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A B S T R A C T

The navigational safety of ships can be impacted by factors such as varying weather conditions, sea states,
circadian rhythms and crew physical conditions at different times of the day. Despite numerous studies in the
maritime accident field, systematic investigations on the heterogeneous characteristics of accident Risk Influ-
ential Factors (RIFs) across different watchkeeping periods remain limited. To address this gap, this study pio-
neers a multidimensional analysis framework which integrates an Enhanced Multilevel Association Rule Mining
(EMARM) algorithm, the Weighted Influence Non-linear Gauge System (WINGS), the Total Adversarial Hasse
Diagram Technology (TAHDT), and the Matrices Impacts Croises-Multiplication Appliance Classement
(MICMAC). Firstly, the innovative EMARM algorithm is proposed to identify frequent itemsets and enhanced
multilevel association rules between RIFs, i.e., at the state level and factor level. Secondly, the WINGS is
established in a data-driven manner and employed to elucidate the causality among these RIFs, providing insight
into their interactions. Thirdly, the improved TAHDT, a game theory-based method is utilized to establish hi-
erarchical relationships between RIFs, revealing critical interdependencies and causal pathways. Finally, based
on the driving forces and dependencies of RIFs, the MICMAC is applied to classify the RIFs and dig their roles
within the system. The results indicate a significant heterogeneity in the critical RIFs across different watch-
keeping periods, such differences highlight the unique needs of safety management strategies in each period. By
clarifying the challenges, the proposed framework offers a new perspective for improving bridge resource
management onboard and further contributing to reducing accident occurrences.

1. Introduction

Maritime transport plays a crucial role in international trade and
global supply chains, accounting for approximately 90% of all goods
traded internationally (Aydin et al., 2024). Maritime accidents are one
of the biggest obstacles to sustainable maritime trade. Between 2014 and
2020, the European Maritime Safety Agency reported 22,532 maritime
accidents in Europe, involving 8015 ships and resulting in 6921 injuries
(European Maritime Safety Agency, 2021). These serious consequences
of maritime accidents are drawing attention in the shipping industry.
Statistics indicate that 75%–96% of maritime accidents are actually

attributed to human factors (Fan et al., 2020; Song et al., 2024; Yang
et al., 2023). As a result, ensuring the correct operations of crew
members and the effective bridge resource management plays a crucial
role in navigational safety (Chen et al., 2024).

In practice, all operations onboard a ship largely depend on the
professional expertise of the ship’s crew (Jiang et al., 2025; Misas et al.,
2024; Zhang et al., 2025). The performance of the ship crew at the
operation site is one of the most critical factors in ensuring the work is
carried out safely (Utne et al., 2019). Particularly, as key members of the
bridge team, the ship master, the chief, second, and third officers are
responsible for ensuring a vessel’s safe navigation and responding to
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potential emergencies. The 24-h watchkeeping periods during a ship’s
voyage is a standard procedure, which is normally rotated among the
chief, second, and third officers. These officers are responsible for
navigational watch, GMDSS operations, and a range of critical tasks,
including ensuring safe navigation, collision avoidance, weather moni-
toring, and responding promptly to emergencies. However, it is impor-
tant to note that watchkeeping arrangements may vary across different
companies or ships. In some cases, particularly where cargo operations
are highly complex and the chief officer is solely in charge, the high
workload may preclude the chief officer from serving as a watchkeeping
officer. Instead, additional officers of other ranks might assume re-
sponsibility for specific watch periods, such as the 4–8 and 16–20
watchkeeping period. Nevertheless, this study focuses on the standard
arrangement where the chief, second, and third officers all participate in
the watchkeeping rotation. Although the daily navigational watch
duration is the same for the chief, second, and third officers (i.e., 8 h per
person), the navigational safety of ships can be impacted by varying
weather conditions, sea conditions, circadian rhythms, and crew phys-
ical conditions at different times of day (Feng et al., 2025; Filtz et al.,
2015). For example, navigation conditions may be relatively favourable
during the day when the weather is clear and the sea is calm. In contrast,
the night-time navigation can be more challenging due to the absence of
natural light and the crew’s physiological condition, requiring the duty
officer to rely on navigational equipment. Therefore, different watch-
keeping periods are showing heterogeneous characteristics. The inves-
tigation of such varying Risk Influential Factors (RIFs) contributes to
understanding potential risks faced by different duty officers, which can
further minimize the risk by tailoring targeted safety measures and
training programs for the onboard crew at various times of the day. To
our best knowledge, this topic still remains unexplored, and this study
aims to fill in this gap by using an integrated multidimensional analysis
framework, which integrates an Enhanced Multilevel Association Rule
Mining (EMARM) algorithm, the Weighted Influence Non-linear Gauge
System (WINGS), the Total Adversarial Hasse Diagram Technology
(TAHDT), and the Matrices Impacts Croises-Multiplication Appliance
Classement (MICMAC).

The subsequent parts of this paper are structured in the following
manner: Section 2 provides a review of pertinent literature on the risk
analysis of maritime accidents, including their methodological ap-
proaches. Section 3 outlines the data sources and methodologies
employed. Section 4 discusses the findings from multiple perspectives
and analyses them thoroughly. Section 5 assesses the importance of this
research from both theoretical and practical standpoints and proposes
recommendations. Lastly, Section 6 concludes the study and suggests
directions for future research.

2. Literature review

2.1. Research on the heterogeneity of maritime accidents

In recent years, research on the heterogeneity of maritime accidents
has expanded to explore various aspects, e.g., accident characteristics
under different weather conditions, regions or waters, ship age or types,
crew qualifications, and ship speed (Cao et al., 2024b, 2025, ; Feng et al.,
2025). Brandt et al. (2024) examined the differential impact of various
weather conditions on different types of maritime accidents. Huang
et al. (2023) analysed the regional disparities in accident distribution,
highlighting variations in the number of accidents across different sea
areas. Zhang et al. (2022) compared two sea areas with high accident
densities, identifying key RIFs influencing fatality and injury outcomes,
and suggested that regional characteristics significantly affect these
outcomes. Cao et al. (2024b) investigated maritime accidents across
different ship types and found notable differences in critical RIFs be-
tween ship types. Eleftheria et al. (2016) statistically analysed the
impact of ship age and types on accident frequency. Berg et al. (2013)
identified crew experience, communication skills, and background

knowledge as critical for safety in complex navigational environments.
Chang and Park (2019) revealed that higher speeds typically increase
the risk of collision, while lower speeds raise the risk of grounding.

During sea voyages, navigational officers work in 24-h watch to
ensure continuous ship operations. The circadian rhythms have certain
effects on crew physical conditions, and further on the operational risk
of ships. Branch et al. (2004) observed that accident rates are higher
under the 6-h work, 6-h rest (6-6) watch system, which is commonly
used on smaller vessels or in specific operational contexts. The frequent
watch in this system makes it difficult for crew members to obtain suf-
ficient continuous sleep, increasing the likelihood of accidents. The
frequent watch in this system makes it difficult for crew members to
obtain sufficient continuous sleep, increasing the likelihood of acci-
dents. In contrast, Størkersen et al. (2012) found that while different
duty regimes influenced crew fatigue levels to some extent, they had
minimal impact on navigational safety. van Leeuwen et al. (2021b)
further explored the variability in how different watch systems affect the
alertness of duty officers. Both Heikkila (2016) and Shi et al. (2021)
noted that a well-designed watch system can improve duty alertness and
reduce ship navigational risks. Devereux (2022) examined the rela-
tionship between seafarers’ risk of injury and the total watchkeeping
duration, finding that the risk was higher at the beginning and middle of
the duration but declined toward the end. Ugurlu et al. (2018) noted that
early morning watch lead to crew fatigue and poor psychological con-
ditions, while improper crew operations are a common RIF during night
watch. Vinagre-Ríos et al. (2021) further observed that accidents during
the night watch tend to be more severe than those during the day.

2.2. Research on accident causality analysis methods

A substantial body of research has focused on analysis of maritime
accidents. Currently, the primary research methods include, but are not
limited to, the Analytic Hierarchy Process (AHP) (Xiao et al., 2024),
Structural Equation Modelling (SEM) (Xu et al., 2021), and machine
learning techniques such as regression analysis and Bayesian Networks
(BN) (Aydin et al., 2024; Xing et al., 2023a).

In studies of accident causality, the Weighted Influence Non-linear
Gauge System (WINGS) has proven to be an effective analytical
method. Originating from Decision-making Trial and Evaluation Labo-
ratory (DEMATEL), WINGS is designed to analyse intertwined factors
and their causal relationships (Tavana et al., 2023). Wang and Zhang
(2022) proposed an approach that combines grey theory with WINGS to
identify critical factors and their corresponding causal relationships in
agricultural green supply chain management. Cao et al. (2024a) applied
the WINGS and association rule mining (ARM) technique to study the
RIFs of maritime accidents, successfully identifying the key RIFs asso-
ciated with different ship types. The experimental results indicated that
the WINGS model combined with ARM outperformed the DEMATEL
method.

The complexity, multidimensionality, and interconnectedness of
RIFs in maritime accident analysis pose significant challenges for a
single approach to comprehensively and effectively address the issues.
For high-dimensional RIFs, an analytical method capable of classifying
them into distinct levels and categories is essential. The Hasse Diagram
Technique (HDT) serves as a graphical representation that can identify
and illustrate the relationships and priorities among RIFs. In the field of
food safety, Zhu and Liu (2020) employed the HDT method for hierar-
chical analysis of infant milk powder data in China, demonstrating its
effectiveness in analysing the main factors influencing the safety of in-
fant milk powder. Sun et al. (2024) proposed a comprehensive assess-
ment framework integrating an improved version of DEMATEL and HDT
to evaluate the low-carbon transition quality of energy-intensive in-
dustries in China. Their findings indicated that the combination of
DEMATEL and HDT mitigated the information loss associated with
multi-criteria decision-making approaches, which may map multiple
indicators to a single outcome, and significantly enhanced the
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adaptability and applicability of the indicator system and assessment
methodology.

Although WINGS and HDT can individually contribute to the anal-
ysis of RIFs in maritime accidents, they still exhibit deficiencies in as-
pects such as dynamics and complexity (Xing et al., 2023a, 2023b). A
comparative analysis of results from multiple methods is anticipated to
compensate for these shortcomings through the complementarity of
each method’s strengths. The Matrices Impacts Croises-Multiplication
Appliance Classement (MICMAC) is a technique designed to analyse
interactions among multiple factors in complex systems. It can be
employed for classification and driver-dependency analysis, thereby
complementing and validating results from other methodologies and
providing a more comprehensive and in-depth analytical perspective
(Xing et al., 2023a). For instance, Xing et al. (2023b) compared the re-
sults of the MICMAC method with those from other approaches, such as
DEMATEL, successfully identifying key RIFs related to fire safety.
Similarly, Janssen et al. (2019) utilized a combination of Interpretive
Structural Modelling (ISM) and MICMAC to identify significant chal-
lenges related to the Internet of Things in smart cities. Their findings
indicated that the integration of these two approaches yields better in-
sights into challenges and potential solutions. Furthermore, Xing et al.
(2023a) combined DEMATEL, ISM, and MICMAC approaches to explore
factors influencing the lifting quality of large offshore structures. This
combined methodology proved effective in revealing intrinsic links
among RIFs and analysing their interactions.

2.3. State of the art and contributions of this study

This study offers four significant contributions to the field of mari-
time accident analysis, providing novel perspectives and insights into
maritime safety. The state-of-the-art for these contributions (N1-N4) is
summarized below.

N1. A new perspective on maritime accident analysis: Hetero-
geneous study of different watchkeeping periods.

State of the art: The current literatures primarily focus on the study
of maritime accidents across various accident waters and ship types (Cao
et al., 2024b; Zhang et al., 2022). However, analyses of relevant RIFs
associated with maritime accidents during different watchkeeping pe-
riods (e.g., third, second, and chief officers) remain insufficient. This gap
results in a lack of theoretical foundations and practical guidance for
safety management measures that address the heterogeneity of different
watchkeeping periods.

Our solution: This study clarifies the accident characteristics asso-
ciated with different watchkeeping periods by refining the classification
of maritime accident data. This approach not only addresses the existing
literature gap concerning accident characteristics during different
watchkeeping periods but also provides a crucial theoretical foundation
and practical guidance for safety management measures tailored to the
heterogeneity of various watchkeeping periods.

N2. An improved data mining approach: Enhanced multilevel
association rule mining algorithm.

State of the art: Traditional ARM techniques can only reveal the
associations between RIFs at the state level (Cao et al., 2024a), exhibit
limitations in identifying complex associations and fail to adequately
capture the effects of multiple factor levels. This inadequacy adversely
impacts the accuracy and comprehensiveness of analysis results.

Our solution: This study proposes an improved datamining method,
EMARM, which is capable of identifying multi-level coupling relation-
ships inherent in maritime accident RIFs, i.e., at the state level and factor
level. This method can extract hidden patterns and associations from
large volumes of accident data by integrating coupled RIFs at various
levels, thereby revealing the connections between RIFs more compre-
hensively and accurately.

N3. An improved hierarchical analytical approach: Game
theory-based total adversarial Hasse diagram technology.

State of the art: While HDT is a valuable tool, it may struggle to

effectively analyse the impacts of complex RIFs on systems characterized
by significant uncertainty, potentially leading to the oversight of critical
RIFs in practical applications (Ding et al., 2022).

Our solution: This study incorporates game theory into HDT, opti-
mally combining subjective and objective allocation methods to yield
the most reasonable weights. Consequently, the TAHDT addresses the
limitations of traditional HDT when confronting dynamically changing
and adversarial scenarios. This provides a more comprehensive, in-
depth, and robust analysis, making it better suited to the uncertainty
and adversarial contexts of maritime accidents.

N4. An integrated multidimensional analytical model: EMARM-
WINGS-TAHDT-MICMAC (EWTM) model.

State of the art: Traditional accident analysis methods often rely on
a single analytical tool, which limits their ability to fully integrate
multiple analytical perspectives (Feng et al., 2024a). This limitation
hampers the comprehensive identification of various factors affecting
accidents, leading to one-sided analyses.

Our solution: This study pioneers the construction of an integrated
multidimensional analytical model, EWTM, which combines a machine
learning method, a causal analytical method, a structured hierarchical
approach, and system analysis technique. The EWTM model provides a
holistic view of key RIFs associated with maritime accidents across
different watchkeeping periods, enhancing both the depth and breadth
of accident analysis.

3. Materials and methodology

This study combines EMARM, WINGS, TAHDT, and MICMAC
methods to propose an integrated multidimensional analytical model for
maritime accident analysis. Firstly, the EMARM algorithm is developed
to mine maritime accident data from different watchkeeping periods,
revealing Enhanced Multilevel Association Rules (EMARs) among the
RIFs. Secondly, the WINGS is established in a data-driven manner and
utilized to determine the reason and centrality degrees, as well as the
weight of the RIFs, enabling an in-depth analysis of their causal re-
lationships. Following this, the improved TAHDT approach is utilized to
uncover internal linkages among RIFs and delineate their logical hier-
archical structures. Finally, the MICMAC method is used to calculate the
driving force and dependency of each RIF, followed by a classification
analysis. This study identifies the key RIFs affecting maritime accidents
across different watchkeeping periods through multidimensional ana-
lyses, and provides tailored recommendations to enhance navigation
safety specific to each watchkeeping period. The research flow of this
study is illustrated in Fig. 1.

3.1. Research data

In this study, the marine accident investigation reports from 2000 to
2019 were collected from the databases of seven global maritime
agencies: The China Maritime Safety Administration (China MSA), the
Federal Bureau of Maritime Casualty Investigation (BSU), the National
Transportation Safety Board (NTSB), the Japan Transportation Safety
Board (JTSB), the Australian Transport Safety Board (ATSB), the Ca-
nadian Transportation Safety Board (TSB), and the Marine Accident
Investigation Branch (MAIB). Fig. 2 illustrates the sources and distri-
bution of these marine accident investigation reports.

The review of marine accident investigation reports from the speci-
fied database highlighted discrepancies in the detail level across
different countries, with some entries showing inaccuracies or lacking
completeness. To ensure data authenticity and completeness, reports
with missing or incomplete data were excluded. For instance, reports
lacking details about environmental factors contributing to the accident
were removed following the implementation of this criterion. A detailed
account of the screening process for these accident investigation reports
is provided in prior studies (Cao et al., 2023; Feng et al., 2024a, 2024b;
Wang et al., 2021). The data pre-processing was conducted in three
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stages. Firstly, duplicate accident reports were filtered out, resulting in a
total of 1294 accident reports. Secondly, based on 1294 maritime acci-
dent investigation reports from 2000 to 2019, this study classifies the
accidents into three categories according to watchkeeping periods,
corresponding to the watch of the chief, second, and third officers. Fig. 3
shows that the number of accidents was similar during the watchkeeping
periods of the chief, second, and third officers. Finally, a first-level RIFs
indicator system was developed, including human factors, ship factors,
environmental factors, and management factors, along with 34 sec-
ond-level RIFs. This systemwas designed from system safety engineering
viewpoint, drawing on relevant studies and expert opinions (Wang et al.,
2023; Xiao et al., 2024). The categories of RIFs and their descriptions are
specified in Table A of Appendix A. In the human factors category, the

seafarer’s physical and psychological state is classified as either “poor”
or “good” based on explicit descriptions in the accident reports. Spe-
cifically, when the reports mention conditions such as fatigue, depres-
sion, or drowsiness, the seafarer’s state is categorized as “poor,” whereas
a generally healthy or alert condition is categorized as “good.” Similarly,
the educational background of the seafarer is evaluated based on the
reports, where indications of limited formal education or insufficient
qualifications for the held position are categorized as “poor,” while
meeting or exceeding the required standards is categorized as “good.”
Fig. 4 illustrates the distribution of maritime accident types and the
severity of accidents based on their occurrences in the accident dataset.
It is intended primarily to provide a statistical overview of the distri-
bution and frequency of various accident types across different watch-
keeping periods. While this visualization serves as a foundational
component for understanding the general trends in maritime accidents,
but it is important to note that this study does not specifically investigate
the direct relationship between accident types, such as fire/explosion,
and watchkeeping schedules on navigating bridges.

3.2. Enhanced Multilevel Association Rule Mining (EMARM)

ARM is a widely used technique in data mining that uncovers
frequent itemsets and generates association rules (Feng et al., 2024a).
However, traditional ARM technology, when applied to data with
multiple states such as navigable waters and wind speed, typically an-
alyses each state independently, making it challenging to capture the
overall correlations between these states and other factors comprehen-
sively. To address this issue, this study proposes the EMARM algorithm,
an advancement of traditional ARM. The EMARM algorithm aims to
extract more complex and comprehensive association rules by inte-
grating multilevel data. Compared to traditional ARM, EMARM can
simultaneously consider the combined effects of multiple states, thereby
providing a more accurate reflection of correlations in complex datasets.
This improvement not only enhances the depth and breadth of the

Fig. 1. Research flow chart of this study.

Fig. 2. The sources distribution of marine accident investigation reports.
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analysis but also more effectively identifies the key RIFs and potential
risks affecting maritime accidents. The formulas and pseudocode are
presented in Equation (1) and Table 1, respectively.

EM(E⇒F)=
∑

i

∑

j
Conviction

(
Ei⇒Fj

)
×

Support
(
Ei⇒Fj

)

∑

i

∑

j
Support

(
Ei⇒Fj

) (1)

where, E and F represent different RIFs, Ei and Fj denote the various
states within RIF E and RIF F, respectively. Conviction

(
Ei⇒Fj

)
indicates

the conviction level of Ei to Fj, while Support
(
Ei⇒Fj

)
represents the

support for Ei to Fj. EM(E⇒F) reflects the enhancedmultilevel conviction
of RIFs E to F, illustrating the degree of influence of the antecedent on
the consequent at the overall level of RIFs.

The interpretability of association rules is improved by calculating
the conviction between different states and integrating these into a
unified metric. Specifically, EM(E⇒F) computes overall conviction by
combining all possible state sets, which reduces the impact of individual
or anomalous state sets on the results, thereby providing a more stable
and reliable association measure. This approach not only enhances the
robustness of association rules but also accurately captures the overall
relationships among multi-state factors in complex datasets. This pro-
vides a reliable theoretical foundation and data support for subsequent
integration with WINGS.

Fig. 3. Distribution of the accident occurrences.

Fig. 4. Accident type and severity distribution.

Table 1
The pseudocode of EMARM algorithm.

Algorithm 1: Enhanced Multilevel Association Rule Mining algorithm

Input: Dataset, DS; Minimum support threshold, min_sup; Minimum confidence
threshold, min_ confidence

Output: EMARs
1 Begin
2 Calling Association Rule algorithm (Apriori, FP-Growth, etc.)
3 Return association rules that satisfymin_sup;min_ confidence and lift > 1, AR
4 Generate two matrices CE and SE with Conviction

(
Ei⇒Fj

)
and Support

(
Ei⇒Fj

)
as

elements, respectively, based on the AR
5 Use Equation (5) to perform scaling nodes operations are performed on C and S

based on factors states to form new combined matrices, EM
6 Change the diagonal of EM to all Zeros, EMARM
7 Transforming EMARM matrix into association rule format
8 Return EMARs
9 End
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3.3. Weighted Influence Non-linear Gauge System (WINGS)

Maritime accidents are typically not random events but rather result
from the interplay of multiple RIFs. The interactions among these RIFs
create a complex system. The WINGS methodology is instrumental in
identifying key RIFs of maritime accidents and uncovering the de-
pendencies and causal relationships among them (Cao et al., 2024b).
Traditionally, the WINGS method relies on expert judgments to deter-
mine the influence degrees between factors, which can introduce
subjectivity and uncertainty into the analysis. To mitigate these issues,
this study adopts a data-driven approach for constructing the WINGS
model. The specific process of this method is outlined as follows.

Step 1: Construct the direct influence matrix using the EMARs, as
detailed in Equations (2)–(4).

D=

Ge1
Ge2
⋮
Gen

⎡

⎢
⎢
⎣

d11 d12 ⋯ d1n
d21 d22 ⋯ d2n
⋮ ⋮ dEF ⋮

dn1 dn2 ⋯ dnn

⎤

⎥
⎥
⎦

Ge1 Ge2 ⋯ Gen

(2)

dEF = nEF × EM(E⇒F) (3)

nEF =

{
1,when an association rule exists from E to F
0, else (4)

where D represents the direct influence matrix; Gei denotes a specific RIF
analysed in this study; dEF indicates the degree of influence of RIF E on
RIF F; and nEF indicates whether there is a significant influence of RIF E
on RIF F, with 1 indicating a significant influence and 0 indicating no
significant influence.

Step 2: Normalize the direct influence matrix to obtain the
normalized direct influence matrix NorD, as calculated using Equa-
tions (5)–(8).

Np=
1

(
max (e1, e2,⋯, en)

2
+max (f1, f2,⋯, fn)2

)1/2 (5)

ei =
∑

j
dij (6)

fi =
∑

j
dji (7)

NorD=Np × D (8)

where Np is the normalization parameter; ei indicates the sum of row i of
the direct influence matrix; fi indicates the sum of column i of the direct
influence matrix; and NorD denotes the normalized direct influence
matrix.

Step 3: Apply the influence transmissibility theory to construct a
complete influence matrix CH using the formula provided in Equa-
tion (9).

CH=
∑∞

k=1
NorDk =NorD ⋅ (I − NorD)− 1

=(tEF)n×n (9)

where ⋅ denotes the matrix inner product, I represents the unit matrix,
and tEF indicates the combined impact of RIF E on RIF F within the
complete influence matrix.

Step 4:Utilizing the complete influencematrix, compute the affected
degree, influence degree, centrality degree, and reason degree of the
RIFs, as well as the weight of each RIF, as shown in Equations (10)–
(14).

xE =
∑

F
tEF (10)

yE =
∑

F
tFE (11)

CDE = xE + yE (12)

RDE = xE − yE (13)

WTE =

(
CDE

2 + RDE
2)1/2

∑

E

(
CDE

2 + RDE
2)1/2

(14)

where xE denotes the influence degree of RIF E; yE denotes the affected
degree of RIF E; CDE denotes the centrality degree of RIF E; RDE and WTE
denote the reason degree and the weight of RIF E.

3.4. Total Adversarial Hasse Diagram Technology (TAHDT)

Understanding the complex interactions between RIFs in maritime
accident research is crucial for enhancing safety management and pre-
venting accidents. HDT is designed to analyse and structure the in-
teractions between elements in complex problems. It focuses on
presenting these interrelationships in a structured format to enhance
understanding (Dong et al., 2023; Zhang et al., 2023). In practice, HDT
andWINGS complement each other in addressing complex problems and
system analysis. WINGS focuses on identifying and analysing both direct
and indirect influences and interactions between RIFs, while HDT con-
structs hierarchical models to graphically present the dependencies and
structure of these factors. TAHDT enhances traditional HDT by incor-
porating adversarial game theory to provide a deeper understanding of
the influence relationships between RIFs. In this study, the TAHDT
method was employed to extract RIFs in both cause- and effect-oriented
manners, forming a dyadic directed topology to determine the influence
relationships between RIFs. These two extraction methods differ in their
hierarchical identification of RIFs: Up-type methods arrange RIFs from
top to bottom, while down-type methods arrange them from bottom to
top. This hierarchical structure facilitates essential comparisons and
validations from different perspectives, making it suitable for analysing
complex systems with numerous factors, intricate relationships, and
ambiguous structures. In this study, the results from WINGS were used
as inputs for TAHDT to leverage the complementary strengths of both
methods, thereby enhancing the understanding and analysis of causality
within the maritime accident system. The specific process is detailed
below.

Step 1: Eliminate less influential relationships in CH using the
intercept threshold IT to create the relationship matrix RH. This
matrix reflects the strong interaction relationships between RIFs and
is calculated as shown in Equations (15)–(19).

RH=(rhEF)n×n (15)

rhEF =

{
1, if tEF > IT
0, else (16)

IT=AI + σ (17)

AI=

∑

E
(xE + yE)

n2 (18)

σ =

⎛

⎝

∑

E

∑

F
(tEF − AI)2

n2

⎞

⎠

1/2

(19)
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where AI denotes the average degree of influence among RIFs; σ denotes
the overall standard deviation of the influence degree among RIFs; and
IT denotes the intercept threshold.

Step 2: Using Boolean operations to obtain the reachability matrix,
as detailed in Equations (20) and (21):

B1 =RH + I,B2 = B1 ⊙ B1,B3 = B2 ⊙ B1,⋯,Bn = Bn− 1 ⊙ B1 (20)

RM=(hEF)n×n =Bk =Bk− 1 ∕= Bk− 2 (21)

where RM is the reachability matrix and Bi is the transition matrix in
Boolean operations.

Step 3: Develop UP-type and DOWN-type hierarchical models by
leveraging the reachability set and the antecedent set, along with
their intersection, focusing on causal relationships as outlined in
Equations (22)–(24).

Rs(GeE)= {GeF|hEF =1} (22)

Qs(GeF)= {GeE|hFE =1} (23)

Ts(GeE)=RS(GeE) ∩ QS(GeE) (24)

where Rs(GeE) denotes the reachability set of GeE, i.e., the set of RIFs
with elements equal to 1 in row E of the reachability matrix. Qs(GeF)

denotes the a priori set of GeF, i.e., the set of RIFs with elements equal to
1 in column F of the reachability matrix. Ts(GeE) represents the inter-
section of the reachability set and the antecedent set.

To form an UP-type hierarchy, RIFs are selected from the reachability
set Rs(GeE), and these RIFs are placed at the surface level when
Rs(GeE) = Ts(GeE). The selected RIFs are then removed from the
reachability set. This process creates a new reachability set and a new
intersection. Conversely, to form a DOWN-type hierarchy, RIFs are
selected from the a priori set Qs(GeF), and these RIFs are placed at the
entity layer when Qs(GeE) = Ts(GeE). These RIFs are then removed to
create a new a priori set and a new intersection set. This hierarchical
process is iteratively applied until all RIFs are exhausted.

Step 4: First, apply the Tarjan algorithm to identify the strongly
connected components within the reachability matrix RM (Tarjan
and Zwick, 2024). Next, develop the shrinking node matrix RMʹ

based on these identified components. Lastly, generate the skeleton
matrix SM by applying the shrinkage equation. The relevant for-
mulas are detailed in Equations (25) and (26):

RM̅̅̅̅→
Tarjan RMʹ (25)

SM=RMʹ − (RMʹ − I)⊙ (RMʹ − I) − I (26)

Step 5: Finally, develop the DOWN-type and UP-type topology hi-
erarchies using the skeleton matrix SM.

3.5. Matrices Impacts Croises-Multiplication Appliance Classement
(MICMAC)

Determining the systematic role and influence of each RIF in mari-
time accident analysis is essential for optimizing safety management
strategies. The MICMAC method utilizes matrix multiplication to anal-
yse the influence and dependence among factors in a system. By calcu-
lating driving and dependence forces, it clarifies the role and position of
each influencing factor within the system (Kaladharan et al., 2024). To
verify the reasonableness of the TAHDT model for hierarchical classifi-
cation of RIFs in maritime accidents, this study employed MICMAC to
conduct a detailed analysis of the driving and dependence forces of each
RIF. The process is outlined below.

Step 1: Calculate the driving force DF of the RIFs, which is calculated
as in Equation (27).

DFi =
∑n

j=1
aij (27)

where aij represents the value of the element in the ith row and jth
column of the reachability matrix RM, and DFi denotes the sum of the ith
row of RM.

Step 2: Calculate the dependence force RF of RIFs, the formula is as
in Equation (28).

RFj =
∑n

i=1
aij (28)

where RFj represents the sum of the jth column of RM.

4. Results and discussion

4.1. EMARM analysis

This study identifies potential associations among RIFs using the
EMARM algorithm. Unlike traditional ARM, which examines associa-
tions at the level of individual states, this study analyses them at the
overall level of factors. It is important to note that the choice of EMARM
thresholds significantly impacts the quality of association rules (Feng
et al., 2024a; Sun, 2024). In this study, after several experiments, the
minimum support threshold and minimum confidence threshold were
set to 0.1 and 0.75, respectively. Additionally, to ensure that each
antecedent and consequent term represents only one RIF, the maximum
restriction length was set to 2.

In this study, the EMARM algorithm was used to mine maritime
accident data from the chief officer ‘s watch, the second officer’s watch,
and the third officer ‘s watch, resulting in 553, 570, and 550 EMARs,
respectively. The size of the enhanced multilevel conviction level re-
flects the strength of the association rules: the higher the conviction
ranking, the stronger the interaction between two neighbouring RIFs.
The top 10 EMARs are presented in Table 2.

In this study, the data presented in Table 2 shows that some RIFs are
interrelated. It is worth noting that there is a correlation among SC
(Seafarers’ certificates), SM (Ship manning), and SSC (Ship’s certifi-
cates) during the third officer ‘s watch. Similarly, during the second
officer ‘s watch, there was a correlation among MV (Administration’s
violation of supervision), MR (Administration’s regulations), and HEB
(Education background). During the chief officer’s watch, there is a
bidirectional correlation between MV (Administration’s violation of

Table 2
Top 10 EMARs ranked by conviction values.

DP N A C Cv N A C Cv

Third officer 1 SE SC 10.54 6 EF HC 8.32
2 SG SC 9.83 7 EF SM 8.06
3 SC SSC 9.57 8 HTS HC 7.89
4 HTR HC 9.32 9 SM SSC 6.53
5 MC SSC 8.77 10 SM SC 6.21

Second officer 1 MT SM 10.93 6 MV HEB 8.27
2 ET HC 10.32 7 HTS SM 7.83
3 SE SC 9.94 8 EV SS 6.65
4 MV MR 9.52 9 MC SSC 6.21
5 SE SM 8.63 10 HEB MR 5.95

Chief officer 1 SC SSC 10.37 6 SE HC 8.23
2 HO HC 9.63 7 SSC SM 7.64
3 MV MR 9.44 8 MR MV 7.13
4 HTS HC 9.21 9 MD SSC 6.85
5 SE SM 8.79 10 MD SM 6.18

Note: DP indicates different watchkeeping periods; N indicates serial number; A
indicates antecedent; C indicates consequent; Cv indicates conviction values.
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supervision) and MR (Administration’s regulations). From a practical
perspective, these interconnections are highly credible. For example,
MV andMR both pertain to regulatory practices and procedures, making
their bidirectional correlation plausible and intuitive in the context of
shipping safety management.

Fig. 5 displays the comparative results of EMARs data streams across
different watchkeeping periods, visualizing the linkage relationships
between various itemsets from a holistic perspective. The differences in
the linkage of RIFs during different watchkeeping periods are evident
from the variations in node area. RIFs such as SC (Seafarers’ certifi-
cates), SM (Ship manning), and MSS (The company’s safety manage-
ment) have the largest node areas during the third officer’s watch. RIFs
such as MR (Administration’s regulations), HEB (Education Back-
ground), and SC (Seafarers’ certificates) have the largest node areas
during the second officer’s watch. RIFs such as MR (Administration’s
regulations), HEB (Education background), and SSC (Ship’s certificates)
have the largest node areas during the chief officer’s watch. All of these
RIFs exhibit significant linkage effects in accidents. Analysing these RIFs
provides an in-depth understanding of the risk dynamics associated with
different positions in maritime operations and offers valuable guidance
for developing targeted safety management strategies.

4.2. Causality analysis based on WINGS

This section examines the causal connections among RIFs by evalu-
ating reason degree, centrality degree, and weight values. First, the
direct influence matrix D is constructed based on EMARM and Equation
(2). This matrix D is then normalized as per Equations (5)–(8), resulting
in the normalized direct influence matrix NorD. Subsequently, the
comprehensive influence matrix CH is calculated using Equation (9).
The final step involves plotting the causality and weight distributions for
each RIF based on their reason degree, centrality degree, and weight
values.

The centrality degree (CD) indicates the significance and impact of
each RIF in a maritime accident. In contrast, the reason degree (RD)
determines whether the RIF functions as an influence initiator or a
recipient. The weight (WT) integrates aspects of both centrality degree
and reason degree, adjusting for the effects of positive and negative
values in reason degree relationships to more accurately represent each
RIF’s overall importance. Through detailed analyses of centrality de-
gree, reason degree, and weight, this study provides a thorough un-
derstanding of the dynamics driving maritime accidents and the
interconnections among RIFs. These findings are crucial for formulating
strategies to prevent maritime accidents, reduce their frequency, and
improve overall maritime safety.

The causal distribution of each RIF is shown in Fig. 6. The five RIFs

with the most significant effects during the third officer’s watchkeeping
period are MSS (The company’s safety management), MV (Administra-
tion’s violation of supervision), SC (Seafarers’ certificates), SM (Ship
manning), and SSC (Ship’s certificates). Table 3 presents the RIFs with
higher centrality degree values for maritime accidents during other
watchkeeping periods. Additionally, by analysing the weight, this study
further identifies the criticality of these RIFs across different watch-
keeping periods. As shown in Fig. 7, MSS (The company’s safety man-
agement), MV (Administration’s violation of supervision), SC
(Seafarers’ certificates), SM (Ship manning), and SSC (Ship’s certifi-
cates) ranked highest in the weight values of RIFs during the third of-
ficer’s watch. Table 3 also presents the RIFs with higher weight values
for maritime accidents during other watchkeeping periods. This data
confirms a positive correlation between the weight and centrality
degree.

The reason degree (RD) was analysed to ascertain the causal dy-
namics among RIFs. A positive RD value (>0) indicates that the RIF acts
as a causative element influencing other RIFs, while a negative RD value
(<0) signifies that the RIF is an outcome factor influenced by other RIFs.
As shown in Fig. 6, RIFs such as ED (Depth-draft ratio), SA (Ship’s age),
and EV (Visibility) exhibit positive reason degree values during the third
officer’s watch. Table 4 presents the RIFs with higher reason degree
values for maritime accidents during other watchkeeping periods,
indicating their dominant influence on other RIFs in those periods. In
contrast, RIFs such as SM (Ship manning), SC (Seafarers’ certificates),
and HC (Communication problem) show negative reason degree values
during the third officer’s watch.

When considered collectively, outcome factors that possess high
centrality degree values typically assume a critical role in the trans-
mission of risk within the system. Therefore, these RIFs should be
prioritized. The analysis of centrality degree reveals significant differ-
ences in key RIFs affecting maritime accidents across the watchkeeping
periods of the third officer, second officer, and chief officer. Identifying
these heterogeneous RIFs for each watchkeeping period is essential for
developing targeted maritime accident prevention strategies. For
example, during the third officer’s watch, critical RIFs include MSS (The
company’s safety management), MV (Administration’s violation of su-
pervision), and SC (Seafarers’ certificates). During the second officer’s
watch, important RIFs are HEB (Education background), SM (Ship
manning), and ES (Sea state). For the chief officer’s watch, the critical
RIFs are MR (Administration’s regulations), SPF (PSC/FSC inspection),
and HC (Communication problem). These above RIFs are heavily
influenced by other factors and given their high centrality degree, any
changes within them can have a wide-ranging impact on the progression
of a maritime accident. Consequently, it is essential to give particular
attention to these RIFs to prevent their negative effects from being

Fig. 5. The comparison result of EMARs data flow.
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amplified and worsening the severity of the accident.

4.3. Hierarchical structure analysis based on TAHDT

This section examines the interdependent or coupling relationships
among RIFs using the adversarial hierarchical topology map. First, an
intercept threshold is applied to CH, to filter out less significant influ-
ence relations, resulting in the formation of RH. Second, Boolean oper-
ations are performed using Equations (20) and (21) to obtain RM. The
SM is then obtained by simplifying the points and edges within RM.
Based on this calculation, the hierarchical structure of maritime accident
RIFs can be delineated through DOWN-type and UP-type extractions.
Finally, further division of hierarchical elements is performed to
construct the confrontation hierarchy topology. Then, the UP/DOWN-
type confrontation hierarchy topology characteristics for the third offi-
cer’s watchkeeping period are illustrated in Fig. 8, while the topology
diagrams for other watchkeeping periods are detailed in Figures B.1 and
B.2 in Appendix B.

The UP-type and DOWN-type confrontation hierarchy topologymaps
represent outcome-oriented and cause-oriented hierarchies, respec-
tively. In these maps, the reachability relationships between RIFs
involved in a maritime accident are illustrated using directed line seg-
ments. Rectangular boxes within the diagrams indicate the formation of
loops, indicating that mutually reachable relationships between RIFs
create strong connectivity components. Additionally, RIFs positioned
lower in the hierarchy are more foundational, while those higher up are
more direct. The confrontation hierarchy topology reveals that RIFs
related to maritime accidents during the third officer’s, second officer’s,
and chief officer’s watches are categorized into five levels, from L1 to L5.
RIFs at level L1 are surface layer factors (S-RIFs), those at levels L2 to L4
are middle-level factors (M-RIFs), and those at level L5 are underlying
factors (U-RIFs).

Fig. 6. The causal diagram of RIFs. (a) Third Officer, (b) Second Officer, and(c) Chief Officer.

Table 3
The RIFs with large CD and WT values.

Watchkeeping
period

RIFs (CD) RIFs (WT)

Second Officer MR (Administration’s
regulations), MSS (The
company’s safety
management), HEB
(Education background), MV
(Administration’s violation of
supervision) and SC
(Seafarers’ certificates)

MR (Administration’s
regulations), HEB (Education
background), MSS (The
company’s safety
management), MV
(Administration’s violation of
supervision) and SC
(Seafarers’ certificates)

Chief Officer MR (Administration’s
regulations), MV
(Administration’s violation of
supervision), MSS (The
company’s safety
management), HEB
(Education background) and
SPF (PSC/FSC inspection)

MR (Administration’s
regulations), MV
(Administration’s violation of
supervision), HEB (Education
background), SSC (Ship’s
certificates) and SM (Ship
manning)

Fig. 7. Weight distribution of RIFs.

Table 4
The RIFs with large RD values.

Watchkeeping
period

Causal factors (RD > 0) Outcome factors (RD < 0)

Second Officer HTR (Time in present
rank), EV (Visibility) and
SA (Ship’s age)

SC (Seafarers’ certificates), SPF
(PSC/FSC inspection) and SS
(Seaworthiness)

Chief Officer EV (Visibility), HTS (Time
at sea) and ST (Ship type)

SM (Ship manning), SSC (Ship’s
certificates) and HC
(Communication problem)
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(1) The results of loop analysis

Loops, often referred to as strongly connected components, are
detected and combined through the application of the Tarjan algorithm
(Tarjan and Zwick, 2024). The study identified several such strongly
connected components, including SSC/SC/SM during the third officer’s
watch, MV/MR/HEB during the second officer’s watch, and MV/MR
during the chief officer’s watch. Each strongly connected component
was treated as a single node for further analysis. Strongly connected
components reflect a high level of interdependence and interaction
among the RIFs they include. For example, the bidirectional correlation
between MV and MR during the chief officer’s watch is discussed in the
EMARM results in Section 4.1. Similarly, SSC, SC, and SM during the
third officer’s watch, as well as MV, MR and HEB during the second
officer’s watch exhibited significant correlations, as shown in Table 2.
These findings further confirm the consistency of the analyses. From a
practical perspective, the RIFs within these strongly connected compo-
nents demonstrate significant interdependence in the occurrence of
maritime accidents. Specifically, SSC, SC and SM are all factors related
to the ship’s internal conditions. Thus, a failure in any of these com-
ponents indicates a potential influence on accident occurrence due to
the ship’s own factors. Similarly, issues with any of MV, MR or HEB
suggest that the ship may be unseaworthy. Consequently, it is vital to
carefully observe these cyclically interconnected strongly connected
components, as a failure in any one RIF can trigger a cascade of failures
among related RIFs, thereby increasing the likelihood of an accident.

(2) The results of isolated factors analysis

From Fig. 8, it is evident that HEB (Education background) is isolated
within the maritime accident system during the third officer’s watch,
showing no directional connections with other RIFs. This indicates that
HEB (Education background) does not interact readily with other RIFs.
Consequently, HEB (Education background) directly influences the
development of maritime accidents and is less likely to interact in
conjunction with other RIFs. As a factor related to the crew’s educa-
tional background, HEB (Education background) can significantly in-
fluence the skill level and expertise of crew members, thereby impacting

their decision-making and behaviour during sea voyages (Mejsner et al.,
2024). For instance, a strong educational background can enhance the
crew’s ability to handle emergencies and recognize risks, thus reducing
the likelihood of maritime accidents. Moreover, the isolated nature of
HEB (Education background) suggests that improvements or adjust-
ments should be tailored specifically through targeted training strategies
and education programs, rather than relying solely on changes in other
RIFs. To effectively mitigate the risks associated with inadequate
educational backgrounds among crew members, customized training
programs should be developed. By implementing such tailored educa-
tional initiatives, third officers can acquire the essential skills and
knowledge for critical operations, thereby significantly reducing the
potential risk of maritime accidents. This approach not only strengthens
individual competence but also enhances the overall efficiency and
safety of the ship’s operational team.

(3) The results of surface layer factors analysis

S-RIFs represent the most immediate factors influencing maritime
accidents, located at the surface level of the system. They do not project
directional lines outward but are solely impacted by other RIFs. As
illustrated in Fig. 8, during the third officer’s watch, both UP-type and
DOWN-type RIFs include SSC (Ship’s certificates), SC (Seafarers’ cer-
tificates), SM (Ship manning), and HC (Communication problem). These
RIFs are positioned at the surface level, indicating they may be early
indicators of potential maritime accidents during the third officer’s
watch. Additionally, the UP-type RIFs include HPS (Physical and mental
state), SS (Seaworthiness), SPF (PSC/FSC inspection) and EW (Wind
force). These factors also play a critical role in shaping the conditions
that may lead to accidents. When ship certificates are problematic and
crew certificates are unqualified, this poses significant threats to the
legality and safety of ship operations. In this case, even if a ship is
manned with a sufficient number of crew members, it is difficult to
compensate the lack of qualified personnel, which increases the likeli-
hood of communication problems during ship operations. As illustrated
in Figure B.1 of Appendix B, the maritime accident hierarchy topology
during the second officer’s watch identifies both UP and DOWN types at
this level. These include SSC (Ship’s certificates), SC (Seafarers’

Fig. 8. The causal diagram of RIFs (Third Officer).
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certificates), SM (Ship manning), EW (Wind force), SS (Seaworthiness),
SPF (PSC/FSC inspection), ES (Sea state), and EC (Current speed). This
indicates that these RIFs may be the earliest signs of a maritime accident
during the second officer’s watch. Additionally, the UP type also in-
cludes HC (Communication problem). The seaworthiness of a ship can
be compromised under adverse conditions such as rough seas and fast
currents. When these factors are combined with communication prob-
lems, the transmission of crucial information may be disrupted or
delayed, thereby increasing the difficulty of responding to emergencies.
As illustrated in Figure B.2 of Appendix B, the maritime accident hier-
archy during the chief officer’s watch identifies both UP and DOWN
types including SSC (Ship’s certificates), SC (Seafarers’ certificates), SM
(Ship manning), SS (Seaworthiness), and HC (Communication problem)
at this level. This suggests that these RIFs may be the earliest indicators
of a maritime accident during the chief officer’s watch. Additionally, the
UP type includes ES (Sea state) and HPS (Physical and mental state).
When the chief officer is in poor physical and mental condition and the
ship faces rough sea conditions, communication difficulties may be
exacerbated, thereby reducing the safety of the ship’s navigation.

Due to the variations in S-RIFs across different watchkeeping pe-
riods, it is essential to implement targeted risk control measures for each
period. Prioritizing the management of these S-RIFs is crucial in mari-
time risk management and prevention strategies. Effective control
measures should aim to disrupt interactions between these S-RIFs to
minimize their potential impacts early in an accident.

(4) The results of middle-level factors analysis

M-RIFs are influenced by U-RIFs and, in turn, can also affect S-RIFs.
While their impact is not as direct as that of S-RIFs, M-RIFs are crucial for
connecting various aspects of accident RIFs. They serve an important
role in bridging the gap between U-RIFs and S-RIFs, facilitating the flow
of influence throughout the risk system. In the accident hierarchy to-
pology of the maritime during the third officer’s watch, both UP and
DOWN types identify factors such as ES (Sea state), MR (Administra-
tion’s regulations), EC (Current speed), MV (Administration’s violation
of supervision), and MSS (The company’s safety management system) at
the intermediate level. Both UP/DOWN-type hierarchical topologies of
maritime accidents during the third officer’s watch indicate that de-
ficiencies in MR (Administration’s regulations) can lead to HC
(Communication problem). For instance, if regulations do not explicitly
mandate the use of specific communication protocols or equipment in
particular situations, it can result in poor information transmission or
misunderstandings during emergencies. This issue is particularly critical
during the third officer’s watch, as the third officer is the executor to
communication and operational roles in emergency response scenarios.
In the maritime accident hierarchy topology during the second officer’s
watch, both UP-type and DOWN-type classifications identify HEB (Ed-
ucation background), MR (Administration’s regulations), MV (Admin-
istration’s violation of supervision), HPS (Physical and mental state),
and MSS (The company’s safety management system) as intermediate-
level factors. From these hierarchical topologies, it is evident that dur-
ing the second officer’s watch, RIFs related to educational background
and management, such as HEB, MR, and MV, may not directly cause
maritime accidents. However, they can significantly influence the ship’s
seaworthiness (SS), potentially placing the ship in a hazardous state. In
the maritime accident hierarchy topology during the chief officer’s
watch, both UP-type and DOWN-type classifications identify EC (Cur-
rent speed), SPF (PSC/FSC inspection), HEB (Education background),
EW (Wind force), MR (Administration’s regulations), MV (Administra-
tion’s violation of supervision), and MSS (The company’s safety man-
agement system) as intermediate-level factors. These hierarchical
topologies indicate that during the chief officer’s watch, RIFs such as EC,
SPF, HEB, and EW influence maritime accidents by impacting SM (Ship
manning). Specifically, current speed and wind conditions can affect the
ship’s manoeuvring and speed, thereby increasing the workload on the

pilot. Additionally, the results of port state/flag state inspections can
alter the ship’s operational plans, resulting in additional workload and
stress on the crew, which may increase the risk of manoeuvring errors.
Educational background is crucial for a ship’s pilot; inadequate educa-
tion can reduce the accuracy of manoeuvres, thereby increasing the
likelihood of accidents. These RIFs interact with each other to influence
the pilot’s skills, collectively constituting the risk factors that can trigger
maritime accidents.

Considering the differences in M-RIFs during various watchkeeping
periods, it is essential to implement targeted risk control measures. By
effectively managing M-RIFs, we can interrupt the transmission paths
between these factors, thereby enhancing overall maritime safety.

(5) The results of underlying factors analysis

U-RIFs are the most central RIFs affecting maritime accidents and are
positioned at the deepest level of the system. They influence other RIFs
through directed edges but are not affected by any other RIFs. In the
maritime accidents hierarchy topology for each watchkeeping period,
both UP and DOWN types define EV (Visibility), MSM (The company’s
safety management), MRP (Rectification of the company’s problems),
MT (Company training) and MC (Company safety culture) at this level.
These RIFs, which encompass visibility conditions and well-established
management systems, align with the characterization of U-RIFs as
deeply embedded and challenging to change swiftly. Their profound
impact on the potential risk of maritime accidents underscores the need
for comprehensive and long-term management strategies. The hierar-
chical topology for each watchkeeping period reveals that U-RIFs in
maritime accidents across all watchkeeping periods exert their influence
through MSS (The company’s safety management system). This un-
derscores the critical role of a company’s safety management system as
the central mechanism for preventing and responding to maritime ac-
cidents. It is important to note that EV (Visibility), MSM (The company’s
safety management), andMC (Company safety culture) also influence ES
(Sea state) during the chief officer’s watch. This interaction highlights
the systemic and integrated nature of maritime safety management. EV
serves as a critical indicator of sea conditions. MSM pertains to the ship’s
operation and management, including the development and imple-
mentation of strategies for various sea states. Meanwhile, MC impacts
the crew’s safety awareness and behaviour, which affects their percep-
tion and response to sea conditions. Given that sea state is dynamic and
unpredictable, controlling the influence of EV, MSM, and MC can
enhance a ship’s adaptability to challenging conditions, thereby
reducing accident risks and ensuring the safety of vessels and crews.

Controlling U-RIFs generally leads to long-term improvements in
safety. Implementing tailored risk control measures for each watch-
keeping period—third officer, second officer, and chief officer—is
essential. Given that U-RIFs are foundational factors influencing mari-
time accidents, effective management of these factors will have lasting
positive effects, ensuring ongoingmaritime safety. It is important to note
that controlling U-RIFs focuses more on preventive strategies rather than
merely addressing accidents reactively. This proactive approach helps
establish a stable and sustainable safety management system, better
equipped to handle the complexities and uncertainties of the maritime
environment.

4.4. Classification analysis based on MICMAC

In this study, RIFs of maritime accidents are categorized using
MICMAC to analyse their interrelationships. Relationships among RIFs
are identified based on their driving force and dependence force char-
acteristics. RIFs with greater driving force have a significant impact on
other RIFs, while RIFs with higher dependence force are more influ-
enced by other RIFs. Based on the correlation calculation of the reach-
ability matrix, all 34 RIFs are classified into four distinct quadrants:
linkage, dependent, autonomous, and independent, as illustrated in
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Fig. 9.

(1) Linkage cluster

Quadrant I in Fig. 9 represents a linkage cluster where RIFs exhibit
both strong driving force and high dependence force. This means that
these RIFs not only have a significant impact on other RIFs but are also
highly influenced by them (Costa et al., 2024). As a result, they play a
critical role in the occurrence of maritime accidents due to their central
position and interactivity within the system. As illustrated in Fig. 9,
during the third officer’s watch, the linkage cluster comprises MV (Ad-
ministration’s violation of supervision) and MSS (The company’s safety
management system). Figure B.3 in Appendix B reveals that during the
second officer’s watch, the linkage clusters encompass MV (Adminis-
tration’s violation of supervision), MSS (The company’s safety man-
agement system), MR (Administration’s regulations), HEB (Education
background), and HPS (Physical and mental state). Figure B.4 in Ap-
pendix B indicates that during the chief officer’s watch, the linkage
clusters include MV (Administration’s violation of supervision) and MR
(Administration’s regulations). This type of RIF is highly unstable
because any control measures applied may induce feedback effects that
could influence the occurrence of maritime accidents. Specifically, the
RIFs involved in the linkage clusters for each watchkeeping period are
management factors or crew background factors that are difficult to alter
in the short term. Consequently, to mitigate the risk of maritime acci-
dents by controlling these RIFs, it is essential to monitor them
throughout the entire voyage-before, during, and after. Implementing
such monitoring measures can facilitate the timely identification of
potential RIFs and enable the adoption of appropriate preventive and
intervention strategies to ensure the safety of the ship and the well-being
of the crew.

(2) Dependent cluster

Quadrant II represents a dependent cluster characterized by RIFs
with low driving force and strong dependence force. These RIFs are
highly susceptible to the influence of other cluster RIFs and play a
reactive role within the accident system (Costa et al., 2024). During the
third officer’s watch, the dependent clusters include RIFs such as HC
(Communication problem), HPS (Physical and mental state), HEB (Ed-
ucation background), MR (Administration’s regulations), EW (Wind
force), and ES (Sea state). During the second officer’s watch, the
dependent clusters include HC (Communication problem), SSC (Ship’s

certificates), SM (Ship manning), EW (Wind force), ES (Sea state), and
other RIFs. During the chief officer’s watch, the dependent clusters
include HC (Communication problem), HPS (Physical and mental state),
HEB (Education background), EW (Wind force), ES (Sea state), and
additional RIFs. Among these, MR (Administration’s regulations) only
appeared in the dependent cluster during the third officer’s watch. This
suggests that the third officer may need to more closely adhere to and
consider government regulatory requirements while on watch. This may
indicate that third officers rely more on external regulations and
administrative requirements to ensure operational compliance, espe-
cially when dealing with complex tasks or unexpected situations. It is
crucial for third officers to ensure that all operations comply with
established regulatory standards (Shi et al., 2024a). Therefore,
enhancing the third officer’s understanding and enforcement of
administrative regulations is essential for ensuring compliance and the
safety of ship operations. Conversely, Wind force (EW) and Sea state
(ES) appear in the dependent clusters for all three periods, indicating
their significance across all watchkeeping periods. However, it is
essential to clarify that while EW and ES are classified within the
dependent cluster, this categorization does not suggest that they are
inherently influenced by other RIFs from different clusters. Instead, their
impact is highly contingent on the interaction with other RIFs, partic-
ularly those from human, operational, and environmental domains.
Specifically, the magnitude of their effect on vessel safety is susceptible
to modulation by other factors within the system. In this sense, although
these factors exhibit a dependent nature, they can substantially amplify
the effects of other RIFs under certain conditions. For instance, when
combined with human factors such as physical and mental state, ship
characteristics, or operational practices, wind force and sea state can act
as amplifiers, exacerbating the likelihood of accidents. Therefore, while
EW and ES are primarily dependent, their potential to act as catalysts in
accident escalation—by magnifying the impact of other contributing
factors—must be carefully considered in accident causation analysis.
This dual role of wind force and sea state, as both dependent factors and
amplifiers, underscores the importance of their inclusion in compre-
hensive safety assessments and accident prevention strategies. The
strong dependence of these RIFs in the clusters highlights the need to
manage their impact on ship navigation by controlling other RIFs. These
factors are crucial because the status and operation of other RIFs
significantly influences them. Thus, it is necessary to closely monitor
these RIFs and take appropriate precautions to ensure safety and sta-
bility during ship navigation.

(3) Autonomous cluster

Quadrant III represents an autonomous cluster characterized by RIFs
with lower driving force and dependence force. These RIFs have a
relatively weak impact on maritime accidents and primarily function as
intermediaries between different RIFs (Costa et al., 2024). During the
third officer’s watch, the autonomous cluster consists solely of EF
(Fairway width/ship length). During the second officer’s watch, no
autonomous clusters are present, indicating that all RIFs may signifi-
cantly impact the safety and stability of the ship during this period. In
contrast, the chief officer’s watch includes autonomous clusters
comprising ES (Sea state), EW (Wind force), and SF (Flag state).
Although these RIFs have a less direct impact on maritime accidents,
they remain important factors to consider and monitor during ship op-
erations. For instance, the combined effects of sea state and wind can
influence the stability and manoeuvrability of a ship during the chief
officer’s watch. Similarly, the level of flag state regulation affects the
safe operation of a ship and the enforcement of international
regulations.

(4) Independent cluster

Quadrant IV represents an independent cluster characterized by RIFs

Fig. 9. Classification chart of RIFs (Third Officer).
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that are strongly driving force and less dependence force. These RIFs
exert a significant impact on the RIFs of other clusters (Costa et al.,
2024). During the third officer’s watch, the independent cluster includes
RIFs such as HTS (Time at sea), HTR (Time in present rank), and HO
(Operational error). Similarly, during the second officer’s watch, the
independent cluster includes RIFs such as HV (Violation operation), ED
(Depth-draft ratio (h/d)), and ET (Traffic density). During the chief of-
ficer’s watch, the independent cluster includes RIFs such as EL (Loca-
tion), HV (Violation operation), and MT (Company training). These RIFs
have a critical impact on maritime accidents, and managing them is
crucial for preventing such accidents. This aligns with the factor hier-
archy topology in the TAHDT model, further validating the consistency
between these analytical approaches.

5. Implications

5.1. Theoretical implications

The novel multidimensional analytical model proposed in this study
enables the analysis of mutual and hierarchical relationships among
RIFs related to maritime accidents across different watchkeeping pe-
riods. Firstly, this study effectively identifies and extracts the key fea-
tures and common links among RIFs related to maritime accidents using
the EMARM algorithm. Secondly, it determines both direct and indirect
causal relationships between maritime accident RIFs for each watch-
keeping period through WINGS analysis. Subsequently, two types of
adversarial hierarchical topologies of maritime accident RIFs for each
watchkeeping period are derived using the TAHDT analysis, which in-
cludes detailed examinations of U-RIFs in the essential layer, M-RIFs in
the intermediate layer, and S-RIFs in the surface layer. Finally, MICMAC
analysis reveals the role and position of maritime accident RIFs within
the system for each watchkeeping period. Based on the results of the
analyses, key RIFs associated with maritime accidents during the
watchkeeping periods of third, second, and chief officers can be iden-
tified. Targeted measures can then be implemented to manage these
RIFs effectively and reduce the likelihood of accidents. This study pro-
vides a comprehensive identification method of these critical RIFs and
recommends specific strategies for their control. The findings offer
valuable theoretical support for maritime safety management, serving as
a crucial support for preventing maritime accidents and mitigating
associated risks.

The empirical results further validate the interconnections between
the four approaches presented in Section 4, demonstrating significant
consistency and complementary relationships among them. Specifically,
there is a strong correlation between the associations identified in
EMARM and the connectivity components highlighted in TAHDT.
Additionally, a comparison of the results from WINGS, TAHDT, and
MICMAC reveals a significant relationship between the centrality degree
(RD) of RIFs and their positions within the hierarchical tiers. When RD is
larger than 0, a higher RD of RIFs corresponds to a lower position within
the adversarial hierarchy topology, indicating a stronger causal attri-
bute. Conversely, when RD is less than 0, a lower RD of RIFs is associated
with a higher position in the adversarial hierarchy topology, signifying a
stronger consequence attribute. However, this study did not find a sig-
nificant correlation between the centrality degree (CD) of RIFs and their
hierarchical divisions. This lack of correlation may result from the fact
that the CD of RIFs is based on their influence on and by other attributes,
which diminishes their causal attributes and weakens their relationship
with the adversarial hierarchical topology that represents causal path-
ways. This study also revealed that the causal relationships of RIFs
derived from the WINGS and TAHDT methods are mutually supportive.
This conclusion is corroborated by comparing the adversarial hierarchy
topology from the TAHDT analysis with the RIF clusters classified by the
MICMAC method. Specifically, the surface layer RIFs (S-RIFs) from
TAHDT are consistently found in the second quadrant (Dependent
Cluster), while most of the essential layer RIFs (U-RIFs) are situated in

the fourth quadrant (Independent Cluster). Additionally, the strongly
connected components in the middle layer align precisely with the first
quadrant (Linkage Cluster), as illustrated in Figures B.1 and B.3 of Ap-
pendix B. Isolated RIFs, such as HEB during the third officer’s watch, are
positioned in the third quadrant (Autonomous Cluster). This consistency
is further validated by the alignment of MICMAC results with the
TAHDT adversarial hierarchy topology analysis, confirming the logical
coherence of the causality between RIFs.

5.2. Practical implications

Section 4 highlights significant differences in key RIFs across
different watchkeeping periods. These variations are likely linked to the
specific operational environment, crew work habits, and physiological
factors during each period. The risks encountered by third, second, and
chief officers during their respective watchkeeping periods have distinct
characteristics and challenges, necessitating tailored management stra-
tegies and preventive measures to mitigate accident risks.

(1) The strategies for third officer’s watchkeeping period: Man-
agement and human factors exhibit a significant influence during
the third officer’s watchkeeping period, likely because third of-
ficers typically have less work experience. Consequently, when
faced with complex tasks or emergencies, they often depend on
the company’s robust safety management system and sufficient
crew support. Studies have demonstrated that third officers are
more prone to operational errors in high-pressure environments
due to their limited experience and emergency response capa-
bilities (Choi, 2022; Yoshida et al., 2021). Therefore, recom-
mendations for third officers should emphasize enhancing
operational training and daily supervision to ensure adherence to
standard operating procedures, thereby reducing human error
and improving operational safety. Additionally, crew health
management programs, such as regular physical check-ups,
mental health counselling, and vocational skills training, can
effectively enhance crew professionalism and their ability to
handle unexpected situations (Choi, 2022). The development of a
safety culture is also vital, as it not only fosters good operational
habits among third officers but also strengthens their safety
awareness, ultimately reducing the risk of accidents (Yoshida
et al., 2021).

(2) The strategies for second officer’s watchkeeping period:
Second officer’s watchkeeping period is primarily influenced by
fatigue and physiological conditions, particularly during late-
night watch, when crew biorhythms decline, potentially impair-
ing concentration and decision-making ability (Shi et al.). Fatigue
is a critical factor influencing the safety of ship operations,
particularly in complex navigational environments, where
cognitive decline and increased mental load due to fatigue can
significantly elevate the risk of accidents (Yang et al., 2023).
Therefore, enforcing strict adherence to administrative regula-
tions to ensure operational standardization and compliance is a
crucial measure for effectively safeguarding ship safety in con-
ditions of fatigue. Additionally, educational background plays a
crucial role, as crew members with advanced specialized
knowledge and skills are better equipped to maintain resilience
and effectively handle emergencies while fatigued (Mejsner et al.,
2024). Therefore, this study recommends strengthening the
enforcement of administrative regulations, ensuring operational
standardization, and prioritizing the education and training of
crew members during the second officer’s watchkeeping period
to enhance their emergency response capabilities under fatigue.

(3) The strategies for chief officer’s watchkeeping period: The
chief officer’s watchkeeping period is more influenced by
external environmental factors and the level of management. The
chief officer is typically responsible for the overall supervision
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and management of the deck department. His extensive experi-
ence and high job level enable him to make efficient and strategic
decisions in complex environments. However, as workload in-
creases, the chief officer’s reaction time may slow when faced
with emergencies, potentially impacting the timeliness of the
response. Therefore, ensuring strict adherence to administrative
regulations and operational protocols to maintain a high level of
responsiveness during emergencies is a critical measure for
ensuring safety (Uğurlu et al., 2022). Additionally, the chief of-
ficer is responsible for the ship’s external reviews and regulatory
matters, requiring strong compliance management skills. Partic-
ularly during port state or flag state inspections, the ship’s
compliance directly impacts the inspection outcomes. Given
these responsibilities, it is essential to ensure that the chief officer
possesses the ability to oversee the broader situation and effi-
ciently manage regulatory affairs to guarantee the safe operation
of the ship.

In summary, to effectively reduce the risks of maritime accidents,
targeted prevention and control measures should be developed based on
the key RIFs identified in this study. By integrating multiple analytical
methods, this study uncovers the hierarchical relationships and causal
links between RIFs across different watchkeeping periods. This theo-
retical model not only enhances the understanding of the causes of
maritime accidents but also provides clear guidance for risk manage-
ment in actual operations. Applying these findings can lead to the
development of refined operational protocols and training programs for
all crew types, optimize ship management processes, and improve
overall safety management. The results offer robust theoretical support
and empirical evidence for maritime safety management, risk preven-
tion, and emergency response, with significant practical value.

5.3. Evaluation and future directions of 4-on/8-off watchkeeping systems

The existing 4-on/8-off watchkeeping system has been the backbone
of maritime operations for many years, providing a standardized
approach to crew scheduling that ensures the continuous monitoring of
vessel operations. This structure is widely adopted across various types
of vessels, and has become the norm due to its simplicity, operational
consistency, and ease of management (Balandong et al., 2019). The
system typically assigns crewmembers to 4-h watch periods followed by
8 h of off-duty time. These watch periods may vary slightly, but the most
common arrangement consists of alternating 4-h watch, such as
0000–0400 and 1200–1600, 0400–0800 and 1600–2000, 0800–1200
and 2000–2400. The enduring success and adoption of this watch system
are grounded in its practicality and efficiency. By ensuring that a crew
member is always on duty for 4 h at a time, and allowing for 8 h of rest, it
helps balance operational demands with the need for crew presence at
all times. Moreover, the predictable structure of the system allows for
easy scheduling and clear expectations regarding crew availability. For
decades, this arrangement has been deemed sufficient to mitigate the
immediate risks associated with fatigue, particularly when crew mem-
bers are vigilant and well-rested (van Leeuwen et al., 2021a). However,
despite its long-standing use and apparent effectiveness, the 4-on/8-off
system has significant limitations, particularly in relation to sleep re-
covery and crew well-being. A major disadvantage of this system is the
insufficient duration of rest periods for effective sleep recovery. The 8-h
off-duty period may appear adequate, but in practice, the actual time
available for sleep is considerably less. Sleep is often split into two
segments: a main core sleep period and a shorter nap. This division re-
sults in a total actual sleep time of approximately 7 h per 24-h cycle,
which is less than ideal for preventing sleep deprivation, especially
when officers are required to work during the early morning or
late-night watch (Heikkilä, 2016).

Research indicates that the 4-on/8-off system fails to allow sufficient
recovery from sleep deprivation, particularly in cases where the core

sleep is interrupted (Heikkilä, 2016). When sleep is fragmented, as is the
case with this schedule, it does not allow the body and mind the
necessary restorative periods to fully recover. As a result, cognitive
performance declines, alertness diminishes, and decision-making be-
comes impaired, particularly during critical tasks that demand height-
ened vigilance, such as navigation under adverse weather conditions or
when operating in busy maritime traffic (Shi et al., 2024b). Additionally,
the system’s reliance on nap periods as a compensatory measure for
insufficient sleep may not be effective in preventing fatigue, as the
duration and quality of naps are typically inadequate to make up for the
sleep debt incurred from interrupted or insufficient core sleep.
Furthermore, the current system does not account for the variability in
crew members’ individual physiological needs and cognitive states.
Each watchkeeper’s ability to recover and perform effectively is influ-
enced by factors such as circadian rhythms, physical health, and the
cumulative fatigue experienced over multiple watch. The rigid structure
of the 4-on/8-off system does not allow for adjustments based on these
individual differences, which can lead to performance degradation,
especially for officers working during the nocturnal or early diurnal
hours. Circadian misalignment, when crew members are required to
work opposite their natural sleep-wake cycles, significantly exacerbates
fatigue and cognitive impairment (Fan and Yang, 2024). This
misalignment is particularly problematic when officers are required to
perform tasks that demand sustained attention and quick
decision-making, where lapses in judgment can result in hazards.

Moreover, while the system does prevent fatigue build up by
providing regular rest periods, it does not adequately address the issue of
recovery during periods of excessive fatigue. In situations where officers
experience extended wakefulness or face particularly demanding oper-
ational conditions, the system provides limited flexibility to extend rest
periods or adjust schedules. This limitation restricts the crew member’s
ability to recover effectively from accumulated sleep deprivation,
leaving them vulnerable to fatigue-related errors and reduced vigilance.

Moving forward, the integration of technology-assisted scheduling
systems presents a promising avenue for improving the existing
watchkeeping system. Real-time physiological data from IoT-enabled
wearables and AI-driven analytics could enable more personalized and
adaptive scheduling, tailoring watch periods based on individual sleep
patterns, fatigue levels, and cognitive states. Such systems could
continuously monitor crew members’ physical and cognitive states,
providing data-driven insights to optimize recovery times and crew
performance. By adjusting schedules to accommodate both operational
requirements and crew well-being, this approach could enhance safety
and reduce fatigue-related errors in maritime operations. While imple-
menting such systems would require substantial empirical testing and
refinement, their potential to revolutionize crew management and
significantly improve overall safety is considerable.

6. Conclusions, limitations and future directions

6.1. Conclusions

This study introduces an innovative integrated multidimensional
analytical model, termed EWTM, which incorporates four distinct
analytical methods: EMARM, WINGS, TAHDT and MICMAC. The
application of the EWTM model reveals substantial variations in the
crucial RIFs linked to maritime accidents across different watchkeeping
periods. By integrating these analytical techniques, the EWTM model
demonstrates its efficacy as a comprehensive and multidimensional tool
for analysing accident characteristics and key RIFs during different
watchkeeping periods. This study offers the maritime industry a robust
theoretical foundation for developing accident prevention strategies
tailored to specific watchkeeping periods. The model aims to enhance
risk control and safety assurance through refinedmanagement practices,
ultimately striving for optimal safety outcomes.

The results presented in this study underscore the necessity of
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implementing tailored risk management measures for each watch-
keeping period, based on the specific RIFs encountered. Precise man-
agement of these RIFs during their respective watchkeeping periods is
essential for systematically improving maritime safety and reducing the
likelihood of accidents. Additionally, fostering a comprehensive un-
derstanding of these RIFs and enhancing the crew’s ability to respond to
them are vital for ensuring the long-term safe operation of ships.

6.2. Limitations and future directions

This study has innovatively explored the critical RIFs of maritime
accidents across different watchkeeping periods, providing valuable
insights for enhancing maritime safety. Nevertheless, certain limitations
remain that should be addressed in future research. Firstly, although this
study utilizes a substantial dataset of maritime accident investigation
reports, the sample may exhibit bias and may not fully represent all
possible accident scenarios. Future research should aim to expand the
dataset’s scope and diversity to enhance the generalizability and accu-
racy of the findings. Secondly, the identification of RIFs primarily de-
pends on existing investigation reports and expert insights, which may
not encompass all relevant factors affecting maritime accidents. Future
studies should consider incorporating additional data sources, such as
real-time ship operation and environmental monitoring data, to provide
a more comprehensive assessment of potential RIFs. Finally, while this
study proposes a prevention strategy based on watchkeeping period
heterogeneity, practical implementation may encounter challenges.
Future research should include field validation and feedback to refine
the strategy’s operability and effectiveness, ensuring its successful
application in maritime management.
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Appendix A. The description of the maritime accident RIFs database

Table A
The description of the maritime accident RIFs database.

Level I Level II Variables Value/definition

Human Physical & Psychological
state

HPS poor, good

Education background HEB poor, good
Time at sea HTS <5 years, 5≤ time <10 years, ≥10 years
Time in present rank HTR <1 year, 1 ≤ time <5 years, ≥5 years
Communication problem HC yes, no
Operational error HO yes, no, unknown
Violation operation HV yes, no, unknown

Ship Age SA 0–10 years, 10–20 years, 20–30 years, ≥30 years
Ship type ST Bulk carrier, Container ship, Oil tanker, Passenger ship (including cruise and ro-ro passenger ship), Chemical tanker,

General cargo ship, Fishing vessel, Yacht and sailing vessel, Tug and port traffic boat, Others
Gross tonnage SG <500 t, 500–3000 t, ≥3000t
Engine power SE <750 KW, 750–3000 KW, ≥3000 KW
Flag state SF Flag of convenience, Not flag of convenience
Ship’s certificates SSC complete and valid, incomplete or invalid
Ship manning SM adequate, inadequate
Seafarers’ certificates SC complete and valid, incomplete or invalid
Seaworthiness SS yes, no
PSC/FSC inspection SPF unsure, sure

Environment Location EL Inland waters, Port, Coastal waters, Open Sea
Visibility EV very poor - Vis <0.5 nm, Poor - 0.5 ≤ Vis <2 nm, Moderate - 2 ≤Vis <5 nm, Good and very good - Vis ≥5 nm
Wind force EW 0-5, 6–7, 8–9, 10-12
Sea state WS 0-3, 4–5, 6–7, 8-9
Current speed EC <2kn, 2-4kn, ≥4kn
Traffic density ET low, high
Fairway width/ship
length

EF w/l < 1, 1 ≤ w/l < 2, w/l ≥ 2

Depth-draft ratio (h/d) ED h/d < 1.2, 1.2 ≤ h/d < 1.5, 1.5 ≤ h/d < 3, h/d ≥ 3

Management Regulation MR inadequate, adequate

(continued on next page)
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Table A (continued )

Level I Level II Variables Value/definition

Supervision MS inadequate, adequate
Violation in supervision MV yes, no
Safety management
system

MSS defective, non-defective

Safety management MSM inadequate, adequate
Rectification of problems MRP unresponsive, responsive
Company safety culture MC poor, good
Training MT inadequate, adequate
Drill MD off schedule, stick to the schedule

Appendix B. The results of hierarchy analysis

Fig. B.1. The causal diagram of RIFs (Second Officer).
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Fig. B.2. The causal diagram of RIFs (Chief Officer).

Fig. B.3. Classification chart of RIFs (Second Officer).
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Fig. B.4. Classification chart of RIFs (Chief Officer).
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