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Abstract
Numerous design optimization methodologies and reliability analysis techniques have been
developed to address aleatory and epistemic uncertainties in engineering system design.
Aleatory uncertainty is modeled by statistical distributions, while epistemic uncertainty
becomes an alternative in cases where data is sparse and cannot be fully captured statistically.
Possibility and evidence theories are computationally efficient and robust for quantifying
epistemic uncertainty in reliability analysis and design optimization. This paper provides a
comprehensive analysis of existing methodologies, challenges, and opportunities in managing
uncertainty in engineering systems. Additionally, the concepts and practical applications of
possibility and evidence theories are reviewed. Potential future research directions are outlined
ultimately. This paper provides the sector with a clear understanding of possibility theory and
evidence theory and their developments.

Keywords: possibility theory, evidence theory, uncertainty, reliability, design optimization

1. Introduction

Uncertainty is one of concerns in engineering design [1].
Engineering practices are subject to multiple uncertainties
across spatial scales, temporal scales, and design stages [2].
Addressing these uncertainties is crucial for the effectiveness
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of engineering design activities [3]. Aiming at enhancing the
understanding (classifications, theories, and design consid-
erations) related to uncertainty, a comprehensive review of
approaches for addressing epistemic uncertainty is performed
in this paper, with an emphasis on their application in reliab-
ility analysis and design practices [4].

Several terms have been defined to describe uncertainty,
including indeterminacy, unpredictability, variability, irregu-
larity, arbitrariness, vagueness, randomness, variability, and
chance. Uncertainty is always associated with phenomena
that is doubtful, problematic, and indefinite [5]. It is also
connected to the confidence degree when a particular pro-
position or dataset is valid [6, 7]. Based on the existing
definitions, Zimmermann provided a comprehensive definition
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Figure 1. A classification of uncertainty.

‘Uncertainty refers to a situation in which an individual lacks
sufficient information, both quantitatively and qualitatively, to
accurately describe, prescribe, or predict a system, its beha-
vior, or other characteristics deterministically and numeric-
ally’ [8].

Uncertainty can be classified into irreducible uncertainty
(known as random uncertainty or aleatory uncertainty) and
reducible uncertainty (known as epistemic uncertainty). The
former arises from fundamental physical laws and cannot be
completely removed. For instance, even under strict manu-
facturing conditions, the same material may show variations
in their lifetime under identical environmental conditions and
stresses. In contrast, reducible uncertainty arises from lim-
ited knowledge and can be mitigated through additional data
collection, refined modeling methods, and enhanced measure-
ment techniques. For example, Kong et al [9] employed an
expert scoring method to address data scarcity and therefore
improve the accuracy of failure analysis in offshore systems.
Gan et al [10] constructed a knowledge graph to mitigate the
uncertainty of maritime traffic accident causation to provide
effective solution for accident analysis.

The distinct discrepancy between real system and simula-
tion system is defined as error and uncertainty quantification
models have been developed extensively to reduce the men-
tioned error [10, 11]. Probabilistic and possibilistic methods
have been successfully applied in uncertainty quantification
In engineering systems design [12, 13]. Random variables are
used to describe uncertainties involved in probabilisticmodels.
Probabilistic reliability methods are typically applied to sys-
tems with low to moderate complexity, whereas approaches
such as fuzzy set theory or probability theory are suited for
managing complex systems. On the other hand, according to
the nature of available information, uncertainty is classified
into conflict, non-specificity, and fuzziness. Conflict occurs
when there exists contradictory information that provided
by multiple data source. These data source provide different

evidence, making it struggles to make a correct decision.
Non-specificity arises when the available evidence supports
multiple possible possibilities rather than a single definitive
answer. Fuzziness occurs when the boundaries of a classi-
fication are not clearly defined, leading to subjective inter-
pretations. Another framework categorizes uncertainty into:
(i) metric uncertainty relating to variability and measure-
ment uncertainty in observed data; (ii) structural uncertainty
resulting from system complexity; (iii) temporal uncertainty
involving uncertainty about past and future states, and (iv)
translational uncertainty stemming from the interpretation
of uncertain results [14]. Besides, a two-state classification
framework defines uncertainty as ignorance and variability
[15]. Variability represents differences among individuals, as
well as spatial and temporal variations. It is inherent to a sys-
tem and cannot be reduced. Ignorance stems from a lack of
knowledge and can be reduced through improved measure-
ments. An extension of this model is the three-state classific-
ation, which includes variability, uncertainty, and error [16].
Notably, while ‘uncertainty’ is often used interchangeably
with random uncertainty, there is a clear distinction between
random uncertainty, epistemic uncertainty, and error [6], as
shown in figure 1.

Uncertainty mainly arises from insufficient and complex
information, contradictory evidence, ambiguity, measurement
errors and subjective beliefs [17, 18]. Specifically, includ-
ing (i) external parameters of systems (temperature, radi-
ation, etc); (ii) internal parameters of systems (material proper-
ties, etc); (iii) physical system modeling (conceptual or math-
ematical method); (iv) observational uncertainty; (v) uncer-
tainty in solving mathematical models, including numerical or
algorithmic errors; (vi) representation of digital solutions, (vii)
measurement data, and; (viii) human errors.

A wide range of theories have been proposed to model
uncertainties. Probability theory has been an effective tool
for modeling stochastic uncertainty when sufficient data are
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Figure 2. Families of uncertainty theories.

Table 1. Uncertainty measures [5].

Type Name Formula Notation

Classical
Hartley information I(N) = log2N N: cardinality of a crisp set;

pi: occurrence probability of
the ith (i = 1, 2, …, n) event;
U(Π): U-uncertainty of a
ranking Π;
A: fuzzy set;
X: total number of items;
C: fuzzy complement;
µA(x): membership function
of the fuzzy set A for element
x;
m: basic assignment;
F: set of focal elements;
Pl(A): plausibility (Pl) of
subset A;
Bel(A): belief (Bel) of subset
A;

Shannon entropy H(P) =−
n∑

i=1
pilog2pi

General U-uncertainty U(Π) =
n∑

i=1
(π i−π i+1) log2i

Vagueness Measure of fuzziness fC (A) = |X| −
∑
x∈X

|µA (x)−C(µA (x))|

Ambiguity
Measure of nonspecificity V(m) =

∑
A∈F

m(A) log2 |A|

Measure of dissonance E(m) =−
∑
A∈F

m(A) log2Pl(A)

Measure of confusion C(m) =−
∑
A∈F

m(A) log2Bel(A)

available. However, its reliance on additivity axioms makes
it less suitable for addressing epistemic uncertainty and redu-
cible error, particularly in scenarios with sparse data [19, 20].
Numerical approaches, including imprecise probability and
evidence, have been applied to address the above limitations
[21, 22], see figure 2. These approaches offer significant flex-
ibility to deal with the model-interdependency and uncertainty
[23].

Investigating specific measures for uncertainties is one of
the key aspects for uncertainty-related research [24]. These
measures correspond to different types of uncertainty, see
table 1. Neglecting uncertainty in design solutions can render
systems sensitive to input variations, resulting in performance
degradation or violation of critical design constraints [25–27].

Consequently, practical design under uncertainty has become
increasingly prevalent in engineering. To enable design optim-
ization, uncertainty properties and formalisms must be quanti-
fied. Real-world design or decision problems including uncer-
tainty can be modeled by various uncertainty frameworks. For
example, probability theory represents decision situations by
conflicting and exclusive belief degrees, whereas opportun-
ity theory describes them with nonspecific [28]. Each uncer-
tainty management method emphasizes a distinct paradigm:
(i) robust design aims to enhance product quality by redu-
cing the influence of input variations; and (ii) reliability-
based design aims to ensure the feasibility of a design under
specified reliability levels [29–32]. However, traditional prob-
abilistic analyses, which often overlook epistemic uncertainty,
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are criticized. Non-deterministic approaches provide powerful
tools for uncertainty modeling, they also pose challenges for
designers in selecting the most appropriate method.

This work aims to provide a comprehensive overview of
reliability and design optimization methods under uncertainty.
The rest of this paper is organized as follows. Section 2
presents the basic interpretations, advantages, and charac-
teristics of the possibility theory and the evidence theory.
Section 3 summarizes the applications of possibility theory
and evidence theory in engineering design. Section 4 describes
trends of these theories in engineering design, followed by
conclusions in section 5.

2. Theoretical foundations of possibility theory and
evidence theory

2.1. Possibility theory

Possibility theory, proposed by Zadeh in 1978, is one of the
three key components of fuzzy theory, alongside fuzzy set the-
ory and fuzzy logic [32]. In the case of ambiguous information,
possibility theory can be applied to model the potential ambi-
guity and uncertainty from information [33]. Early contribu-
tions preferred to transform the natural language into prob-
ability distribution based on fuzzy relationship. Mathematical
tools to model the fuzzy language and approximate reasoning
using possibility theory are proposed aims to extend and form-
alize a framework for expressing knowledge through fuzzy
propositions by natural language [34].

Notably, the possibility theory in fuzzy set shares the
similar mathematical expectation with probability theory,
which provides a subjective assessment based on the available
information. Probability theory is well-suited for modeling
random uncertainty by using precise probability distributions.
In contrast, Possibility theory is more appropriate for handling
epistemic uncertainty, where only partial or vague informa-
tion is available. Possibility theory provides a more flexible
and efficient framework for modeling such uncertainties [33].
For instance, Tang et al [27] integrated the possibility theory
into design optimization framework to develop a proposed a
possibility-based solution framework. Cai et al [35] developed
a possibility generalized labeled multi-Bernoulli filter for mul-
titarget tracking under epistemic uncertainty, in which the pos-
sibility theory was used to deal with the ignorance and par-
tial knowledge about the system. Possibility shift scalars were
integrated to guide constraint satisfaction and objective func-
tion improvements. Notable examples include the possibilistic
interpretation, the modal logic interpretation [36], the evid-
ence theory interpretation examined [37], and the fuzzy set
interpretations [32].

2.1.1. Definition of possibility theory. Possibility is a sub-
jective measure that reflects the degree to which an individual
believes that an event is likely to occur, or conversely, how
the available evidence suggests that an event will occur [38].

Fuzzy theory extends classical set theory by allowing par-
tial membership in a set rather than a strict binary classific-
ation. Probability shares the similar definition with possibil-
ity, the possibility is favored over probability in the context
of decision-making involving unrepeated uncertainty [1]. The
term ‘probability’ first appeared in 1975 research on probab-
ilistic automata [39]. Another interpretation, rooted in evid-
ence theory, describes probability as the confidence limit when
evidence overlaps. Furthermore, possibility is considered an
upper bound on probability. Another definition of probability
states that the probability of an event is the minimum value
within the interval. Although probability theory, possibility
theory, and fuzzy theory all address uncertainty, they show
differences:

(i) Both probability and possibility measure likelihood, but
probability is based on additive measures, whereas pos-
sibility follows maxitive measures. Therefore, probability
is more suitable for random uncertainty quantification and
possibility is used in epistemic uncertainty where know-
ledge is incomplete or imprecise.

(ii) Possibility theory and fuzzy theory both handle impreci-
sion, but possibility theory quantifies the plausibility of
an event, while fuzzy theory describes gradual transitions
using membership functions. Possibility distributions are
derived from fuzzy membership functions, linking these
two concepts.

(iii) Probability theory assumes crisp event definitions, while
fuzzy theory allows gradual uncertainty representation. In
cases where both randomness and vagueness coexist, a
hybrid fuzzy-probability approach can be applied, where
fuzzy variables define uncertain probability distributions.

2.1.2. Standard fuzzy-set interpretation of possibility theory.
Possibility distribution [33]: U denotes the discourse space.
X refers to an input.F represents a fuzzy set. Notably, the value
of all variables from U. µF(u) represents the affiliation func-
tion that defines the degree of compatibility between any u and
F. If F serves as an elastic constraint on the possible values
that can be assigned to X, then F is a fuzzy constraint on X (or
connected to X), called R(X). A fuzzy proposition ‘X is F’ is
defined as:

R(X) = F. (1)

According to the possibility assumption, no additional
information can be used for the F beyond X. Consequently,
the possibility distribution ΠX can be defined as:

ΠX = R(X) . (2)

The degree of possibility for X belongs to u is equal to the
degree of affiliation in the case of X belongs to u. Specifically:

∀u ∈ U, π X (u) = µF (u) (3)

where, πX(u) represents the possibility measure of X taking
the value of u. µF(u) describes the degree of membership of
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u in fuzzy set F. Notably, the membership function µF(u) in
possibility theory assigns a value between 0 and 1 to indicate
the degree of membership of a value u belongs to a fuzzy set
F.

The membership function µF(u) in possibility theory
assigns a value between 0 and 1 to indicate the degree to
which a value u belongs to a fuzzy set F. Unlike a prob-
ability density function, the membership function does not
require normalization and does not imply additivity. Instead,
it describes the plausibility of an event under vagueness and
incomplete information. Possibility distributions are particu-
larly useful in applications involving fuzzy decision-making,
linguistic uncertainty, and expert-driven reasoning.

Possibility measure [32]:ΠX denotes the possibility distribu-
tion associated with a variable X that takes value inU, then the
possibility measure π (A) is defined as interval value of [0, 1].
When A is a non-fuzzy (crisp) subset of U, there is:

Poss {X ∈ A} ≡ π (A)≡ sup
u∈A

π X (u) . (4)

When A is a fuzzy subset of U, it can be rewritten as:

Poss {X is A} ≡ π (A)≡ sup
u∈U

(µA (u)∧π X (u)) (5)

Properties of possibility measure [32]: According to
equations (4) and (5), the properties can be defined as:

π (A∪B) = π (A)∨π (B) . (6)

Obviously, max(π (A) ,π (Ā)) = 1, and the properties can
be written as:

π (A∩B)⩽ π (A)∧π (B) . (7)

The early advancements in this field link fuzzy propositions
and probability measures, which has been successfully applied
as the standard interpretation of the possibilities in fuzzy set
theory. Through the concept of probability distributions, the
expression of propositions is transformed from natural lan-
guage into a formal representation. This process involves con-
trolling probability distributions based on rules for combining
fuzzy sets, particularly fuzzy constraints [40]. It can be con-
cluded that the initial interpretation of fuzzy sets was largely
influenced by the mathematical similarities. In fuzzy set the-
ory, α-cuts correspond to the fundamental structure of nes-
ted sets, which in probability theory are composed of focal
elements [33].

2.1.3. Extensions on the standard interpretation. A pair of
fuzzy measures are applied to describe the uncertainty of a
proposition in possibility theory [41], namely the possibil-
ity measure Poss (A) and the necessity measure Nec (A). The
subscript ‘oss’ represents the abbreviation of possibility and
‘ec’ represents the abbreviation of necessity. Possibility the-
ory allows these measures to be defined as (Poss (A) , Poss (Ā)),
or alternatively represented by the pair (Poss (A) , Nec (A)).

The necessity measure can be described through two dual
formulations

Nec (A) = 1−Poss (Ā) . (8)

Similarly, equation (9) is used to limit the possibility
measure:

Poss (A∪B) =max(Poss (A) ,Poss (B)) . (9)

According to the properties of fuzzy measures, their fea-
tures are expressed as follows [41]:

Nec (A∩B) =min(Nec (A) ,Nec (B)) (10)

max(Poss (A) ,Poss (Ā)) = 1 (11)

min(Nec (A) ,Nec (Ā)) = 0 (12)

Poss (A)⩾ Nec (A) . (13)

2.1.4. Revised fuzzy-set interpretation of possibility theory.
Klir [33] proposed a revised interpretation of the possibility
theory of fuzzy sets to address the standard interpretation in the
context of subnormal fuzzy sets, that is, the height of a fuzzy
setF, hF = sup

u∈U
µF (u) ̸= 1. ConsiderF is subnormal, the stand-

ard interpretation will be unstable. Such a point is supported
by Liang [42]. Liang [42] also highlighted that one of the main
properties of the possibility theory (equation (13)), fails to hold
in the case of hF < 1. To address this limitation, a security
measure was proposed to replace the necessity function [43]:

Cert (A) =min(Poss (A) ,Nec (A)) . (14)

Huang et al [44] argued that this substitution breaks the
basic demands of the possibility theory. As an alternative, they
retained the necessity function while replacing equation (8)
with the generalized equation:

Nec (A) = hF−Poss (Ā) . (15)

Considering F is normal, equation (15) will be transformed
into equation (8). When all subsets belong to U, such trans-
formation is recognized as a reasonable formulation. When
A= U or ∪

i∈I
Ai = U, the possibility theory can be modified

by substituting equations (4)–(9), respectively [45], where I
represents a set of arbitrary indices. It is evident that the
works primarily represent interpretations of other formal sys-
tems based on specific modifications of possibility theory
rather than foundational interpretations of possibility theory
for fuzzy sets. Returning to the interpretation for fuzzy sets, the
properties of probability distribution function π (u) is shown
as follows

sup
u∈U

π (u) = 1. (16)

The explanation of modified fuzzy sets of possibility theory
are presented in table 2. The objectives of the explanation of
possibility theory include: (i) to ensure consistency between
all fuzzy sets, whether normal or not, so that no property of
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Table 2. The explanation of modified fuzzy-set of possibility theory [33].

Standard interpretation Revised interpretation

π X(u) = µF(u)
π X(u) = µF(u)+ cF
= µF(u)+ 1− hF

mF (u) = inf
u∈U

µF (u) mF (u) = inf
u∈U

µF (u)+ 1− hF∑
A∈P(x)

mF (A) = hF < 1
∑

A∈P(x)
mF (A) = 1

Poss (A)≡ sup
u∈U

min(µF (u) ,µA (u)) Poss (A)≡ sup
u∈U

min(µF (u)+ 1− hF,µA (u))

where, πX(u) is the possibility assigned to the element u in the fuzzy set X; µF(·) refers to the
membership function; hF denotes the height of the fuzzy set F; cF is a constant value given a
fuzzy set F; m denotes the fundamental probability assignment function of evidence theory.

possibility theory is violated, (ii) to quantify the evidence from
each fuzzy propositionmF and incorporate this knowledge into
the evidence theory framework, and (iii) to retain its intuitive
meaning.

2.2. Evidence theory

Evidence theory, also referred to as DempsterShafer theory
(DST), is founded on the concepts of upper and lower bounds
of probabilities, which do not conform to the traditional addit-
ivity property. Both possibility and evidence theories general-
ize classical probability by allowing uncertainty beyond strict
probability distributions. Notably, possibility theory can be
derived from evidence theory by assigning mass functions in a
way that maximizes plausibility. Every possibility distribution
can be interpreted as a plausibility function in evidence theory,
meaning possibility theory is a simplified, upper-bound rep-
resentation of evidence theory. However, evidence theory is
better for conflict resolution, while possibility theory is more
efficient for handling vagueness and ranking uncertain out-
comes. Evidence theory provides a comprehensive framework
for representing belief functions, initially marking its import-
ance in fields such as artificial intelligence [44]. Viewed as
a mathematical model, evidence theory integrates empirical
data to construct a consistent and logical representation of
real-world uncertainties [46]. By accumulating evidence and
explicitly addressing both uncertainty and ignorance, it offers
a systematic approach for hypothesis development [47]. When
the element of ignorance is removed entirely, the Dempster–
Shafer framework reduces to the classical Bayesian model.
This demonstrates how DST extends conventional probability
theory by incorporating rules to combinemultiple independent
sources of evidence [48, 49].

There are multiple interpretations of the DST includ-
ing probabilistic and non-probabilistic approaches [50–58].
In addition, several closely related advancements have been
made in recent years [59–61]. Shafer’s formulation is the most
popular presentation of evidence theory, which is demon-
strated in the book ‘The Mathematical Theory of Evidence’
[1]. It serves as the cornerstone of this field. Evidence the-
ory begins with the concept of a frame of discernment (FD),
which is a collection of mutually exclusive and exhaust-
ive propositions, comparable to a finite sample space in

probability theory. To measure uncertainty, it utilizes belief
functions (Bel) and plausibility functions (Pl) as key tools.
Within the DST framework, basic probability assignments
(BPAs) are introduced to model evidence. Specific rules are
then applied to aggregate and combine multiple evidence
sources for reasoning under uncertainty.

2.2.1. Basic concepts of evidence theory. LetU be a finite,
non-empty universal set representing a collection of elements
with shared characteristics, commonly referred to as the FD
in DST. ℘(U) is the power set of U. A is the subset of U.
The available evidence is then represented by equations (17)
and (18):

m : ℘(U)→ [0,1] (17)∑
A∈℘(U)

m(A) = 1 (18)

wherem referred to as the BPA or the mass function, is used to
quantify the degree of evidence that supports the assertion that
an element of U belongs to a subset A ∈ ℘(U). m(A) reflects
the degree of belief in the validity of such an assertion [4].

In a BPA, any subset A ∈ ℘(U) where m(A) ̸= 0 is defined
as a focal element, and m(A) is known as the weight of A. The
set F, which includes all focal elements of m represents the
subsets within the FD that are supported by the available evid-
ence supports. The pair (F,m) is termed the body of evidence
or the belief structure.

2.2.2. Belief and plausibility measures. Confidence and
reliability measures are the fundamental to the mathematical
theory of testing. According to an assignment of the basis
probability m, these measures are defined as follows:

Bel(A) =
∑
B⊆A

m(B) (19)

Pl(A) =
∑

B∩A ̸=∅

m(B) (20)

where, Bel and Pl refer to belief and plausibility function.
Bel(A) and Pl(A) serve as the lower and upper bounds of event
A, respectively. m(B) denotes the BPA associated with subset
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Figure 3. Relation of belief measure and plausibility measure.

B. These two measures are dual to each other, meaning that
each can be uniquely determined from the other. This relation-
ship is expressed mathematically by the following equation:

Pl(A) = 1−Bel(Ā) . (21)

Here, Ā denotes the complement of A in the classical sense.
This concept emphasizes that the sum of all BPAs must be
equal to one, as demonstrated in equation (15). Furthermore,
a reverse approach can also be applied where necessary [4]

m(A) =
∑
B⊆A

(−1)|A−B|Bel(B) . (22)

The important inequality properties of the Belief and
Plausibility are written as [24]:

Bel(A1∪A2)⩾ Bel(A1)+Bel(A2)−Bel(A1∩A2) (23)

Pl(A1∩A2)⩽ Pl(A1)+ Pl(A2)−Pl(A1∪A2) (24)

and there is:

Bel(A)+Bel(Ā)⩽ 1 (25)

Pl(A)+ Pl(Ā)⩾ 1 (26)

where, A1 ∩ A2 meaning the event where either event A1or A2
both occur. A1 ∪ A2 meaning the event where both A1 and A2
occur simultaneously. Bel(A) is total belief or evidence that
input falls in A. In contrast, Pl(A) accounts for the additional
belief or evidence resulting from the overlap of A with other
focal elements [62]. The relationship between these two dual
measures is expressed as follows:

Pl(A)⩾ Bel(A) . (27)

Equations (18) and (27) are visualized by figure 3 [63].

2.2.3. Bodies of evidence. Evidence theory is used
to quantify the uncertainty from missing and ambiguous
information [51]. Within an abstract framework, it defines two
sets:H representing hypotheses, andA representing arguments
[64]. The triple (H, A, s) is known as the body of the argument
where s denotes a support distribution. This algebraic struc-
ture underpins the foundation of evidence theory. Within the
argument set (H, A, s), the elements of A do not necessarily
have equal probability, as certain arguments may carry more
weights than others. Consequently, the credibility of different

hypotheses depends on the strength of their supporting argu-
ments. While such arguments can be assessed using probab-
ilities, the Boolean algebra A may become excessively large
for assigning probabilities to every element. To resolve this, a
sub-σ-algebra A0 is introduced within A, where a probability
P(α) is associated with each elementα in A0. As a result, P (α)
functions as a probability measure on A0. The structure repres-
ented by the quintuple (H, A, A0, P, s) is collectively referred
to as the body of evidence.

Suppose empirical evidence can be quantified and is rep-
resented as a set of value {m(A1) ,m(A2) , · · · ,m(U)}, rep-
resenting the amounts of evidence supporting the subsets
{A1,A2, · · ·} of a FD in U, respectively. Then each set of num-
bers {m1,m2, · · · ,mU} is called a body of evidence, where
number m is usually normalized to satisfy,∑

i

m(Ai)+m(U) = 1, where m(U)> 0 (28)

where, {m1,m2, · · ·} represent the amount of empirical evid-
ence supporting alternative possibilities {A1,A2, · · ·}. m(U) is
the belief assigned to the entire frame U. Its meaning will
be clear with an example of belief formation in the biotech
industry and the ensuing discussion to be presented in [46].

2.2.4. Combinations of evidence. There are four distinct
categories of evidence derived from multiple sources that
affect the process of combining information [65]: consonant
evidence, consistent evidence, arbitrary evidence, and separ-
ate evidence. Evidence theory provides reliable framework
for managing these various types by integrating probabil-
istic reasoning with classical set theory concepts. When evid-
ence is derived from multiple sources, these sets of evidence
can be combined using well-established combination rules
[6]. Specifically, these rules serve as specialized methods for
aggregating data from different sources. The most used com-
bination rules are summarized in literatures [54, 65, 66].

Dempster’s combination rule is a widely used method and
serves as the basis for the Dempster–Shafer fusion approach.
The joint evidence, denoted as m12, is calculated by:

(m1 ⊕m2)(A) = m12 (A) =

∑
B∩C=A

m1 (B)m2 (C)

1−
∑

B∩C=∅
m1 (B)m2 (C)

, A ̸= ∅

(29)

where B and C represent the propositions from each source
(m1 and m2).

Dempster’s rule may become unsuitable when a signific-
ant discrepancy exists in the available evidence, because of
the normalization factor of the denominator. However, it is
effective in cases where exists a sufficient consistency degree
or agreement degree among views from different samples [6].
Alternative methods such as the mixture or average rule [65]
and the extended combination rule [54] can be applied in scen-
arios where evidence from various sources lacks consistency
or shows minimal agreement. Recent research on combination
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rules can be broadly categorized into two types: (i) methods for
modifying Dempster’s rule and (ii) approaches for correcting
the original sources of evidence before applying the rule [67].

The advantages of evidence theory are summarized as
follows [68]:

(1) The reducible uncertainty and irreducible uncertainty are
solved using evidence theory, even with limited inform-
ation. For example, it allows the expression of ignor-
ance about the likelihood of an event by assigning high
plausibility and low belief, offering a framework than the
Bayesian approach.

(2) A measurement tool is established by the evidence theory
which quantifies the uncertainty in risk assessment. For
instance, the larger the gap between belief and plausibility,
the greater the uncertainty in estimating event risk.

(3) Evidence theory applies more than just to single or simple
classes; it also applies to joint classes.

Despite its advantages, Dempster–Shafer evidence theory
faces some criticisms, primarily based on [69]:

(1) Dempster’s combination rule yields unreasonable out-
comes when inconsistent evidence is combined.

(2) It struggles to reconcile the perspectives of individuals
with overlapping experiences, particularly in applications
related to security analysis [70].

(3) Probability theory introduces inconsistencies in certainty
estimates under specific conditions.

To realize the applicable of Dempster–Shafer and possibil-
ity theories to risk and reliability analysis, several challenges
should be addressed [69]: (i) combining homogeneous bodies
of evidence effectively; (ii) managing inconsistent information
elements from multiple sources; (iii) ensuring that accepted
judgments are reliable during the analysis; and (iv) accounting
for the dependence of inaccuracies on the amount of available
information.

3. Applications of possibility theory and evidence
theory in reliability and design optimization

Probability theory faces limitations in addressing epistemic
uncertainty and handling imprecise data or incomplete know-
ledge. In contrast, possibility theory and evidence theory
provide robust alternatives, offeringmathematical frameworks
to represent uncertainty in complex systems, particularly when
information about random variations is insufficient. Both the-
ories have gained increasing attention across various scientific
fields such as reliability analysis and uncertainty management.
Similarly, evidence theory has evolved along a comparable
trajectory.

3.1. General topics of applications

Possibility theory has found extensive applications in mul-
tiple domains, especially when it comes to measuring epi-
stemic uncertainty in situations where expert opinions do not
conflict [71]. For example, Rebane et al [72] designed a pos-
sibility theory framework to deal with uncertain spatial rela-
tionships, optimizing designs, and improving decision-making
under uncertain conditions. Kühne and Edler [73] applied pos-
sibility distributions to handle measurement errors, imprecise
experimental data, and process variability, ensuring more reli-
able chemical analysis and industrial applications. Significant
advancements have been made in assessing reliability under
uncertainty, as discussed in [74–78]. Notable developments
include, but are not limited to: the data fusion rule for reli-
ability modeling [79], possibility-based design optimization
(PBDO) [80–85], and fuzzy reliability theory [58, 74, 86–
88]. Applications of these approaches have extended beyond
reliability engineering to fields such as civil and structural
engineering [75], computational mechanics, military, energy,
forestry [7], aerospace, and automotive engineering [89].

As a broader tool for analyzing uncertainty, possibility
theory has also been applied across diverse domains. These
include artificial intelligence (especially in the development
of expert systems) [90], object detection and approximate
reasoning [91–94], design optimization [85] (which includes
multidisciplinary optimization [6]), uncertainty quantification
[71, 90], risk assessment and reliability, as well as remote
sensing classification [95], pattern recognition and image ana-
lysis and decision making [96, 97], data fusion [98], and fault
diagnosis [17]. Despite its versatility, the adoption of evidence
theory has been limited due to its reliance on epistemological
assumptions that differ from classical and Bayesian probabil-
ity theories [46].

Evidence theory develops numerical methods that integ-
rate the moment concept and finite element methods to com-
pute linear elastic static and dynamic responses of struc-
tures under epistemic uncertainty [99]. In real-world con-
ditions, parameter correlations influence the reliability ana-
lysis. To address this, new evidence theory-based models
were developed, incorporating copula functions and ellips-
oid models to account for parameter correlations in struc-
tural reliability analysis [100]. Similar to the most probable
point (MPP) [101] in probabilistic reliability analysis, the
most probable focal element was introduced for reliability
analysis using evidence theory [102]. Based on this idea,
the first-order reliability method (FORM) and the second-
order reliability method were developed to enhance the effi-
ciency of reliability analysis under the framework of evidence
theory [103].

A growing trend suggested to integrate multiple frame-
works to address complex and dynamic environments, includ-
ing: combining probabilistic and probabilistic approaches
[104], probabilistic and probabilistic approaches [95], integ-
rating probabilistic design optimization with robust design
[82], probabilistic optimization with robust design [105], and
integrating random and epistemic uncertainty into various
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design optimization processes [85]. Recent developments in
uncertainty and reliability analysis using possibility and evid-
ence theories can be categorized into: (i) theoretical advance-
ments focusing on the reliability foundations of probability
theory, such as imprecise reliability [106, 107] and fuzzy
reliability [69], reliability [86], and (ii) computational or
algorithmic advancements, including data fusion techniques in
reliability assessment [108] and optimal designmethods [109–
112].

3.2. Development of reliability theory

Reliability refers to a system’s capability to perform its
intended function effectively and without failure. It is form-
ally determined as the ability of a component or system to
meet functional requirements under specified conditions for a
defined period. Reliability is often quantified through meas-
ures such as probability, success rates, or feasibility, inher-
ently linking it to failure mechanisms and quality degradation.
Reliability can be categorized from multiple dimensions: (i)
key areas: this includes topics such as reliability engineering,
management, product warranty, and maintenance strategies;
(ii) research focus: it encompasses activities like evaluation,
forecasting, modeling, data analysis, implementation, and val-
idation processes (e.g. testing); (iii) phases: design, manufac-
turing, and operational reliability, and (iv) objects: hardware,
software, human, and structural reliability. Currently, prom-
inent reliability design methodologies include fault tree ana-
lysis (FTA), failure mode and effects analysis (FMEA), and
reliability optimization. Liu et al [113] combined FMEA and
fuzzy FAT approach to evaluate the reliability of a subsea con-
trol system. It provided a comprehensive understanding of the
subsea control system’s reliability, enabling the development
of effective risk mitigation strategies. Lin et al [114] presen-
ted an enhanced FTA method to evaluate the reliability and
risk factors of a subsea pipeline system. This study enhanced
risk identification, reduced subjectivity in node discovery, and
simplified the mathematical calculations required for quantit-
ative reliability assessments. Traditional engineering reliabil-
ity analysis primarily employs probabilistic approaches, where
system state variables are modeled using precise probability
distributions. This approach provides accurate failure estim-
ates when sufficient input data is available. However, in com-
plex engineering decision-making scenarios, particularly in
the early design stages and throughout the product’s manu-
facturing and usage phases, numerous indeterminable factors
arise due to limited knowledge. Consequently, as a result,
decisions based solely on precise probabilistic analyses often
fail to adequately represent real-world conditions. To address
these limitations, recent fundamental and theoretical advance-
ments in safety and reliability analysis have been developed to
manage situations.

3.2.1. Imprecise reliability. Origin and motivation.
Engineering design is a decision-making process where
engineers often operate with insufficient information, lead-
ing to uncertainty. To represent this uncertainty clearly and

quantitatively, its imprecise nature must be appropriately
accounted for. Ambiguity may arise from the intrinsic inde-
terminacy of available evidence or the incomplete represent-
ation of evidence and beliefs [109]. Imprecise probabilities
provide an effective approach for representing uncertainty
in reliability and risk analysis by using probability intervals
to capture uncertain knowledge. The primary motivation for
employing imprecise probabilities lies in the fact that the
confidence a decision-maker places in a probability estimate
heavily depends on the quality and completeness of the under-
lying evidence. Therefore, it is crucial to explicitly express the
uncertainty associated with probabilities to accurately convey
the corresponding level of confidence [109]. Various frame-
works have been developed to model inaccurate probabilities.
A unified fuzzy probability theory can be found in [86, 102].

The imprecise probability theory. The imprecise probabil-
ity theory refers to a collection of mathematical frameworks
that include upper and lower bounds for probabilities, as well
as predictions or expectations. It also incorporates possib-
ility and necessity measures, confidence metrics, reliability
functions, and other qualitative approaches [69]. Theoretical
foundations of imprecise probability [106] emphasize a beha-
vioral perspective and are based on three core principles: loss
aversion, robustness, and natural extension. At the core of the
behavioral interpretation lies the concept of a gamble, which
is defined as a real-valued, bounded function over a specified
domain. A gamble represents a reward dependent on the uncer-
tain state of the system and each element of which belongs to
the domain. Consistent theories of imprecise probability also
rely on lower predictions (or expectations) and upper predic-
tions probabilistic models. Reliability analysis focus on binary
gambles where the reward is either zero or one. In this context,
the bottom and top predictions are referred to as lower prob-
abilities and upper probabilities, reflecting their probabilistic
nature. When integrating information from various sources, it
is essential to identify and differentiate between aligned (con-
sistent) and conflicting (inconsistent) judgments or models.
For consistent judgments, the tie rule is used to merge the
lower and upper predictions. For inconsistent judgments, the
unanimity rule, derived from the concepts of desirability and
preference, is applied in literature [106].

Advances of imprecise probability theories. Fuzzy probab-
ility theories have proven valid and effective for reliability
and risk analysis, despite certain challenges, such as diffi-
culties in combining evidence or managing divergent judg-
ments during derivation [69]. Significant advancements in
this field include: a fuzzy probability theory consistent with
behavioral interpretations based on decision theory and utility
theory [106], and methods for constructing fuzzy limit state
functions from sparse data [115]. The advantages, disadvant-
ages, and applications of fuzzy probability in reliability can
be found in [116] and [88], which introduces nonparametric
predictive inference as a consistent framework for reliability
when data are sparse. Additional research focuses on replace-
ment and maintenance decisions [117], design decisions
[44], imprecise probability theory and robust statistics [11],
imprecise probability for sensitivity analysis [94], uncertainty
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Figure 4. Reliability theories based on various fundamental assumptions.

propagation [118], polynomial expansion based on test theory,
and imprecise probabilistic non-intrusive integration [119].
Bayesian optimization [120–122], multi-fidelity Kriging sur-
rogate model [123]. These advancements have shown that, in
certain design problems, explicitly representing uncertainty
imprecision through imprecise probabilities can be particu-
larly beneficial. While imprecise probability methods have
opened new research opportunities, they also pose challenges,
particularly in terms of computational complexity, highlight-
ing the importance of diversity of research horizons for future
developments in this field.

3.2.2. Fuzzy reliability. Fuzzy theory serves as a powerful
tool for uncertainty analysis. The origins of fuzzy reliability
theory can be traced to the need to handle reliability consid-
erations in degradable computer systems in an elegant way,
where the health states of system cannot be simply divided
into failed or functional. Performance degradation, influenced
by complex and uncertain factors, often leads to failures that
do not occur randomly. Moreover, the determination of safety
criteria frequently relies on technical judgment, introducing
additional sources of uncertainty. Utilizing advanced uncer-
tainty quantification tools, the concept of fuzzy reliability was
introduced, grounded in fuzzy set theory [86]. Kabir [121]
combined expert judgments and fuzzy set theory to evaluate
the reliability of fuel distribution system. Reliability grounded
in probability theory is viewed as a subset of fuzzy reliability
frameworks and is also consistent with non-probabilistic and
imprecise probability approaches. The former stems from its
theoretical basis in fuzzy set theory, whereas the latter relates
to the non-statistical characteristics of the information being
analyzed.

Several types of fuzzy reliability approaches have been
introduced, including profust reliability, posbist reliability,
and posfust reliability theories, to address the limitations of
traditional binary-state assumptions and probabilistic mod-
els. These approaches rely on diverse reliability criteria
[43]. Among these, possibility theory has found broader

applications, especially in fields like artificial intelligence and
data fusion, surpassing probability theory and evidence the-
ory in certain contexts. Existing studies mainly focus on the-
oretical construction and modification [124–127], or practical
applications in engineering [128]. Several respective advance-
ments include posbist reliability theory with a series, paral-
lel, or k-out-of-n configurations [86], cold and warm redund-
ant systems [57], repairable systems [129], posbist reliab-
ility behavior [88], FTA model aligned with posbist reli-
ability theory [130], statistical fuzzy reliability evaluation,
fuzzy truncated probabilistic distribution method [131], two-
parameter Pareto lifetime distribution with vague shape and
scale parameters [132], and dual hesitant fuzzy sets in con-
junction with the inverse Weibull distribution [133]. Despite
significant advancements, current fuzzy reliabilitymodels face
practical limitations. One major issue is the inability of exist-
ing theories to fully capture a wide range of judgments regard-
ing reliability. Even evidence-theory-based approaches to reli-
ability analysis under incomplete information encounter sim-
ilar challenges. In many real-world scenarios, a suitable and
accurate possibility distribution consistent with statistical data
may not exist, underscoring the need for more robust and inter-
pretable frameworks. The difficulty in constructing and inter-
preting possibility distributions remains a critical barrier for
practitioners. Figure 4 illustrates reliability theories based on
various fundamental assumptions.

3.3. Computational developments related to design
optimization under uncertainty

3.3.1. Design optimization. Design optimization has
become a critical section in the development of high-tech
products, evolving as a natural extension of advancements in
computer-aided engineering [134]. The increasing complex-
ity of modern systems, dynamic business requirements, and
the integration of diverse technologies highlight the neces-
sity of adopting a system-level approach to design optim-
ization, moving beyond the traditional focus on individual
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components. Incorporating uncertainty into design optimiza-
tion is essential as various uncertainties arise during both the
design and operational phases.

A decision-making paradigm is applied for the design
optimization under uncertainty, which can be expressed as fol-
lows:

min
d,d̃(X)

: f(d,X,P)

st. P{Gi (d,X,P)> 0}⩽ pf
i
i = 1,2, . . . ,np

dL ⩽ d⩽ dU

d̃(X)L ⩽ d̃(X)⩽ d̃(X)U

d ∈ Rn,X ∈ Rnr,P ∈ Rq

(30)

where, f(d,X,P) is the objective function, d is the vector of
deterministic design variables in the n-dimensional real space
Rn. X is the uncertain variables corresponding to d, d̃(X) is
the vector of design variables for uncertain variables, which is
dependent on the uncertainty characteristics, such as, the mean
values of random variables, and the midpoints of the upper
and lower bounds of interval variables are taken as design
variables respectively. P is the vector of uncertain paramet-
ers. The dL and dU define the lower and upper bounds of d,
while d̃(X)L and d̃(X)U represent the lower and upper bounds
of d̃(X) respectively. Gi(d,X,P) is the constraint function
which determines whether a design is feasible (reliable) or
not. In a practical engineering optimization problem, the main
criteria used to measure the effectiveness are usually cost
and performance. P{·} represent failure probability, pf

i
is the

threshold failure probability. Rnr is the real number space for
uncertain variables, Rq is the real number space for uncertain
parameters.

Traditional design optimization offers a valuable tool for
analysis and design but faces significant limitations in address-
ing inherent uncertainties. These include variations in design
variables and parameters, as well as model uncertainties, such
as numerical errors in analysis tools [135]. To overcome
these challenges, researchers [136] have developed special-
ized optimization methodologies aimed at reducing the com-
putational costs associated with design optimization problems.
Notable advancements include the exploration of decompos-
ition strategies and approximation methods, particularly in
aerospace and automotive engineering applications [137]. The
diversity of system architectures, resource constraints, and
types of uncertainties has driven the development of a wide
range of design optimization models and methods for man-
aging uncertainty [97].

3.3.2. PSDO. In practical engineering, aleatory and epi-
stemic uncertainties are inevitable in the design stage but
less considered. Among them, aleatory uncertainty is featured
by the objectivity and unavoidability. It is typically modeled
using probability theory when sufficient data is available.
Epistemic uncertainty is featured by subjectivity and redu-
cibility, stemming from data scarcity. In the case where pre-
cise statistical data is unavailable because of constraints such

as budget limitations, inadequate facilities, and time restric-
tions, probabilistic methods may not be suitable for structural
analysis and related applications. Alternative design meth-
odologies are required to manage epistemic uncertainty and
model physical uncertainty under limited information [109].
The mean performance of the possibility-based methods is
optimized, subject to possibilistic constraints [76]. The gen-
eral PBDO can be formulated as [76]:

min
d,d̃(X)

: f(d,X,P)

st. Π {Gi (d,X,P)> 0}⩽ αti i = 1,2, . . . ,np

dL ⩽ d⩽ dU

d̃(X)L ⩽ d̃(X)⩽ d̃(X)U

d ∈ Rn,X ∈ Rnr,P ∈ Rq

(31)

where f(d,X,P) is the objective function, d is the vector of
deterministic design variables, X is the uncertain variables
corresponding to d, represented by fuzzy-random variables,
d̃(X) is the vector of design variables for uncertain variables
Gi(d,X,P) is the constraint condition, and P is the vector
of uncertain parameters. d̃(X) is the vector of the uncertain
design variables. The bounds dL and dU define the lower and
upper bounds of d, while d̃(X)L and d̃(X)U represent the lower
and upper bounds of d̃(X) respectively. αti represents a target
failure possibility. np is the number of possibility constrains. n
is the number of deterministic design variables in vector d. nr
is the number of fuzzy-random variables in vectorX.Rn is the
real number space for determine design variables. Rnr is the
real number space for fuzzy-random variables, Rq is the real
number space for uncertain parameters.

Possibility analysis, also known as fuzzy analysis, has
proven to be an effective tool for addressing uncertainty in
design optimization. It offers several advantages: (i) retains the
inherent randomness of physical variables through their mem-
bership functions, (ii) requires less computational complex-
ity compared to probabilistic methods, particularly in exten-
ded fuzzy operations [24], (iii) provides more conservative
design solutions than probabilistic methods, especially with
respect to confidence levels [33], and (iv) delivers possibility
assessments at the system level, extending beyond the capab-
ilities of traditional reliability analysis. Several methods have
been developed for numerical fuzzy analysis, including: ver-
tex method, discretization method, level-cuts (α-cuts) method,
multilevel-cut method, possibility index approach, perform-
ance measure approach (PMA), MPP search, and maximal
possibility search.

Among these, the vertex methods have been successfully
applied in practical. However, it may result in expensive com-
putation cost for large-scale system and inaccurate outcomes
in the case of maximum or minimum output response. To
address challenges posed by nonlinear problems, the level-
cutting method has been employed at different design stages.
The multilevel-cut method is introduced to enhance the preci-
sion of peak response analysis, particularly for nonlinear struc-
tural designs. However, this approach remains computation-
ally demanding when applied to PBDO. The PMA, however,
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has demonstrated significant numerical efficiency and stabil-
ity in PBDO applications [137]. Unlike probabilistic reliability
analysis, where the MPP is based on FORM, fuzzy analysis
computes the MPP directly and exactly. Furthermore, while
reliability analysis involves operations in an n-dimensional
sphere, fuzzy analysis operates in an n-dimensional hyper-
cube, simplifying the calculations [84].

One of the main research focuses of PBDO is to improve
the numerical efficiency, accuracy and stability during the
optimization process. During the optimization process, PMA
addresses these challenges by replacing the probabilistic con-
straint (equation (31)) with a performance measure assessed
at a defined confidence threshold [137]. For example, PMA
improves the numerical efficiency, stability and accuracy [84]
and integrated design platform have been developed to address
physical uncertainty [109]. Reliability analysis under incom-
plete information has been incorporated into structural ana-
lysis and design [74]. While PMA is more cost-effective
when the reliability index is high, additional calculations
may be required when the reliability index is below the
required threshold [138]. Therefore, the PMA+, an extension
of PMA, has been developed to enhance its performance [82].
These studies indicated that PBDO generally produces more
conservative results compared to probability-based RBDO,
especially when reliability estimation is based on sparse
information [139]. Recent developments in PBDO demon-
strate its potential to address complex design problems under
uncertainty. These include the opportunity-based framework
for solving optimization problems under interval uncertainty
[140], the adaptive Kriging method combined with active
opportunity constraints (I-AK-AC) for PBDO [27], the fuzzy
safety index (FSI) assuming that the fuzzy inputs are inde-
pendently and identically distributed, and the constraints
based on failure probabilities are reformulated into FSI-based
constraints, presenting a FSI approach for solving PBDO
problems [141].

3.3.3. Evidence-based design optimization (EBDO). As
a general framework to quantify uncertainty, evidence the-
ory has demonstrated significant qualitative value and com-
putational efficiency across various applications. One of the
main advantages of evidence theory lies in its flexibility to
assign probability measures to groups or intervals without
requiring precise assumptions about the probabilities of indi-
vidual elements within those groups or intervals. This feature
is particularly beneficial in engineering design, where inform-
ation is often limited, conflicting, or derived from expert judg-
ment or experimental data. By allowing for the combination
of random and epistemic uncertainties, evidence theory offers
potential benefits for design under uncertainty. However, its
application in engineering design remains relatively limited,
and its integration into design optimization frameworks is
even less common. Most evidence-based methods have been
employed to propagate epistemic uncertainty [141], especially
in the context of large-scale engineering structures. One of
the main challenges in the application of proof theory is
the high computational cost [90]. To address this issue, the

multipoint approximation method has been proposed as an
effective solution to mitigate computational difficulties [141].
Detailed flowchart of this approach is presented in figure 5.

Design optimization methods are computationally efficient
and capable of handling a mixture of aleatory and epistemic
uncertainties in recent days, and the problem can be formu-
lated as follows:

min
d,d̃(X)

: f(d,X,P)

st. Pl{Gi (d,X,P)> 0}⩽ pfi , i = 1,2, . . . ,np

dL ⩽ d⩽ dU

d̃(X)L ⩽ d̃(X)⩽ d̃(X)U

d ∈ Rn,X ∈ Rnr,P ∈ Rq

. (32)

The function f(d,X,P) represents the objective function,
which may correspond to the cost, weight, performance index,
or any other design metric to be optimized. The vector of d,
d̃(X), and P denote the vector of deterministic design vari-
ables, the uncertain design variables based on evidence the-
ory, and the uncertain parameter, respectively. The dL and
dU define the lower and upper bounds of d, while d̃(X)L and
d̃(X)U represent the lower and upper bounds of d̃(X) respect-
ively. The plausibility function Pl is used to account for epi-
stemic uncertainty in the system. The function Gi(d,X,P)
describes the failure condition, which is constrained by the
failure probability threshold pfi . The parameter np denotes the
number of constrains imposed on the system. Rn is the real
number space for determine design variables. Rnr is the real
number space for uncertain variables represented by evidence
theory, Rq is the real number space for uncertain parameters.

Notably, Pl function expresses the maximum possibility
that an event could occur. In contrast, the Bel function provides
a lower bound of an event occur, which might underestimate
the actual failure probability. Through Pl function, the worst-
case scenario can be considered, which is required in reliability
engineering. It ensures that even in cases where failure prob-
ability is not fully known, the optimization remains robust.
Therefore, Using Pl instead of Bel ensures a more conservative
and flexible optimization process.

A geometric interpretation of EBDO problems has been
provided, along with an efficient computational solution that
demonstrates the proposed EBDOmethod through two design
examples [85]. The algorithm, derivative-free optimizer, is
applied to locate the neighborhood of the optimal solution.
It aims to identify the optimum based on evidence. The pro-
cess begins at an initial point near the optimal solution from
Reliability-Based Design Optimization (RBDO) and employs
a hyper-ellipse movement strategy within the original design
space, similar to the approach used in RBDO. To improve
computational efficiency, local surrogate models are construc-
ted using only the active constraints, which effectively reduces
computational costs [85]. To address the computational chal-
lenges of nested optimization inherent in EBDO, a decoupling
approach has been proposed. This method transforms the ori-
ginal nested optimization problem into a sequential iterative
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Figure 5. Uncertainty qualification approximation algorithm using evidence theory [90].

process, consisting of alternating steps for design optimiza-
tion and reliability analysis [142]. In addition, an improved
two-step framework had been proposed to solve EBDO prob-
lems under epistemic uncertainty [143]. A cross-scale topo-
logy optimization model was presented to address uncertainty
in design [144].

4. Developing trends of possibility and
evidence-based methods

Possibility theory quantifies uncertainty using linguistic terms
or intervals rather than precise probability values. Unlike
probability distributions, it employs a possibility distri-
bution to describe the plausibility of different outcomes.
Constraints are formulated through necessity and plausibility
functions, optimizing decisions based on the most pessimistic
or optimistic scenarios. Instead of probability density function,
interval-based representations are used, making it well-suited
for issues with limited statistical data. In summary, PBDO is
widely applied in: (i) scenarios with known upper and lower
uncertainty bounds; (ii) decision-making under vague and
qualitative uncertainty (e.g. expert-based engineering assess-
ments); and (iii) structural reliability optimization where fail-
ure probability is not well-defined.

DST extends probability theory by allowing belief inter-
vals instead of precise probability values. It is suitable for
both aleatory and epistemic uncertainties quantification. Bel

and Pl functions are used to transform the uncertainty inform-
ation into uncertainty interval bounds on event likelihoods.
However, contrary to the possibility theory, DST integrates
multiple sources of evidence formulti-source decision-making
problems using Dempster’s rule of combination. Due to its
reliance on interval propagation and set-based computations,
EBDO is computationally more expensive than PBDO, par-
ticularly in high-dimensional problems. In general, EBOD is
commonly applied in: (i) reliability-based optimization where
probability distributions are partially known; (ii) multi-source
uncertainty aggregationwhere decisions depend on conflicting
or incomplete data, and (iii) safety-critical engineering applic-
ations, such as aerospace or nuclear engineering, where reliab-
ility bounds are crucial. The main connections and differences
between PBDO and EBDO are provided in table 3.

Significant advancements have been made for the develop-
ment of possibility theory and evidence theory over the past
two decades, the field remains highly active, with numerous
opportunities for future research. The following key directions
highlight areas for further exploration [145].

(1) Integrating and Perfecting Existing Integration
Methods

(i) Integrating possibilistic and probabilistic approaches, such
as combining the Dempster–Shafer (DS) method with
other established uncertainty modeling techniques to
enhance robustness and reliability [146].
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Table 3. Comparison of PBDO and EBDO.

Feature PBDO EBDO

Uncertainty Quantification Possibility distributions Belief and plausibility functions
Applicable Vague, qualitative, and imprecise

uncertainties
Partial probability knowledge with
conflicting evidence

Computational Cost Lower (max-min operations on
possibility distributions)

Higher (interval propagation and
set-based calculations)

Mathematical Framework Maxitive measures Additive and non-additive measures
Flexibility Work with incomplete data and expert

knowledge
Combines multiple sources of uncertain
data

Optimization Method Necessity and plausibility measures Belief and plausibility measures
Application scenarios Structural optimization, qualitative

decision-making
Safety-critical system design,
multi-source uncertainty fusion,

(ii) Proposing hybrid algorithms, including genetic algorithms
with dynamic parameter optimization, offer a prom-
ising way to reduce design iterations and narrow search
intervals.

(iii) Improving computational accuracy, stability, and numer-
ical efficiency remains a priority. Future research could
focus on developing adaptive algorithms capable of
dynamically fine-tuning parameters based on real-time
performance feedback.

(2) Establishing Common Analytical Frameworks
(i) Establishing a common analytical framework that

addresses conflicts arising from different types of uncer-
tainties is essential for ensuring consistency in modeling.

(ii) Developing global uncertainty propagation techniques to
account for the cumulative effects of uncertainties across
various system components.

(iii) Constructing error-compensation feedback loops or imple-
menting adaptive correction mechanisms in software tools
will enable continuous improvement and refinement of
predictive models.

(3) Soft Computing Strategies
(i) The soft computing strategies are applied to construct

cooperative framework is gaining traction such as basic
integrations of fuzzy logic, probabilistic reasoning, and
neural networks.

(ii) Advanced combinations involving genetic algorithms,
evidential reasoning, machine learning, and chaos the-
ory offer enhanced modeling capabilities and innovative
approaches to solving complex problems.

(4) Design Optimization Under Uncertainty
The development of optimization techniques is crucial for
addressing complex systems that include multiple failure
mechanisms and highly nonlinear state functions. These
approaches will enable more accurate and reliable assessments
of system performance across varying operating conditions.

(5) Accurate and Efficient Reliability Analysis
It is crucial to improve reliability analysis methods to evalu-
ate systems with low failure probabilities under uncertainty.
Future efforts should focus on refining these methods to

improve both predictive accuracy and practical applicability
in real-world engineering scenarios.

5. Conclusions

This paper provides a comprehensive and detailed overview
of possibility and evidence theories, emphasizing their fun-
damental principles and applications in reliability and uncer-
tainty analysis within engineering design. Particularly in scen-
arios where input data is limited or incomplete, these theories
offer valuable frameworks for addressing specific uncertain-
ties. Both possibility theory and evidence theory are instru-
mental in enhancing reliability analysis and design optimiza-
tion, especially in the context of epistemic uncertainty under
data scarcity. The distinctive representations and theoretical
underpinnings of uncertainties enable engineers to navigate
the complexities of uncertainty more effectively. The review
also highlights the need for further exploration in the domain.
There remains a gap in the development of a more unified
framework that incorporates advanced performance charac-
teristics and modified design criteria tailored to the specific
challenges posed by uncertainty. This presents an opportun-
ity for researchers to innovate and refine existing methodo-
logies. By adopting a holistic perspective, we aim to foster a
deeper understanding of current approaches while illuminat-
ing pathways for future research. The review encourage col-
laboration among reliability engineers, statisticians, and other
stakeholders to advance the integration of these theories into
practical applications. This collaboration will be crucial in
addressing the multifaceted nature of uncertainty in engin-
eering design, ultimately leading to more robust and resilient
systems.
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