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A B S T R A C T

Addiction and adverse effects resulting from schizophrenia are rapidly becoming a global issue, necessitating the 
development of advanced approaches that can provide support to psychiatrists and psychologists to understand 
and replicate the hallucinations and imagery experienced by patients. Such approaches can also be useful for 
promoting interest in human artwork, particularly surrealist images. Accordingly, in the present, a stacking 
ensemble Deep Dream model was developed that aids psychiatrists and psychologists in addressing the challenge 
of mimicking hallucinations. The dream-like images generated in the present study possess an aesthetic quality 
reminiscent of surrealist art. For model development, a series of five pre-trained Convolutional Neural Network 
(CNN) architectures—VGG-19, Inception v3, VGG-16, Inception-ResNet-V2, and Xception were stacked in an 
ensemble learning approach to create Deep Dream images whereby the upper hidden layers of the architectures 
were activated, and the models were trained via the Adam optimizer. Performance of the proposed model was 
evaluated across three octaves to amplify the maximum possible patterns and features of the base image. The 
resulting dream-like images contain shapes that reflect elements from the ImageNet dataset on which the above 
pre-trained models were trained. Each of the base images was manipulated to generate various dreamed images, 
each one with three octaves, which were finally combined to construct the final image with its loss. Final Deep 
Dream image showed a loss of 47.5821, while still retaining some features from the base image.

1. Introduction

In recent years, addiction and the resulting adverse impacts of 

schizophrenia have increased rapidly, posing a significant challenge on 
multiple fronts including societal and healthcare related issues across 
the globe. The World Health Organization (WHO) has identified over 24 
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million individuals suffering from schizophrenia, accounting for about 
0.32 % of the global population (Schizophrenia World Human Organi-
zation (WHO) 2024). Additionally, as per the observation by the WHO 
indicated from 2021, psychoactive drugs have been used by approxi-
mately 296 million individuals, leading to addiction indicating 5.8 % of 
the global population being addicted (World Human Organization 
(WHO) Drugs (psychoactive) 2024). Surrealist images have recently 
attracted large audience with their unconventional shapes, distortions, 
and patterns that occasionally alter features to a degree where the 
original image becomes difficult to recognize (Apollinaire & Manifesto, 
2023).

Deep learning in the last two decades has made significant ad-
vancements and applications in diverse sets of disciplines (Ali et al., 
2023; Hazar et al., 2020). The aim of Deep Dream is to generate images 
that simulate the imaginations of addicted individuals and schizo-
phrenic patients in an attempt to reflect hallucinations and illusory vi-
sions. The outcomes of the knowledge extracted from these images is 
typically to handle complex cases of mental salubrity and enrich prac-
titioners who are confronted with these issues (Rastelli et al., 2022). 
Deep Dream images are generated via a generative CNN architecture 
which is fed with a source image, and features of noticeable significance 
are then extracted via the trained Deep Dream model (Al-Khazraji et al., 
2023). In a deep CNN architecture developed for Dream images, earlier 
hidden layers are typically tasked with the identification of linear edges 
(also called low-level features) whereas the deeper layers identify 
complex non-linear features by utilizing low-level features from earlier 
layers as input. The aggregation of low and high-level features by the 
model are combined to create effects such as trees or an entire structure 
(Al-Khazraji et al., 2023). Various CNN network structures for this task 
have been proposed in the literature sharing several key characteristics: 
most have been trained on a large ImageNet dataset similar network 
structure (number of layers, number of units in each layer). Despite 
these similarities, these CNN architectures have been reported to extract 
distinct features, each analyzing the input image from a unique 
perspective (Ali et al., 2022). As a result, different CNN architectures 
yield distinct features. Consequently, combining some of these archi-
tectures leads to a more comprehensive and diverse set of extracted 
features (Alzubaidi et al., 2021).

In this study, a novel approach was used to generate Deep Dream 
images by employing the concept of stacking ensemble learning with 
multiple CNN variants, including Inception v3 (Lin et al., 2019), Xcep-
tion (Jebur et al., 2023), VGG19 (et al., 2019), Inception-ResNet-V2 
(Wang et al., 2021), and VGG16 (Al-Khazraji et al., 2022). The archi-
tectures in this study were stacked with different configurations ranging 
from three to five variants used simultaneously. In contrast with con-
ventional Deep Dream generation methods, which rely on repeatedly 
feeding the input image and applying general processes, an alternative 
approach was adopted in this study. The images were generated by 
applying Deep Dream to each CNN variant, followed by the application 
of transformations and operations on the resulting images. Performance 
of the model was evaluated by computing overall average and loss across 
all variants.

The output yielded multiple Deep Dream images that mimic the 
hallucinations experienced by schizophrenia patients and addicted in-
dividuals. Similar to surrealist images, images generated in this study 
can also be considered as art since only fictitious shapes and figures were 
generated. The proposed model was evaluated by computing the loss 
quantifying the disparity between the generated and the target images. 
As such the novelty of the proposed work is presented as follow: 

• As per the knowledge of the authors, the concept of stacking 
ensemble with multiple CNN variants is applied for Deep Dream for 
the first time.

• Multiple octaves were used for the implementation of the stacked 
Deep Dream model.

• CNN variants used in this study were carefully fine-tuned to 
outperform other hybrid models.

The reminder of this paper is organized as follows. Section two re-
views the relevant literature. Section three shows theoretical back-
ground of the technologies used. Section four explains the methodology 
of this study. Experimental results and discussion are illustrated in 
Section five, and finally the conclusion is presented in Section six.

2. Related works

Yin et al. (Yin et al., 2020) presented DeepInversion, which involves 
both teacher and student logits. After training a neural network on a 
specified image, the teacher model produced unnormalized outputs. 
Simulations of teacher logits were generated from a separately trained 
model on student logits. The authors enhanced the appearance of images 
via the uniform distribution of the extracted features, thereby creating 
DeepInversion. The model was evaluated using the CIFAR-10 (The 
CIFAR 10 dataset, 2024) and ImageNet (Russakovsky et al., 2015) 
datasets. Two CNN variants, VGG-16 and ResNet, were used to construct 
DeepInversion model. However, the model lacks diversity, as using more 
variants would result in a stronger model and better dreamed images. 
Additionally, the model requires significant computational resources, 
and it is time-consuming.

Arthi et al. (Arthi et al., 2021) presented a security system that em-
ploys Deep Dream for extracting prominent features. Their architecture 
is an authentication system using biometrics. Deep Dream was used to 
generate dream-like images by amplifying particular layers in the CNN 
architecture, making the valuable features more prominent. The images 
generated by the Deep Dream model were then benchmarked with the 
biometric images in the dataset. Permission in the authentication system 
is granted or rejected based on the strength of match between the images 
generated by the model and images contained in the biometric image set 
and an alarm is activated to alert the system. Specific details of the CNN 
configuration in their study are unknown and the details of constructing 
the model or using a pretrained model were not clarified. The model was 
primarily constructed to function as a feature extractor for an authen-
tication system, so the authors did not focus on Deep Dream as an image 
generator or on the quality of the generated images.

Al-Khazraji et al. (Al-Khazraji et al., 2023) presented a study 
combining Deep Dream and neural style transfer (NST) techniques. For 
Deep Dream, five CNN variants were used sequentially to generate 
dream images, which were then used as input for the NST method. When 
generating Deep Dream images, the model activated the upper layers, 
focusing on the more valuable features, and used the Adam optimizer 
during the training process. The stochastic gradient descent (SGD) 
optimizer was also tested, which demonstrated weaker performance 
compared to the Adam optimizer. This approach is time-consuming and 
requires significant memory to store the resulting images. Additionally, 
because NST is a highly complex method, it causes unacceptable delays 
and demands substantial computational resources.

Al-Khazraji et al. (Al-Khazraji et al., 2022) presented a Deep Dream 
method using the VGG-16 network. They examined the network and 
selected specific layers to activate. Initially, they activated the lower 
layers of VGG-16 by maximizing their activations, which amplified the 
features of the selected layers. They repeated this process with the upper 
layers of the network, maximizing the activations of these layers, 
thereby making other features more prominent. The authors concluded 
that the images resulting from activating the upper layers are more 
distinct and dream-like than those generated by activating the lower 
layers. Despite their considerable efforts, the study only employed the 
VGG-16 architecture, which is relatively simple compared to more 
complex architecture such as VGG-19, Inception, or Xception, or even a 
hybrid model combining multiple architectures. Consequently, the Deep 
Dream images generated using VGG-16 are less striking compared to 
those produced by more complex architectures.
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Sahu et al. (Sahu et al., 2023) presented a hybrid method that in-
tegrates features of machine learning and deep learning. The authors 
used the Inception v3 network with the original Deep Dream algorithm 
without any modifications. They collected input images from farms, 
aiming to extract features of disease lesions on plant leaves. The Deep 
Dream algorithm amplifies these features by maximizing the activations 
through the application of gradient ascent on specified layers of the 
Inception network, making the features more distinct and prominent. 
Generally, this method focuses solely on feature extraction rather than 
producing Deep Dream images.

Al-Khazraji et al. (Al-Khazraji et al., 2024) presented a Deep Dream 
method for generating dreamed images using two CNN variants, 
Inception-ResNet-V2 and Inception-v3, each working independently. 
They implemented their method by targeting the lower layers, then 
targeting the upper layers. This approach generated four types of Deep 
Dream images: the first two resulted from activating the lower layers in 
each network, while the last two were produced by activating the upper 
layers. However, this method produced weaker dreamed images, as each 
variant was used independently, meaning the model only focused on the 
part of the input image it could see, unlike the hybrid methods, which 
target the input image from multiple perspectives.

From the above studies, two gaps can be identified: 

• Some of these studies as in Al-Khazraji et al., (2022); Yin et al. 
(2020), and (Al-Khazraji et al., 2024), lack diversity in the CNN ar-
chitectures. They produced simple and not attractive images due to 
the use of only one or two architectures, and each model is utilized 
independently without any combination or hybridization between 
models.

Other models, as indicated in Arthi et al., (2021) and (Sahu et al., 
2023), use Deep Dream to maximize specific features. These models are 
used as feature extractors rather than dream generators.

To address these gaps, we are proposing the following 
improvements: 

• This study combines five CNN architectures in a novel way, rather 
than using one or two architectures independently.

• The main task of this study is to generate Deep Dream images, not 
feature extraction or selection.

• The study employs the concept of stacking ensemble learning to 
combine all five CNN architectures effectively.

Fig. 1. Diagram of the stacking deep dream approach.
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3. Methodology

The proposed study was carried out by including stacking ensemble 
learning approach using Google Colab, with Keras and TensorFlow li-
braries. Fig. 1 illustrates the schematic of the proposed model. The first 
step in this process is preprocessing, which includes resizing and 
normalization. During resizing, the base image was adjusted to the 
required size which is either 224 × 224 for VGG-16 and VGG-19, or 
299 × 299 for the Inception, Xception, and Inception-ResNet-V2, this 
can be achieved by changing the dimensions (width and height) of an 
image while maintaining its aspect ratio or distorting it to fit the desired 
dimensions.

The new size of the image must maintain the aspect ratio, ensuring 
that the proportion of the image’s width to height is preserved. This is 
achieved by applying 

xʹ/yʹ = x/y 

where x́ and ý  represent the new dimensions of the images, while 
x and y are the original dimensions. Normalization is then applied to 
scale the values of data to be in the range of 0 − 1. Normalization is 
achieved by applying xn = (xr − xmin /xmax − xmin) (Hamori et al., 2018; 
Yin et al., 2017) where xr denotes the intensity value of a pixel, xn is the 
normalized intensity value and xmax and xmin denote the maximum and 
the minimum intensity values of an image, respectively.

When implementing the CNN variants, features were detected based 
on which layers are activated, which means amplified specific features 
or patterns in those layers. In this model, only the deep layers were 
unfrozen, as they contain the most important details.

The hyperparameters used for each of the CNN variants are shown in 
Table 1.

The Deep Dream instances were created, and each one was associ-
ated with a different CNN variant, where the stacking ensemble of Deep 
Dream instances was represented by the Stacking Ensemble class, in 
which a list of Deep Dream instances was accepted as an input. The 
resulting Deep Dream image from the first instance was passed to the 
second instance and the process of Deep Dream was applied to it and so 
on, and each instance passed the resulting image to the next one until all 
the instances are completed. Therefore, the ensemble was used to pro-
duce the Deep Dream image by going through each deep dream instance 
iteratively, gathering the generated images and losses, and determining 
the weights for each model using the results of a meta-model. Each 
instance of a Deep Dream that makes up the ensemble produces an 
image and calculates a loss value. Two lists were initialized which are 
Ensemble_losses and Ensemble_imgs. Ensemble_losses were reshaped into a 
column vector with the shape (− 1, 1), and Ensemble_imgs was reshaped 
into a 2D array to prepare the input for meta_model. Each row in the 
reshaped Ensemble_imgs represents a deep dream instance, flattening 
the picture pixels into a single dimension. A 2D array named meta_-
model_input is created by horizontally stacking the revised ensem-
ble_losses and ensemble_imgs. The loss is computed by applying Eq. (1). 
Where generally, the loss quantifies the disparity between the generated 
image and the target image. Throughout the training process, the goal is 
to minimize the loss in order to enhance the similarity between the 
generated image and the desired image. Many metrics can be used to 
measure the loss function such as Mean Squared Error (MSE), Euclidian 
Distance, Eq. (1) is used to compute the loss function between two 

images based on MSE (Gao & Chen, 2022; Nielsen, 2015). 

C(w, b) = 1

/

2n
∑

x
‖ y(x) − a‖2 (1) 

Where C(w, b) represents the loss, (w, b) refers to the weight and bias, 
n is the number of training examples, a represents the magnitude of the 
error, and y(x) represents the real target for the input x which produces 
the predicted output.

But in the case of Deep Dream, there is no target image, where the 
input base image is modified in each iteration until reaching the Deep 
Dream image, thus the loss here is maximized each time and the pixels 
are adjusted each iteration depending on increasing the loss and the 
gradient ascent direction. Here, the loss in Deep Dream is calculated 
based on Eq. (2) (Gao & Chen, 2022; Nielsen, 2015). 

Loss(Xi,Xbase) =
1
n

‖ F(Xi) − F(Xbase)‖
2 (2) 

Where Loss(Xi,Xbase) indicates the value of loss between the feature 
activations of the generated Deep Dream image at iteration i and the 
base image, F(Xi) represents the feature activations obtained by passing 
the Deep Dream image at iteration i through the CNN architecture and 
F(Xbase) represents the feature activations obtained by passing the base 
image through the same CNN architecture.

The gradient ascent can be computed based on the activations of the 
neurons in each layer, as shown in Eq. (3) (Suzuki, et al., 2017). 

gradientascenti = ∇iLoss(x) (3) 

Where ∇iLoss(x)represents the gradient of the loss Loss with respect 

Table 1 
The values of hyperparameters.

No. Hyperparameter Value

1 Learning rate 0.01
2 Number of iterations 1000
3 Number of octaves 3
4 Octave’s scaling factor 1.3
5 Optimizer Adam

Algorithm 1 
The proposed stacking deep dream system.

Input • Base image, Learning rate μ, Number of steps N
• Counter values: P = 1, i = 1
• Number of instances, F
• Number of octaves, octaves
• Octave_scale, SCALE

Output • Final Deep Dream image.
• Final loss.

Begin 
1. Initialize lists: 

1.%2. Ensemble_imgs /* to store the generated dream images.
2.%2. Ensemble_losses /* to store the corresponding loss values of those images.

2. Input the base image, img.
3. Create an instance for each Deep Dream model, each one corresponds to a CNN 

architecture.
4. Resize the base image to the required size.
5. Normalize the resized base image.
6. Calculate the scaling factor, where S = SCALE K

7. For i ≤ octaves Do: 
1.%2. While P ≤ F Do: 

1.%2.%3. For i = 1to N Do: 
I. Take (img) as the base image.

II. Scale the image by applying Eq. (5).
III. Select the target layers from the network.
IV. Extract the features by applying CNN roles.
V. Compute the loss of the image by applying Eq. (2).

VI. Calculate the gradient ascent of each pixel in the layers by 
applying Eq. (3).

VII. Maximize the activations in each layer.
VIII. Update the image in the orientation of the gradient by 

applying Eq. (4).
IX. Store DeepDream_image in Ensemble_imgs.
X. Store loss in Ensemble_losses.

XI. Display (DeepDream_image, loss)
2.%2.%3. P = P+ 1

End While. 
1. Flatten all images in the Ensemble_imgs in the meta_model.
2. Put the loss values in the meta_model.
3. In the meta_model, assign a weight for every loss value.
4. Generate the Deep Dream image depending on the weights of the losses.
5. Display the final Deep Dream image and the final loss.
End.
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to the base image x; which will be the updated image in the later stages 
and i refers to the number of iterations.

Thus, from the fact that says, the weights in Deep Dream are not 
updated; instead, the base image is updated, Eq. (4) is used to update the 
base image at each iteration (Suzuki et al., 2017). 

xnew = xold + μ. gradientascent (4) 

Where xold is the image at this moment, while xnew is the updated 
image. μ is the learning rate. Thus, μ controls the process of updating the 
base image, achieving an equilibrium between optimal and large mod-
ifications of the image.

This process is repeated for a specified number of octaves that 
implement the Deep Dream operation with different sizes based on the 
scaling factor. Where image are resized according to the octaves as in Eq. 
(5) (Hsieh et al., 2021). 

x[K] = resize (I[K − 1], scaling= S) (5) 

Where x[K] is the modified image after applying the octave. S is the 
scaling factor in each octave, SCALE is the octave_scale value which is 
less than one in the case of downsizing and greater than one in the 
upsizing, and K represents the number of octaves.

The outputs of the Deep Dream instances are combined using met-
a_model to give weights to each loss of instance, where the weights are 
given based on the values of the losses; the small loss value has a small 

weight, and the high loss value has a high weight. Thus, five final loss 
values are obtained; one for each instance, which has a range between 
0 and 1, and their sum must be 1.

Algorithm 1 shows the proposed model steps in detail.

4. Experimental results and discussion

Various experiments were conducted to test the proposed model. In 
this case the base image of the former American president Franklin was 
used as shown in Fig. 2.

Then two preprocessing steps are utilized including resizing and 
normalization. In which the resized and normalized image is used as 
input to the proposed Deep Dream model. Fig. 3 shows the normalized 
image.

This image is then input to the stacking ensemble Deep Dream model 
which consists of five CNN architectures integrated together: VGG-16, 
Inception v3, VGG-19, Inceptio-ResNet-V2, and Xception. The result is 
three Deep Dream images, each one represents an octave. Fig. 4 shows 
the resulting Deep Dream image when applying the model with the first 
octave. While Figs. 5 and 6 show the Deep Dream images with the sec-
ond and third octaves, respectively.

The final Deep Dream image is generated from all three octave im-
ages as illustrated in Fig. 7.

The loss of each one of the generated Deep Dream images is listed in 
Table 2.

This model produced Deep Dream images with intricate details, 
where activations occur in the top three layers, which are rich in fea-
tures. This leads to the appearance of distinctive patterns and figures in 
the image. The depth and repeated convolution operations in VGG-19 
cause specific patterns to be repeatedly maximized in these top layers. 
Additionally, the extreme depth of the Xception and Inception v3 net-
works allows them to target the image from different perspectives, while 
VGG-16 focuses on patterns with less detail compared to the other 
networks. Finally, Inception-ResNet-V2 extracts and maximizes features 
in a way that differs from all other networks. The activation function 
(ReLU in this case) has a significant impact on the resulting Deep Dream 
image. From the loss, it is evident that at the third octave, the complexity 
of the resulting image increases. This is due to the repeated feeding of 
the image into the model, where the image first passes through the 
model with the first octave, resulting in limited loss. The image is then 
passed through the model again with the second octave, where the loss 
increases significantly. When the image enters the model a third time 
with the third octave, the loss continues to rise. Thus, as the number of 
octaves increases, the loss escalates substantially. We also implemented 
the stacking ensemble Deep Dream model by adding EfficientNet and 

Fig. 2. The base image.

Fig. 3. a) The Original base image, b) Image after applying the normalization process.
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removing VGG-16 and VGG-19. The resulting Deep Dream image is 
shown in Fig. 8, with a loss value of 4.0939. It is evident that the Deep 
Dream image in Fig. 8 did not maintain the details, as EfficientNet is a 
lightweight network and does not have a complex structure compared to 
VGG-19, which focuses on large patterns in the base image. The absence 
of VGG-16, which preserves small details, is also a factor. This is the 
reason the image in Fig. 8 appears distorted and does not represent a 
dream-like image. Additionally, the loss is very low because the patterns 
were not amplified, resulting in low detail, such as lines and edges. The 
stacking Deep Dream model still has some limitations. It requires high 
computational resources, as most deep learning techniques that deal 
with images demand significant memory space and strong processing 

Fig. 4. The resulting deep dream image with the first octave.

Fig. 5. The resulting deep dream image with the second octave.

Fig. 6. The resulting deep dream image with the third octave.

Fig. 7. The final deep dream image from the proposed stacking deep 
dream model.

Table 2 
The loss values of the stacking ensemble deep dream model.

Image Average loss value

The first octave image 9.2122
The second octave image 52.8167
The third octave image 80.7174
The average loss of the final image 47.5821
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power. Additionally, it is a time-consuming method since it continues 
execution during each octave, with each variant implemented and 
saving numerous images—one image per 50 iterations—along with the 
loss of each image. At the end of the process, the average loss is calcu-
lated, and the final Deep Dream image is produced.

5. Conclusion

Deep Dream technology has recently emerged as one of the most 
promising computer vision techniques. In this study, a novel method was 
presented for generating Deep Dream images by employing the concept 
of stacking ensemble learning with multiple CNN architectures. This 
approach generated dream-like images that mimic the hallucinations 
seen by addicts and people who suffer from schizophrenia, and the 
generated images were considered as artworks due to their surrealistic 
appearance. Five CNN architectures—VGG-16, Inception v3, VGG-19, 
Inception-ResNet-V2, and Xception were integrated based on the 
stacking ensemble concept. The base image was processed by the Deep 
Dream model, implemented using one of these networks, and the 
generated image was stored. The next image was then stacked above the 
previous one, and this process continued until the completion of image 
generation process. The procedure was then repeated with the next CNN 
variant, following the same steps as the first variant, until all variants 
were used, and three octaves were completed. The average loss and final 
Deep Dream image were then extracted. The loss value served as a 
metric to assess how much the dreamed image differed from the base 
image while still retaining prominent features that allow for the image’s 
recognition. The proposed method is limited by the high computational 
resources and time required. The future extension of this study is aimed 
at reducing the complexity in terms of both space and time. Addition-
ally, development of the Deep Dream model will be attempted using 
other suitable ensemble learning approaches.
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