
the model and the validation set is used to determine when the 
process should stop. The fine-tuning stage is performed by 
first replacing the last fully connected output layer of the pre-
trained model with a new output layer with a randomly 
initialized set of weights. The modified model is then trained 
on the training set using a set of hyperparameter values. At 
certain intervals, the model is saved and the training loss and 
validation loss are calculated. If the validation loss is less than 
the training loss and a pre-determined low value, then the 
model is considered as the final fine-tuned model, otherwise,
the process is repeated after making adjustments to the 
hyperparameter values. This fine-tuning stage is illustrated in 
Figure 3.

Fig. 3. A flowchart detailing the model fine-tuning stage.

The final fine-tuned model will be tested on a testing set 
derived from a different set of data, which is the Oracle 
Knowledge Documentation [30]. We perform the same data 
pre-processing step on this training dataset to prepare them for 
the subsequent model testing stage. 

When tested, the model generates logits that correspond to the 
starting and ending positions of the answer in the input IDs as 
its output for each query. The raw output has to undergo 
several post-processing steps, similar to those in the pre-
processing stage we described previously to ensure the 
integrity of the returned results. These steps are carried out by 
removing any start and end logits that correspond to tokens 
that are outside the context range, removing any responses that 
have zero length, and removing any responses that are longer 
than the maximum value (set to 30 characters long).

Three metrics are used when evaluating the model 
performance, they are Exact Match (EM), F1 Score (F1), and 
Confidence Score (CS). The Exact Match metric is calculated 
as an average of a binary scoring system that produces either 
one if the model output is identical to the expected output, or 
zero otherwise. The F1 score is calculated by comparing the 
number of common words in the model output and the 
expected output. Two measurements need to be calculated 
before the F1 Score can be determined, they are Precision (P) 
and Recall (R). Precision is the ratio of the number of shared 
words to the total number of words in the model output
whereas Recall is the ratio of the number of shared words to 
the total number of words in the expected output. The F1 
Score is then calculated as:

The calculation of the CS metric uses the probability of 
start and end logits produced by the model derived from the 
expected outputs. A Soft Max function is used to transform 
the start and end logits into probabilities. These values are then 
multiplied to get the overall score for each pair of tokens. In 
practice, the model produces multiple candidate answers with 
varying CS values. The one with the highest value is 
considered the best and selected as the output of the model. 
This highest CS value is the one recorded for this metric. A 
high CS value (> 0.9) typically corresponds to a near-exact 



match of the expected output and a low value (< 0.3) signifies 
low confidence that the produced answers relate to the 
expected output. 

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 
The proposed methodology is implemented in Python 3.6 

with Tensor Flow 2.0 on Jupyter Notebook hosted by Google 
Colab. The training datasets, pre-trained transformer models, 
and data tokenizer function are obtained via the Hugging Face 
platform [31]. Eight pre-trained models from seven different 
variations of the BERT transformer architecture are used. The 
seven architecture variations are the original, or cased, BERT 
[9], RoBERTa [10], XLM-RoBERTa [11], ELECTRA [12], 
ALBERT [13], MobileBERT [14], and MPNet [15]. The 
description of the eight pre-trained models including the 
dataset on which they were pre-trained is given in Table II. 
The rightmost column of this table has the URL where the 
fine-tuned models can be downloaded and tested. 

TABLE II.  DESCRIPTION OF THE EIGHT PRE-TRAINED MODELS AND 
THE URL CONTAINING THE FINE-TUNED MODELS 

Transformer 
Models 

Pre-trained model 
description  

URL of the final fine-
tuned model 

CasedBERT 
(SQuAD2.0) 

A cased BERT model 
pre-trained on 
SQuAD2.0 dataset 

https://huggingface.co/a
mitjohn007/simplebert-
base-finetuned-squad 

CasedBERT 
(BookCorpus
Wiki) 

A cased BERT model 
pre-trained on 
BookCorpus, a dataset 
consisting of 11,038 
unpublished books and 
English Wikipedia 
(excluding lists, tables, 
and headers). 

https://huggingface.co/a
mitjohn007/bert-
finetuned-squad 
 

RoBERTa 
A base RoBERTa model 
pre-trained on 
SQuAD2.0 dataset 

https://huggingface.co/a
mitjohn007/roberta-base-
finetuned-squad 

XLM-
RoBERTa 

A multilingual large 
XLM-RoBERTa pre-
trained on SQuAD2.0 
dataset 

https://huggingface.co/a
mitjohn007/xlm-roberta-
base-finetuned-squad 

ELECTRA 
A base ELECTRA 
model pre-trained on 
SQuAD2.0 dataset 

https://huggingface.co/a
mitjohn007/electra-
finetuned-squad 

ALBERT 
A large ALBERT model 
pre-trained on 
SQuAD2.0 dataset 

https://huggingface.co/a
mitjohn007/albert-
finetuned-squad 

MobileBERT 

A thin version of the 
cased BERT model pre-
trained on SQuAD2.0 
dataset 

https://huggingface.co/a
mitjohn007/second-
mobil-bert-finetuned-
squad 

MPNet 
A base Microsoft MPNet 
model pre-trained on a 
COVID-19 dataset. 

https://huggingface.co/a
mitjohn007/mpnet-
finetuned 

 

Each model’s fine-tuning process takes a little more than an 
hour on the Google Colab Pro version. It is also worth noting 
that at the end of each epoch, a snapshot of the model and its 
training loss is stored in the Hugging Face repository. The 
values of the training loss of each model after the first, second, 
and third epoch are shown in Table III. 

TABLE III.  TRAINING LOSS AFTER EACH EPOCH 

Epoch 1 2 3 
BERT (SQuAD2.0) 0.61 0.40 0.27 
BERT (BookCorpusWiki) 1.27 0.78 0.57 

RoBERTa 0.74 0.55 0.42 
XLM-RoBERTa 0.66 0.46 0.29 
ELECTRA 0.57 0.38 0.23 
ALBERT 0.38 0.17 0.05 
MobileBERT 0.64 0.53 0.46 
MPNet 1.05 0.73 0.59 

 

The performance of the fine-tuned models as measured using 
Exact Match, F1 score, and Confidence Score metrics on the 
test dataset is shown in Table IV. For analysis purposes, we 
also include the model size, in megabytes, in the rightmost 
column. 

TABLE IV.  THE PERFORMANCE OF THE FINE-TUNED MODELS 

Metrics EM F1 Score CS Size 
BERT (SQuAD2.0) 0.799 0.881 0.812 431 
BERT (BookCorpusWiki) 0.810 0.887 0.626 431 
RoBERTa 0.855 0.921 0.627 497 
XLM-RoBERTa 0.858 0.926 0.680 2240 
ELECTRA 0.874 0.940 0.594 1340 
ALBERT 0.891 0.950 0.882 823 
MobileBERT 0.814 0.893 0.583 93 
MPNet 0.858 0.923 0.505 438 

 

From the table, we can see that the ALBERT model produces 
the best performance in all three metrics, despite having a 
relatively small model size (823 MB compared to the smallest 
i.e., 93 MB and the largest, i.e., 2240 MB). 

To finish off, we show here the query chatbot system that was 
implemented using Webhooks in Python Flask. Flask is a 
microweb framework written in Python whereas Webhooks is 
an HTTP-based callback function that allows lightweight, 
event-driven communication between two application 
programming interfaces (API). A screenshot showing an 
example user interface of the chatbot is shown in Figure 4.  

 
Fig. 4. An example screenshot of the developed chatbot’s user interface. 

V. CONCLUSION 
We have presented in this paper the results of our study 

into the use of a transformer-based model in the development 
of a technical document query system with machine reading 
comprehension. Our method fine-tunes a pre-trained 
transformer model with hyperparameter optimization using a 
pre-processed training dataset and tested on a different dataset. 
Eight pre-trained models from seven different variations of the 
BERT transformer architecture are used. The seven 
architecture variations are the cased BERT, RoBERTa, XLM-
RoBERTa, ELECTRA, ALBERT, MobileBERT, and MPNet. 
The fine-tuning process uses the SQuAD1.1 dataset whereas 
the testing is performed using the Oracle Knowledge 



Documentation. We found that the ALBERT pre-trained 
model is the best model to use when its performance is 
measured using the Exact Match, F1 score, and Confidence 
Score metrics - despite its relatively small model size. 
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