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Abstract: This study investigates the spatiotemporal density aggregation and pattern
distribution of vessel traffic amidst bustling maritime logistics scenarios. Firstly, a relatively
new spatiotemporal segmentation and reconstruction method is proposed for ship AIS
trajectories to address trajectory disruptions caused by berthing, anchorage, and other
factors. Subsequently, a trajectory filtering algorithm utilizing time window panning is
introduced to mitigate position jumps and deviation errors in trajectory points, ensuring
that the dynamic trajectory adheres to the spatiotemporal correlations of ship motion.
Secondly, to establish a geographical spatial mapping of dynamic trajectories, spatial
gridding is applied to maritime traffic areas. By associating the geographical space of
traffic activities with the temporal attributes of dynamic trajectories, a dynamic trajectory
temporal density model is constructed. Finally, a case study is conducted to evaluate
the effectiveness and applicability of the proposed method in identifying spatiotemporal
patterns of maritime traffic and spatiotemporal density aggregation states. The results
show that the proposed method can identify dynamic trajectory traffic patterns after
the application of compression algorithms, providing a novel approach to studying the
spatiotemporal aggregation of maritime traffic in the era of big data.

Keywords: temporal density; dynamic trajectory; geographical space; AIS; trajectory
compression; traffic pattern

1. Introduction
The rapid pace of socioeconomic development and the increasing frequency of inter-

national trade have established shipping as the dominant mode of transportation between
ports worldwide. Within the waters of coastal countries or regions, vessels frequently enter-
ing and departing ports result in increased traffic volume. This phenomenon is particularly
pronounced in sheltered navigation areas; waterborne traffic may even reach congested
conditions. The study of maritime traffic situation awareness primarily focuses on vessel
activities as the central research subject [1]. Traffic density is a quantitative indicator and
can be employed to assess maritime traffic, reflecting issues within traffic patterns and
facilitating further exploration of waterborne traffic data. Vessel density measurement
should not rely solely on ship position counts but should incorporate multiple factors
such as geospatial information, temporal cycles, and vessel activities. However, current
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calculations may lack comprehensive consideration of these factors, leading to certain
limitations in the research findings.

Vessel density is one of the main elements in the discipline of maritime traffic engineer-
ing, playing a pivotal role in the analysis of maritime traffic situations. Research on traffic
density contributes to traffic planning management and route optimization. By analyzing
the distribution of traffic flow density, maritime management departments can optimize
route arrangement and the placement of maritime navigation aids, thereby reducing navi-
gation risks and collision probabilities and minimizing interference and congestion among
vessels [2]. The distribution of traffic density significantly impacts the assessment of mar-
itime traffic safety. By identifying areas with high traffic density, high-risk zones in marine
regions can be pinpointed, thereby enhancing the accuracy of maritime traffic risk assess-
ments and reducing the occurrence rate of maritime traffic accidents [3]. Analyzing vessel
density aggregation is advantageous for identifying potential risks and conflict points,
providing data support for vessel collision avoidance and the avoidance of hazardous
areas, thereby enhancing the level of maritime safety [4–6]. The research on maritime traffic
density is also crucial in environmental impact assessment, as high-density traffic flows
can result in increased traffic emissions, thereby affecting air quality [7]. Based on ship
density distribution, it is possible to assess the extent traffic impacts marine environment
and ecosystems, which can contribute to the development of effective marine conservation
policies and management measures [8–10].

The analysis of vessel traffic density quantitatively reflects the level of congestion and
hazard within marine areas. With the rapid development of digital maritime transportation,
regional coverage Automatic Identification System (AIS) data and BeiDou Vessel Moni-
toring System (VMS) data have provided ample information for maritime traffic analysis.
Additionally, amendments to the International Convention for the Safety of Life at Sea
(SOLAS) have explicitly stipulated that vessels of different types must carry corresponding
navigation equipment, including AIS devices capable of automatically providing informa-
tion about the vessel to other vessels and coastal authorities [11]. Consequently, vessel
AIS trajectory data have become the primary data source for maritime traffic engineering
in the current big data era. In summary, the effective identification of maritime traffic
flow and the distribution of its traffic structures based on AIS trajectory data is a crucial
research topic in the current field of maritime traffic information analysis [12,13]. This
study focuses on the impact of trajectory data with missing, noisy, and deviating points
on the density analysis of marine traffic. The temporal characteristics of AIS trajectories
are integrated into the study of the spatiotemporal density of marine traffic, addressing
the limitations of the traditional density measurement process, which is based solely on
counting the number of trajectory points within a limited region. This study provides a
valuable research method for detecting the distribution of maritime traffic patterns and
spatiotemporal density aggregation.

2. Related Work
2.1. Literature Review

AIS data exhibit distinct spatiotemporal characteristics, making the study of navigation
patterns in critical waters through AIS data mining highly significant for maritime traffic
management. Li et al. [14] investigate a spatiotemporal ship trajectory clustering method
based on data mapping and density using AIS trajectories. This method demonstrates
high accuracy in identifying typical navigation patterns and detecting abnormal behaviors.
Rong et al. [15] introduce a data-mining-based approach for route characterization and
anomaly detection, utilizing AIS data to establish a probabilistic model of vessel behavior.
By identifying key navigation nodes, this method effectively extracts shipping patterns,
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thereby enhancing maritime traffic management. Luo et al. [16] propose a ship trajectory
classification method based on AIS data, enhancing classification accuracy by incorporating
the Tsfresh module. The classified trajectories provide a foundation for traffic pattern
distribution analysis. Additionally, the study emphasizes the importance of time-series
features in trajectory analysis.

In the study of maritime traffic patterns based on AIS trajectories, spatiotemporal
vessel density is an important research direction. It provides theoretical methods for fields
such as vessel route planning and traffic risk area identification. Consequently, researchers
have conducted studies on maritime traffic density or analyses of maritime traffic density
related to vessel behavior. Willems et al. [17] were inspired by kernel density estimation
techniques to obtain an overview density map of trajectory distributions through smoothing
AIS trajectory, but the computational cost is high, and it requires a hardware solution to
the problem. Meng et al. [18] utilized AIS data to analyze maritime traffic characteristics
in the Singapore Strait. With line density expressed as unit area length and computed
using specific equations, they explored the calculation of maritime traffic density through
spatiotemporal density analysis. Natale et al. [19] characterized maritime traffic density by
statistically analyzing the frequency of AIS message receptions. They utilized AIS data to
create high-resolution density distribution maps of fishing vessel traffic, partitioning the
water areas into grids and depicting fishing vessel density distributions across the entire
water domain. Li et al. [20] employed compression algorithms to simplify the AIS trajectory
for visualization efficiency. Building upon the simplified trajectory dataset, they utilized
kernel density estimation methods to visualize vessel density.

Different studies have approached the investigation of maritime traffic density by
considering various influencing factors. Liu et al. [21] developed a dynamic density cal-
culation model, treating maritime traffic as a particle system. Drawing from the radial
distribution function (RDF) in molecular dynamics, they computed the probability distri-
bution of surrounding vessel atoms within a fixed distance from specified vessel atoms
to characterize maritime traffic density. Yang et al. [22] expanded traditional maritime
traffic density calculation by incorporating vessel length. They standardized the analysis
by converting different ship lengths, noting their varying impacts on maritime density. The
study assessed the capacity of specific water areas to accommodate vessels of different
lengths. Lee et al. [23] utilized statistical density analysis based on AIS data to establish a
framework for generating maritime traffic routes. They identified vessel waypoints based
on density clustering and subsequently constructed routes by connecting these waypoints,
serving as the basis for developing routes for autonomous surface vessels in marine en-
vironments. Lee and Yu [24] consider the impact of offshore wind farms on traffic and
propose a novel method for determining route width based on offshore traffic distribution
and line density analysis.

Current research on maritime traffic pattern analysis based on AIS trajectory data
has made significant progress, covering multiple downstream directions such as density
analysis, trajectory clustering, and anomaly detection. However, existing studies have not
fully explored the spatiotemporal correlations in trajectory data, particularly the potential
role of temporal features in the analysis of spatiotemporal density aggregation. This study
places greater emphasis on modeling spatiotemporal correlations to enhance the accuracy
and practicality of traffic pattern analysis.

2.2. Problem Analysis and Contributions

In summary, despite the abundance of literature on maritime traffic density or stud-
ies associated with it, there are still some issues with measuring maritime traffic density.
Amidst the data explosion, trajectory data often contain noise, missing information, and
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deviations from typical movement patterns. These factors compromise the accuracy, com-
pleteness, and continuity of vessel trajectory data, consequently exerting a negative impact
on the study of maritime traffic density patterns.

In terms of model computation, current calculations of density on dynamic trajectories
may suffer from inadequate precision. Some methods rely solely on the number of trajectory
points and the area of the region to estimate density, thus ignoring the temporal attributes
of vessel trajectories and the dynamic spatial distribution of trajectories. This also includes
the failure to consider factors such as anchoring, berthing, or brief stops during vessel
movement, resulting in an increased number of data points in trajectory records and
consequently leading to inaccuracies in maritime traffic density calculations.

In the realm of spatial geographic data integration, few studies have incorporated
spatial geographic information computation into the knowledge mining of maritime traffic
patterns. There are distinct differences in traffic characteristics between open waters and
port waters. Integrating spatial geographic data into traffic density measurement provides
a novel modeling foundation for capturing local characteristics and density aggregation
patterns of maritime traffic.

As we all know, trajectory data of vessel movements are closely linked with time.
Analyzing density based on vessel trajectories during navigation can reflect the dynamic
aggregation characteristics of maritime traffic. The main framework of this study is shown
in Figure 1, and the contributions mainly include the following:

• A novel dynamic trajectory temporal density measurement model. By establishing
a geographic spatial mapping of maritime traffic data and analyzing the temporal
characteristics of trajectories, this study reveals dynamic vessel traffic aggregation
patterns and quantifies spatiotemporal density.

• An effective method is devised for spatiotemporal segmentation and sub-trajectory
reconstruction of vessel trajectory, addressing berth points, anchorage points, and
various potential causes of spatiotemporal interruptions within moving trajectories to
ensure the independence, integrity, and dynamism of trajectory sequences.

• A novel trajectory smoothing and filtering algorithm utilizing the time window pan-
ning method is introduced, primarily focusing on mitigating position jumping and
deviation errors within time-continuous trajectory sequences.
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3. Methods
3.1. Data Preparation

Any data-based research has high requirements for the quality of data. AIS as a
shipborne broadcast response system can provide a database for analyzing traffic activities
in port and coastal waters. With the development of data storage technology, it has
become possible to establish a regionalized and easy-to-access storage solution for the
trajectory data of waterborne vessels. However, the AIS data stored in the database are
raw data based on the receiver, and there are different types of problems in the temporal
and spatial dimensions due to various reasons. In order to build a dynamic trajectory
dataset, it is necessary to effectively process the moving trajectory data, including short-
term mooring, anchoring, and spatiotemporal interruption caused by various factors. This
section focuses on the removal of trajectory anomalies and noise points, the spatiotemporal
segmentation and reconstruction of trajectories, as well as time window panning-based
trajectory smoothing and filtering.

3.1.1. Vessel Trajectory Data Preprocessing

Due to various factors such as communication interference, inherent equipment prob-
lems, and human errors, AIS trajectory data suffer from issues related to physical integrity,
spatial logical integrity, and temporal accuracy [25]. Transmission signal missing or drifting
can result in localized data gaps within AIS trajectory sequences. Spatial logical integrity
issues may arise from the following: (i) Due to random errors in longitude or latitude,
the actual trajectory may spatially deviate from the logical positions expected from vessel
motion characteristics, as depicted in Figure 2(1). (ii) The AIS devices installed on vessels
are susceptible to vibrations from the ship itself or other external disturbances, leading
to anomalous phenomena such as point jumps in trajectory data, as shown in Figure 2(2).
(iii) The AIS trajectories of vessels should exhibit temporal continuity and positional se-
quence correlation under the same spatiotemporal conditions. However, data may be
constrained by various factors, leading to the loss of consecutive data points within the
same trajectory, resulting in unrelated trajectory sequences, as depicted in Figure 2(3).

To address the aberrations identified in the aforementioned trajectory data, this study
implements a systematic preprocessing approach. Considering the irregular settings of
AIS devices and the presence of fixed AIS devices at sea, which often have identification
codes that do not comply with maritime mobile service identity (MMSI) coding standards
(e.g., 0, 888888888, or 123456789), it is necessary to remove data entries with such erro-
neous identification codes from the dataset. Each trajectory sequence contains interrelated
dynamic and static information. For trajectories affected by the scenarios described in
(i), where the presence of random errors in any field would impact subsequent research,
this approach involves directly removing these trajectories to ensure the completeness of
trajectory dimensions. For trajectories that exhibit the anomalies described in (ii), this study
introduces an effective time window smoothing and filtering algorithm in Section 3.2 below
for rectification. If trajectory data exhibit scenario (iii), it is typically due to signal loss
during transmission, resulting in separated trajectory segments associated with the same
identification number. To ensure that each trajectory in the constructed trajectory dataset
exhibits independence, continuity, and dynamism, this study proposes a novel method
for spatiotemporal trajectory segmentation or sub-trajectory reconstruction to address
these issues.
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3.1.2. Trajectory Spatiotemporal Segmentation and Reconstruction of Sub-Trajectory

During the computation of dynamic vessel trajectory density, the temporal attribute
plays a crucial role as a feature dimension. However, the decoded AIS data are stored in
tabular form, with MMSI serving as the index. Consequently, when accessing specific tra-
jectory entries, interrupted trajectories cannot be distinctly differentiated. Therefore, even
after preprocessing, each trajectory still needs to be evaluated for spatiotemporal continuity.
In addition to the local breaks outlined in Section 3.1.1 (iii), several other factors could
cause interruptions in a sequence of vessel trajectories. Firstly, vessels with unique MMSI
may repeatedly traverse fixed geographical boundaries over prolonged data collection or
experimental periods, resulting in the segmentation of a continuous trajectory into multiple
fragments. Secondly, the engineering vessel may undergo berthing at offshore platforms or
brief periods of drifting, resulting in an increase in the number of position points in the
localized area of the trajectory data corresponding to the MMSI. Measuring vessel density
solely based on the number of AIS points using traditional statistical methods would yield
inaccurate results. Therefore, it is necessary to conduct spatiotemporal discrimination and
segmentation at the stop points in the trajectory intervals.

Since this study focuses on the research of dynamic traffic density aggregation patterns,
it is important to construct a comprehensive dataset of vessel dynamic state trajectories.
Therefore, addressing sequences of stop points within the trajectory is imperative. The
reasons for the occurrence of stay track point sequences during a ship’s journey at sea



J. Mar. Sci. Eng. 2025, 13, 381 7 of 25

include but are not limited to transshipment between land and sea facilities, short-term
stops due to vessel malfunctions, accidents, and other factors. Unlike the phenomenon
of stoppage of moving objects on land, different causes at sea produce different stay
trajectories. Figure 3 illustrates two types of trajectory point sequences that may occur
during a vessel’s voyage at sea. In Figure 3a, the stop point pk

i indicates a static period
that may exceed a time threshold, often occurring during vessel emergencies. Another
scenario, as depicted in Figure 3b, shows the stop sequence points pk

i · · · pk
j , where the vessel

stays due to a special event during navigation while the AIS equipment remains working,
resulting in the generation of multiple trajectory sequence points within a small range. To
address the potential occurrence of the aforementioned stop phenomena in trajectories, stop
point detection algorithms can be applied for identification [26–28]. Applying this method
effectively removes stop point sequences from trajectories, thereby ensuring the retention
of trajectory sequences that depict the dynamic nature of vessel navigation. However, it
may also introduce new trajectory interruption phenomena.
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To address the trajectory interruption phenomena caused by the aforementioned rea-
sons, this study proposes an effective algorithm for spatiotemporal trajectory segmentation
and sub-trajectory reconstruction. By segmenting or reconstructing trajectories based on the
spatiotemporal characteristics at the interruption points, this approach ensures that each
data sequence maintains the continuity and independence of spatiotemporal trajectories
during vessel motion.

A trajectory sequence dataset D =
{

Pk; (k = 1, 2, . . . , N) | P ∈ Θ
}

is established based
on the identification number MMSI, where Θ denotes the region of vessel trajectories, and
Pk represents trajectory sequences of different MMSIs. For any trajectory segment, it
can be represented as Pk =

{
pk

1, pk
2, . . . , pk

τ , pk
τ+1, . . . , pk

T ; τ = 1, . . . , T
}

, where Pk denotes

the spatiotemporal information of trajectory points, and pk
τ includes the spatiotemporal

attributes p = {ti, xi, yi, vi, ci; (i = 1, 2 · · · , n)}, representing the longitude, latitude, speed,
and course of the trajectory points at time ti.

It is worth emphasizing that the decision to segment trajectories with the same MMSI
primarily relies on the spatiotemporal correlation between points in the trajectory sequence.
This study proposes logical operation discrimination rules defined by Equation (1) to
segment or reconstruct trajectories, where ‘seg’ equals one, indicating the necessity for
trajectory segmentation.

seg =


1,⇐

(δt ≥ Tth2) ∩ (δd > 0) (1a)

(Tth1 ≤ δt < Tth2) ∩ (δd > Dth) (1b)

0,⇐

(Tth1 ≤ δt < Tth2) ∩ (δd < Dth) (1c)

(δt < Tth1) ∩ (δd > 0) (1d)

(1)
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where δt represents the time difference between adjacent trajectory points, and δd represents
the distance difference. The parameter Tth signifies the time threshold, while Dth represents
the distance threshold. In this study, the threshold Tth1 is determined according to the
message transmission interval of 3 min when the vessel is anchored [29]. The threshold Tth2

is determined based on the minimum time required for anchoring or mooring operations
of a vessel. It is usually taken as the minimum empirical time required for the vessel to
anchor or moor under the operation of the crew [30,31].

When the time span of the vessel trajectory dataset is long, the same vessel may re-
enter the geographical area. In such instances, trajectory segmentation can be conducted
using Equation (1a), and the resulting sub-trajectory segments should be considered as
different voyages of the same vessel. If there is a period of signal loss in the trajectory
sequence during which the vessel travels a significant spatial distance, the trajectory should
be segmented according to Equation (1b) to ensure the continuity of the resulting trajectory
sub-segments. For cases where there are stay points or stay sequences in the trajectory as
shown in Figure 3, if the time difference and distance difference between adjacent trajectory
points do not exceed the threshold, the logical discrimination described in Equation (1c)
can be applied. In situation (a) of Figure 3, interpolation can be used to ensure the integrity
of the trajectory. In situation (b) of Figure 3, after removing the stay point sequence, the
average replacement point within the area can be calculated based on the points of the
stay sequence. The attribute values of the average replacement points are derived from
the average of the stay point sequence within the area. Otherwise, segmentation can be
performed according to Equation (1a) or Equation (1b). The decision block diagram of the
trajectory interval spatiotemporal correlation processing algorithm is shown in Figure 4.

3.2. Time Window Panning Filtering and Smoothing for Vessel Trajectory

Due to potential vessel vibrations or other signal interference during the transmission
of AIS data, trajectory data may exhibit irregularities such as jagged, oscillatory, or jud-
dering point distributions within a continuous time series, which do not conform to the
expected trajectory characteristics of vessel motion. An example of this phenomenon is
illustrated in the local trajectory segment indicated by the red arrows within the dashed
box in Figure 5a, showing jagged, fluctuating, or jumping trajectory point distributions.
To ensure that each trajectory or sub-trajectory accurately represents the true hydrody-
namic motion state of the vessel, this study introduces a novel time window panning
trajectory smoothing filter method. This method is designed to mitigate such issues
by filtering and smoothing all trajectory datasets. A vessel trajectory is a time-series
dataset that can capture changes in various characteristic states of the object based on
its temporal dimension. Parameters such as position, speed, and heading are inherently
dependent on temporal indexing. Consequently, following preprocessing steps includ-
ing stay segmentation and trajectory reconstruction, the subsequent application of time
window trajectory smoothing and filtering necessitates the establishment of a trajectory
dataset based on vessel identification numbers. Here, D =

{
Pk; (k = 1, 2, · · · , N)

∣∣∣P ∈ Θ
}

denotes the trajectory dataset, Θ represents the spatial domain of vessel trajectories,
Pk =

{
pk

1 pk
2 · · · pk

τ pk
τ+1 · · · pk

T ; (τ = 1, · · · , T)
}

signifies the trajectory sequences associated
with different MMSI, and p = {ti, xi, yi, vi, ci; (i = 1, 2 · · · , n)} encapsulates the temporal
attributes of longitude, latitude, speed, and course at a given time ti.
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The smoothing operation on trajectories requires algorithm design with a reference to
the temporal dimension. When conducting trajectory smoothing, the first step involves
establishing a time window. Within this time window, a time reference point is selected,
sequentially corresponding to the order of time points in the window. A kernel function is
then constructed by calculating the difference between the time within the window and
the time reference point. This kernel function is applied to smooth the trajectory features
corresponding to the traversed time. By panning the time window, the entire trajectory
point feature data undergo filtering, gradually achieving the operation of smoothing
and filtering for the entire trajectory segment. The moving step of the time window
corresponds to the time interval between data points. When determining the size of the
time window, considerations encompass the AIS transmission frequency and the sampling
interval required by the model. In this study, the time window size is set to 60 s [32].
For the smoothing of continuous adjacent trajectory points, Gaussian kernel functions
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are utilized to operate on the trajectory feature data within the window, as depicted in
Equations (2) and (3). {

δT = tpi − tr

ξ(t) = 1√
2π·∆tw

· e−
δT

2∆tw
(2)


loni

s = ξi(t) · Pk
∆t
[
loni

o
]

lati
s = ξi(t) · Pk

∆t
[
lati

o
]

sogi
s = ξi(t) · Pk

∆t
[
sogi

o
] (3)

where ∆tw represents the size of the time window, tpi denotes the time of the i point,
while tr represents the reference time within the window. Pk

∆t represents the original
trajectory sequence, while loni

o, lati
o, and sogi

o represent the longitude, latitude, and speed
of the trajectory point, respectively, within the time window. As illustrated in the local
geographical area within the dashed box in Figure 5b, the trajectory data points exhibit a
more uniform distribution after undergoing time window panning filtering and smoothing.
In comparison to the original trajectory, the smoothed trajectory aligns more closely with
the path of the object’s motion, thereby effectively correcting deviations from the actual
vessel trajectory.

3.3. Modeling and Definitions
3.3.1. Dynamic Trajectory Density Modeling

Most existing studies on maritime traffic density lack the dynamic and static data
discrimination of trajectory sequences and ignore the temporal characteristics of trajecto-
ries. Consequently, it is unable to accurately characterize the spatiotemporal aggregation
patterns of maritime traffic dynamics within geographic space.

The concept of vessel density serves as a metric to quantify the degree of ship con-
centration within marine areas. Definitions of ship density vary slightly across different
literature sources. Generally, ship density refers to the count of vessels per unit area or
length within a specified waterway or marine water. For instance, Wu and Zhu [33] defined
ship density as the number of vessels present within a unit area of water at a given moment.
Similar to studies conducted by [34], Dai et al. [35] have investigated ship density computa-
tion, primarily relying on the statistical analysis of AIS position points within geographical
regions. Meanwhile, Liu et al. [21] proposed a ship density model based on radial functions
inspired by molecular dynamics, which assesses the probability distribution surrounding
stationary vessels. However, the model primarily focuses on micro-level analysis and does
not consider the dynamic attributes of vessel trajectories.

This section proposes a maritime traffic flow density measurement method based on
the travel time of vessel dynamic trajectories. By constructing a geographic grid within
marine spatial regions, this method utilizes the travel time of vessels crossing geographical
grid cells and considers the data transmission frequency under vessel navigation states.
Subsequently, it computes the traffic density of vessel dynamic trajectories. Since the grid
model is constructed based on geographic space, several scenarios may arise during the
process of mapping trajectories onto the geographic grid, as illustrated in Figure 6. Each
sub-grid within the geographic grid is assigned a unique identifier during construction.
Vessel trajectories are denoted as traj = {p1 p2 . . . pk pk+1 · · · pn}, where each trajectory
point is denoted as pi = (Id, ti, loni, lati, ci, si).
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If a trajectory contains a line segment pk pk+1 connecting adjacent points that pass
through the vertex of a grid cell, the trajectory segment formed by the two consecutive
points is split into two parts by the vertex. The sailing time of each part within the
corresponding grid cell is calculated proportionally to the length of the trajectory segment
and mapped to the respective sub-grid cells, as depicted in Figure 6a. If a position point pk

of a trajectory segment lies on the edge or vertex of a grid cell, the travel time of segment
pk pk+1 is directly attributed to the grid cell mapped by pk+1, as illustrated in Figure 6b. If
a position point pk of a trajectory segment lies within an independent grid cell, while the
adjacent point pk+1 lies on the edge or vertex of a grid, the travel time of segment pk pk+1

is calculated based on the grid cell mapped by the previous point pk, and a new traversal
calculation starts from pk+1, as shown in Figure 6c. In addition to the above scenarios, for
any vessel trajectory, the travel time can be calculated based on the length of trajectory
segments mapped by adjacent trajectory points in the geographic grid, as illustrated in
Figure 6d.

3.3.2. Defining Marine Area of Interest

The identification of the marine area of interest (MAOI) is a key step in the dynamic
trajectory temporal density study process. The MAOI in this study refers to the spatial inter-
section of the marine geographic waters, the area of busy maritime traffic that is manually
delineated, and the land geographic extent, as depicted in Figure 7a. The geographic marine
region vector data utilized in this study is sourced from the Flanders Marine Institute’s
website (https://www.marineregions.org/sources.php (accessed on 15 October 2024)),
which provides the latest marine area data for exclusive economic zones (EEZs) world-
wide [36]. However, the geographic layer of MAOI regions cannot be directly obtained from
the website. Additionally, within the manually defined geographic boundaries, multiple
adjacent exclusive economic zones of neighboring countries are involved, as shown in
Figure 7b. The manually established geographic area encompasses parts of the North Sea
of China, the northwest sea of North Korea, and the west sea of South Korea. Therefore, it
is necessary to separately extract vector data for each marine region into individual files.
Finally, the spatial geographic intersection operations are applied sequentially with the
manually set polygonal geographic region to obtain the MAOI for research purposes, as
illustrated in Figure 7c.

https://www.marineregions.org/sources.php
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3.3.3. Coordinate Transformation

In this study, during the computation of the temporal density of dynamic trajectories
mapped onto marine spatial geography, trajectory data, and geographical vector data are
subject to interactive computation. Specifically, when vessel trajectories traverse geographi-
cal grids, it is often necessary to calculate intersection coordinates on a two-dimensional
plane. To improve computational accuracy and facilitate the visual comparison of exper-
imental results, the geographical coordinates of trajectory data and geographical vector
data are converted into Mercator projection coordinates using Equation (4).

xN = k ln
[

tg
(

π
4 + B

2

)
∗
(

1−e sin B
1+e sin B

) e
2
]

yE = k(L − L0)

k = NB0 ∗ cos(B0) =
a2/b√

1+e′2∗cos2(B0)
∗ cos(B0)

(4)

where (B, L) represents geographical latitude and longitude, respectively, while (xN , yE)

represents the projected vertical and horizontal coordinates. L0 denotes the origin longitude,
B0 denotes the standard latitude, N denotes the radius of curvature in the prime vertical, a
denotes the semi-major axis of the ellipsoid, b denotes the semi-minor axis of the ellipsoid,
e denotes the first eccentricity, and e′ denotes the second eccentricity.

3.4. Dynamic Trajectory Compression

Typically, the analysis of maritime traffic flow density is conducted over a specific time
period. During this period, the volume of vessel trajectory data increases exponentially due to
the operational characteristics of AIS devices. This poses significant challenges to traditional
methods, which rely on statistical analysis of vessel position points to assess maritime traffic
density. If vessel trajectory data are compressed before density measurement, it becomes
evident that traditional density measurement methods based on position points are not
applicable, and accuracy cannot be guaranteed. However, in this study, even after trajectory
data compression, traffic density measurement can still be achieved. This is because the
calculation of vessel density in this study is based on the temporal attributes of dynamic
trajectories. Therefore, the trajectory density calculation model constructed in this study
enables the analysis and measurement of traffic density even with a reduced data volume.

3.4.1. DP Compression

The Douglas–Peucker algorithm [37] is a classical compression method, known for its
ease of implementation, high efficiency in simplification, and favorable compression outcomes.
Moreover, when the threshold is properly set, it achieves a high compression ratio. When
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applying the DP algorithm to compress trajectories, selecting an appropriate threshold can
effectively preserve both the overall and local features of the original trajectory without
generating redundant points. As depicted in Figure 8, the compression principle of the DP
algorithm is illustrated. Any vessel trajectory is represented as traj = {p1p2 . . . pk pk+1 · · · pn}.
Initially, the anchor point (starting point) and floating point (ending point) of the trajectory
are selected, forming a straight line segment Ltrp1→pn as the initial baseline, with a distance
threshold set at ε > 0. Subsequently, the perpendicular distance between any point pk in
the interval trajectory sequence of anchor and floating points and its projection onto the line
segment Ltrp1→pn is computed. The maximum distance value dpk among these perpendicular
distances is then selected. If dpk > ε, the trajectory point corresponding to the maximum
perpendicular distance is retained, thereby dividing the original trajectory into two sub-
trajectory segments, Ltrp1→pk and Ltrpk→pn , with the floating point of Ltrp1→pk and the anchor
point of Ltrpk→pn being designated accordingly. Conversely, if dpk < ε, all points between the
anchor and floating points are discarded, retaining only the first and last points. This process
is iteratively repeated on each sub-trajectory segment until the distance of all points from the
baseline is less than ε, at which point the compression process halts.
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After the data processing described in Section 3.1, each trajectory datum in the dataset
is identified by MMSI and represents a complete and independent voyage trajectory se-
quence. The application of the DP algorithm to compress the dataset aims to reduce the
size of the trajectory dataset while preserving its characteristics [38]. Moreover, it en-
ables the measurement of maritime traffic density using compressed trajectory data [39].
When applying compression algorithms to trajectories, the influence of threshold values
on compression effectiveness is a key consideration. A larger threshold results in fewer
remaining trajectory points after compression, thus retaining less valuable information [40].
To preserve key feature points of trajectory sequences while balancing the effectiveness
of trajectory compression with the accuracy of dynamic trajectory density measurement,
this study analyzes changes in compression ratio during compression and computes the
average compression error, as depicted in Figure 9.
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3.4.2. Related Indicators Definitions

(a) Compression ratio. The trajectory compression ratio (TCR) indicates the rate of
discarded trajectory points after compression to the total number of trajectory points before
compression. The compression ratio for a single trajectory can be denoted as TCR; TCR is
calculated according to Equation (5).

TCR = (nTr − mTr′) · 100%/nTr (5)

where nTr denotes the number of trajectory points in the original trajectory, while nTr

represents the number of trajectory points after compression.
(b) Average compression error. The average compression error (ACE) serves as a

metric for assessing compression effectiveness. It refers to the cumulative sum of dis-
tances from the discarded points to their respective baselines upon each threshold up-
date during the compression process, ultimately divided by the total number of tra-
jectory points. pi = {ti, xi, yi; (i = 1, 2 · · · , n)} represents points in the original trajec-
tory Tr, pj =

{
tj, xj, yj(j = 1, 2 · · · , m)

}
denotes points in the compressed trajectory Tr′,

qk = {tk, xk, yk; (k = 1, 2 · · · , n − m)} signifies the sequence of points discarded during
compression, and ACE is calculated according to Equation (6).

ACE =
1
n

m−1

∑
g=1

n−m

∑
k=1

fdis(qk, lTr′
g ), 1 < g ≤ m − 1 (6)

where the function f (a, L) represents the perpendicular Euclidean distance from point a to
line L, and lTr′

g denotes the line segment between adjacent points in the compressed trajectory.
Additionally, unless otherwise specified, in this study, the term compression ratio

refers to TCR, while average compression error refers to ACE.

3.4.3. Determination of Compression Threshold

Based on the definitions of compression ratio and average compression error metrics,
this study applies the DP algorithm to a complete and independent dynamic trajectory
within the MAOI and conducts an analysis of compression ratio and compression error.
As shown in Figure 9a, an increase in the distance threshold leads to a gradual rise in the
compression ratio but plateaus when the compression rate reaches 0.95. Simultaneously,
with the increase in compression ratio, the average compression error also increases. When
the compression ratio reaches 0.95, the average compression error sharply increases, as
illustrated in Figure 9b. It is evident that further increasing the compression distance
threshold would lead to the loss of essential trajectory features.

Dynamic trajectories may reflect significant spatiotemporal characteristics due to
the geographical constraints on traffic flow distribution, such as large-angle steering and
crossing routing systems. This section analyzes the compression effects on three selected
trajectories. These trajectories cover the journey from the open sea to inland waters and
then to the vicinity of ports, as well as the voyage from ports to the open sea. The DP
compression was applied to each trajectory using a distance threshold corresponding to
a 95% compression rate. Figure 10a displays scatter plots of three trajectories before and
after compression, depicted using Mercator projection coordinates. In the plots, blue dots
represent original dynamic trajectory points, while red hollow dots denote retained points
after compression. As depicted in Figure 10b, the compressed trajectories preserve the
primary characteristic points of the original trajectories.
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To determine the appropriate threshold, the preservation of key feature points in the
compressed dynamic trajectories is examined. Here, the compressed trajectories are plotted
on electronic navigational charts based on the WGS84 coordinate system, incorporating
information such as positions and headings, as depicted in Figure 10b. From Figure 10b, it
is evident that critical trajectory feature points, including turning areas, caution areas, and
traffic lanes, are preserved within the vessel trajectories entering and leaving the inland sea.
Therefore, considering the objectives of this study and taking into account the comparative
results of threshold determination in the literature [41,42], along with the analysis and
experimentation of compression indicators in this section, the compression thresholds in
the dynamic trajectory compression process in this study are determined based on distance
thresholds corresponding to a compression ratio of 95%.

3.5. Similarity Analysis Based on Kernel Density Estimation

To validate the feasibility of the proposed model, this section applies kernel density
estimation (KDE) to analyze the computation results of traffic temporal density in the
dynamic trajectory density model. KDE is a non-parametric statistical method used to
estimate probability density functions. This method is applicable when it is not possible
to assume a specific distribution for the given set of samples. The objective of KDE is to
derive a probability density estimate at each data point by employing a kernel density
function centered around it. The strengths of KDE include its robust handling of uncertainty
pertaining to data distribution, its elimination of the necessity to presuppose a particular
form of data distribution, and its applicability to multidimensional datasets. For a given
dataset, the formula for KDE can be expressed as the weighted sum of kernel functions
at each data point. Specifically, for a sample set {x1, x2, . . . , xn} consisting of n observed
values, the KDE function f̂ (x) can be represented as Equation (7):

f̂ (x) =
1

n · h∑n
i=1 K(

x − xi
h

) (7)

where h represent bandwidth parameter, n is the number of samples, and K(·) represents
kernel function

In practical applications, Kullback–Leibler (KL) divergence is commonly used for
model comparison and probability distribution fitting. It serves as a measure to gauge
the disparity between the two models if there exist two discrete probability distributions
P and Q. When utilizing the probability distribution Q to approximate the probability
distribution P, there is an inevitable loss of information due to the disparity between the
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two distributions, and KL divergence quantifies this loss of information. The zero value
indicates identical distributions with no information loss. Conversely, larger KL divergence
values indicate greater differences between the two distributions, reflecting increased
information loss. Smaller KL divergence values imply minor discrepancies between the
distributions, resulting in less information loss and a greater degree of similarity between
them. The KL divergence between the two kernel density estimates is defined in accordance
with Equation (8):

DKL(Po ∥ Qc) = ∑x po(x) log
(

po(x)
qc(x)

)
(8)

where po(x) and qc(x) represent two probability density functions, while x represents the
density value of the random variable.

4. Case Study and Experimental Comparison
4.1. Dynamic Trajectory Temporal Density Calculation and Spatiotemporal Pattern Analysis

Traditional methods for calculating traffic density rely on counting the number of
trajectory points within a region in a discrete manner, utilizing only the spatial attributes of
the trajectories. Consequently, data generated by behaviors such as anchoring, berthing,
and short stops are treated as noise or redundant data, which imposes limitations on the
study of dynamic traffic density patterns using these conventional methods.

In Sections 3.1 and 3.2, this study effectively addresses the noise and redundant data
in the trajectories, resulting in a dataset of complete and independent trajectory sequences.
The model is based on the temporal attributes of the trajectories, computing the cumulative
travel time of vessels in the navigational state within geographic grid cells. Therefore,
this study explores the dynamic spatiotemporal density of maritime traffic. This dynamic
temporal density intuitively reveals the distribution of potential spatiotemporal traffic
patterns within the geographic space, including main routes and various branches. When
quantifying vessel density, the expected number of vessels in a geographic area over a
given period can be calculated by considering the AIS data sampling frequency.

4.1.1. Grid Construction in Geographic Space

It is necessary to construct a grid for the geographical space. The size of the geo-
graphical grid is determined by considering factors such as the distribution range of the
geographical space, the broadcast frequency of AIS, and the average time and distance
between adjacent trajectory points. Geographical grids within marine spatial regions are
uniformly constructed with the boundaries of the MAOI serving as the delineating limits.
Since maritime traffic flow is confined to marine waters, it is crucial to exclude geographical
grids outside the marine domain. By constructing grids within the boundary range of
the geographical space, it performs an intersection operation between the grid data and
the MAOI vector layer data generated earlier in the text. This operation yields the grid
data layer within the MAOI geographical region, as illustrated in Figure 11a. In order to
fully cover the vessel traffic data in the geographic marine space, when processing the
intersection of the MAOI geographic data layer and the grid data layer, the entire cell at
the edges in the grid vector data intersecting with the MAOI is preserved, as illustrated in
Figure 11b.
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Furthermore, when constructing the geographical space grid, this study divides the
geographical space using the WGS84 geographic coordinate system as a reference to ensure
navigational universality. The constructed geographical space grid vector data are stored
in the form of point coordinate data for each grid unit. Since the calculation of dynamic
density requires solving for the intersection points between trajectory segments and grid
cell edges, both the trajectory data of maritime vessel traffic and the geographical grid
vector point data constructed in this section are transformed into Mercator coordinate data
format according to Equation (4) to enhance the accuracy of the computation.

4.1.2. Dynamic Temporal Density Calculation of Spatiotemporal Trajectory

Within trajectory sequences, each trajectory point contains multiple attributes such
as position, time, speed, and course. By calculating the distance and duration between
consecutive trajectory points, one can determine the distance covered and the duration of
travel for each vessel within geographical grid units during a certain period. In addition,
the method constructed in this study to measure the distribution of ship traffic density
based on the spatial and temporal characteristics of the trajectories can also be utilized to
recalculate the density after trajectory compression. This approach enables the exploration
of traffic flow density distribution patterns while reducing the volume of data.

When a trajectory is compressed, resulting in a reduction in the sequence of trajectory
points and an increase in the number of micro-trajectory segments with larger time intervals
between adjacent points, a situation arises where the continuous line connecting trajectory
points passes through two or more geographical grid units when mapped onto the geo-
graphical space. In such cases, it becomes necessary to perform intersection operations on
the projection plane. The line connecting two trajectory points intersects successively with
the edges of the geographical grid units it traverses. By calculating these intersections on
the projection plane, the intersection points, along with the trajectory points at both ends,
can be used to determine the sailing distance and time of each trajectory segment within
the associated geographical space grid.

For each spatial grid cell in geographical space, spatial distance values are derived
from the lengths of trajectory segments within each grid cell traversed by trajectories, thus
allowing for the computation of temporal values. Similarly, cumulative distance values
of vessel traffic flow crossing geographical area grids within a given time period can be
computed for each subdivided sub-grid. This enables the determination of the dynamic
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trajectory temporal density values of the geographical region. A notable feature of this
study is that it no longer measures traffic density by counting the number of trajectory
points. Instead, travel time is quantified based on the actual navigational distances cov-
ered by consecutive trajectory points. Additionally, the method established in this study,
which measures the density distribution of vessel traffic based on the spatiotemporal
characteristics of trajectories, also enables the recalculation of density after trajectory com-
pression. This approach facilitates the exploration of traffic density distribution patterns
while reducing data volume.

As depicted in Figure 12, utilizing vessel trajectories in the navigational state within a
one-week timeframe as the dataset, this study applies the model to measure the density
of maritime traffic flow in the Bohai and Yellow Seas of China. Figure 12a illustrates the
effectiveness of applying the density model to compute the density of dynamic trajectories
in the navigational state, while Figure 12b depicts the effect of applying the same model
to trajectories compressed using the DP algorithm. From Figure 12a, it is evident that
the application of the temporal density model effectively captures the distribution of
maritime traffic density patterns and clearly delineates spatial variations in density within
the geographical space. Additionally, it is worth noting that applying the density analysis
model proposed in this study to measure compressed vessel trajectories in a dynamic
navigational state can similarly reflect the distribution patterns and density discrepancies
of maritime traffic. Moreover, it can provide a clearer depiction of the spatial orientations of
main routes, feeder routes within the region, and the concentration of traffic route densities,
as shown in Figure 12b.
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4.2. Effectiveness Analysis of Trajectory Temporal Density

After applying DP compression to vessel trajectories, this study utilizes the density
model to analyze the temporal density distributions of traffic flow within marine waters.
To evaluate the impact of the compression algorithm on the effectiveness of the dynamic
trajectory temporal density model in measuring maritime traffic density, this section em-
ploys kernel density estimation to analyze the temporal density of traffic trajectories before
and after compression, following the methodology described in Section 3.5. Furthermore,
this section employs KL divergence to analyze the similarity of KDE curves, thereby further
validating the robustness and effectiveness of the temporal density model in measuring
traffic flow density in this study.
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KL divergence is a method used to measure the difference between two probability
distributions, calculating the relative entropy from one distribution to another. In this sec-
tion, the temporal density probability distribution of uncompressed dynamic navigational
trajectory data are defined as P, and that of the compressed dynamic navigational trajectory
data are defined as Q. The similarity between the two temporal density distributions is
then analyzed using the KL divergence, as presented in Equation (8).

Figure 13 illustrates the probability kernel density estimation of vessel dynamic trajec-
tories within the MAOI region over a one-week period, corresponding to Figure 12. The
spatial grid scale is set to 0.02◦. To mitigate the impact of extremum on the overall data,
reduce skewness in the distribution, and decrease the variance of the data for statistical
analysis, a logarithmic transformation is applied to the density values calculated by the
model within the geographic space. The blue and red colors represent the probability
density estimation plots of compressed and uncompressed dynamic trajectory data, re-
spectively. It can be observed from Figure 13 that the probability kernel density plots,
derived from the density calculation model proposed in this study, exhibit similar shapes,
distributions, and peak positions for both types of trajectory data measurements. The steep
peak around zero signifies an abundance of zero and low-density values within the overall
distribution of density values, while the remaining data, excluding zeros, demonstrate
a trend toward a normal distribution. This suggests the existence of additional regions
with high-density data. The calculation of the KL divergence value for the kernel density
probability distributions of the two distinctively processed datasets yields merely 0.38.
This indicates a substantial resemblance between the probability distributions of temporal
density before and after trajectory compression. Such findings underscore the efficacy of
employing the trajectory dynamic temporal density model proposed herein for analyzing
traffic pattern distributions in compressed trajectories.
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4.3. Comparison of Trajectory Temporal Density at Different Spatial Scales

The spatial distribution characteristics exhibit significant heterogeneity across different
regions. Employing grids of varying scales can better reflect this spatial heterogeneity. Se-
lecting appropriate grid sizes is crucial to ensure the accuracy and reliability of the analysis
results. Geographic grids of different scales can offer varying spatial resolutions, whereas
larger-scale grids can provide a more macroscopic view of spatial information, suitable for
analyzing global trends in traffic density aggregation. On the other hand, smaller-scale
grids can offer more detailed spatial information, facilitating the exploration of local fea-
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tures. Naturally, larger-scale grid data entail lower computational loads, thereby enhancing
data processing and computational efficiency. Conversely, smaller-scale grids significantly
increase computational complexity but offer more detailed and refined spatial information.
Hence, striking a balance between data processing and computational efficiency is essential
when determining grid scale sizes.

By comparing the analytical results at different scales, a more comprehensive un-
derstanding of the characteristics of traffic flow density distribution can be attained.
Figure 14 illustrates the dynamic trajectory temporal density distribution computed using
grids of varying sizes. In this section, focusing on the spatial distribution of environmental
positions within the MAOI area, geographic spatial scales of 0.05◦, 0.02◦, and 0.01◦ are
employed to investigate the traffic flow characteristics within the region. Figure 14a,c,e
depict the temporal density traffic distribution maps of uncompressed dynamic vessel
trajectories, while Figure 14b,d,f represent the temporal density traffic distribution maps
after compression. As seen from the comparison of the subfigure in Figure 14, measuring
maritime traffic flow at a larger spatial resolution can only capture the coverage of trajecto-
ries and the predominant traffic patterns, as illustrated in Figure 14a,b. At a smaller spatial
resolution, not only can it reflect the distribution of traffic patterns, but it can also depict
the actual traffic flow branches within the MAOI. The deeper the shade of red, the higher
the frequency of vessel traffic passing through the geographic grid, indicating a longer
duration of occupancy in that geographical area. This also signifies a higher traffic density
in the corresponding geographical space, as illustrated in Figure 14c,d. When measuring
the dynamic density of maritime traffic in a given area at a spatial resolution of 0.01◦, it
becomes evident that the spatial distribution patterns of vessel traffic within the region are
clearly reproduced, with distinct contrasts in temporal density distribution. Particularly
noteworthy is the clear depiction of bidirectional tributary density aggregation within the
same main stream of vessel traffic. Additionally, high-density traffic patterns near ports are
accurately represented, as illustrated in Figure 14e,f.

Additionally, it is evident that the temporal density measurement, based on the original
dynamic trajectory as the data source, effectively illustrates the differential distribution of
maritime traffic modes across different spatial locations. This observation is made during
the process of setting up spatial resolution analyses at the three scales. Figure 15a–c depicts
the probability kernel density distribution curves of temporal density measurements for
traffic flow at spatial scales of 0.05◦, 0.02◦, and 0.01◦, respectively. The blue curves represent
the probability distribution curves of temporal density after compressed trajectories at
the same spatial scale, while the red curves represent the probability distribution curves
of temporal density for uncompressed dynamic trajectories. Correspondingly, the KL
divergence values are quite small, measuring 0.35, 0.38, and 0.07, respectively, indicating
a strong similarity between the two datasets. This also demonstrates that the dynamic
trajectory temporal density model proposed in this study can analyze the aggregation
patterns of maritime traffic states based on both original and compressed trajectories.

The dynamic trajectory density model proposed in this study aimed at mapping the
dynamic voyage time of vessels’ trajectories within the geographic space. Experimental
comparisons show that when applying the method of this study to analyze the traffic
patterns in the inland sea waters, setting the spatial scale of 0.05◦ only can find the main
routes, which cannot detect the local branching patterns. By adjusting the spatial scale
of 0.02◦, a clear detection of branching traffic patterns and a balance of computational
efficiency can be achieved. When the scale is set to 0.01◦, it would increase the cost of
computation considerably, and a small spatial scale is generally not chosen except for the
application of detecting a limited region. In addition, while applying the compressed
trajectories from the same source data, the method proposed in this study is still able to
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detect the traffic temporal density pattern distribution, which provides an effective method
for the trouble caused by a large amount of data.
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5. Conclusions
This study constructs a temporal density model in busy maritime traffic areas. First,

the preprocessing operation extracts motion data under the navigation state by removing
redundant points such as anchoring and mooring, forming a dynamic trajectory dataset of
busy maritime traffic. To ensure each trajectory forms an independent and continuous voy-
age data sequence, a spatiotemporal segmentation and reconstruction method is proposed,
effectively resolving spatiotemporal discontinuities caused by various factors. Second, the
designed time window panning trajectory filtering method addresses point jumps and
deviations in trajectory data, effectively ensuring temporal continuity while aligning spatial
distribution with vessel movement characteristics. This study defines MAOI based on the
distribution of busy traffic watersheds with predefined areas, and after vectorizing the
MAOI, maps the trajectories onto a gridded representation. Finally, the dynamic trajectory
temporal density model integrates the geographical spatial distribution of ship trajectories
with their temporal attributes as characteristic criteria, effectively capturing spatiotemporal
distribution patterns and identifying spatial density aggregations in maritime traffic. Ad-
ditionally, the proposed model can effectively identify dynamic trajectory traffic patterns
after the application of compression algorithms, offering a new approach to studying the
spatiotemporal aggregation of maritime traffic in the era of big data.

6. Discussion and Future Work
In this study, the spatiotemporal segmentation and reconstruction method in

Section 3.1 is essential for reducing the impact of redundant data on dynamic trajectory
temporal density calculations. The time window panning trajectory filtering method in
Section 3.2 effectively mitigates errors such as trajectory jumps and deviations, preserving
the spatiotemporal coherence of vessel movements. However, it does not fully address
the limitations arising from inaccuracies in raw data positioning. By mapping the tempo-
ral characteristics of movement trajectories onto geographic space, this study enhances
spatiotemporal association compared to traditional density measurement approaches. How-
ever, it does not establish a standardized comparative metric. Future research will focus
on time-phase division, spatial scale optimization, and the establishment of metric-based
variations to analyze maritime traffic density in marine areas of interest.
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